
Pharmaceutical Statistics, 2024; 0:1–14
https://doi.org/10.1002/pst.2419

1 of 14

Pharmaceutical Statistics

MAIN PAPER OPEN ACCESS

Exploring Stratification Strategies for Population- Versus 
Randomization-Based Inference
Marco Novelli1   |  William F. Rosenberger2

1Department of Statistics Bologna, University of Bologna, Bologna, Italy  |  2Department of Statistics, George Mason University, Fairfax, Virginia, USA

Correspondence: Marco Novelli (m.novelli@unibo.it)

Received: 19 September 2023  |  Revised: 8 April 2024  |  Accepted: 18 June 2024

Funding: Marco Novelli was supported by EU funding within the NextGenerationEU PRIN 2022 “Optimal and adaptive designs for modern medical exper-
imentation” (2022TRB44L).

Keywords: chronological bias | poststratification | prestratification | randomization tests | regression adjustment | subgroup analysis

ABSTRACT
Stratification on important variables is a common practice in clinical trials, since ensuring cosmetic balance on known baseline 
covariates is often deemed to be a crucial requirement for the credibility of the experimental results. However, the actual benefits 
of stratification are still debated in the literature. Other authors have shown that it does not improve efficiency in large samples 
and improves it only negligibly in smaller samples. This paper investigates different subgroup analysis strategies, with a particu-
lar focus on the potential benefits in terms of inferential precision of prestratification versus both poststratification and post hoc 
regression adjustment. For each of these approaches, the pros and cons of population-based versus randomization-based infer-
ence are discussed. The effects of the presence of a treatment-by-covariate interaction and the variability in the patient responses 
are also taken into account. Our results show that, in general, prestratifying does not provide substantial benefit. On the con-
trary, it may be deleterious, in particular for randomization-based procedures in the presence of a chronological bias. Even when 
there is treatment-by-covariate interaction, prestratification may backfire by considerably reducing the inferential precision.

1   |   Introduction

In this paper, different stratification strategies from the perspec-
tive of both population and randomization-based inference are 
investigated. There are numerous approaches in population-
based inference aimed at taking into account the information 
provided by the baseline covariates: prestratification, poststrat-
ification, and regression modeling. Most clinical trials prestrat-
ify on certain important variables, such as clinic, gender, or age, 
since ensuring cosmetic balance on known baseline covariates 
is often deemed to be a crucial requirement for the credibility 
of the trial results [1, 2]. The general philosophy (although not 
always practiced in the medical literature) is that a stratified 
analysis demands a stratified test. But a stratified test can be 

conducted whether the trial was prestratified (called poststrat-
ification). Another approach makes use of regression models to 
adjust the treatment effect analysis post hoc, whether the trial 
was prestratified.

Randomization-based inference has analogous testing proce-
dures. However, prestratification allows analysis of separate 
strata, or elimination of strata, due to the fact that a sepa-
rate randomization procedure was used within each strata, 
so removing a stratum does not affect the randomization 
distribution. Poststratification can be accomplished using 
rerandomization by fixing the strata and responses and reran-
domizing according to the unstratified randomization proce-
dure. The test statistic is computed in each stratum and the 
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tests are combined (weighted, if desired), into a single stratified 
test. Finally, a regression analysis can be used by permuting 
the residuals of any regression model that does not include a 
treatment effect (under the null hypothesis), as shown in Gail, 
Tan, and Piantadosi [3], and Parhat, Rosenberger, and Diao [4]. 
Some might naturally ask why a model cannot be fitted that 
includes treatment, then compute the estimated covariate-
adjusted treatment effect and use that as the metric for the 
randomization. Philosophically, fitting such a model does not 
assume the null hypothesis that the treatment effect is zero, 
but the idea is consistent with the way we conduct paramet-
ric model-fitting. One might intuit that a test on the residuals 
would be more robust to model misspecification than a test on 
the fitted model parameters.

Whether to stratify on important known covariates has been 
debated in the literature for many years and has not yet been re-
solved. It is likely that agreement has been reached on two issues: 
(i) a stratified analysis should follow a stratified trial and (ii) a 
poststratification via a stratified test or regression model can be 
done whether or not the trial was stratified on those covariates. 
Beyond this, the literature has shown that prestratification does 
not improve efficiency in large samples and improves it only 
negligibly in smaller samples [5]. Ganju and Zhou [6] show that, 
employing permuted block randomization, prestratification 
can actually have a negative impact if there is a treatment-by-
covariate interaction, so that there are differential treatment ef-
fects across subgroups. Only in the event that the stratum mean 
square error is much larger than the overall mean square error 
with the interaction term does prestratification seem to be more 
efficient. Indeed, while prestratifying on baseline covariates can 
mitigate accidental bias, by inducing independence between the 
treatment effect and unobserved covariates, it has no impact on 
the presence of treatment-by-covariate interactions since these 
are true features of the phenomena under study and not the re-
sult of chance [1]. As Permutt highlighted, it is principally the 
stratified analysis that can both eliminate bias and identify het-
erogeneity among subgroups, while the stratified randomization 
is often less important than believed [7].

Numerous studies have thoroughly examined this topic from 
various perspectives. Li and Ding [8] discussed the benefits of 
combining rerandomization in the design stage with regression 
adjustment demonstrating that combining these two methods 
improves statistical inference. In the case of completely ran-
domized experiments, Liu and Yang [9] analyzed the regression-
adjusted average treatment effect compared to the stratified 
difference in means estimator. Their analysis revealed that the 
former generally has a smaller asymptotic variance than the lat-
ter. Shao, Yu, and Zhong [10] provided some theoretical results 
for testing hypotheses under covariate-adaptive randomization 
along with a valid bootstrap t-test, which is exact in the sense 
that its limiting rejection probability under the null hypothesis 
is equal to the nominal level. Additionally, Bugni, Canay, and 
Shaikh [11] addressed the issue of inference for the average 
treatment effect in covariate-adaptive designs, later general-
ized to multiple treatments [12]. In the case of two competing 
treatments, they examined the behavior of the unstratified two-
sample t-test, its fixed effects regression-adjusted version, and 
its permutation version. The authors demonstrated that the un-
stratified two-sample t-test is generally conservative. However, 

they found that both the regression-adjusted and permutation 
versions maintain the type I error rates when the “target” 
proportion of units assigned to treatment in each stratum is 
balanced.

One can consider this paper the logical extension of early work 
by Matts and McHugh [13] and Davis [14] that explored the 
properties of prestratified and poststratified randomization tests 
asymptotically. In those days, the rerandomization test would 
have been difficult or impossible computationally, and there is 
considerable complexity in determining the randomization dis-
tribution of a stratified test in the event that the trial was not 
prestratified. Nowadays, we do not have these difficulties. Our 
study aims to contribute to the existing literature by simulta-
neously examining the effects of pre- versus poststratification, 
as well as population- versus randomization-based inference, 
comparing several restricted randomization procedures. To the 
best of our knowledge, this is the first attempt to provide a com-
prehensive comparison of the operating characteristics of vari-
ous restricted randomization procedures within two inferential 
frameworks for distinct stratification strategies. Moreover, the 
impact of the presence of both treatment-by-covariate interac-
tion and variability in patient responses on the inferential ac-
curacy is investigated. In particular, in what follows three main 
questions about the potential benefit of prestratification will be 
addressed.

1.	 Is prestratification beneficial in terms of inferential preci-
sion? If so, what are the pros and cons of population-based 
versus randomization-based stratified analyses?

2.	 In the regression-adjustment approach, what is the best way 
to exploit randomization-based inference? Namely, does per-
muting the treatment effect provide some benefit over the 
rerandomization of residuals?

3.	 How does the presence of a treatment-by-covariate interac-
tion affect the previous results? Is prestratification beneficial 
when there is heterogeneity among subgroups?

One of the main aims of this work is to compare the perfor-
mances of the two inferential techniques in analyzing random-
ized clinical trials. Randomization-based inference has long 
been heralded as an appropriate technique to analyze random-
ized experiments, going back to Fisherian times. Since random-
ized clinical trials do not involve sampling from a population, 
applying inference techniques that derive their philosophical 
and theoretical basis from the random sampling mechanism are, 
at best, approximate, and, at worst, inappropriate. As Cornfield 
[15] noted, randomization itself makes possible the answer to 
the question “In how many experiments could a difference of 
this magnitude have arisen by chance alone if the treatment 
truly has no effect?” The implication is that the answer to this 
question is not possible except by replication of the experiment, 
unless randomization is employed. Kempthorne [16] provides 
another benefit of randomization-based inference (talking about 
his 1952 book):

… if one has randomized and one considers the data 
in the randomization frame, then the probability that 
the significance level (called p-value by some) is less 
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than or equal to � is, in fact, equal to �. It is sort of a 
concomitant of the randomization. The significance 
levels, given by randomization tests are, so to speak, 
believable.

The preservation of type I error rates in a randomized clini-
cal trial has become sacrosanct in the regulatory agencies and 
among the multiple testing and sequential monitoring biosta-
tistics community. And yet rarely are randomization-based 
inference techniques actually used following randomized clin-
ical trials. Instead many biostatisticians rely on population-
based tests that may, under certain parametric or asymptotic 
assumptions, preserve type I error rates. Folks [16] gets to the 
heart of the matter of why they were not used in Kempthorne's 
day, in his conversation with Kempthorne: “… randomization 
tests then were not possible. One didn't do them because of the 
computation.” Nowadays, rerandomization tests computed by 
generating a large number of randomization sequences and 
recomputing the test statistic for each can be done in seconds 
[1, 17]. A simple proof of the preservation of type I error rates 
at the nominal level for rerandomization tests is found in 
Prochan and Dodd [18].

One criticism of randomization-based inference is that it pri-
marily focuses on the simple null hypothesis of no treatment 
effect. Indeed, a crucial distinction between the two inferential 
approaches pertains to the hypothesis being tested. Differently 
from the usual parametric poluation-based approach, under the 
null hypothesis of no treatment effect, the randomization-based 
one posits that patient responses remain unaffected by either of 
the two assigned treatments. This hypothesis does not involve 
any parameters and essentially asserts that the assignment of 
treatments is independent of the outcomes for patients [1, 19]. 
In Section  4.2, this issue is further explored by also compar-
ing the performances of the two inferential approaches under 
“strong” and “weak” null hypothesis  [20]. However, it is not 
difficult to extend randomization-based inference to compari-
sons of multiple treatments [21], confidence interval estimation 
[21], covariate-adjusted regression models [4], and sequentially 
monitored outcomes [22]. In fact, every type of primary outcome 
analysis that is standardly employed using population-model in-
ference techniques can be accomplished using a rerandomiza-
tion test.

The paper is organized as follows. Starting from some pre-
liminaries in Section 2, Section 3 answers question (1) by dis-
cussing pros and cons of prestratification combined with the 
comparison of population versus randomization-based infer-
ence. Section 4 is dedicated to answering question (2) by exam-
ining the regression-based adjustment approaches. Question (3) 
instead is addressed in the previous two sections to highlight 
if and how the presence of treatment-by-covariate interaction 
interplays with the stratification approach adopted. Finally, 
Section 5 presents some concluding remarks.

2   |   Notation/Background

Consider a randomized clinical trial in which patients ar-
rive sequentially and are assigned to one of two competing 

treatments, say A and B. Let n be the total number of patients 
to be enrolled and �i (i = 1, … ,n) the treatment indicator 
equal to 1 if the i-th patient is assigned to A and 0 if B. Suppose 
that for each patient a qualitative covariate Z with K  strata is 
observed; then yikj , the response of the patient i in stratum 
k assigned to treatment j ( j = A,B) is assumed to follow the 
linear model

where � is the overall mean, � j the effect of treatment j, zk the co-
variate effect in stratum k, and (�z)kj the treatment-by-covariate 
interaction, namely the effect of treatment j within stratum k; 
finally, �i is the error component that, unless otherwise stated, is 
assumed to follow a standard normal distribution. Furthermore, 
let Δ be the K-dimensional vector collecting Δk, the treatment 
effect in stratum k, namely

where �kA and �kB are the population mean responses in stratum 
k for treatment A and B, respectively.

In what follows, trials with n = 100 subjects and K = 4 strata 
will be considered. Results for n = 50 and 200 are provided 
in Appendix A. Five randomization procedures will be com-
pared: Efron's biased coin design (BCD) with biasing probabil-
ity set equal to 2∕3, the big stick design (BSD) with maximum 
tolerated imbalance equal to 3, the permuted block design 
(PBD ) with blocks of size 6, the random block design (RBD) 
with blocks of size 4, 6, or 8 and the complete randomization 
(CR )—see Chapter 3 of Rosenberger and Lachin [1] for details. 
The presence of variability in patient responses and how this 
affects the reliability of the statistical analysis will be taken 
into account as well. More specifically, we will investigate the 
effect of the chronological bias [13, 23], namely a systematic 
temporal change in the patient outcome due to the sequential 
recruitment of the trial. The latter will be modeled through a 
linear drift in the interval [−2, 2], which is added to the patient 
response. Moreover, the case of high variability in patient re-
sponses is also considered. In such a case, the error term for 
the i-th patient is generated as follows: �i = pi�0 +

(
1 − pi

)
�1, 

where pi ∼ Ber(0.85), �0 ∼ N(0, 1), and �1 ∼ t3, namely it is gen-
erated either from a standard normal distribution, or, with 
a smaller probability, from a t  distribution with 3 degrees 
of freedom. Several settings will be explored, both with and 
without the presence of treatment-by-covariate interaction: 
a summary of the underlying parameters used in the simu-
lations can be found in Table 1. In particular, in Scenario I, 

yikj = � + � j + zk + (�z)kj + �i

Δk = �kA − �kB = �A − �B + (�z)kA − (�z)kB k = 1 … K

TABLE 1    |    Underlying parameters for simulations.

Scenario

�

�1 �2 �3 �4

I 0 0 0 0

II 0.6 0.6 0.6 0.6

III 0 1 1 1

IV 0 0 1 1

 15391612, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pst.2419 by C

ochraneItalia, W
iley O

nline L
ibrary on [03/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 14 Pharmaceutical Statistics, 2024

there is no treatment effect, whereas in Scenario II, the treat-
ment is equally effective for all the four strata, Scenarios III 
and IV instead consider the case in which the treatment is ef-
fective only in three and in two strata, respectively.

Moreover, for each scenario, three subspecifications taking 
into account the presence/absence of variability in the subject 
outcomes are also considered: (a) no variability in patient re-
sponses, (b) presence of linear time trend, and (c) high variabil-
ity in patients’ responses. In the next section, population-based 
and rerandomization-based inference will be compared in the 
case of pre- and poststratification.

3   |   Stratification in Randomization- Versus 
Population-Based Inference

The prestratification approach makes use of a separate random-
ization procedure within each stratum in order to provide well-
balanced experimental groups; poststratification instead simply 
“ignores” such information in the allocation phase and may or 
may not benefit from it in the inferential phase. The first part of 
this work is dedicated to the comparison, in terms of the statis-
tical power and the ability to preserve the type I error rate of the 
test, of the randomization versus population model approach: 
for each of these, the benefit of prestratifying on the covariate of 
interest will be investigated. In both cases, a stratified analysis 
will be adopted, that is, the subjects within the same stratum 
are compared and then the test is computed by summing the 
stratum-specific tests over strata. Note that, as strata may have 
different sample sizes/importances, here we adopt a weighted 
test [1]. More specifically, within each stratum k = 1, … ,K, an 
observed test statistic Tobs,k is computed so that the stratified test 
is obtained as

with �k ∈ [0, 1], k = 1, … ,K  and 
∑K

k=1 �k = 1 the stratum-
specific weights.

The measures for the rerandomization test are the simple differ-
ence in means, namely D =

∑K
k=1 �kdk with dk = ykA − ykB and 

ykj (j = A,B) the average response for group j in stratum k, and 
the linear rank test R =

∑K
k=1 �k

∑nk
i=1

�
aik − ak

�
�i, where 

{
aik

}
 

and ak denote simple ranks and the mean rank in stratum k, re-
spectively, while nk is the number of subjects in stratum k: the 
latter is the well-known Wilcoxon rank-sum test. For both the 
stratified linear rank test and the stratified difference in means, 
the adopted weights are proportional to the stratum-specific 
sample fractions, that is, �k = nk ∕n. The p-values for the ran-
domization tests will be estimated by a Monte Carlo procedure. 
The allocation sequence is replicated L times and, each time, 
the test statistic Tl (l = 1, … ,L) is computed. Thus the estimate 
of the two-sided p-value is obtained as the proportion of the L 
generated sequences with a value of the test statistic at least as 
extreme as Tobs, namely the observed one

where I( ⋅ ) denotes the indicator function.

For the population model approach instead, the stratified ver-
sion of the Wilcoxon test, also known as the van Elteren test, 
denoted as W  and the stratified t-test, denoted as t  will be used. 
Several authors [10–12] have highlighted the fact that the usual 
two-sample t-test is generally conservative under covariate-
adaptive randomization. For this reason, the bootstrap-based  
t-test proposed by Shao, Yu, and Zhong [10] to correct the con-
servativeness of the traditional t-test will be considered as well. 
The latter is denoted by tB and, as suggested by Shao, Yu, and 
Zhong [10], a number of B = 200 bootstrap samples are used in 
the simulations.

Remark 1.  An important distinction must be made in terms 
of the estimand under the two inferential approaches. The ICH 
E9 (R1) 2021 [24] provides a precise definition of the estimand 
as “a detailed description of the treatment effect that reflects the 
specific clinical question posed by a given clinical trial objec-
tive. It summarizes, at a population level, the potential outcomes 
that would occur in the same group of patients under different 
treatment conditions being compared.” One key difference be-
tween the two inferential frameworks lies in the selection of the 
population of interest. Randomization-based inference does not 
require trial participants to be a random sample from a super-
population. In fact, randomization tests address a related and 
complementary question to that of the estimand: what is the 
likelihood of observing such an effect by chance alone, given 
a difference of this magnitude between treatments? [1] By con-
sidering what a patient's outcome would have been if they were 
assigned to a different treatment, randomization tests focus on 
the trial participants and do not seek to draw inferences about 
an overall treatment effect in a larger population. Instead, they 
provide inference specific to the trial population, relying on the 
effective implementation of inclusion and exclusion criteria and 
repetition to ensure that conclusions are applicable to the tar-
get population. More details on this distinction can be found in 
Uschner et al. [25].

3.1   |   Error Rates

Figures  1–3 summarize the simulation results for Scenarios 
I–IV in Table  1 with pre- and poststratification for subspec-
ification (a)–(c); each design is replicated 10,000 times, L is 
set to 20,000, and the type I error rate is set to 5%. Note that 
no distinction is made between pre- and poststratification for 
the CR design since it completely ignores the information pro-
vided by the covariate. Several conclusions can be drawn from 
these results. Starting from Figure 1 that shows the results in 
the case of no variability in patient responses, it can be noted 
that all the designs considered preserve the type I error rate 
without appreciable differences between pre- and poststrati-
fication. Looking at Scenario II instead, prestratifying seems 
to provide some benefit, even though of about 1% − 2%, with 
the most notable case being W  with BCD and R for block de-
signs. The t-tests, both the bootstrap-based and the usual one, 
along with the difference in means exhibit the highest power 
for all the designs considered, while W  and R the lowest. The 
bottom part of Figure  1 summarizes the results in the pres-
ence of treatment-by-covariate interaction, namely when the 

Tobs =

K∑

k=1

�kTobsk

(1)p̂ =

∑L
l=1 I

�
�Tl� ≥ �Tobs�

�

L
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treatment is effective in three or two out of four groups. In 
Scenario III, it can be seen that in most cases pre- and post-
stratification provide comparable results; only for the W  and 

R tests a small difference of about 1% can be found. Again, 
the tests D, t , and tB show the highest power while the R one 
the lowest. The results for Scenario IV confirm the previous 

FIGURE 1    |    Scenario I—IV subspecification (a)—no variability in patient responses: Randomization-based versus population-based for pre- and 
poststratification. Considered tests: D difference in means, R linear rank test, t  t-test, tB bootstrap t-test, W  van Elteren test.

●●
●● ●●

●●

●●●●

●●

●●

●●
●●

0.040

0.045

0.050

0.055

0.060

BCD BSD CR PBD RBD

R
ej

ec
tio

n 
ra

te

Scenario I

●●

●●

●●

●●

●●●● ●●

●●

●●
●●

0.775

0.800

0.825

0.850

BCD BSD CR PBD RBD

Scenario II

●●●● ●●●●
●●●● ●●

●●
●●
●●

0.88

0.90

0.92

0.94

BCD BSD CR PBD RBD

R
ej

ec
tio

n 
ra

te

Scenario III

●●
●●

●●

●●

●●●●
●●
●●

●●

●●

0.55

0.60

0.65

0.70

BCD BSD CR PBD RBD

Scenario IV

Stratification: ●● ●●Post Pre Test: ●●D R t tB W

FIGURE 2    |    Scenario I—IV subspecification (b)—presence of linear time trend: Randomization-based versus population-based for pre- and 
poststratification. Considered tests: D difference in means, R linear rank test, t  t-test, tB bootstrap t-test, W  van Elteren test.
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pattern. Conditional on the test adopted, the influence on the 
power of the design and the stratification procedure adopted 
is not evident.

In the presence of time trend instead, Scenario I of Figure 2, 
only randomization-based inference is able to maintain the 
prespecified type I error rate regardless of both the stratifi-
cation approach and the design adopted. On the contrary, the 
population-based tests seem to fail to preserve the nominal 
size, with the bootstrap-based test with poststratification 
being the only exception, along with adopting the CR design. 
This is particularly true for the PBD and RBD, for which the 
observed values are close to 0. Here, prestratifying seems to 
slightly improve the ability to preserve the error rates only 
for the BCD and BSD. An interesting finding pertains to the 
behavior of the bootstrap-based test: prestratification appears 
to have a detrimental effect, as the test can only preserve 
the type-I error rate in the poststratification setup. Looking 
at the other scenarios, a clear pattern arises: prestratifica-
tion seems to actually backfire. This is particularly evident 
for all the randomization-based tests and the bootstrap one. 
Indeed, for the D test, ignoring the information provided by 
the covariate in the allocation phase results in an increment 
of power up to 15% − 20% with BCD and BSD, while for tB, the 
improvement is even bigger, especially for block designs. For 
the remaining population-based tests instead, the differences 
between pre- and poststratification are smaller, about 5% for 
W  with the BSD and RBD, and practically absent for the usual 
t-test. Interestingly, the behavior for the rank test R greatly 
varies across the designs: starting from a difference of about 
10% in favor of the poststratification approach for the BSD, the 
gap reduces for the BCD, vanishes for RBD and for the PBD 

the ordering is reversed, namely there is a (small) benefit in 
prestratifying.

In Figure  3, which summarizes the results in the presence of 
high variability in patients responses, no relevant differences 
between pre- and poststratification are detected. Moreover, 
the gap in the robustness of the two inferential approaches is 
confirmed. Indeed, all the randomization-based tests preserve 
the nominal level, whereas for the population-based approach, 
only the nonparametric W  maintains the size. The t-test and 
its bootstrap version suffer from a severe underestimation of 
the type I error rate. In all the remaining scenarios, with and 
without the presence of treatment-by-covariate interaction, it is 
evident that both R and W  outperform all the other tests guar-
anteeing an improvement of more than 20% in power for all the 
designs. It is important to highlight that, in this setup, while all 
the randomization-based tests maintain the type I error rate, 
only the nonparametric R is able to provide solid performance 
in terms of power. In the last two scenarios, a small difference of 
about 5% in favor of prestratification is observed for the differ-
ence in means and the t-test.

The results so far obtained can help in providing a (partial) 
answer to the first question “is prestratification beneficial in 
terms of inferential precision?” In general, there is no clear 
benefit in the ability to maintain the type I error rate through 
prestratification. A modest improvement (less than 2%) in 
power is observable only in cases with no variability in pa-
tients' responses. In the presence of high variability in the 
outcomes, the potential benefits of prestratification are out-
weighed by the need to choose the appropriate test. Notably, 
in the presence of a chronological bias, the prestratification 

FIGURE 3    |    Scenario I—IV subspecification (c)—high variability in patients responses: Randomization-based versus population-based for pre- 
and poststratification. Considered tests: D difference in means, R linear rank test, t  t-test, tB bootstrap t-test, W  van Elteren test.
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approach may even be deleterious, particularly when employ-
ing a randomization-based test or the population bootstrap-
based one.

Regarding the third question: does the presence of differential 
treatment effects across subgroups alter the previous findings? 
Overall, the presence of a treatment-by-covariate interaction 
does not seem to significantly change the main results. The most 
notable difference between the two stratification approaches ap-
pears to be more associated with the presence of a linear time 
trend in the responses than with the heterogeneity among sub-
groups. Similar conclusions hold for both smaller (n = 50) and 
larger (n = 200) samples (see Appendix  A), although as the 
sample size increases the differences between stratification ap-
proaches tend to vanish.

4   |   Regression Modeling

An alternative strategy for subgroup analysis exploits regression 
modeling in order to obtain an estimate of the covariate-adjusted 
treatment effect. The test proposed by Gail, Piantadosi, and Tan 
[3] makes use of the residuals obtained from a model fitted with 
the covariate but no treatment effect, that is E

[
Yi
]
= � + zt

i
�, 

where zi is the stratum indicator, namely a vector of K − 1 dum-
mies with a single nonzero entry and � the K − 1 vector of main 
covariate effects. Indeed, under the null hypothesis, the resid-
uals should be evenly distributed across the treatments if there 
is no covariate-adjusted treatment effect. One can then use any 
standard test to compare residuals in the two treatment arms, 
such as a difference in means, D, or ranks, namely R. The Gail 
et al. techniques applied only to the asymptotic distribution of 
the residual test under CR, but Parhat, Rosenberger, and Diao 
[4] demonstrate how to do this using rerandomization.

Clearly, a model including the treatment indicator, �i, could 
also be fit, namely E

[
Yi
]
= � + ��i + zt

i
�. Here, the focus is on 

the ordinary least squares estimate of the covariate-adjusted 
treatment effect, say �̂. More specifically, after having obtained 
the estimate for the treatment effect of the original trial, �̂obs , 
the allocation sequence is replicated L times and, each time, 
the model including the treatment indicator is estimated and its 
value recorded, that is �̂ l, (l = 1, … ,L). Then the estimated two-
sided p-value is calculated as the proportion of the L generated 
sequences with a value of the estimated treatment effect at least 
as extreme as the one observed, as described in (1). As noted in 
the Introduction, fitting such a model does not assume the null 
hypothesis that the treatment effect is zero, but the idea is con-
sistent with the way we conduct parametric model-fitting.

As a matter of fact, the classical population-based approach re-
lies on the standard t-test on the estimated coefficient �̂. In a re-
cent work, Bugni, Canay, and Shaikh [11] proved that, in general, 
such a test is conservative in the sense that the limiting rejection 
probability under the null hypothesis could be strictly less than 
the nominal level. To overcome this drawback, the authors pro-
posed an adjusted version of the t-test with strata fixed effect 
that preserves the type-I error rate under covariate-adaptive 
randomization. All the techniques mentioned previously will be 
assessed in the following section to investigate their operating 
characteristics.

4.1   |   Numerical Results

In this section, we will compare the performance of five different 
regression modeling strategies. On the side of randomization-
based inference, we consider the approach that compares the 
residuals in the two groups using both differences in means 
and ranks, denoted by D and R, respectively. Additionally, we 
consider the method that uses the treatment effect as the mea-
sure of interest for the rerandomization test, indicated as B. 
For population-based inference, we compare the classical tech-
niques based on the usual t-test on the beta coefficient, denoted 
as p, along with the adjusted t-test proposed by Bugni, Canay, 
and Shaikh [11], denoted as padj, aimed at preserving the type-I 
error rate under covariate-adaptive randomization.

The scenarios considered are the same described in Section 2; 
each design is replicated 10,000 times and for randomization-
based procedures we set L = 20000. Figure  4 shows the simu-
lation results for Scenario I–IV in the case of no variability in 
patient responses. As expected, in this set-up the type I error 
rates are preserved for all the considered approaches and for all 
the allocation rules. The Scenario II shows the behavior of the 
designs considered when the treatment is equally effective in all 
the four groups: it is evident that the stratification approach ad-
opted does not affect much the power of the procedure, with only 
a small improvement (about 1% − 2%) in favor of prestratifica-
tion. Moreover, the randomization test based on ranks exhibits 
the lowest power, while the remaining three tests seem to have 
similar performances, with the padj test showing the best values 
for all the considered designs. In the lower part of Figure 4 the 
results in the presence of treatment-by-covariate interaction are 
presented. As for the previous figures, the values of the power in 
each Scenario are comparable with those obtained in Section 3 
highlighting that the regression-based adjustments provide per-
formances comparable to those obtained with a stratified analy-
sis. This result is also in line with that obtained by Bugni, Canay, 
and Shaikh [11] for BCD and PBD. No discernible differences 
appear between the adopted stratification strategies, and apart 
from the test based on ranks, the others perform similarly.

This is not the case in the presence of time trend, as shown 
in Figure  5. All the randomization-based procedures are able 
to preserve the nominal size, while the population-based ap-
proaches suffer from a severe underestimation of the size, except 
under CR. There seem to be no notable differences between the 
two stratification approaches, only for BCD and BSD there may 
be a small benefit in stratifying for population-based strategies. 
Looking at Scenarios II–IV, it is evident that prestratification 
may provide a negative benefit, especially for randomization-
based tests. In particular, for BCD and BSD stratification 
backfires and reduces the power up to 10% − 15%, while for 
permuted block designs the gap is either reduced or canceled. 
The population-based approach instead seems to remain neutral 
with respect to the stratification strategy employed.

In Figure  6, the results in the presence of high variability in 
patients' responses are summarized. The population-based 
strategies do not preserve the nominal size of the test, while 
the randomization-based ones confirm their robustness with 
respect to model misspecification. As expected, in all the 
other Scenarios, the rank-based test shows the highest power, 
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guaranteeing an improvement up to 30% compared with all the 
other competitors. All the other tests show similar performances 
with only a small difference, up to 5%, in favor of the other 

randomization-based procedures compared to the population-
based ones. Interestingly, the results do not seem to be greatly 
affected by the stratification strategy; however, the values 

FIGURE 4    |    Scenario I—IV subspecification (a)—no variability in patient responses: Regression adjustment with pre- and poststratification. 
Considered approaches: D and R rerandomization-based using difference in means and linear rank test on the residuals, respectively; B 
rerandomization-based including the treatment indicator; p and padj population-based using the usual t-test and the adjusted t-test on the beta 
coefficient, respectively.
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FIGURE 5    |    Scenario I—IV subspecification (b)—presence of linear time trend: Regression adjustment with pre- and poststratification. Considered 
approaches: D and R rerandomization-based using difference in means and linear rank test on the residuals, respectively; B rerandomization-based 
including the treatment indicator; p and padj population-based using the usual t-test and the adjusted t-test on the beta coefficient, respectively.
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obtained with prestratification are generally higher, even in the 
presence of strong treatment-by-covariate interaction effects.

To summarize, what is the best rerandomization procedure in 
the regression-adjustment framework? Our findings suggest 
that the method based on the treatment effect, namely B, pro-
vides results similar to those obtained adopting the difference 
in means: both methods are robust with respect to chronological 
bias even though in the presence of high variability their per-
formance greatly deteriorates, with only a small improvement 
compared to the population-based approach. In the latter case, 
as expected, the procedure based on ranks guarantees the high-
est power along with the preservation of the type I error rate. 
Similar to the previous section, the presence of heterogeneity 
among the subgroups does not seem to increase the benefit of 
stratification. In fact, even when there is treatment-by-covariate 
interaction, prestratification may backfire by considerably re-
ducing the inferential precision.

4.2   |   Strong Versus Weak Null Hypothesis

As Neyman and Iwaszkiewicz [20] first noted, in some cases the 
so-called “strong” null hypothesis of identical outcome distribu-
tions in the two treatment groups may be of no or little practical 
utility; especially in clinical trials [26], where the interest may 
lie in testing whether the first moment of the two distributions is 
identical rather than the distributions themselves. In such cases, 
the size of the rerandomization-based test might exceed the nom-
inal level [18, 26, 27]. In what follows, the behavior of the two 

inferential approaches will be compared in terms of the ability 
to preserve the type I error rate under the weak null hypothesis 
where different response distributions exist in the two compet-
ing groups, but equal first moments. More specifically, following 
a set-up similar to the one described in Gail et al. [26], the error 
term for the i-th patient is generated as follows: �i = �0 + �i�1, 
where �0 ∼ N(0, 1) and �1 ∼ N(0, 4), namely an extra source of 
variability is added to the subjects in group A, that is, those with 
�i = 1. For Scenario I, Tables 2 and 3 summarize the estimated 
size of the tests multiplied by 1000 for stratified analysis and re-
gression modeling; each design is simulated 10,000 times and 
for the rerandomization procedures the allocation sequence is 
replicated L = 20, 000 times. Note that estimates outside the in-
terval (45.7, 54.3)—which should include 95% of the replications 
by setting the size equal to 0.05—are considered to significantly 
differ from the nominal � = 0.05 level, based on a two-sides 0.05 
level test.

In general, no huge departure from the nominal 0.05 levels is 
observed, although some clear patterns arise. From Table  2, 
it can be seen that, in general, both t-based tests seem to pre-
serve the size, especially the bootstrap-based one which always 
shows values in the interval (45.7, 54.3). However, the nonpara-
metric W  test shows estimated sizes greater than its paramet-
ric counterpart with a maxim value of 63.9 for BCD. For all the 
population-based tests the values in the prestratification case 
are slightly higher than those in the poststratification one. For 
rerandomization-based tests instead, there is no clear distinc-
tion between the stratification strategies; the rank-based test ex-
hibits estimated sizes always exceeding the nominal level, while 

FIGURE 6    |    Scenario I–IV subspecification (c)—high variability in patient responses: Regression adjustment with pre- and poststratification. 
Considered approaches: D and R rerandomization-based using difference in means and linear rank test on the residuals, respectively; B 
rerandomization-based including the treatment indicator; p and padj population-based using the usual t-test and the adjusted t-test on the beta 
coefficient, respectively.

B D Rp p
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the difference in means seems to preserves the type I error rate. 
Different conclusions can be drawn by looking at Table 3: the 
population-based technique based on the usual t-test on the beta 
coefficient, namely p, generally preserves the type I error rate, 
while the adjusted one, padj, tends to show higher values, with a 
slight inflation of the size. The randomization-based approaches 
using either the difference in means D or the beta coefficient B 
seem to maintain the nominal level, with only few exceptions; 
the rank based test instead confirms the results of the previous 
table, its values are almost always outside the interval, with a 
maximum value of 63.0.

5   |   Discussion

Our results highlight several interesting points.

•	 Question (1): in general, prestratifying does not provide 
substantial benefit, on the contrary, it actually may be del-
eterious in many settings. This is particularly evident for 
randomization-based procedures in the presence of chrono-
logical bias. This is true also for n = 50 and n = 200 (see 
the additional results in Appendix  A), although in larger 

samples the differences between stratification strategies 
tend to be mitigated. In general, in the presence of high vari-
ability in the outcomes, using the appropriate nonparamet-
ric test provides more benefit than prestratification itself.

•	 Related to the previous point: the general validity and ro-
bustness of randomization-based inference, especially in 
the presence of model misspecification is confirmed. This is 
particularly evident in adopting nonparametric tests in the 
presence of high variability in patients' responses.

•	 Our results regarding the behavior of the t-test in the 
presence of time trend are in line with those obtained by 
Rosenkranz [28] and Tamm and Hilgers [23]; we further ex-
tend the analysis to the bootstrap-based t-test proposed by 
Shao, Yu, and Zhong [10], which proves to be robust only in 
the poststratification set-up and to the randomization-based 
tests showing that (i) in general, this approach guarantees a 
higher inferential accuracy, (ii) the combination of prestrat-
ification and chronological bias strongly affect the perfor-
mance of BCD and BSD, (iii) RBD and PBD seem to be robust 
not only to the stratification approach adopted but also to 
the presence of a trend over time. The robustness of the 
block designs is not surprising, since they promote balance 

TABLE 3    |    Estimated rejection probabilities (times 1000) under weak null hypothesis: Randomization-based vs. population-based regression 
adjustment with pre- and poststratification.

Population-based Re-randomization-based

Post Pre Post Pre

p padj p padj D R B D R B

BCD 50.4 58.5 55.7 60.8 52.1 63.0 51.8 52.1 60.9 51.6

BSD 51.3 59.8 50.3 56.1 56.4 62.7 55.4 45.7 56.7 45.9

CR 52.5 53.6 52.5 53.6 48.7 57.6 48.8 48.7 57.6 48.8

PBD 49.5 58.0 52.3 57.3 48.1 59.0 49.8 49.8 54.9 49.8

RBD 53.1 60.9 48.2 53.3 56.1 63.0 55.4 55.4 61.7 55.1

Note: Considered approaches: D and R rerandomization-based using difference in means and linear rank test on the residuals, respectively; B rerandomization-based 
including the treatment indicator; p and padj population-based using the usual t -test and the adjusted t -test on the beta coefficient, respectively. Estimates outside the 
interval (45.7, 54.3) differ significantly from the nominal � = 0.05 level, based on a two-sided 0.05 level test.

TABLE 2    |    Estimated rejection probabilities (times 1000) under weak null hypothesis: Randomization-based versus population based for pre- and 
poststratification.

Population-based Re-randomization-based

Post Pre Post Pre

t W tB t W tB D R D R

BCD 54.9 60.2 48.1 57.2 63.9 54.2 52.1 63.0 52.1 60.9

BSD 54.8 57.5 50.6 53.6 59.2 54.1 56.4 62.7 45.7 56.7

CR 53.7 54.7 50.9 53.7 54.7 50.9 48.7 57.6 48.7 57.6

PBD 53.7 59.3 47.5 54.4 61.8 54.3 48.1 59.0 49.8 54.9

RBD 57.0 61.8 50.1 49.9 58.0 51.7 56.1 63.0 55.4 61.7

Note: Considered tests: t , t-test; W , van Elteren test; tB, bootstrap t-test; D, difference in means; R, linear rank test. Estimates outside the interval (45.7, 54.3) differ 
significantly from the nominal � = 0.05 level, based on a two-sided 0.05 level test.
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at intermediate points in the trial. This phenomenon has 
been seen in other contexts  [1, 19]. Indeed, the statistical 
power of the permuted block designs in the case of no vari-
ability of the responses and in the presence of a linear time 
trend is fairly comparable.

•	 Question (2): the randomization-based regression-
adjustment methods based on the residuals behave sim-
ilarly to their (stratified-analysis) counterparts with 
good performances in all the settings considered. The 
population-based approaches confirm their validity only 
in the case of no variability in the patient outcomes, but 
greatly deteriorate otherwise, even adopting the strata-
fixed effect test proposed by Bugni, Canay, and Shaikh 
[11]. In general for these methods, stratifying seems to 
mostly have no effect. The randomization approach based 
on the treatment effect lies in between the previous two 
and shows performance similar to that obtained by adopt-
ing the difference in means in the residual-based approach: 
it can handle the presence of time trend but it is strongly 
affected by the presence of high variability.

•	 Question (3): interestingly, the presence of a treatment-by-
covariate interaction does not seem to have a disturbing ef-
fect: it clearly reduces the power of the procedures but apart 
from that it leaves the general picture unchanged. This is 
true for both stratified analysis and regression modeling.

Our grand conclusion is that prestratification does not offer ad-
vantages when poststratification and adjusted regression mod-
els can be used following the trial. This result is in line with 
and extends those previously obtained in the literature by con-
sidering the impact of treatment-by-covariate interaction and 
variability in patient response [6, 9, 11]. Randomization-based 
inference is generally more robust than population-based infer-
ence in the presence of some heterogeneity. Its use should not 
be limited these days as both stratified randomization tests and 
regression modeling on the residuals are easily conducted and 
computationally viable.

As a matter of fact, it is interesting that the CONSORT [29] doc-
ument requires that the randomization procedure employed in 
the clinical trial be specified, but then requires nothing further. 
In the absence of randomization-based inference, randomiza-
tion is just a mechanism of allocation. But when randomization 
is treated as just a mechanism for allocation and nothing further, 
it becomes a barely noticeable sentence in protocols and medical 
journal papers. It is worth noting that Barnard recognized this 
phenomenon in his book review of Wald's Sequential Analysis in 
1946: “…Professor Wald persists in an incorrect statement he has 
made earlier, to the effect that the classical test procedure for 
2 × 2 tables … is not applicable to cases where the probabilities 
vary from trial to trial. These methods are applicable, exactly, if 
and only if the proper randomization procedure has been car-
ried out–regardless of variations in probabilities” [30].

We have not discussed response-adaptive (optimal allocation 
[31] or bandit [32, 33] approaches), covariate-adaptive [1], or 
covariate-adjusted response-adaptive randomization [34] in 
this paper. These are more complicated procedures and each 
merits a detailed study on its own. With respect to response-
adaptive randomization, recent papers have shown that 

randomization-based inference preserved type I error rate [27] 
and discussed conditional versus unconditional inference pro-
cedures [35].

While acknowledging the limitations of our analysis and the 
incomplete integration of randomization into the estimand 
framework, we hold the belief that our work can contribute to 
addressing questions concerning the utilization of stratification. 
Moreover, combining randomization- with population-based 
tests in data analysis could be advantageous in identifying viola-
tions or misspecifications in the model assumptions.
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Appendix A

Additional results for n = 50 and n = 200 (Figures A1–A4).

FIGURE A1    |    Randomization-based versus population-based for pre- and poststratification with n = 50. Considered tests: D difference in means, 
R linear rank test, t  t-test, tB bootstrap t-test, W  van Elteren test.
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FIGURE A2    |    Regression adjustment for n = 50 with pre- and poststratification. Considered approaches: D and R rerandomization-based using 
difference in means and linear rank test on the residuals, respectively; B rerandomization-based including the treatment indicator; p and padj 
population-based using the usual t-test and the adjusted t-test on the beta coefficient, respectively.
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FIGURE A3    |    Randomization-based versus population-based for pre- and poststratification with n = 200 . Considered tests: D difference in means, 
R linear rank test, t  t-test, tB bootstrap t-test, W  van Elteren test.
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FIGURE A4    |    Regression adjustment for n = 200 with pre- and poststratification. Considered approaches: D and R rerandomization-based 
using difference in means and linear rank test on the residuals, respectively; B rerandomization-based including the treatment indicator; p and padj 
population-based using the usual t-test and the adjusted t-test on the beta coefficient, respectively.
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