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Abstract
We establish a regularity result for optimal sets of the isoperimetric problem with double
density under mild (α-)Hölder regularity assumptions on the density functions. Our main
Theorem improves some previous results and allows to reach in any dimension the regularity
classC1, α

2−α . This class is indeed the optimal one for localminimizers of variational function-
als with an integrand that depends α-Hölder continuous on the minimizer itself, and as such
can (the boundary of) the isoperimetric set be locally written (with additional constraint).

Mathematics Subject Classification 49Q05 · 49Q20 · 35J93 · 35B65

1 Introduction

In this paper we are concerned with the regularity of isoperimetric sets in Rn with densities,
for arbitrary dimensions n ≥ 2 and with an emphasis on the situation of very low regu-
larity assumptions on the density functions. Isoperimetric sets are defined as solutions of
the isoperimetric problem in R

n with densities, which can be formulated as follows: Given
two lower semi-continuous functions f , h : Rn → (0,+∞), the so-called densities, and an
arbitrary measurable set E ⊂ R

n , we introduce its (weighted) volume V f (E) via

V f (E) :=
∫

E
f (x) dx
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and its (weighted) perimeter Ph(E) via

Ph(E) :=
∫

∂∗ E
h(x) dHn−1(x),

whenever E is of locally finite perimeter (andwith ∂∗E denoting the reduced boundary of E),
while we set Ph(E) := +∞ otherwise. For some positive number m, we then look for a set
of minimal weighted perimeter among all sets of fixed weighted volume m, i.e., we look for
minimizers of

inf
{

Ph(E) : E ⊂ R
n with V f (E) = m

}
.

The classical isoperimetric problem dating back to ancient Greece corresponds to constant
density functions h = f ≡ 1, for which the weighted volume and perimeter reduce to the
Euclidean volume VEucl and Euclidean perimeter PEucl, and in this case it is well known that
the isoperimetric sets relative to a constant m are precisely all balls of radius R such that the
equality

VEucl(BR) = πn/2

�(1 + n/2)
Rn = m

is satisfied.
In the interesting case of non-constant densities, existence of isoperimetric sets is still

guaranteed under quite general assumptions on the density functions (see [4, 6, 12, 14]).
These sets are in general not unique, even not in the equivalence class of spatial translates.
(Notice, however, that in certain geometries, uniqueness of the isoperimetric set is obtained
only thanks to the weight.) In general, if the weight functions are not globally bounded and
continuous the isoperimetric sets are not necessarily bounded. The complementary, however,
is true as proved in [4, Theorem 1.1] and [14, Theorem B].

In this paper, we focus on the regularity of the isoperimetric sets, or more precisely, on
the regularity of their boundaries. (Optimal) regularity has been investigated for many years
in dependency on the regularity of the density functions.

A classical (and optimal) result in this regard for the case of a single density (i.e., f = h),
under the assumption of quite high regularity, which in particular allows to take advantage
of the Euler–Lagrange formulation of the problem, is the following statement ([11, Proposi-
tion 3.5 and Corollary 3.8]).

Theorem A ([11]) Let f = h be of class Ck,α(Rn,R+) for some k ≥ 1 and α ∈ (0, 1].
Then the boundary of any isoperimetric set is of class Ck+1,α , except for a singular set of
Hausdorff dimension at most n − 8.

When the densities are assumed to be just Hölder functions, one cannot even write down
the associated Euler–Lagrange equation. This case of poorly regular densities was addressed
only recently. More specifically, in Theorem 5.7 of [4] a first regularity result for the case
of a single density f = h, which is Hölder continuous of order α, was established in any
dimension (with a Hölder exponent depending on α and on the dimension). A second result
improved the above regularity result in the 2-dimensional case, see Theorem A in [5]. Here
is the precise combined statement.

Theorem B ([4, 5]) Let f = h be of class C0,α(Rn,R+) for some α ∈ (0, 1]. Then, if E
is an isoperimetric set, we have that ∂ E = ∂∗E up to Hn−1-negligible sets, and ∂∗E ∈
C1,α/(2n(1−α)+2α). If n = 2, we have that ∂∗E ∈ C1,α/(3−2α).
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More recently, in Theorem C of [15] the regularity result in dimension n was generalized
to the case of two different densities. As it is clear from the proof of this result, the Hölder
regularity of an optimal set only depends on the Hölder regularity of the density h (weighting
the perimeter), while no regularity is needed on f .

Theorem C ([15]) Let h be a density of class C0,α(Rn,R+) for some α ∈ (0, 1] and f be a
locally bounded function. Then, if E is an isoperimetric set, we have that ∂ E = ∂∗E up to
Hn−1-negligible sets, and ∂∗E ∈ C1,α/(2n(1−α)+2α).

We will later build up on these regularity results and we will thus refer to C1,σ with
σ = α/(2n(1 − α) + 2α) as the initial regularity.

The proof of the regularity result in any dimension (for both the case of single and double
density) consists in showing that if E is an isoperimetric set with an α-Hölder density h,
then it is an ω-minimal set (or almost-minimal set) for a certain modulus of continuity
ω(r) = r2σ . Hence, standard regularity theory for ω-minimal sets applies and allows to
obtain C1,σ regularity of ∂ E .

We observe that using this approach, which relies on ω-minimality, the order σ that one
can reach tends to 1/2 when α → 1. In the 2-dimensional result of Theorem B, the exponent

α
3−2α is still not-optimal but tends to 1 for α → 1.

The crucial ingredient in the proof of both Theorems B and C is the so-called ε−εβ prop-
erty, first established in [4, Theorem B] for the case of a single density, and then generalized
to the case of double density in [15]. Roughly speaking this property says that it is possible
to modify a set E by changing its volume of an amount ε and increasing its perimeter of
an amount proportional to at most εβ . In the case of a Lipschitz density the exponent β can
be chosen to be 1, while for a Hölder density it must be chosen depending on the Hölder
regularity of the density. In the case of double density, as mentioned before, only the density
on the perimeter is needed to be Hölder continuous.

The aim of the present paper is to improve these regularity results in the setting of Hölder
continuous densities and in general dimensions. More specifically, we prove the following:

Theorem 1.1 Let h be a density of class C0,α(Rn,R+) and f be a density of class
C0,γ (Rn,R+) for some α and γ ∈ (0, 1). Then the boundary of any isoperimetric set is
of class C1,α/(2−α), except for a singular set of Hausdorff dimension at most n − 8.

We emphasize that the Hölder exponent α
2−α

in our statement is the expected optimal one,
see also Example 1.2 below. Moreover, it does not depend on the dimension and it indeed
improves on the regularity results established before because

α
2−α

>

{
α

2n(1−α)+2α for n ≥ 2,
α

3−2α for n = 2 and f = h,

for each α ∈ (0, 1). In particular, also the expected asymptotic behavior α/(2 − α) → 1 as
α ↗ 1 is now achieved for all dimensions n ≥ 2.

At first glance, the loss in the order of the Hölder semi-norm from α in the differentiable
setting of Theorem A to α

2−α
in the continuous setting in Theorem 1.1 seems surprising.

This feature is, however, well known from classical regularity theory for the minimization of
variational functionals of the formF[w] = ∫

�
F(x, w, Dw) dx among Sobolev functions in

a givenDirichlet class, in the specific situation thatmerely anα-Hölder continuity assumption
is imposed on themaps u 
→ F(x, u, z) and (x, u) 
→ Dz F(x, u, z)which does not allow for
the passage to an Euler–Lagrange equation. In this case, the optimal regularity of minimizers
is precisely C1,α/(2−α), see [13].
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Thehypothesis that the volumedensity f must beHölder continuous seems to be an artifact
of ourmethod of proof andwe actually do not believe that it is a necessary assumption. Indeed,
our optimal regularity result is independent of the Hölder exponent γ , and the suboptimal
results from Theorem C hold true also without any continuity requirement. Unfortunately,
we do currently not see how to remove this hypothesis.

Finally, the optimal bound on the Hausdorff dimension of the singular set follows from
the standard regularity theory for ω-minimal sets, established by Tamanini in [16]. Indeed, as
commented above, in [4, 15] it is proved that an isoperimetric set with density is ω-minimal
for a certain modulus of continuity ω(r) = r2σ , and hence Tamanini’s regularity result
applies.

We conclude this introduction by discussing the strategy of the proof of our main result.
Thanks to the already known regularity result of Theorem C, we can work with a local

representation of the reduced boundary of isoperimetric sets (at some given regular point) in
terms of the graph of a C1-function. More precisely, in order to study the local regularity of
isoperimetric sets, this amounts to considering minimizers u of the functional

w 
→
∫

BR(0)
h(x ′, w)

(
1 + |Dw|2) 1

2 dx ′ (1.1)

among all functions w satisfying the constraint
∫

BR(0)

∫ w(x ′)

0
f (x ′, t) dt dx ′ = m (1.2)

for a given constant m and with prescribed boundary values on ∂ BR(0). Notice that here,
BR(0) denotes an open ball in Rn−1 that we have centered at the origin for convenience and
we may choose R ≤ R0 ≤ 1.

Our method for establishing (optimal) Hölder regularity is based on the so-called direct
approach from classical regularity theory for minimization problems, see e.g. [8, 9] for the
original theory without integral constraints, and [1, 2] for more recent text books. To this end,
we define in Sect. 3 a suitable comparison problemby keeping the original density only for the
volume constraint, and by freezing it for the perimeter. Via a combination of the initial regu-
larity result for the minimizer of the comparison problem, suitable estimates on the Lagrange
multiplier (coming from the volume constraint), and classical Schauder theory (applied to
the associated Euler–Lagrange equation which does now indeed exist), the minimizer is then
shown to have optimal decay estimates. Finally, in Sect. 5 the decay estimates of this compar-
ison function are then carried over to the minimizer of the original constrained minimization
problem, thus completing the proof of Theorem 1.1, via the Campanato characterization of
Hölder continuous functions.

We finally want to give an example that shows that the expected optimal Hölder exponent
of the boundary of isoperimetric sets in our setting is α

2−α
, which we find in this paper.

Example 1.2 For simplicity, we consider the two-dimensional problem and an isoperimetric
set which locally can be written as the graph of a function w over the interval (0, �), with
w > 0 in (0, �) and w(0) = 0. We suppose that the volume density is locally constant, with
f ≡ 1, and that the perimeter density is locally of the form h(x1, x2) = H(x1, |x2|α) for
some α ∈ (0, 1) and some function H such that both H and its derivative ∂2H with respect
to the second variable are bounded from below and from above by positive constants. Then,
according to (1.1) and (1.2), w minimizes the functional

w 
→
∫ �

0
H(z, |w(z)|α)

√
1 + (w′(z))2 dz,
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among all w satisfying the constraint
∫ �

0
w(z) dz = m.

In this scenario, we may compute the Euler–Lagrange equation inside the interval and find
that (

H(z, |w|α)
w′√

1 + (w′)2

)′
+ ∂2H(z, |w|α)αwα−1

√
1 + (w′)2 = λ,

where λ ∈ R is the Lagrange multiplier. In view of the assumption w(0) = 0 and knowing
that w is a C1,σ function, it must hold that w(z) ≈ z1+σ near z = 0. Plugging this Ansatz
into the Euler–Lagrange equation, we see that the first term is of the order O(zσ−1), while
the second one is O(z(α−1)(1+σ)). The singularity of both terms enforces that both exponents
are identical, σ − 1 = (α − 1)(1 + σ), which yields σ = α

2−α
.

The paper is organized as follows:

• Section2 is devoted to introduce some notations and preliminaries;
• in Sect. 3, we introduce the comparison problem and prove some crucial preliminary

Lemmas that relate, in a quantitative way, the Lagrange multiplier λwith the L2-distance
between the gradient of the comparison function and the gradient of the solution of our
original weighted problem;

• Section4, which is the core of the paper, deals with decay estimates for the comparison
function v;

• finally, in Sect. 5, we transfer these decay estimates from v to the solution u of our original
problem and deduce our regularity result.

2 Notation and preliminaries

We start by introducing some notation. In the following, we will denote by x = (x ′, xn) a
point inRn = R

n−1 ×R. Given r > 0 and x ′
0 ∈ R

n−1, we denote by Br (x ′
0) the ball inR

n−1

centered at x ′
0 and with radius r , and we write Br := Br (0) for simplicity.

Given a measurable function w defined on Rn−1, we denote its mean integral on a certain
measurable set A ⊂ R

n−1 by

(w)A := 1

|A|
∫

A
w(x ′) dx ′,

where |A| stands for the Lebesgue measure of A. In the particular case in which A = Br (x ′
0)

and it is clear from the context what is the center x ′
0, we simply use the abbreviation (w)r

instead of (w)Br (x ′
0)
.

As mentioned above, we will rely on Campanato’s characterization of Hölder continuity,
which we recall here. See also Section 3.1 in [1].

Proposition D ([3], Teorema I.2) Let BR be a ball in R
n−1, β ∈ (0, 1] and p ∈ [1,∞). A

function w ∈ L1(BR) is (up to the choice of a suitable representative) Hölder continuous
with exponent β, i.e., w ∈ C0,β(BR), if and only if there exists a constant C such that for
each ball Bρ(y′) centered in some point y′ ∈ BR there holds∫

BR∩Bρ(y′)

∣∣w − (w)BR∩Bρ(y′)
∣∣p

dx ′ ≤ Cρn−1+pβ .
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The oscillation on the left-hand side is a monotone function of ρ because for any measur-
able set A ⊂ R

n−1 the mapping

c 
→
∫

A
|w − c|p dx ′ is minimized at c = (w)A. (2.1)

The following iteration lemma is thus well-suited for oscillations and it is an elementary
though fundamental tool in elliptic regularity theory as it allows to pass from ρα2 to rα2 and
to drop an additive non-decaying term (the one that involves ε) at the expense of lowering
the order of decay. See also Lemma 3.13 in [1].

Lemma E ([7], Lemma III.2.1) Assume that φ(ρ) is a non-negative, real-valued, non-
decreasing function defined on the interval [0, R0] which satisfies

φ(r) ≤ C1

[( r

ρ

)α1 + ε
]
φ(ρ) + C2ρ

α2

for all r ≤ ρ ≤ ρ0, some non-negative constants C1, C2, and positive exponents α1 > α2.
Then there exists a positive number ε0 = ε0(C1, α1, α2) such that for ε ≤ ε0 and all
r ≤ ρ ≤ ρ0 we have

φ(r) ≤ c(C1, α1, α2)
[( r

ρ

)α2
φ(ρ) + C2rα2

]
.

Notice that if the quantity φ in the lemma is indeed the oscillation, the statement implies
Hölder regularity of the order (α2 − n + 1)/p via Proposition D.

We now collect at one spot for the reader’s convenience theHölder regularity of the density
functions:

h ∈ C0,α regularity of perimeter density,

f ∈ C0,γ regularity of volume density.

Since our final statement in Theorem 1.1 is independent of γ , we may without loss of
generality suppose that γ is small, for instance,

γ < min

{
α

2
,
2(1 − α)

2 − α

}
. (2.2)

This choice will slightly simplify our notation later on.
Finally, we conclude this sectionwith a comment on local bounds for the density functions.

Since we are assuming that the densities f and h are positive continuous functions, they are
in particular locally bounded both from above and away from zero. In particular, for any
T > 0, there exists a constant M > 0 that can be chosen independently from our localization
scale R ≤ R0 introduced in (1.1) and (1.2) such that

1

M
≤ f (x ′, t) ≤ M and

1

M
≤ h(x ′, t) ≤ M for any (x ′, t) ∈ BR × (−T , T ). (2.3)

For a fixed local representation of the reduced boundary as the graph of a C1-function u
minimizing the weighted surface area functional (1.1) under the constraint (1.2), we will
always choose T large enough so that ‖u‖L∞(BR) ≤ T uniformly in R ≤ R0, which allows
for choosing t = u(x ′). Moreover, as a consequence of the initial regularity statement of
Theorem C, the gradient of u is locally bounded by a constant K ≥ 1 that is independent of
R ≤ R0, i.e.,

‖Du‖L∞(BR) ≤ K . (2.4)
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In the rest of the paper, when we write A � B, we mean that there exists a constant c
which depends only on n, K , M, [ f ]C0,γ and [h]C0,α (hence, in particular, it is independent
of R), such that A ≤ cB.

3 The comparison problem and bounds on the Lagrangemultiplier

Asoutlined in the introduction,wewill study the regularity of the boundary of an isoperimetric
set with density E by means of classical regularity estimates for the (volume-constrained)
minimizer of the weighted surface area functional

w 
→
∫

BR

h(x ′, w)a(Dw) dx ′,

where, for notational convenience, we have used the abbreviation a(z) := (1+|z|2) 1
2 and BR

stands, as before, for an n − 1 dimensional Euclidean ball of radius R (that we assume to be
centered at 0). The derivation of this functional as the graph representation of the boundary
is fairly standard in the context of isoperimetric and minimal surface problems, we omit the
details. In the following discussion, the minimizer will be denoted by u.

The proof of ourmain regularity result is based on the derivation of regularity estimates for
a comparison problem, in which the density h(x ′, w) in the surface area functional is frozen
to a constant (and thus removed) in order to allow for the application of elliptic regularity
arguments in the now computable Euler–Lagrange equations.

A further simplification is achieved bymodifying the surface function a(z) for large values
of z. In fact, by (2.4), we have that the variational problem remains unchanged if we substitute
a(z) by an increasing smooth and strongly convex function aK ≥ a such that

aK (z) =
{(

1 + |z|2) 1
2 if |z| ≤ K ,

cK (1 + |z|2) if |z| ≥ 2K ,

for some constant cK . Notice that by strong convexity, we mean that there exists a constant
μ > 0 such that

aK (z2) ≥ aK (z1) + DzaK (z1) · (z2 − z1) + μ

2
|z2 − z1|2, (3.1)

for any z1, z2 ∈ R
n−1. This statement is equivalent to the ellipticity condition

ξ · D2
z aK (z)ξ ≥ μ|ξ |2, (3.2)

for any ξ ∈ R
n−1.

Our comparison problem is thus the following: We study the problem of minimizing the
(Euclidean) perimeter (still in the graph representation)

w 
→
∫

BR

aK (Dw) dx ′ (3.3)

among all functions w with w = u on the boundary ∂ BR which satisfy the weighted volume
constraint

∫
BR

∫ w(x ′)

0
f (x ′, t) dt dx ′ =

∫
BR

∫ u(x ′)

0
f (x ′, t) dt dx ′. (3.4)
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With standard compactness arguments, we obtain existence of minimizers of the compar-
ison problem.

Lemma 3.1 (Euler–Lagrange equations) In the above setting, a minimizer v ∈ u +W 1,2
0 (BR)

to the functional (3.3) under the constraint (3.4) always exists. Moreover, every minimizer
v satisfies an Euler–Lagrange equation with Lagrange multiplier λ ∈ R: for every ϕ ∈
W 1,2

0 (BR), there holds
∫

BR

DzaK (Dv(x ′)) · Dϕ(x ′) dx ′ + λ

∫
BR

f (x ′, v)ϕ(x ′) dx ′ = 0. (3.5)

Proof Because aK (z) has quadratic growth, the direct method yields the existence of a min-
imizer of the comparison problem (3.3), under the volume constraint (3.4). Moreover, since
aK (z) is differentiable and the constraint is of isoperimetric type, there exists a Lagrange
multiplier λ ∈ R such that (3.5) holds. ��

The following remark shows that theminimizer of the comparison problem reduces locally
the Euclidean perimeter.

Remark 3.2 (Energy estimate) By minimality of v for the comparison problem (3.3) with
the volume constraint (3.4), we have, via choice of aK ≥ a and ‖Du‖L∞ ≤ K

∫
BR

a(Dv) dx ′ ≤
∫

BR

aK (Dv) dx ′ ≤
∫

BR

aK (Du) dx ′ =
∫

BR

a(Du) dx ′.

Therefore, in what follows, all estimates can be written in terms of the original minimizer u
only. For example, we have for every p ∈ [1, 2] that |z|p ≤ c(K )aK (z), and thus

∫
BR

|Dv|p dx ≤ c(K , n)Rn−1.

We now derive two elementary estimates for weak solutions to the Euler–Lagrange equa-
tions

div DzaK (Dv) = λ f (x ′, v) in BR, v = u on ∂ BR

cf. (3.5). Our first is on the Lagrange multiplier.

Lemma 3.3 (First bound on λ) There exists a constant R∗ = R∗(n, f ) such that if R ≤ R0 ≤
R∗ then we have the following estimate for the Lagrange multiplier λ:

|λ| � R−1.

In what follows, we will tacitly assume that R0 ≤ R∗, so that the statement of Lemma 3.3
is always true.

Proof This bound could be obtained easily by testing the weak formulation of the Euler–
Lagrange equation (3.5)with a suitable cut-off function, if weknewalready that theminimizer
is bounded uniformly in R ≤ R0 in the sense that ‖v‖L∞(BR) ≤ T for some T , see the
discussion after (2.3). Because we know this to be true for the original minimizer u only, we
have to control their difference: Using the Hölder regularity of f , Jensen’s inequality and
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the Poincaré inequality (for which the Poincaré constant scales with R2 on the ball BR), we
observe that∫

BR

| f (x ′, v) − f (x ′, u)| dx ′ ≤ [ f ]C0,γ

∫
BR

|v − u|γ dx ′

≤ c(n)[ f ]C0,γ R(n−1) 2−γ
2

(∫
BR

(v − u)2 dx ′
)γ /2

≤ c(n, [ f ]C0,γ )R(n−1) 2−γ
2 +γ

(∫
BR

|Du − Dv|2 dx ′
)γ /2

.

Now, thanks to Remark 3.2 and the Lipschitz bound (2.4), the latter leads to∫
BR

| f (x ′, v) − f (x ′, u)| dx ′ ≤ c(n, [ f ]C0,γ , K )Rn−1+γ .

We finally consider a cut-off function η ∈ C∞
0 (B3R/4, [0, 1]) of radial structure satisfying

η ≡ 1 in BR/2 and |Dη| � R−1. In this way, we find

|λ| ≤ c(n, M)R1−n
∣∣∣λ

∫
B 3R

4

f (x ′, u)η dx ′
∣∣∣

≤ c(n, M)R1−n
∣∣∣
∫

B 3R
4

DzaK (Dv) · Dη dx ′
∣∣∣ + c(n, [ f ]C0,γ , K )|λ|Rγ ,

by the virtue of (2.3), the Euler–Lagrange equations (3.5) and the previous error esti-
mate. Hence if R ≤ R0 is sufficiently small so that c(n, [ f ]C0,γ , K )Rγ

0 ≤ 1/2 and using
|DzaK (z)| � |z| together with Remark 3.2, we conclude that

|λ| � R1−n
∣∣∣
∫

BR

DzaK (Dv) · Dη dx ′
∣∣∣ (3.6)

� R1−n
∫

BR

|DzaK (Dv)|R−1 dx ′ � R−1,

which is the desired estimate. ��
The following lemma allows to improve the bound on the Lagrange multiplier from the

previous lemma if additional error estimates are available.

Lemma 3.4 (Improved bound on λ) Suppose that u is C1,σ (BR) and that∫
BR

|Du − Dv|2 dx � Rn−1+2θ (3.7)

for some σ and θ ∈ [0, 1), then

|λ| � Rθ−1 + Rσ−1.

Proof We take a smooth cut-off function η ∈ C∞
0 (BR, [0, 1]) satisfying η ≡ 1 in BR/2 and

‖Dη‖L∞ � R−1. We may choose this function as a test function in the Euler–Lagrange
equation (3.5) and find, analogously to (3.6) in the previous proof, that

|λ|Rn−1 �
∣∣∣∣
∫

BR

DzaK (Dv) · Dη dx ′
∣∣∣∣ .
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We now use the fact that η is compactly supported in BR to observe that
∫

BR
ξ · Dη dx = 0

for any ξ ∈ R
n−1. In particular, for ξ = DzaK ((Du)R), we find that

|λ|Rn−1 �
∣∣∣∣
∫

BR

(DzaK (Dv) − DzaK ((Du)R)) · Dη dx ′
∣∣∣∣

� R−1
∫

BR

|DzaK (Dv) − DzaK ((Du)R)| dx ′.

It is easily seen that DzaK is Lipschitz with a Lipschitz constant depending just on K . Using
in addition the triangle inequality, we thus obtain

|λ|Rn �
∫

BR

|Dv − Du| dx ′ +
∫

BR

|Du − (Du)R | dx ′.

For the first term, we use Jensen’s inequality and the hypothesis (3.7) to bound

∫
BR

|Dv − Du| dx � Rn−1+θ .

For the second term, we use the fact that Du is known to be a σ -Hölder function, and thus

∫
BR

|Du − (Du)R | dx � Rn−1+σ .

A combination of the previous bounds yields the statement of the lemma. ��

Our next result is somehow complementary to the previous lemma.

Lemma 3.5 (First error estimate) Suppose that there exists δ ∈ [0, 1) such that

|λ| � Rδ−1.

Then,

∫
BR

|Du − Dv|2 dx ′ � Rn−1+ 2α
2−α + Rn−1+ 2

1−γ
(γ+δ)

. (3.8)

Proof Making use of the strong convexity of aK , cf. (3.1), and the Euler–Lagrange equa-
tion (3.5) for v (tested with ϕ = u − v), we find

μ

2

∫
BR

|Du − Dv|2 dx ′ ≤
∫

BR

(
aK (Du) − aK (Dv)

)
dx ′

+λ

∫
BR

f (x ′, v(x ′))(u(x ′) − v(x ′)) dx ′. (3.9)

Now we estimate the two integrals appearing on the right-hand side separately. We start by
noticing that the first integral is non-negative due to the fact that v is a minimizer. Hence,
using in addition the Lipschitz bound on u, the definition of aK and the lower bound on h,
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we observe that

1

M

∫
BR

(
aK (Du) − aK (Dv)

)
dx ′ ≤ h(0′, u(0′))

∫
BR

(a(Du) − a(Dv)) dx ′

=
∫

BR

(
h(0′, u(0′)) − h(x ′, u(x ′))

)(
a(Du) − a(Dv)

)
dx ′

+
∫

BR

(
h(x ′, u(x ′))a(Du) − h(x ′, v(x ′))a(Dv)

)
dx ′

+
∫

BR

(
h(x ′, v(x ′)) − h(x ′, u(x ′))

)
a(Dv) dx ′.

The second term on the right-hand side is non-positive because u is a minimizer for the
initial full weighted problem and v is an admissible competitor. Using now that h is Hölder
of order α, u is Lipschitz with constant K and a is Lipschitz with constant 1, we can further
estimate

1

M

∫
BR

(
aK (Du) − aK (Dv)

)
dx ′

≤ (
1 + K α

) [h]C0,α

∫
BR

|x ′|α|Du − Dv| dx ′ + [h]C0,α

∫
BR

|v − u|αa(Dv) dx ′.

We estimate with the help of Young’s inequality:

1

M

∫
BR

(
aK (Du) − aK (Dv)

)
dx ′ ≤ ε

∫
BR

(|Du − Dv|2 + R−2|u − v|2) dx ′

+ C

(∫
BR

|x ′|2α dx ′ + R
2α
2−α

∫
BR

a(Dv)
2

2−α dx ′
)

,

where ε is some positive and small but finite constant that we will fix later and where
C = C(ε, K , α, M, [h]C0,α , n) is a constant that may (from here on) change from line to
line. Clearly, the second term on the right-hand side is of the order Rn−1+2α . Moreover,
because a(z)p ≤ C(K )aK (z) for any p ∈ [1, 2] and thanks to the minimality of v and the
Lipschitz bound on u, we have for the third term that

∫
BR

a(Dv)
2

2−α dx ′ �
∫

BR

aK (Dv) dx ′ ≤
∫

BR

aK (Du) dx ′ ≤ C Rn−1.

For R ≤ 1, we conclude that

1

M

∫
BR

(
aK (Du) − aK (Dv)

)
dx ′

≤ ε

∫
BR

(|Du − Dv|2 + R−2|u − v|2) dx ′ + C Rn−1+ 2α
2−α .
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It remains to estimate the volume constraint term in (3.9). Using the assumption on the
Lagrange multiplier, and the fact that u and v satisfy the same volume constraint, we estimate

|λ|
∣∣∣
∫

BR

f (x ′, v(x ′))(u(x ′) − v(x ′)) dx ′
∣∣∣

� Rδ−1
∣∣∣
∫

BR

∫ u(x ′)

0
f (x ′, v(x ′)) dt dx ′ −

∫
BR

∫ v(x ′)

0
f (x ′, v(x ′)) dt dx ′

∣∣∣

= Rδ−1
∣∣∣
∫

BR

∫ u(x ′)

v(x ′)

(
f (x ′, v(x ′)) − f (x ′, t)

)
dt dx ′

∣∣∣.
We use the γ -Hölder regularity of f and Young’s inequality to get

|λ|
∣∣∣
∫

BR

f (x ′, v(x ′))(u(x ′) − v(x ′)) dx ′
∣∣∣ ≤ C Rδ−1

∫
BR

|u(x ′) − v(x ′)|1+γ dx ′

≤ ε

∫
BR

R−2|u − v|2 dx ′ + C Rn−1+ 2
1−γ

(γ+δ)
.

We have now a bound on both terms appearing on the right-hand side of (3.9). Therefore,

μ

2

∫
BR

|Du − Dv|2 dx ′ ≤ 2ε
∫

BR

(|Du − Dv|2 + R−2|u − v|2) dx ′

+C Rn−1+ 2α
2−α + C Rn−1+ 2

1−γ
(γ+δ)

.

Hence, via Poincaré’s inequality and a suitable (small) choice of ε, we end up with (3.8). ��
Iterating Lemmas 3.5 and 3.4, we get the following

Corollary 3.6 (Improved error estimate) Let u ∈ C1,σ (BR) with σ ≤ α
2−α

, then we have that

|λ| � Rσ−1 (3.10)

and ∫
BR

|Du − Dv|2 dx ′ � Rn−1+ 2α
2−α + Rn−1+ 2

1−γ
(γ+σ)

. (3.11)

Proof By Lemma 3.3 we know that |λ| � R−1, hence we can apply Lemma 3.5 with δ = 0
and deduce that

∫
BR

|Du − Dv|2 � Rn−1+ 2α
2−α + Rn−1+ 2γ

1−γ .

Under the assumption (2.2), the second term on the right-hand side is the leading order term
for R ≤ 1. Hence, applying Lemma 3.4 (with θ = γ

1−γ
), we deduce that

|λ| � Rσ−1 + R
γ

1−γ
−1

.

If γ
1−γ

≥ σ , the first bound (3.10) is proved and (3.11) follows directly from Lemma 3.5.
Otherwise, we can iterate the above procedure and after a finite number of steps we will reach
the estimate

|λ| � Rσ−1,

which, again, will imply, by using Lemma 3.5, the desired estimate (3.11). ��
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4 Decay estimates for the comparison problem

In this section, we establish decay estimates for the solution v of the comparison problem.
In getting such estimates, the bound on the Lagrange multiplier λ obtained in the previous
section will play a crucial role.

We start, however, with first (suboptimal) Hölder estimates for the minimizer of the com-
parison problem.

Lemma 4.1 Let v ∈ u + W 1,2
0 (BR) be a minimizer for the functional (3.3) under the con-

straint (3.4) in the above setting. Then v ∈ W 2,q
loc (BR) for any q ∈ (1,∞), and thus, in

particular, it holds v ∈ C1,ω(B R
2
) for any ω ∈ (0, 1). Moreover, there are the estimates

‖Dv‖L∞(B R
2

) � 1 and [Dv]C0,ω(B R
2

) � R−ω.

The proof of the statement follows from standard elliptic theory. We provide it for the
convenience of the reader.

Proof We start by rewriting the Euler–Lagrange equation as

−D2
z aK (Dv) : D2v + λ f (x ′, v) = 0 in BR,

and we recall that A := D2
z aK (Dv) is a uniformly elliptic matrix by the virtue of (3.2). By

rescaling

x ′ = Rx̂ ′, v(x ′) = Rv̂(x̂ ′), λ = R−1λ̂, f (x ′, v) = f̂ (x̂ ′, v̂), A(x ′) = Â(x̂ ′),

observing that [ f̂ ]C0,γ = Rγ [ f ]C0,γ � 1 because R ≤ 1, and invoking Remark 3.2 and
Lemma 3.3, it is enough to consider the case R = 1.

We introduce a cut-off function ηwhose support is compactly contained in B1. Smuggling
this function into the elliptic equation leads to considering

− A : D2w + w = −2A : Dη ⊗ Dv − A : (D2η)v + ηv − λη f (·, v) in R
n . (4.1)

By the assumptions of the lemma and recalling that f is Hölder continuous, arguing similarly
as in the proof of Lemma 3.3, we see that the right-hand side belongs to L2(Rn), and
thus, by standard theory for elliptic equations, e.g., Theorem 5.1.1 in [10], there exists a
unique solution w, which must coincide with ηv by construction, and that solution belongs
to W 2,2(Rn). Moreover, thanks to Remark 3.2 and Lemma 3.3 and Poincaré’s inequality, we
have the estimate

‖D2w‖L2 + ‖w‖L2 � 1,

by inspection of the right-hand side. Invoking the Sobolev embedding theorem and recalling
thatw is compactly supported, we deduce thatw ∈ W 1,q(Rn) for any q ∈ [1, 2n

n−2 ) for n ≥ 3
and any q ∈ [1,∞) for n = 2, and thus, the right-hand side of (4.1) must be in Lq(Rn) with
norm estimate

‖Dw‖Lq + ‖w‖Lq � 1.

This procedure can be repeated and we deduce that w ∈ W 2,q(Rn) for any q ∈ (1,∞)

eventually. We finally make use of the Sobolev embedding into Hölder spaces to conclude
that w ∈ C1,ω(Rn) for any ω ∈ (0, 1). Choosing η appropriately gives the statement of the
lemma. ��
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The following Proposition is the main result of this Section: it establishes decay estimates
for the oscillation of ∂iv, being v the solution of the comparison problem introduced in the
previous Section.

Proposition 4.2 Let u ∈ C1,σ (BR) with σ ≤ α
2−α

and let v ∈ u + W 1,2
0 (BR) be a solution

of (3.5), under the volume constraint (3.4). Then there exists ρ0 > 0 of the form ρ0 = ε0R
(with ε0 depending only on n, K , M, α, γ, [ f ]C0,γ and [h]C0,α ) such that Bρ0(x ′

0) ⊂ BR/4,
and for all 0 < r < ρ ≤ ρ0, we have

∫
Br (x ′

0)

|∂iv − (∂iv)r |2 dx ′ �
(

r

ρ

)n−1+2(γ+σ) ∫
Bρ(x ′

0)

|∂iv − (∂iv)ρ |2 dx ′ + rn−1+2(γ+σ),

for any i = 1, . . . , n − 1.

In order to prove the previous result, we will consider the equation satisfied by the deriva-
tives of v (in the weak sense):

div
(
D2

z aK (Dv)D∂iv
) = λ∂i

(
f (x ′, v)

)
for every i ∈ {1, . . . , n − 1}. Thus, each of the functions ∂iv solves an equation with
measurable, elliptic (cf. (3.2)) and bounded coefficients (given by D2

z aK (Dv)), where the
inhomogeneity is the “derivative” of a function in L2(BR). In order to get the desired decay
estimates for ∂iv, we need some intermediate decay estimates for the solutions to an associate
problem with constant coefficients.

Let ρ > 0 be such that Bρ(x ′
0) ⊂ BR/4 and let A(Dv) denote the matrix D2

z aK (Dv)

and A0 the constant matrix obtained by freezing the coefficients in Bρ(x ′
0), more precisely,

A0 = A((Dv)Bρ(x ′
0)

). Moreover, set f0 = f (x ′
0, (v)Bρ(x ′

0)
). With these notations, we have

the following result.

Lemma 4.3 Let u ∈ C1,σ (BR) with σ ≤ α
2−α

and let w ∈ ∂iv + W 1,2
0 (Bρ(x ′

0)) be a weak
solution of the linear elliptic Dirichlet problem

− div(A0Dw) = −λ∂i ( f (x ′, v) − f0) in Bρ(x ′
0).

Then, for any 0 < r < ρ we have:
∫

Br (x ′
0)

|Dw|2 dx ′ �
(

r

ρ

)n−1 ∫
Bρ(x ′

0)

|Dw|2 dx ′ + R2(σ−1)ρn−1+2γ .

Proof For ease of notation, we do not write explicitly the center of the balls. Hence in the
following computations Bρ and Br stand for Bρ(x ′

0) and Br (x ′
0), respectively.

We write w = ψ + φ where ψ is the weak solution of the corresponding homogeneous
problem

{
−div(A0Dψ) = 0 in Bρ,

ψ = ∂iv on ∂ Bρ,

and φ satisfies the inhomogeneous problem
{

−div(A0Dφ) = −λ∂i ( f (x ′, v) − f0) in Bρ,

φ = 0 on ∂ Bρ.
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By standard decay estimates for the homogeneous equation with constant coefficients (see,
e.g., Lemma 2.17 in [1]), we have

∫
Br

|Dψ |2 dx ′ �
(

r

ρ

)n−1 ∫
Bρ

|Dψ |2 dx ′, (4.2)

for any 0 < r < ρ.
We consider now the inhomogeneous problem satisfied by φ and test it with φ itself, to

get in a first step by employing the ellipticity of A0 in (3.2), integrating by parts and using
Young’s inequality

μ

∫
Bρ

|Dφ|2 dx ′ ≤ λ2

2μ

∫
Bρ

| f (x ′, v) − f (x′
0, (v)ρ)|2 dx ′ + μ

2

∫
Bρ

|Dφ|2 dx ′.

Then, after absorbing the second integral on the right-hand side in the left-hand side, we find

∫
Bρ

|Dφ|2 dx ′ � λ2
∫

Bρ

| f (x ′, v) − f (x ′
0, (v)ρ)|2 dx ′

� R2(σ−1)
∫

Bρ

(|x′ − x′
0|2γ + |v − (v)ρ |2γ )

dx ′

� R2(σ−1)ρn−1+2γ ,

(4.3)

where we have used that f ∈ C0,γ , that v is Lipschitz with a Lipschitz constant that does
not depend on R, see Lemma 4.1, and applied the bound on λ given in Corollary 3.6.

Finally, we combine (4.2) and (4.3) (and add ±Dφ), to get
∫

Br

|Dw|2 dx ′ �
∫

Br

|Dψ |2 dx ′ +
∫

Br

|Dφ|2 dx ′

�
(

r

ρ

)n−1 ∫
Bρ

|Dψ |2 dx ′ + R2(σ−1)ρn−1+2γ

�
(

r

ρ

)n−1 ∫
Bρ

|Dw|2 dx ′ +
(

r

ρ

)n−1 ∫
Bρ

|Dφ|2 dx ′ + R2(σ−1)ρn−1+2γ

�
(

r

ρ

)n−1 ∫
Bρ

|Dw|2 dx ′ + R2(σ−1)ρn−1+2γ .

This is the stated estimate. ��

We can now give the proof of the decay estimates for our comparison problem.

Proof of Proposition 4.2 Let ρ be such that Bρ(x ′
0) ⊂ BR/4. We shall again neglect the actual

center of the ball for notational convenience, that is, Br = Br (x ′
0) for any r ≤ ρ in the

following. Let w be as in Lemma 4.3, then we have that the function ∂iv − w is a weak
solution of the following problem:

{
− div(A0D(∂iv − w)) = − div ((A0 − A(Dv))D∂iv) in Bρ,

∂iv − w = 0 on ∂ Bρ.
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We now test the above equation with ∂iv − w itself, to get first via the ellipticity of A0

from (3.2)

μ

∫
Bρ

|D(∂iv − w)|2 dx ′

≤ 1

2μ

∫
Bρ

|A0 − A(Dv)|2|D∂iv|2 dx ′ + μ

2

∫
Bρ

|D(∂iv − w)|2 dx ′

and then

∫
Bρ

|D(∂iv − w)|2 dx ′ �
∫

Bρ

|A0 − A(Dv)|2|D∂iv|2 dx ′ �
( ρ

R

)2ω ∫
Bρ

|D∂iv|2 dx ′,

(4.4)

wherewe have used that A is Lipschitz and Dv isω-Hölder continuouswith [Dv]C0,ω � R−ω

by Lemma 4.1. Thus, we have

∫
Br

|D∂iv|2 dx ′ �
∫

Br

|Dw|2 dx ′ +
∫

Br

|D(∂iv − w)|2 dx ′

�
(

r

ρ

)n−1 ∫
Bρ

|Dw|2 dx ′ +
∫

Bρ

|D(∂iv − w)|2 dx ′ + R2(σ−1)ρn−1+2γ

�
(

r

ρ

)n−1 ∫
Bρ

|D∂iv|2 dx ′ +
∫

Bρ

|D(∂iv − w)|2 dx ′ + R2(σ−1)ρn−1+2γ

�
((

r

ρ

)n−1

+
( ρ

R

)2ω) ∫
Bρ

|D∂iv|2 dx ′ + R2(σ−1)ρn−1+2γ ,

where we have used Lemma 4.3 for the second inequality, added ±D∂iv for the third, and
exploited estimate (4.4) for the last one. Applying now the Poincaré inequality on the left-
hand side, we deduce

∫
Br

|∂iv − (∂iv)r |2 dx ′

� r2
∫

Br

|D∂iv|2 dx ′

� r2
((

r

ρ

)n−1

+
( ρ

R

)2ω)∫
Bρ

|D∂iv|2 dx ′ + r2R2(σ−1)ρn−1+2γ

� r2
((

r

ρ

)n−1

+
( ρ

R

)2ω)∫
Bρ

|D∂iv|2dx ′ +
( ρ

R

)2(1−σ)

ρn−1+2(γ+σ). (4.5)

We now use a Caccioppoli-type estimate for the equation satisfied by ∂iv in order to replace
the quantity |D∂iv|2 on the right-hand side of the previous inequality by the oscillation
|∂iv − (∂iv)ρ |2. We derive such a Caccioppoli estimate in a standard way, by testing the
equation

−div(A(Dv)D∂iv) = −λ∂i ( f − f0)
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with η2(∂iv − (∂iv)2ρ), where η ∈ C∞
0 (B2ρ, [0, 1]) is a standard cut-off function satisfying

η ≡ 1 in Bρ and ‖Dη‖L∞ � ρ−1. In this way we obtain first

μ

∫
B2ρ

η2|D∂iv|2 dx ′ ≤ 4
∫

B2ρ

|A(Dv)|2|Dη|2|∂iv − (∂iv)2ρ |2 dx ′

+λ2

μ

∫
B2ρ

| f − f0|2 dx ′ + μ

2

∫
B2ρ

η2|D∂iv|2 dx ′

and then∫
Bρ

|D∂iv|2 dx ′ ≤
∫

B2ρ

η2|D∂iv|2 dx ′

�
∫

B2ρ

|Dη|2|∂iv − (∂iv)2ρ |2 dx ′ + λ2
∫

B2ρ

| f − f0|2 dx ′

� ρ−2
∫

B2ρ

|∂iv − (∂iv)2ρ |2 dx ′ + R2(σ−1)ρn−1+2γ ,

(4.6)

where we have used an estimate that is almost identical to (4.3) to control the inhomogeneity.
(Here, we need that Bρ ⊂ BR/4.) Plugging (4.6) into (4.5), we conclude the following decay
estimate for the oscillation of ∂iv:∫

Br

|∂iv − (∂iv)r |2 dx ′

�
(

r

ρ

)2
((

r

ρ

)n−1

+
( ρ

R

)2ω) ∫
B2ρ

|∂iv − (∂iv)2ρ |2 dx ′ +
( ρ

R

)2(1−σ)

ρn−1+2(γ+σ)

�
((

r

ρ

)n+1

+
( ρ

R

)2ω) ∫
B2ρ

|∂iv − (∂iv)2ρ |2 dx ′ + ρn−1+2(γ+σ),

for any 0 < r < ρ with Bρ(x ′
0) ⊂ BR/4. Observe that the previous estimate extends

trivially to r ∈ (ρ, 2ρ) thanks to the monotonicity of the oscillation discussed right after
Proposition D. Hence, the estimate is valid for any r < 2ρ.

For ε > 0 given as in Lemma E, let now ρ0 be such that Bρ0(x ′
0) ⊂ BR/4 and satisfying

(ρ0

R

)2ω ≤ ε.

It follows that
∫

Br

|∂iv − (∂iv)r |2 dx ′ �
((

r

ρ

)n+1

+ ε

) ∫
Bρ

|∂iv − (∂iv)ρ |2 dx ′ + ρn−1+2(γ+σ),

holds for any r < ρ ≤ ρ0. Finally, we can apply the iteration Lemma E, to deduce the desired
decay estimate for ∂iv and conclude the proof of the proposition. ��

5 Proof of the regularity result

We are now ready to prove our main result. The idea consists in transferring the oscillation
decay estimate from Proposition 4.2 for the comparison function v to our minimizer u, by
making use of the error estimate from Lemma 3.5.
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Proof of Theorem 1.1 As already discussed in the introduction, the optimal bound on the
dimension of the singular set follows by the classical regularity theory for ω-minimal sets
established in [16]. Indeed, in [4, 15], it was proved that, under our assumption, any isoperi-
metric set is ω-minimal with ω(r) = r2σ , being σ = α/(2n(1 − α) + 2α). It remains, thus,
to show the optimal regularity of the reduced boundary.

Let u be the local representation of ∂∗E , i.e., the solution of our weighted minimization
problem (1.1) under theweighted volumeconstraint (1.2),which initially enjoys the regularity
u ∈ C1,σ (BR) with σ = α/(2n(1 − α) + 2α) according to Theorem C, and let v be the
comparison function studied in the previous section. Using the minimality (2.1) of mean
values, Proposition 4.2, and Corollary 3.6, we deduce that

∫
Br

|∂i u − (∂i u)r |2 dx ′

≤
∫

Br

|∂i u − (∂iv)r |2 dx ′

�
∫

Br

|∂iv − (∂iv)r |2 dx ′ +
∫

BR

|Du − Dv|2 dx ′

�
(

r

ρ

)n−1+2(γ+σ) ∫
Bρ

|∂iv − (∂iv)ρ |2 dx ′

+ rn−1+2(γ+σ) + Rn−1+ 2α
2−α + Rn−1+ 2

1−γ
(γ+σ)

,

(5.1)

for any 0 < r < ρ ≤ ρ0 = ε0R.
Employing once again the minimality (2.1) of mean values combined with Corollary 3.6,

we can pass on the right-hand side to ∂i u instead of ∂iv, and with r ≤ R ≤ 1, this implies
the following oscillation decay for ∂i u:

∫
Br

|∂i u − (∂i u)r |2 dx ′ �
(

r

ρ

)n−1+2(γ+σ) ∫
Bρ

|∂i u − (∂i u)ρ |2 dx ′ + Rn−1+2min{γ+σ, α
2−α

},

for any 0 < r < ρ ≤ ρ0. We choose now ρ = ρ0 = ε0R, and deduce that
∫

Br

|∂i u − (∂i u)r |2 dx ′

�
( r

R

)n−1+2(γ+σ)
∫

Bε0R

|∂i u − (∂i u)ε0R |2 dx ′ + Rn−1+2min{γ+σ, α
2−α

}

�
( r

R

)n−1+2(γ+σ)
∫

BR

|∂i u − (∂i u)R |2 dx ′ + Rn−1+2min{ω, α
2−α

},

for any 0 < r ≤ ε0R, where ω = γ + σ − δ > σ for any δ ∈ (0, 1) small. We may choose
ω = γ

2 + σ . The same estimate trivially extends to r ∈ (ε0R, R) and thus holds for any
0 < r < R.

We can now apply again the iteration Lemma E, to get

∫
Br (x ′

0)

|∂i u − (∂i u)r |2 dx ′

�
( r

R

)n−1+2min{ω, α
2−α

} ∫
BR

|∂i u − (∂i u)R |2 dx ′ + rn−1+2min{ω, α
2−α

}.
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Finally, by Proposition D, we deduce that u ∈ C1,min{ α
2−α

,ω}. If ω = γ
2 + σ ≥ α

2−α
the

proof is completed. Otherwise we can iterate the above reasoning: setting σ j := σ + j γ
2 ,

we can iteratively apply Proposition 4.2 and Corollary 3.6, with u ∈ C1,σ j and plug the new
improved estimate (3.11) (with σ j > σ in place of σ ) into (5.1). After a finite number N of
steps (in particular when Nγ /2+ σ ≥ α

2−α
) we reach the exponent α

2−α
. This concludes the

proof of Theorem 1.1. ��
Acknowledgements EC gratefully acknowledges the kind hospitality of the Universität Augsburg. Her work
is partially supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
(GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM), and by the Spanish Grant PID2021-
123903NB-I00 funded byMCIN/AEI/10.13039/501100011033 and by ERDF "Away of making Europe". CS
gratefully acknowledges the kind hospitality of the Università di Bologna. His work is funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC
2044-390685587, Mathematics Münster: Dynamics Geometry Structure.

Funding Open access funding provided by Alma Mater Studiorum - Università di Bologna within the CRUI-
CARE Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ambrosio, L., Carlotto, A., Massaccesi, A.: Lectures on Elliptic Partial Differential Equations. Edizioni
della Normale, Pisa (2018)

2. Beck, L.: Elliptic regularity theory. A first course. Lecture Notes of the Unione Matematica Italiana, 19.
Springer, Cham; Unione Matematica Italiana, Bologna (2016). xii+201 pp

3. Campanato, S.: Proprietà di Hölderianità di alcune classi di funzioni. Ann. Sc. Norm. Super. Pisa Ser.
III(17), 175–188 (1963)

4. Cinti, E., Pratelli, A.: ε−εβproperty, boundedness of isoperimetric sets and applications. J. Reine Angew.
Math. 728, 65–103 (2017)

5. Cinti, E., Pratelli, A.: Regularity of isoperimetric sets with density in dimension 2. Math. Ann. 368(1–2),
419–432 (2017)

6. De Philippis, G., Franzina, G., Pratelli, A.: Existence of isoperimetric sets with densities “converging
from below” on R

N . J. Geom. Anal. 27(2), 1086–1105 (2017)
7. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton

University Press, Princeton (1983)
8. Giaquinta, M., Giusti, E.: On the regularity of the minima of variational integrals. Acta Math. 148, 31–46

(1982)
9. Giaquinta, M., Giusti, E.: Differentiability of minima of non-differentiable functionals. Invent. Math. 72,

285–298 (1983)
10. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Graduate Studies in Math-

ematics 96. American Mathematical Society, Providence, RI (2008)
11. Morgan, F.: Regularity of isoperimetric hypersurfaces in Riemannian manifolds. Trans. Am. Math. Soc.

355(12), 5041–5052 (2003)
12. Morgan, F., Pratelli, A.: Existence of isoperimetric regions in Rn with density. Ann. Global Anal. Geom

43(4), 331–365 (2013)
13. Phillips, D.: A minimization problem and the regularity of solutions in the presence of a free boundary.

Indiana Univ. Math. J. 32, 1–17 (1983)

123

http://creativecommons.org/licenses/by/4.0/


214 Page 20 of 20 L. Beck et al.

14. Pratelli, A., Saracco, G.: On the isoperimetric problem with double density. Nonlinear Anal. 177(Part B),
733–752 (2018)

15. Pratelli, A., Saracco, G.: The ε − εβ property in the isoperimetric problem with double density, and the
regularity of isoperimetric sets. Adv. Nonlinear Stud. 20(3), 539–555 (2020)

16. Tamanini, I.: Regularity Results for Almost-Minimal Oriented Hypersurfaces inRN . Quaderni del Dipar-
timento di Matematica dell’Università del Salento (1984)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Optimal regularity of isoperimetric sets with Hölder densities
	Abstract
	1 Introduction
	2 Notation and preliminaries
	3 The comparison problem and bounds on the Lagrange multiplier
	4 Decay estimates for the comparison problem
	5 Proof of the regularity result
	Acknowledgements
	References




