
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 24:2, 2022, #11

A heuristic technique for decomposing
multisets of non-negative integers according
to the Minkowski sum

Luciano Margara

Department of Computer Science and Engineering, University of Bologna, Italy

received 2nd Aug. 2022, revised 10th Oct. 2022, accepted 25th Oct. 2022.

We study the following problem. Given a multiset M of non-negative integers, decide whether there exist and, in the
positive case, compute two non-trivial multisets whose Minkowski sum is equal to M . The Minkowski sum of two
multisets A and B is a multiset containing all possible sums of any element of A and any element of B. This problem
was proved to be NP-complete when multisets are replaced by sets. This version of the problem is strictly related to
the factorization of boolean polynomials that turns out to be NP-complete as well. When multisets are considered, the
problem is equivalent to the factorization of polynomials with non-negative integer coefficients. The computational
complexity of both these problems is still unknown.

The main contribution of this paper is a heuristic technique for decomposing multisets of non-negative integers.
Experimental results show that our heuristic decomposes multisets of hundreds of elements within seconds, inde-
pendently of the magnitude of numbers belonging to the multisets. Our heuristic can also be used for factoring
polynomials in N[x]. We show that, when the degree of the polynomials gets larger, our technique is much faster than
the state-of-the-art algorithms implemented in commercial software like Mathematica and MatLab.

Keywords: multisets, polynomials, decomposition, heuristics

1 Introduction
The idea of decomposing a mathematical object into the sum (product, or other operations) of smaller
ones is definitely not new. A huge literature has been devoted to the factorization of numbers, polynomi-
als, matrices, graphs and many other mathematical objects, including sets and multisets. The basic idea
behind factorization is decomposing a complex object into smaller and easier to analyze pieces. Proper-
ties satisfied by each piece might shed some light on the properties satisfied by the entire object. As an
example, from irreducible factors of a polynomial, we can recover valuable information about its roots. In
this paper, we study the decomposition of multisets of non-negative integers according to the Minkowski
sum. Multisets are an extension of the notion of sets where, basically, multiple copies of the same element
are allowed. The Minkowski sum is a binary operation that can be applied both to sets and multisets. The
Minkowski sum of two multisets A and B is a multiset containing all possible sums of any element of A
and any element of B.

ISSN 1365–8050 c© 2022 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

http://dmtcs.episciences.org/
http://dmtcs.episciences.org/9877


2 Luciano Margara

Given a multiset M of non-negative integers, the decomposition problem asks for computing two
non-trivial multisets whose Minkowski sum is equal to M . Multisets theory have applications in many
fields Singh et al. (2007), e.g., in combinatorics Anderson (2002); Stanley (2011); Stanley and Fomin
(1999), in the theory of relational databases Grumbach and Milo (1996); Henglein et al. (2022); Lamperti
et al. (2000), in multigraphs theory DeVos et al. (2013); Dudek et al. (2013) and in computational geome-
try Emiris et al. (2017). The problem of decomposing multisets of non-negative integers is strictly related
to the problem of factoring univariate polynomials with non-negative coefficients (see Section 2.1 for de-
tails). Even if this problem arises in a very natural way in a number of different theoretical and practical
contexts, it has not been thoroughly studied (see for example Brunotte (2013); Campanini and Facchini
(2019); Van de Woestijne (2012)) and its computational complexity is still unknown. To our knowledge,
no polynomial time algorithm nor an NP-completeness proof exists. When multisets are replaced by sets,
the decomposition problem was proved to be NP-complete Kim and Roush (2005). Other variants of the
Minkowski sum decomposition problem have been studied. As an example, in Gao and Lauder (2001)
the authors study the Minkowski decomposition of integral convex polytopes proving that the decisional
version of this problem is again NP-complete.

The main contribution of this paper is a heuristic technique for decomposing multisets of non-negative
integers which, in turn, can be applied to factoring polynomials with non-negative coefficients.

The idea behind our algorithm is to transform the decomposition problem in an optimization problem
by introducing a score function for candidate solutions. A candidate solution is an approximation of a
solution. The score function measures the quality of candidate solutions, i.e., the similarity to the actual
solution (not necessarily unique). The score function reaches its maximum (whose value is known in
advance) only at a solution for the problem. Our algorithm starts from a randomly generated candidate
solution s0 and iteratively improves it until it finds a local optimum candidate solution sk according to
the score function. If sk reaches the maximum score the algorithms terminates, otherwise it starts over
from another initial candidate solution computed starting from sk. The maximum number of iterations is
bounded by a predetermined threshold.

We extensively tested our algorithm over randomly generated instances of different size and structure.
Experimental results (see Section 4 and Tables in Appendix A and B) show that after a small number of
iterations our algorithm almost always finds a solution.

As far as polynomial with non-negative coefficients factorization is concerned, no efficient and specif-
ically designed algorithms are known. A possible natural strategy to solve this problem might consist of
factoring the polynomial in Z[x] (this can be done in polynomial time) and then suitably grouping factors
in Z[x] in order to get factors in N[x]. Unfortunately, there exists no efficient algorithm to perform the
grouping of factors whose number can be, in general, exponentially large. In our opinion, this is an inter-
esting problem in itself. Since decomposing multisets of non-negative integers is equivalent (under some
conditions we will discuss in Section 2.1) to the problem of factoring polynomials in N[x], the alternative
strategy might also be used for decomposing multisets. In Section 5 we make a comparison between our
algorithm and the alternative strategy depicted above unrealistically assuming that the grouping of factors
can be computed for free. We used built-in functions provided in Wolfram Mathematica language for
integer polynomials factorization (similar results have been found using MatLab).

Experimental results clearly show (see Tables 13,14 and 15 in Appendix B) that, when the degree of
polynomials increases, our technique is much faster than going through factoring. Reversing the line of
reasoning, i.e., using multisets decomposition techniques for factoring polynomials in N[x], our heuristics
becomes a serious candidate to be the first effective method for factoring polynomials with non-negative



Decomposing multisets according to the Minkowski sum 3

coefficients.
The rest of this paper is organized as follows. In Section 2 we give basic definitions and known results.

In Section 3 we describe our heuristics and we provide its pseudocode. In Section 4 we show experi-
mental results. In Section 5 we make a comparison between our algorithm and an alternative strategy
for decomposing multisets based on integer polynomial factorization. Section 6 contains conclusions and
some ideas for further works. Appendices A and B contain tables with experimental data.

2 Definitions and Known Results
Let Z be the set of integers and Z[x] be the sets of univariate polynomials with coefficients in Z. Let N be
the set of non-negative integers and N[x] be the sets of univariate polynomials with coefficients in N.

Multisets are an extension of the concept of sets. While a set can contain only one occurrence of any
given element, a multiset may contain multiple occurrences of the same element. To distinguish multisets
from sets, we will represent multisets by using double braces.

As an example M = {{2, 2, 3, 3, 5, 5, 5, 5, 5, 6, 8, 8}} is a multiset. Given a multiset M we denote by
µ(x,M) the number of occurrences (possibly 0) of the element x in M . Sometimes we will represent
a multiset M as a set of pairs (element, µ(element,M). With this notation, the above multiset can be
written as M = {(2, 2), (3, 2), (5, 5), (6, 1), (8, 2)}. In what follows, we will consider sets and multisets
of numbers. This enable us to define a binary operation on them (denoted by the symbol ⊕) sometimes
called Minkowski sum. We will use the symbol ⊕ both for sets and multisets sum inferring the type of
operation from the type of operands.

Definition 1 (Minkowski Set Sum). The Minkowski sum of two sets A and B is a set defined as follows.

A⊕B = {a+ b : a ∈ A and b ∈ B}

Example 1. Example of set sum. Let A = {0, 1, 3} and B = {2, 5}. Then A⊕B = {2, 3, 5, 6, 8}. Since
we are working with sets, the multiplicity of 5 in A ⊕ B is 1 even if 5 can be obtained both as 0 + 5 and
3 + 2.

Definition 2 (Minkowski Multiset Sum). The Minkowski sum of two multisetsA andB is a multiset given
by

A⊕B = {{a+ b : a ∈ A and b ∈ B}}
Example 2. Examples of multiset sum.
Let A = {{0, 1, 3}} and B = {{2, 5}}. Then A⊕B = {{2, 3, 5, 5, 6, 8}}.
Let A = {{0, 1, 3, 3}} and B = {{2, 2, 5}}. ThenA⊕B = {{2, 2, 3, 3, 5, 5, 5, 5, 5, 6, 8, 8}}.

The identity element with respect to the set sum is {0} and the identity element with respect to the
multiset sum is {{0}}. A multiset A is contained in a multiset B (A ⊆ B) if and only if

∀x ∈ A : x ∈ B and µ(x,A) ≤ µ(x,B) (1)

We also define the multiset difference operation (denoted by the \ symbol) as follows.

A \B = {(x,mx) : x ∈ A and mx = max(µ(x,A)− µ(x,B), 0)} (2)

As an example, {{2, 2, 3, 3, 5, 6, 8, 8}}\{{2, 3, 3, 3, 5, 9}} = {{2, 6, 8, 8}}. We now introduce the notion
of reducible multisets (sets) of non-negative integers.



4 Luciano Margara

Definition 3 (Reducible multiset (set)). A multiset (set) M of non-negative integers is reducible if and
only if there exist two multisets (sets) A and B, both of them different from the identity element, such that
M = A⊕B.

A multiset (set) M of non-negative integers is irreducible (sometimes called prime) if and only if it is
not reducible. We are now ready to state the following two problems.

Definition 4 (SET-RED). Given a set S of non-negative integers, decide whether S is reducible or not.

Definition 5 (MULTISET-RED). Given a multiset M of non-negative integers, decide whether M is re-
ducible or not.

The following result was proved in Gao and Lauder (2001).

Theorem 1. SET-RED is NP-complete.

Unlike SET-RED, the computational complexity of MULTISET-RED is, to our knowledge, still unknown.
This leads us to state the following open question.

Question 1. Is MULTISET-RED NP-complete ?

Even if we have defined SET-RED and MULTISET-RED in their decisional version, in the rest of this
paper we will refer to them (with a little abuse of notation) as constructive problems, i.e, the problem of
effectively computing two multisets (sets) whose Minkowski sum is equal to the multiset (set) received as
input.

In the next example we show that the irreducible factorization of non-negative integer multisets is not
unique. This makes the problem of factoring multisets even harder, if possible.

Example 3. Let M = {{0, 1, 2, 3, 4, 5}}. Then

M = {{0, 1}} ⊕ {{0, 2, 4}}
= {{0, 3}} ⊕ {{0, 1, 2}}.

Multisets {{0, 1}}, {{0, 2, 4}}, {{0, 3}} and {{0, 1, 2}} are irreducible.

2.1 Multisets decomposition and polynomials factorization
One of the most studied problem in computer algebra is the problem of factoring polynomials. A huge
literature has been devoted to the factorization of polynomials (without claim of exhaustiveness see Hoeij
(2002); Lenstra et al. (1982); Kaltofen (1992)). The first polynomial factorization algorithm was pub-
lished by Theodor Von Schubert in 1793 Schubert (1793). Since then, dozens of papers on the computa-
tional complexity of polynomial factorization have been published. In 1982, Arjen K. Lenstra, Hendric
W. Lenstra, and László Lovász Lenstra et al. (1982) published the first polynomial time algorithm for
factoring polynomials over Q and then over Z.

The problem of factoring polynomials over a ring can be, in a sense, labeled as “well studied” and
“efficiently solved”. The same cannot be said when rings are replaced by semirings (e.g. the natural
numbers). Unlike the case of factoring polynomials over rings, the problem of factoring polynomials
over semirings has received far less attention, there are far fewer known results and many interesting
unanswered questions. One of them is the following.

Question 2 (N-POLY-RED). Given a polynomial p(x) ∈ N[x], decide whether p(x) is reducible in N[x].



Decomposing multisets according to the Minkowski sum 5

As far as we know, for the N-POLY-RED problem, there are neither polynomial algorithms to solve it
nor proofs of NP-completeness. N-POLY-RED problem is strictly related to the MULTISET-RED problem.

To any given polynomial p(x) ∈ N[x] it is possible to associate a multiset as follows. Let p = a0 +
a1x+ a2x

2 + · · ·+ anx
n be any element of N[x]. We define the multiset

Multiset(p) = {{
a0︷ ︸︸ ︷

0, . . . , 0, . . . ,

ai︷ ︸︸ ︷
i, . . . , i, . . . ,

an︷ ︸︸ ︷
n, . . . , n}} (3)

On the other hand, we can associate to any multiset

M = {{
m1︷ ︸︸ ︷

n1, . . . , n1,

m2︷ ︸︸ ︷
n2, . . . , n2, . . . ,

md︷ ︸︸ ︷
nd, . . . , nd}}

the polynomial
Polynomial(M) = m1x

n1 +m2x
n2 + · · ·+mdx

nd (4)

It is not difficult to verify that
- Polynomial(Multiset(p)) = p and Multiset(Polynomial(M)) =M
- Multiset(p q) =Multiset(p)⊕Multiset(q) and
- Polynomial(A⊕B) = Polynomial(A)Polynomial(B)

As a consequence of these properties we have that
- M is an irreducible multiset of non-negative integers if and only if
Polynomial(M) is an irreducible polynomial over N[x] and
- p is an irreducible polynomial over N[x] if and only if Multiset(p) is an irreducible multiset of non-
negative integers.

Unfortunately, in the general case, the size of Multiset(p) may be exponentially larger than the size
of p. This prevents us from readily translating computational complexity results for MULTISET-RED into
equivalent results for N-POLY-RED and viceversa.

Taking advantage of Example 3 we show that the irreducible factorization of polynomials in N[x] is not
unique.

Example 4. Let p(x) = 1 + x + x2 + x3 + x4 + x5. The complete factorization of p(x) in Z[x] is
p(x) = (1+x)(1−x+x2)(1+x+x2). Since (1+x)(1−x+x2) ∈ N[x] and (1−x+x2)(1+x+x2) ∈ N[x],
then we have two distinct factorizations of p(x) in N[x].

p(x) = (1 + x)(1 + x2 + x4)

= (1 + x3)(1 + x+ x2)

3 The Heuristics
In this section we provide a complete description of our heuristics by using pseudocode (for details see
pages from 20 to 22 in Cormen et al. (2009)).

Given a multiset M of n non-negative integer numbers, a candidate solution for M is any multiset A
(A 6= {{0}}) of cardinality m such that A ⊆ M and m divides n. A candidate solution A for M is also
a solution for M if and only if there exists another candidate solution B (B 6= {{0}}) for M such that
M = A ⊕ B. Given a candidate solution A for M , deciding whether A is also a solution for M can be



6 Luciano Margara

done in polynomial time. Given a solution A for M , computing B such that M = A⊕B can be done in
polynomial time.

Our heuristics starts from an initial candidate solution of a given cardinality and iteratively improves it
(according to a given score function) until it finds a solution. The cardinality m of the initial candidate
solution is unknown in advance but must divide the cardinality of M . For computing an actual decompo-
sition of a multiset M of cardinality n we have to run our algorithm on all possible factors f of n with
f ≤

√
n. We are aware that this leads to an overhead of computation, but luckily, the number of factors

of any positive integer n (not exceeding
√
n) is very small if compared to n. For every positive integer n,

with 100 ≤ n ≤ 100.000, we computed its number of factors divided by n. It turns out that the average
of these ratios is 0.00025 and the maximum is 0.058 (higher values are obtained for small numbers). For
these reasons, in what follows, we will assume that the target cardinality of solutions is known.

We now give the pseudocode of each function used in our heuristics and a short explanation on how it
works.

INITIALSOLUTION(M,n)

1 m = ROUND(M. length/2)
2 M = SORT(M)
3 M = M [1 . .m]
4 M = RANDOMSAMPLE(M,n)
5 return M

INITIALSOLUTION takes as input a multiset M and a non-negative integer n that divides the cardinality
of M and returns a candidate solution of cardinality n.

SCORE(M,S)

1 // invariant: S[1] = 0, S ⊆M and S. length divides M. length
2 col = S. length
3 row = M. length/col // Let mat be an row × col matrix whose entries are set to 0
4 r = M \ S
5 // first row of mat gets S
6 score = col
7 for i = 2 to row
8 w = MIN(r)
9 r = r \ {w}

10 score = score+ 1
11 //mat[row, 1] = w
12 for j = 2 to col
13 c = w + S[j]
14 if c ∈ r
15 r = r \ {c}
16 score = score+ 1
17 //mat[row, col] = c
18 else return score
19 return score



Decomposing multisets according to the Minkowski sum 7

SCORE takes as input a multiset M and a candidate solution S for M and returns a positive integer
measuring the quality of S. SCORE(M,S) ranges from length of S (lowest quality) to length of M
(highest quality). If SCORE(M,S) = length of M then S is a solution for M .

To better understand how SCORE works, we describe its behavior on the following example. Let A =
{{0, 1, 3, 3}}, B = {{0, 2, 2, 6}}, and

M = A⊕B = {{0, 1, 2, 2, 3, 3, 3, 3, 5, 5, 5, 5, 6, 7, 9, 9}}

Assume now to run SCORE(M,B). Since B is a solution for M , SCORE(M,B) returns 16, i.e., the
length of M . The matrix mat described (but not computed) at lines 6,8,14 and 20 would be

mat =


0 2 2 6
1 3 3 7
3 5 5 9
3 5 5 9


and the elements of mat would give exactly the multiset M .

Assume now to run SCORE(M,C). Where C = {{0, 1, 2, 6}} is a candidate solution but not a solution.
SCORE(M,C) returns 6. The matrix mat would now have the form

mat =


0 1 2 6
2 3 0 0
0 0 0 0
0 0 0 0


The element at row 2 and column 3 (2 + 2 = 4) in mat cannot be found in M (note that we have already
removed 0, 1, 2, 6, 2 and 3 from M ) and then SCORE(M,C) stops at line 21 returning 6, i.e., the number
of elements correctly placed in mat until that moment.

Last case. Assume to run SCORE(M,C). Where C = {{0, 2, 2, 5}} is again a candidate solution but
not a solution. SCORE(M,C) returns 11. The matrix mat would have now the form

mat =


0 2 2 5
1 3 3 6
3 5 5 0
0 0 0 0


The element at row 3 and column 4 (3 + 5 = 8) in mat cannot be found in M and then SCORE(M,C)
stops at line 21 returning 11, i.e., the number of elements correctly placed in mat until that moment.



8 Luciano Margara

NEIGHBORSEARCH(M,S)

1 // invariant: S[1] = 0 and S. length divides M. length
2 initial score = SCORE(M,S)
3 alternatives = DELETEDUPLICATES(M \ S)
4 for i = 2 to S. length
5 for j = 1 to alternatives. length
6 temp = S[i]
7 S[i] = alternatives[j]
8 new score = SCORE(M,S)
9 if new score > initial score

10 return (new score, S)
11 else S[i] = temp
12 return (initial score, S)

NEIGHBORSEARCH takes as input a multisetM and a candidate solution S forM and returns a candidate
solution N in the neighborhood of S such that SCORE(M,N ) > SCORE(M,S), if any. Returns S,
otherwise.

Given a multiset M and a candidate solution S for M , a neighbor of S is any candidate solution for M
differing from S for exactly 1 element. To speed up the process, NEIGHBORSEARCH returns (line 11) the
first improved candidate solution found.

FINDLOCALOPT(M,S)

1 // invariant: S[1] = 0
2 n = M. length
3 current score = SCORE(M,S)
4 while TRUE
5 (score, S) = NEIGHBORSEARCH(M,S)
6 if score == n
7 return (TRUE, S)
8 if score == current score
9 return (FALSE, S)

10 current score = score

FINDLOCALOPT takes as input a multiset M and a candidate solution S for M and returns a candidate
solution N with the property of being the best candidate solution in its neighbor, i.e., a local optimum. To
accomplish this task, FINDLOCALOPT keeps on calling NEIGHBORSEARCH on improved solutions until
no more improvement is found. Note that the candidate solution N produced by FINDLOCALOPT is not
guaranteed to be a solution.



Decomposing multisets according to the Minkowski sum 9

ITERATEDSEARCH(M,m, iterations)

1 // invariant: m divides M. length
2 current solution = INITIALSOLUTION(M,m)
3 for i = 1 to iterations
4 (found, S) = FINDLOCALOPT(M, current solution)
5 if found
6 return S
7 current solution = NEWINITIALSOLUTION(M, current solution)
8 // note that current solution contains 0
9 return solution not found

ITERATEDSEARCH takes as input a multiset M , an integer m > 1 dividing the cardinality of M and
an upper bound on the number of iterations and returns a solution of cardinality m, if found. ITERAT-
EDSEARCH keeps on calling FINDLOCALOPT with different initial candidate solutions (computed by
NEWINITIALSOLUTION) until a solution is found or the maximum number of iterations is exceeded.

NEWINITIALSOLUTION(M,S)

1 // invariant: S[1] = 0, all the elements of S are in M and S. length divides M. length
2 col = S. length
3 row = M. length/col
4 // Let mat be an row × col matrix whose entries are set to 0
5 R = M \ S
6 // first row of mat gets S
7 new set = S
8 for i = 2 to row
9 w = MIN(R)

10 R = R \ {w}
11 new set = new set

⋃
{w}

12 //mat[row, 1] = w
13 for j = 2 to col
14 c = w + S[j]
15 if c ∈ R
16 r = R \ {c}
17 //mat[row, col] = c
18 else return RANDOMSAMPLE(new set, col)
19 // RANDOMSAMPLE(new set, col) must contain 0
20 return RANDOMSAMPLE(new set, col)

NEWINITIALSOLUTION takes as input a multiset M and a candidate solution S for M and returns a new
initial candidate solution. To better understand how NEWINITIALSOLUTION works, we show its behavior
on an example. Let A = {{0, 1, 3, 3}}, B = {{0, 2, 2, 6}}, and

M = A⊕B = {{0, 1, 2, 2, 3, 3, 3, 3, 5, 5, 5, 5, 6, 7, 9, 9}}

Assume to run NEWINITIALSOLUTION(M,C). Where C = {{0, 2, 2, 5}} is a candidate solution but not



10 Luciano Margara

a solution. The matrix mat, if computed, would have the form

mat =


0 2 2 5
1 3 3 6
3 5 5 0
0 0 0 0


NEWINITIALSOLUTION(M,C) stops at line 20 returning {{0, 2, 2, 5, 1, 3}}, i.e., the union of the first row
of mat and the initial part (first 3 elements) of the first column of mat. Experimental results clearly show
that solutions to the problem contains with high probability elements placed in the first row or in the first
column of the matrix mat associated to the local optimum candidate solution.

4 Experimental results
We tested our algorithm on an iMac equipped with a 4.2 GHz Intel Core i7 quad-core processor and 32
GB RAM (2400 MHz DDR4 ). Operating System: macOS Monterey Version 12.2.1. Our algorithm has
been implemented in Wolfram Mathematica language (Version 12). To make the code more readable even
to those unfamiliar with the Mathematica language, we decided to describe it providing a pseudocode
version (see Section 3).

Our algorithm has been extensively tested over instances (multisets of non-negative integers) of differ-
ent size and structure. Instances depend on two parameters, namely structure and range, and have been
generated according to the following procedure.

INSTANCEGENERATION(structure, range)

1 inst = {{0}}
2 for i = 1 to structure. length
3 Let M be a multiset with the following properties:
4 - cardinality of M is equal to structure[i]
5 - M contains at least one element equal to 0
6 - each element of M is randomly chosen in the interval [0 . . range]
7 inst = inst⊕M
8 return inst

The parameter structure is a list of positive integers representing the cardinalities of the multisets
that, once summed together, produce the instance. The parameter range represents an upper bound
on the numbers in the multisets (see line 6 of INSTANCEGENERATION). As an example, the instance
produced by INSTANCEGENERATION({2,2,3}, 10) is a multiset of cardinality 12 = 2 × 2 × 3 obtained
by summing up 3 randomly generated multisets of cardinality 2, 2 and 3, respectively. Each element of
the 3 multisets is randomly chosen from the set {0, 1, . . . , 10}. We only consider multisets containing at
least one element equal to zero. In fact, any multiset M that does not contain 0, i.e., µ(0,M) = 0, can be
always decomposed as {{min(M)}} ⊕M ′ where M ′ is a multiset obtained from M subtracting to each
element min(M). As an example, {{2, 4, 3, 4, 3, 5}} = {{2}} ⊕ {{0, 2, 1, 2, 1, 3}}.

For each structure and range, we tested our algorithms on a large number of instances collecting
results in Tables 1 to 12 in Appendix A.

Columns of Tables contain the following data.
1. Size: size of the input, i.e., cardinality of the considered multiset



Decomposing multisets according to the Minkowski sum 11

2. Structure: structure of the considered multiset
3. Success: percentage of runs for which a solution is found
4. Iterations: Average number of iterations for any given structure
5. Time: Average running time for any given structure
6. Time/Iter: Time divided by Iterations
7. Time/Size: Time divided by Size We investigated the performance of our algorithm in different
scenarios. Number of duplicates. We tested our algorithm with two different values of the parameter
range. Namely, range = 5 and range = 10000. In the case of range = 5, multisets contain a large
number of duplicates, while in the case of range = 10000 duplicates are very rare.

with 3 different type of structures {n, n}, {2n, n} and {n, . . . , n}.
- {n, n}: sum of two multisets with the same cardinality;
- {2n, n}: sum of two multisets with different cardinalities (one half of the other);
- {n, . . . , n}: sum of k multisets with the same cardinality (denoted by {n}k).

We now give some reading keys and interpretations of experimental data collected in Tables 1 to 12 in
Appendix A.

ITERATEDSEARCH finds a solution most of the time. Leaving unbounded the maximum number of
allowed iterations, ITERATEDSEARCH always finds a solution. From a practical point of view, leaving
unbounded the number of iterations prevents the algorithm to recognize irreducible multisets. In our tests
we set the maximum number of iterations equal to 100. Even in this case, ITERATEDSEARCH is able to
find a solution approximately 999 times out of 1000.

Multisets with many duplicates approximately takes the same amount of time to decompose with re-
spect to multisets with a small number of duplicates. The presence of many duplicates forces the heuristics
to go through a larger number of iterations to find a solution but single iterations are much faster. With
many duplicates, the behavior of ITERATEDSEARCH is less regular in terms of running times and distri-
bution of failures.

Multisets obtained summing up many small multisets are much easier to decompose with respect to
multisets obtained summing up 2 large multisets. As an example, a multiset with structure {2}15 and
size 32768 takes approximately the same time (last row of Table 3) of a multiset with structure {20, 20}
and size 400 (last row of Table 2). For multisets obtained summing up many small multisets, the average
number of iterations is very close to 1.

5 Polynomial Factorization vs Iterated Search
An alternative strategy for decomposing a multiset of non-negative integers (or, equivalently, an intuitive
way of factoring a polynomial in N[x]) might be the following.

ALTERNATIVESTRATEGY(M )
1 //M is a multiset of non-negative integers
2 p = POLYNOMIAL(M)
3 fl = FACTORLIST(p)
4 (P1 ,P2 ) = GROUP(fl)
5 return (Multiset(P1),Multiset(P2))

Line 2 computes the polynomial p associated to the multiset M as shown in Equation (4). Line 3
computes the factor list fl of p. Line 4, using some unknown algorithm (it would be of some interest



12 Luciano Margara

to find an algorithm for efficiently computing GROUP(fl)), computes a partition P = {P1, P2} (if there
exists one) of the factor list fl such that the product of all the polynomials in P1 and the product of all the
polynomials in P2 have non-negative coefficients.

In what follows we will assume that the computational cost of Line 4 is zero. Table 13 to 15 com-
pare running times of ITERATEDSEARCH and ALTERNATIVESTRATEGY for multisets with homogeneous
structure and increasing ranges.

For computing the factor list at Line 3 of ALTERNATIVESTRATEGY we make use of the function
FACTORLIST provided by Mathematica Language (similar results are obtained by using the function
FACTOR of MatLab).

Experimental results (see Tables 13,14 and 15) clearly show that the running time of ITERATEDSEARCH
is independent of the magnitude of numbers in the multisets (exponents in the polynomials). ITERATED-
SEARCH is much faster than ALTERNATIVESTRATEGY in the case of multisets containing large numbers
and small multiplicity.

Doing the reverse path enable us to give a new technique for decomposing polynomials in N[x] based
on ITERATEDSEARCH.

N-POLYFACT(p)
1 // p ∈ N[x]
2 M = MULTISET(p)
3 S = ITERATEDSEARCH(M) //
4 P = Polynomial(S)
5 return (Polynomial(S), p/P )

We end this section by giving a small multiset M of non-negative integers that ITERATEDSEARCH
decomposes in 0.008 seconds. ALTERNATIVESTRATEGY (both using Mathematica and MatLab factor-
ization primitives) called on the same multiset, after 24 hours of computation, was unable to find any
solution.

A = {{0, 1249, 4270, 4324, 4852}}

B = {{0, 1705, 2250, 2267, 4390}}

M = A⊕B = {{0, 1249, 1705, 2250, 2267, 2954, 3499, 3516, 4270, 4324, 4390, 4852, 5639,
5975, 6029, 6520, 6537, 6557, 6574, 6591, 7102, 7119, 8660, 8714, 9242}}

Polynomial(M) = 1 + x1249 + x1705 + x2250 + x2267 + x2954 + x3499 + x3516 + x4270 +

x4324 + x4390 + x4852 + x5639 + x5975 + x6029 + x6520 + x6537 +

x6557 + x6574 + x6591 + x7102 + x7119 + x8660 + x8714 + x9242

6 Conclusions and further work
We have introduced and analyzed a heuristic technique for decomposing multisets of non-negative integers
according to the Minkowski sum. Experimental results show that our technique allows to decompose quite



Decomposing multisets according to the Minkowski sum 13

large multisets (hundreds to thousands of elements depending on the instance structure) in seconds. Our
technique can also be used to tackle the problem of factoring polynomials in N[x]. Experimental results
show that, when the size of exponents (elements of multisets) increases, our technique is much faster
than state-of-the-art implementation of polynomial factoring algorithms over Z[x] that can be viewed as
a preparatory step for factoring over N[x].

A natural extension of this work is replacing non-negative integers with more complex mathematical
objects. It would be of some interest to investigate the case of d dimensional vectors of non-negative
integers with d > 1. The problem of decomposing multisets of d dimensional vectors is strictly related to
the problem of factoring multivariate polynomials with non-negative coefficients, but also to a number of
problems arising, for example, in the field of computational geometry and seems to be more challenging
than the 1 dimensional case.

It would be interesting to investigate whether the combination of the results obtained by using our
algorithm on single components of the d dimensional object can be of any help for solving the global
problem.



14 Luciano Margara

A Experimental Data Tables I

Tab. 1: Range = 5. Number of tested instances for each structure: 1000.

Size Structure Success Iterations Time Time/Iter Time/Size
9 {3, 3} 100 1 0.001 0.001 0.00011

16 {4, 4} 100 1.14 0.002 0.00175 0.00012
25 {5, 5} 100 1.4 0.008 0.00571 0.00032
36 {6, 6} 100 1.9 0.025 0.01316 0.00069
49 {7, 7} 100 2.6 0.061 0.02346 0.00124
64 {8, 8} 100 3 0.122 0.04067 0.00191
81 {9, 9} 100 4.22 0.242 0.05735 0.00299
100 {10, 10} 100 4.22 0.366 0.08673 0.00366
121 {11, 11} 100 7.06 0.934 0.13229 0.00772
144 {12, 12} 100 4.72 0.95 0.20127 0.0066
169 {13, 13} 100 11.7 2.728 0.23316 0.01614
196 {14, 14} 100 7.02 2.454 0.34957 0.01252
225 {15, 15} 100 7.14 3.298 0.4619 0.01466
256 {16, 16} 100 8.16 4.563 0.55919 0.01782
289 {17, 17} 100 10.72 8.151 0.76035 0.0282
324 {18, 18} 100 9.56 9.18 0.96025 0.02833
361 {19, 19} 99.9 11 12.168 1.10618 0.03371
400 {20, 20} 100 18.5 29.491 1.59411 0.07373

Tab. 2: Range = 5. Number of tested instances for each structure: 1000.

Size Structure Success Iterations Time Time/Iter Time/Size
18 {6, 3} 100 1.24 0.002 0.00161 0.00011
32 {8, 4} 100 1.92 0.011 0.00573 0.00034
50 {10, 5} 100 2.52 0.038 0.01508 0.00076
72 {12, 6} 100 3.1 0.104 0.03355 0.00144
98 {14, 7} 100 3.58 0.222 0.06201 0.00227
128 {16, 8} 100 4.68 0.452 0.09658 0.00353
162 {18, 9} 100 6.44 0.961 0.14922 0.00593
200 {20, 10} 100 9.22 1.865 0.20228 0.00932
242 {22, 11} 100 7.56 2.655 0.35119 0.01097
288 {24, 12} 100 9.4 4.161 0.44266 0.01445
338 {26, 13} 100 15.8 8.474 0.53633 0.02507
392 {28, 14} 99.9 12.1 10.56 0.87273 0.02694
450 {30, 15} 100 11.62 13.641 1.17392 0.03031



Decomposing multisets according to the Minkowski sum 15

Tab. 3: Range = 5. Number of tested instances for each structure: 1000.

Size Structure Success Iterations Time Time/Iter Time/Size
8 {2}3 100 1 0.001 0.001 0.00012

16 {2}4 100 1 0.001 0.001 0.00006
32 {2}5 100 1 0.001 0.001 0.00003
64 {2}6 100 1 0.002 0.002 0.00003
128 {2}7 100 1 0.004 0.004 0.00003
256 {2}8 100 1 0.007 0.007 0.00003
512 {2}9 100 1 0.014 0.014 0.00003

1024 {2}10 100 1 0.037 0.037 0.00004
2048 {2}11 100 1 0.11 0.11 0.00005
4096 {2}12 100 1 0.375 0.375 0.00009
8192 {2}13 100 1 1.15 1.15 0.00014

16384 {2}14 100 1 4.708 4.708 0.00029
32768 {2}15 100 1 18.625 18.625 0.00057

Tab. 4: Range = 5. Number of tested instances for each structure: 1000.

Size Structure Success Iterations Time Time/Iter Time/Size
27 {3}3 100 1 0.003 0.003 0.00011
81 {3}4 100 1.04 0.012 0.01154 0.00015
243 {3}5 100 1 0.039 0.039 0.00016
729 {3}6 100 1 0.175 0.175 0.00024

2187 {3}7 100 1 1.088 1.088 0.0005
6561 {3}8 100 1 6.646 6.646 0.00101

19683 {3}9 100 1 60.155 60.155 0.00306

Tab. 5: Range = 5. Number of tested instances for each structure: 1000. For Size = 16384, due to time limits, we
reduced the number of instances to 300.

Size Structure Success Iterations Time Time/Iter Time/Size
64 {4}3 100 1.1 0.022 0.02 0.00034

256 {4}4 100 1.02 0.14 0.13725 0.00055
1024 {4}5 100 1.06 1.266 1.19434 0.00124
4096 {4}6 100 1 11.377 11.377 0.00278
16384 {4}7 100 1.24 366.325 295.423 0.02236



16 Luciano Margara

Tab. 6: Range = 5. Number of tested instances for each structure: 1000. For Size = 15625, due to time limits, we
reduced the number of instances to 300.

Size Structure Success Iterations Time Time/Iter Time/Size
125 {5}3 100 1.38 0.114 0.08261 0.00091
625 {5}4 100 1.26 1.307 1.0373 0.00209

3125 {5}5 100 1.12 23.818 21.2661 0.00762
15625 {5}6 100 1.08 521.383 482.762 0.03337

Tab. 7: Range = 10000. Number of instances for each structure: 1000.

Size Structure Success Iterations Time Time/Iter Time/Size
9 {3, 3} 100 1 0.001 0.001 0.00011

16 {4, 4} 100 1 0.002 0.002 0.00012
25 {5, 5} 100 1 0.008 0.008 0.00032
36 {6, 6} 100 1 0.02 0.02 0.00056
49 {7, 7} 100 1 0.05 0.05 0.00102
64 {8, 8} 100 1 0.105 0.105 0.00164
81 {9, 9} 100 1 0.199 0.199 0.00246
100 {10, 10} 100 1 0.375 0.375 0.00375
121 {11, 11} 100 1 0.606 0.606 0.00501
144 {12, 12} 100 1 1.138 1.138 0.0079
169 {13, 13} 100 1 1.815 1.815 0.01074
196 {14, 14} 100 1 2.831 2.831 0.01444
225 {15, 15} 100 1 4.064 4.064 0.01806
256 {16, 16} 100 1 6.09 6.09 0.02379
289 {17, 17} 100 1.4 10.515 7.51071 0.03638
324 {18, 18} 100 1 13.469 13.469 0.04157
361 {19, 19} 100 1 19.217 19.217 0.05323
400 {20, 20} 100 1.02 27.122 26.5902 0.0678



Decomposing multisets according to the Minkowski sum 17

Tab. 8: Range = 10000. Number of instances for each structure: 1000.

Size Structure Success Iterations Time Time/Iter Time/Size
18 {6, 3} 100 2.22 0.004 0.0018 0.00022
32 {8, 4} 100 1.78 0.012 0.00674 0.00038
50 {10, 5} 100 2.2 0.047 0.02136 0.00094
72 {12, 6} 100 1.76 0.096 0.05455 0.00133
98 {14, 7} 100 1.72 0.214 0.12442 0.00218
128 {16, 8} 100 1.96 0.488 0.24898 0.00381
162 {18, 9} 100 3.02 1.469 0.48642 0.00907
200 {20, 10} 99.9 6.14 6.141 100016 0.0307
242 {22, 11} 100 2.68 3.944 1.47164 0.0163
288 {24, 12} 100 1.64 4.777 2.9128 0.01659
338 {26, 13} 100 2.26 9.864 4.3646 0.02918
392 {28, 14} 100 2.06 15.012 7.28738 0.0383
450 {30, 15} 100 3.18 33.11 10.412 0.07358

Tab. 9: Range = 10000. Number of instances for each structure: 1000.

Size Structure Success Iterations Time Time/Iter Time/Size
8 {2}3 100 1 0.001 0.001 0.00012

16 {2}4 100 1 0.001 0.001 0.00006
32 {2}5 100 1 0.001 0.001 0.00003
64 {2}6 100 1 0.001 0.001 0.00002
128 {2}7 100 1 0.002 0.002 0.00002
256 {2}8 100 1 0.004 0.004 0.00002
512 {2}9 100 1 0.009 0.009 0.00002

1024 {2}10 100 1 0.024 0.024 0.00002
2048 {2}11 100 1 0.07 0.07 0.00003
4096 {2}12 100 1 0.228 0.228 0.00006
8192 {2}13 100 1 0.811 0.811 0.0001

16384 {2}14 100 1 2.984 2.984 0.00018
32768 {2}15 100 1 11.708 11.708 0.00036



18 Luciano Margara

Tab. 10: Range = 10000. Number of instances for each structure: 1000.

Size Structure Success Iterations Time Time/Iter Time/Size
27 {3}3 100 1 0.002 0.002 0.00007
81 {3}4 100 1 0.008 0.008 0.0001
243 {3}5 100 1 0.028 0.028 0.00012
729 {3}6 100 1 0.139 0.139 0.00019

2187 {3}7 100 1 0.916 0.916 0.00042
6561 {3}8 100 1 7.047 7.047 0.00107

19683 {3}9 100 1 72.214 72.214 0.00367

Tab. 11: Range = 10000. Number of instances for each structure: 1000. For Size = 16384, due to time limits, we
reduced the number of instances to 300.

Size Structure Success Iterations Time Time/Iter Time/Size
64 {4}3 100 1.16 0.021 0.0181 0.00033

256 {4}4 100 1.12 0.148 0.13214 0.00058
1024 {4}5 100 1.28 1.54 1.20312 0.0015
4096 {4}6 100 1.26 21.532 17.0889 0.00526
16384 {4}7 100 1.18 355.661 301.408 0.02171

Tab. 12: Range = 10000. Number of instances for each structure: 1000. For Size = 3125 and Size = 15625, due
to time limits, we reduced the number of instances to 100.

Size Structure Success Iterations Time Time/Iter Time/Size
125 {5}3 100 1.62 0.146 0.09012 0.00117
625 {5}4 100 5.2 4.767 0.91673 0.00763

3125 {5}5 100 7.7 122.143 15.8627 0.03909
15625 {5}6 100 3.4 1689.16 496.812 0.10811



Decomposing multisets according to the Minkowski sum 19

B Experimental Data Tables II

Tab. 13: Running times for ITERATEDSEARCH and ALTERNATIVESTRATEGY called on multisets with different
range values and structure = {5, 5}. Number of instances for each range: 100.

Size Structure Range ITERATEDSEARCH ALTERNATIVESTRATEGY

25 {5, 5} 100 0.09 0.144747
25 {5, 5} 300 0.008 3.764507
25 {5, 5} 500 0.009 22.003455
25 {5, 5} 700 0.008 64.317906
25 {5, 5} 900 0.007 161.541679
25 {5, 5} 1100 0.01 253.745332

Tab. 14: Running times for ITERATEDSEARCH and ALTERNATIVESTRATEGY called on multisets with different
range values and structure = {10, 10}. Number of instances for each range: 100.

Size Structure Range ITERATEDSEARCH ALTERNATIVESTRATEGY

100 {10, 10} 100 0.551 0.220502
100 {10, 10} 300 0.532 4.213079
100 {10, 10} 500 0.397 26.706801
100 {10, 10} 700 0.426 75.783461
100 {10, 10} 900 0.612 187.938575
100 {10, 10} 1100 0.4 379.374113

Tab. 15: Running times for ITERATEDSEARCH and ALTERNATIVESTRATEGY called on multisets with different
range values and structure = {2}12. Number of instances for each range: 100.

Size Structure Range ITERATEDSEARCH ALTERNATIVESTRATEGY

4096 {2}12 40 0.294 0.142596
4096 {2}12 60 0.319 2.682864
4096 {2}12 80 0.316 3.145838
4096 {2}12 100 0.311 6.137466
4096 {2}12 120 0.283 31.849028
4096 {2}12 140 0.253 356.950613



20 Luciano Margara

References
I. Anderson. Combinatorics of finite sets. Oxford science publications. lat. Clarendon Press ; Oxford

University Press, Oxford [England] : New York, 1989. ISBN 0198533799.

I. Anderson. Combinatorics of Finite Sets. Dover books on mathematics. Dover Publications, 2002. ISBN
9780486422572. URL https://books.google.it/books?id=RjDd4RaqrIwC.

C. Berthaud, L. Capelli, J. Gustedt, C. Kirchner, K. Loiseau, A. Magron, M. Medves, A. Monteil,
G. Riverieux, and L. Romary. EPISCIENCES - an overlay publication platform. In D. P. Polydo-
ratou, editor, ELPUB2014 - International Conference on Electronic Publishing, pages 78–87, Thessa-
lonique, Greece, June 2014. Alexander Technological Education Institute of Thessaloniki, IOS Press.
doi: 10.3233/978-1-61499-409-1-78. URL https://hal.inria.fr/hal-01002815.

H. Brunotte. On some classes of polynomials with nonnegative coefficients and a given factor. Periodica
Mathematica Hungarica, 67(1):15–32, 2013. doi: 10.1007/s10998-013-2367-8. URL https://
doi.org/10.1007/s10998-013-2367-8.

F. Campanini and A. Facchini. Factorizations of polynomials with integral non-negative coefficients.
Semigroup Forum, 99(2):317–332, 2019. doi: 10.1007/s00233-018-9979-5. URL https://doi.
org/10.1007/s00233-018-9979-5.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press,
3rd edition, 2009.

F. Cucker, P. Koiran, and S. Smale. A polynomial time algorithm for diophantine equations in one vari-
able. Journal of Symbolic Computation, 27(1):21–29, 1999. ISSN 0747-7171. doi: https://doi.org/
10.1006/jsco.1998.0242. URL https://www.sciencedirect.com/science/article/
pii/S0747717198902425.

M. DeVos, R. Krakovski, B. Mohar, and A. Sheikh Ahmady. Integral cayley multigraphs over abelian and
hamiltonian groups. The Electronic Journal of Combinatorics, 20(2), Jun 2013. ISSN 1077-8926. doi:
10.37236/2742. URL http://dx.doi.org/10.37236/2742.

H. L. Dorwart. Irreducibility of polynomials. The American Mathematical Monthly, 42(6):369–381, 1935.
doi: 10.1080/00029890.1935.11987732.

A. Dudek, A. Frieze, A. Ruciński, and M. Šileikis. Approximate counting of regular hypergraphs.
Information Processing Letters, 113(19):785–788, 2013. ISSN 0020-0190. doi: https://doi.org/
10.1016/j.ipl.2013.07.018. URL https://www.sciencedirect.com/science/article/
pii/S002001901300207X.

I. Z. Emiris, A. Karasoulou, and C. Tzovas. Approximating multidimensional subset sum and minkowski
decomposition of polygons. Mathematics in Computer Science, 11(1):35–48, 2017. doi: 10.1007/
s11786-017-0297-1. URL https://doi.org/10.1007/s11786-017-0297-1.

https://books.google.it/books?id=RjDd4RaqrIwC
https://hal.inria.fr/hal-01002815
https://doi.org/10.1007/s10998-013-2367-8
https://doi.org/10.1007/s10998-013-2367-8
https://doi.org/10.1007/s00233-018-9979-5
https://doi.org/10.1007/s00233-018-9979-5
https://www.sciencedirect.com/science/article/pii/S0747717198902425
https://www.sciencedirect.com/science/article/pii/S0747717198902425
http://dx.doi.org/10.37236/2742
https://www.sciencedirect.com/science/article/pii/S002001901300207X
https://www.sciencedirect.com/science/article/pii/S002001901300207X
https://doi.org/10.1007/s11786-017-0297-1


Decomposing multisets according to the Minkowski sum 21

M. R. Fellows and N. Koblitz. Fixed-parameter complexity and cryptography. In G. D. Cohen, T. Mora,
and O. Moreno, editors, Applied algebra, algebraic algorithms and error-correcting codes, 10th In-
ternational Symposium, AAECC-10, San Juan de Puerto Rico, Puerto Rico, May 10-14, 1993, Pro-
ceedings, volume 673 of Lecture Notes in Computer Science, pages 121–131. Springer, 1993. ISBN
3-540-56686-4.

S. Gao and A. G. B. Lauder. Decomposition of polytopes and polynomials. Discrete & Computational
Geometry, 26(1):89–104, 2001. doi: 10.1007/s00454-001-0024-0. URL https://doi.org/10.
1007/s00454-001-0024-0.

M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the the-
ory of NP-Completeness (Series of Books in the Mathematical Sciences). W.
H. Freeman, 1979. ISBN 0716710455. URL http://www.amazon.com/
Computers-Intractability-NP-Completeness-Mathematical-Sciences/dp/
0716710455.

M. R. Garey and D. S.Johnson. “strong” np-completeness results: motivation, examples, and iimpli-
cations. J. ACM, 25(3):499–508, jul 1978. ISSN 0004-5411. doi: 10.1145/322077.322090. URL
https://doi.org/10.1145/322077.322090.

B. Grenet. Bounded-degree factors of lacunary multivariate polynomials. Journal of Symbolic Computa-
tion, 75:171–192, 2016. ISSN 0747-7171. doi: https://doi.org/10.1016/j.jsc.2015.11.013. Special issue
on the conference ISSAC 2014: Symbolic computation and computer algebra.

S. Grumbach and T. Milo. Towards tractable algebras for bags. J. Comput. Syst. Sci., 52(3):570–588,
1996. doi: 10.1006/jcss.1996.0042. URL https://doi.org/10.1006/jcss.1996.0042.

F. Henglein, R. Kaarsgaard, and M. K. Mathiesen. The programming of algebra. CoRR, abs/2207.00850,
2022. doi: 10.48550/arXiv.2207.00850. URL https://doi.org/10.48550/arXiv.2207.
00850.

M. V. Hoeij. Factoring polynomials and the knapsack problem. Journal of Number Theory, 95(2):167–
189, 2002. ISSN 0022-314X. doi: https://doi.org/10.1006/jnth.2001.2763. URL https://www.
sciencedirect.com/science/article/pii/S0022314X01927635.

D. S. Johnson. The np-completeness column: An ongoing guide. Journal of Algorithms, 2(4):393–
405, 1981. ISSN 0196-6774. doi: https://doi.org/10.1016/0196-6774(81)90037-7. URL https:
//www.sciencedirect.com/science/article/pii/0196677481900377.

E. Kaltofen. Polynomial factorization 1987-1991. In I. Simon, editor, LATIN ’92, 1st Latin American
Symposium on Theoretical Informatics, São Paulo, Brazil, April 6-10, 1992, Proceedings, volume 583
of Lecture Notes in Computer Science, pages 294–313. Springer, 1992. doi: 10.1007/BFb0023837.
URL https://doi.org/10.1007/BFb0023837.

E. Kaltofen and P. Koiran. On the complexity of factoring bivariate supersparse (lacunary) polynomials.
In M. Kauers, editor, ISSAC, pages 208–215. ACM, 2005. ISBN 1-59593-095-7.

https://doi.org/10.1007/s00454-001-0024-0
https://doi.org/10.1007/s00454-001-0024-0
http://www.amazon.com/Computers-Intractability-NP-Completeness-Mathematical-Sciences/dp/0716710455
http://www.amazon.com/Computers-Intractability-NP-Completeness-Mathematical-Sciences/dp/0716710455
http://www.amazon.com/Computers-Intractability-NP-Completeness-Mathematical-Sciences/dp/0716710455
https://doi.org/10.1145/322077.322090
https://doi.org/10.1006/jcss.1996.0042
https://doi.org/10.48550/arXiv.2207.00850
https://doi.org/10.48550/arXiv.2207.00850
https://www.sciencedirect.com/science/article/pii/S0022314X01927635
https://www.sciencedirect.com/science/article/pii/S0022314X01927635
https://www.sciencedirect.com/science/article/pii/0196677481900377
https://www.sciencedirect.com/science/article/pii/0196677481900377
https://doi.org/10.1007/BFb0023837


22 Luciano Margara

R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors, Complexity
of computer computations, pages 85–103. Plenum Press, 1972.

M. Karpinski and I. E. Shparlinski. On the computational hardness of testing square-freeness of sparse
polynomials. In M. P. C. Fossorier, H. Imai, S. Lin, and A. Poli, editors, AAECC, volume 1719 of
Lecture Notes in Computer Science, pages 492–497. Springer, 1999. ISBN 3-540-66723-7.

K. H. Kim and F. W. Roush. Factorization of polynomials in one variable over the tropical semiring.
https://arxiv.org/abs/math/0501167, 2005. doi: https://doi.org/10.48550/arXiv.math/0501167. URL
https://arxiv.org/abs/math/0501167.

G. Lamperti, M. Melchiori, and M. Zanella. On multisets in database systems. volume 2235, pages
147–216, 08 2000. ISBN 978-3-540-43063-6. doi: 10.1007/3-540-45523-X 9.

A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Mathema-
tische Annalen, 261:515–534, 1982.

C. Ng, M. Barketau, T. Cheng, and M. Y. Kovalyov. Product partition and related problems of
scheduling and systems reliability: computational complexity and approximation. European Jour-
nal of Operational Research, 207(2):601–604, 2010. ISSN 0377-2217. doi: https://doi.org/10.1016/
j.ejor.2010.05.034. URL https://www.sciencedirect.com/science/article/pii/
S0377221710003905.

T. Oetiker, H. Partl, I. Hyna, and E. Schlegl. The Not So Short Introduction to LATEX2e, 3.3 edition, 1999.
available at http://www.loria.fr/services/tex/general/lshort2e.pdf.

D. A. Plaisted. Sparse complex polynomials and polynomial reducibility. J. Comput. Syst. Sci., 14(2):
210–221, 1977.

F. T. Schubert. De inventione divisorum. Nova Acta Academiae Scientiarum Petropolitanae, 11:172–182,
1793.

D. Singh, A. M. Ibrahim, T. Yohanna, and J. N. Singh. An overview of the applications of multisets. Novi
Sad Journal of Mathematics, 37(2):73–92, 2007. URL http://eudml.org/doc/226431.

R. P. Stanley. Enumerative Combinatorics, volume 1 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, 2 edition, 2011. doi: 10.1017/CBO9781139058520.

R. P. Stanley and S. Fomin. Enumerative Combinatorics, volume 2 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 1999. doi: 10.1017/CBO9780511609589.

C. E. Van de Woestijne. Factors of disconnected graphs and polynomials with nonnegative integer coeffi-
cients. Ars Mathematica Contemporanea, 5(2):307–323, Apr 2012. ISSN 1855-3966. doi: 10.26493/
1855-3974.202.37f. URL http://dx.doi.org/10.26493/1855-3974.202.37f.

A. C.-C. Yao. New algorithms in bin packing. Technical Report CS-TR-1978-662, Stanford University,
Department of Computer Science, September 1978.

https://arxiv.org/abs/math/0501167
https://www.sciencedirect.com/science/article/pii/S0377221710003905
https://www.sciencedirect.com/science/article/pii/S0377221710003905
http://www.loria.fr/services/tex/general/lshort2e.pdf
http://eudml.org/doc/226431
http://dx.doi.org/10.26493/1855-3974.202.37f

	Introduction
	Definitions and Known Results
	Multisets decomposition and polynomials factorization

	The Heuristics
	Experimental results
	Polynomial Factorization vs Iterated Search 
	Conclusions and further work
	Experimental Data Tables I
	Experimental Data Tables II

