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Abstract

Classical automated test assembly (ATA) methods assume fixed and known coefficients for

the constraints and the objective function. This hypothesis is not true for estimates of item

response theory parameters which are crucial elements in test assembly classical models.

To account for uncertainty in ATA, we propose a chance-constrained version of the

maximin ATA model, which allows maximizing the α-quantile of the sampling distribution

of the test information function obtained by applying the bootstrap on the item parameter

estimation. A heuristic inspired by the simulated annealing optimization technique is

implemented to solve the ATA model. The validity of the proposed approach is empirically

demonstrated by a simulation study. The applicability is proven by using the real

responses to the TIMSS 2015 science test.

Keywords: automated test assembly; uncertainty; chance-constrained; simulated

annealing
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Chance-Constrained Automated Test Assembly

In educational measurement, tests should be designed and developed providing

evidence of fairness, reliability, and validity (American Educational Research Association

et al., 2014). To meet these requirements, a test assembly process should be employed to

perform an optimal selection of items from an item bank. In addition to producing test

forms that conform to the content and psychometric specifications, a test assembly process

ensures that the resulting ability measurements can be trusted and interpreted in a

transparent way. Moreover, it can produce comparable measurements in operational

settings where various parallel versions of tests are needed. Furthermore, test assembly

plays a crucial role in ability assessment as it lies at the basis of the entire test production

process: from the earlier stages of item creation to the selection of items for building the

test forms. In detail, the requirements of the final tests specified in the test assembly model

not only determine the structure of the test forms but also define the composition of the

item pool (Ariel & van der Linden, 2006), guiding the item writing process.

In the last decades, the simplified access to modern digital resources such as

sophisticated item banking systems opened the possibility of improving the manual test

assembly process through automated test assembly (ATA). The introduction of ATA

dramatically improved the quality of the test forms and simplified the test assembly

process, especially for large testing programs.

ATA differs from the manual process because the item selection is performed by

optimizing mathematical models through specific software called solvers. Automation has

brought many advantages over manual test assembly. First of all, a rigorous definition of

test specifications reduces the need to repeat some phases of the test development.

Secondly, ATA is the only way to find multiple optimal or near-optimal combinations of

items starting from large item banks, despite the computational complexity of the task.

Thus, ATA is fundamental to making measurements comparable while simultaneously

reducing operational costs.
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In ATA, mathematical optimization models such as 0-1 linear programming (LP)

models (see van der Linden, 2005) are usually applied. These classical models use the item

information functions (IIFs) as linear coefficients for the decision variables which are kept

fixed throughout the entire optimization process. However, it is well known that the IIFs

are derived from the item parameters estimated within the item response theory (IRT)

framework. Consequently, the IIFs should be considered uncertain inputs in the ATA

models. Many papers (e.g., Mislevy et al., 1994; Patton et al., 2014; Tsutakawa & Johnson,

1990; Xie, 2019; Zhang et al., 2011; Zheng, 2016) discussed the consequences of uncertainty

in item parameters on several aspects of educational measurement, such as the accuracy of

ability estimation. However, relatively few studies focused on this issue in the ATA

research field. In particular, De Jong et al. (2009), Veldkamp (2013), Veldkamp et al.

(2013), Veldkamp and Paap (2017), and Veldkamp and Verschoor (2019) proposed robust

alternatives to the classical optimization models. These papers focus on the assembly of

single test forms only.

In this paper, we propose incorporating the uncertainty in the optimization model

for simultaneous multiple test assembly, which is the most applied and discussed ATA

model in the literature (Ali & van Rijn, 2016; Debeer et al., 2017; van der Linden, 2005).

In more detail, we suggest a test assembly model based on the chance-constrained (CC)

approach (see Charnes & Cooper, 1959; Charnes et al., 1958), namely the CCATA model,

by which the α-quantile of the sampling distribution of the test information function (TIF)

is maximized. The proposed model extends the classical maximin ATA model (van der

Linden, 2005, p. 69-70). The sampling distribution of the TIF is obtained by applying the

bootstrap technique (Bradley & Tibshirani, 1993) during the estimation of item

parameters, i.e., the item calibration. In this way, we ensure that, independently of the

calibration conditions, we have a high probability of having a certain, possibly low error in

the ability estimation (or conversely, a high TIF). The main novelty of our model is to take

into account the observed structure of uncertainty of the item parameters and, in this light,
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produce optimal tests with the highest accuracy of the ability estimates. The validity of

the proposal is assessed by comparing our method with other existing approaches in a

simulation study.

For solving the CCATA model, we developed an algorithm based on simulated

annealing (SA), a stochastic meta-heuristic proposed by Goffe (1996). The added value of

this technique is represented by the possibility of handling large-sized models, characterized

by many optimization variables and constraints, and non-linear functions. All the proposed

algorithms have been coded in the open-source framework Julia (Bezanson et al., 2017)

and are free to use as they do not rely on commercial software.

The paper is organized as follows. First, the key elements of IRT and ATA are

reviewed. The following section discusses the issues arising from uncertainty in IRT and

ATA models. Subsequently, an introduction to the CC approach for solving optimization

problems with uncertainty is provided. Then, a CC version of the maximin ATA model is

proposed. The retrieval of the TIF empirical distribution and the development of a

heuristic based on SA for solving the model are discussed in the same section. Afterward,

the results of a simulation study are presented in order to compare our proposal to the

existing approaches solved by the CPLEX 12.10.0 Optimizer (IBM, 2019). An application

of our approach to real data taken from the 2015 Trends in International Mathematics and

Science Study (TIMSS) data is shown. Some concluding remarks and suggestions for

applying the CCATA model end the paper.

Item Response Theory and Test Assembly Models

In educational and psychological measurement, IRT modeling provides several

methods to estimate the item parameters. Intending to produce test forms with the highest

accuracy in ability estimation, IRT is a solid foundation for ATA methods because the

Fisher information function, which is a key object in test assembly, is derived from the item

parameter estimates. Given an IRT model, once the items have been calibrated, it is
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possible to evaluate how informative the test is at various ranges of the latent ability using

the TIF, which is defined as the sum of the item Fisher information of all the items in the

test (or the inverse of the variance of the maximum likelihood estimator of the ability θ).

Hence, the TIF has very favorable properties: the additivity (i.e., the linearity) over the

test items and its easiness of interpretation. Formally, for a given test with n items and

ability θ ∈ (−∞, ∞), the TIF is equal to

TIF (θ) =
n∑

i=1
Ii(θ), (1)

where Ii(θ) is the IIF for item i computed at θ. Expressions for the IIFs can be easily

derived within the framework of IRT. For example, if we assume binary response data,

where the probability Pi(θ) of item i endorsement follows the two-parameter logistic (2PL)

model, the IIF of item i is equal to

Ii(θ) = a2
i Pi(θ)(1 − Pi(θ)) = a2

i

exp(aiθ+bi)

[1 + exp(aiθ+bi)]2 . (2)

The item parameters ai and bi represent the discrimination and the intercept for item i,

respectively1.

From a general point of view, an ATA model is an optimization model consisting of

an objective function to be maximized or minimized and a set of constraints to be satisfied.

Specific objective functions may be related to psychometric features of the test, such as the

maximization of the TIF at given cutoff scores, or to test content or other test

requirements, such as the minimization of the total testing time. Examples of constraints

include the test length, the restriction on the number of items of a certain type, test

overlap, and so on. Altogether, they represent the test specifications, which should be

defined in the standard form of Table 1 (van der Linden, 2005, p. 40), before being

translated into an ATA model.

1 The slope-intercept parametrization is used.
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Table 1

Standard Form of a Test Assembly Problem

optimize Objective function

subject to

Constraint 1

Constraint 2
...

Constraint J

Only one objective can be optimized at a time. If we have more than one function

to optimize, some tricks can be applied to transform the objectives into constraints

(Veldkamp, 1999), such as the maximin paradigm. On the other hand, there is no upper

limit for the number of constraints, provided that the solver can handle the problem

(Spaccapanico P. et al., 2020). If at least one combination of items that meets all the

constraints does exist, then the set of these combinations is the feasible set; otherwise, if

this set is empty, the model is said to be infeasible. The subset of the feasible set that

optimizes the objective function represents the optimal feasible solution.

Tests can be assembled merely through the selection of appropriate items out of an

item bank. One way to do so is to use mathematical programming techniques like 0-1

linear programming (LP) or mixed integer programming (MIP) models and optimize them

with commercial solvers such as CPLEX (IBM, 2019) or Gurobi (Gurobi, 2018). Following

the mentioned approaches, it is possible to assemble a set of tests that meet some (mostly

linear) constraints maximizing their TIFs (see van der Linden, 2005). For example, given

an item pool of size I, a commonly used objective for ATA models maximizes the TIFs of
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T tests at K ability points:

maximize
I∑

i=1
Ii(θkt)xit, ∀t, k, (objective) (3)

with t = 1, . . . , T , and k = 1, . . . , K. Ii(θkt) is the IIF for item i at abilities θkt, the set of

ability points for which we want to control the shape of the TIFs, and xit is a decision

variable taking value 1 if the item i is assigned to test t and 0 otherwise. Depending on the

application scenario, the K ability points may be chosen within a limited set of values

around the mean of the population ability. A common choice is to maximize the TIF at

θ = 0, which is generally the population’s average ability.

Since the model (3) has T ∗ K objectives, it cannot be solved without resorting to

multi-objective programming methods (Deb et al., 2016). Therefore, the maximin

paradigm is applied. Within this setting, given an item pool of I items, the maximin

approach allows to maximize the lower bound y of the TIFs, i.e., it maximizes the

minimum observed TIF among all the tests. The maximin ATA model is specified by the

following objective and set of constraints:

maximize y (objective) (4a)

subject to
I∑

i=1
Ii(θkt)xit ≥ y, ∀t, k, (4b)

y ≥ 0,

where y is the lower bound for the TIF, so that all the considered TIFs are equal or higher

than this value. In this way, the previous objectives are transformed in T × K constraints,

and only one objective appears in the model.

In order to describe the structure of the test forms, extra inequalities must often be

added to the model due to security concerns. In fact, among others, it may be required to

specify a minimum number of items in a given category (e.g. content domain or item type)

and the item use among the test forms.
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Uncertainty in Test Assembly

In the classical context of test assembly, the optimization models used for item

selection do not consider the uncertainity of the estimates of item parameters (van der

Linden, 2005). For example, the maximin ATA model is based on the TIF, which appears

in the objective function, being the goal of the optimization model. The TIF is the sum of

the IIFs of the items in the test form and depends on the item parameter estimates, which

are generally considered fixed quantities. Nevertheless, ignoring the uncertainty derived

from the estimation process may lead to several issues, such as the misinterpretation of the

psychometric properties of the assembled test forms. When the calibration algorithm

produces biased estimates for the item parameters, the IIFs are not accurate enough, and,

consequently, the TIF of the assembled test might be underestimated or overestimated. In

Veldkamp et al. (2013), the authors found that, for large uncertainties, the decrease of

information in robust test assembly can reach 37%. As a consequence, the perceived

accuracy of ability estimates may be compromised. Mostly regarding the latter issue, a

good test assembly model would consider the variation of item parameter estimates in

order to build test forms in a conservative manner, i.e., it would produce tests with a

maximum plausible lower bound of the TIF.

Several attempts to incorporate uncertainty in the test assembly models have been

made, mostly by proposing robust approaches. Starting from the conservative approach of

Soyster (1973), where the maximum level of uncertainty is considered for 0–1 LP

optimization, De Jong et al. (2009) proposed a modified version, where one posterior

standard deviation is subtracted from the estimated Fisher information to take the

calibration error into account. This approach was also adopted in Veldkamp et al. (2013),

where the consequences of ignoring uncertainty in item parameters are studied for ATA

models. In addition, Veldkamp (2013) investigated the approach of Bertsimas and Sim

(2003), who developed a robust method for LP models by including uncertainty only for

some parameters in the assembly of linear test forms. More recently, Veldkamp and Paap



CHANCE-CONSTRAINED ATA 10

(2017) proposed to include the uncertainty related to the violation of the assumption of

local independence in ATA for testlets. Finally, Veldkamp and Verschoor (2019) discussed

robust alternatives for both ATA and computerized adaptive testing.

The mentioned ATA robust approaches consider the standard error of the estimates

and a protection level Γ that indicates how many items in the model are assumed to be

changed in order to affect the solution (Bertsimas & Sim, 2003). In this sense, the

uncertainty is treated in a deterministic way, and, given Γ, the solution is adjusted by

adopting a highly conservative approach, as standard errors are the maximum expression of

uncertainty of the estimates.

A reasonable solution to the mentioned problems appears to be the use of

chance-constraints (or probabilistic constraints). In fact, they are among the first

extensions proposed in the stochastic programming framework to deal with constraints

where some parameters are uncertain (Charnes & Cooper, 1963; Krokhmal et al., 2002).

Chance-Constrained Modeling

The CC approach (Charnes & Cooper, 1959; Charnes et al., 1958) is a method for

optimization problems with uncertainty, where a conservative parameter α, the risk level,

modulates the level of fulfillment of probabilistic constraints. The CC modeling has been

deeply explored in the financial field, especially in risk management and reliability

applications. In this context, the decision-maker must select a combination of assets for

building a portfolio by maximizing their utility function (see Chen, 1973; Freund, 1956;

Rockafellar & Uryasev, 2000, 2001; Scott Jr & Baker, 1972)

More recently, this problem was formulated in terms of percentiles of loss

distributions, giving rise to the theory of chance-constraints originally proposed by Charnes

and Cooper (1959).

Probabilistic constraints include parameters assumed to be randomly distributed

and subject to some predetermined threshold α, defined in the interval [0, 1], controlling
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their fulfillment. By modifying α, it is possible to relax or tighten some constraints,

modulating the level of the conservativeness of the model. To introduce the formal

representation of a CC model, we start with the standard form of a mixed-integer

optimization model:

max
x

f(x) (5)

subject to gj(x) ≤ 0 j = 1, . . . , J

x ∈ Zp × Rq,

where f(·) is the objective function to be optimized, gj(·) is the function expressing

constraint j, J is the number of constraints, and x is the vector of p integer and q

continuous optimization variables. Both f(·) and g(·) are scalar functions.

The optimization domain is D = dom(f) ∩ ⋂J
j=1 dom(gj) and the set

X = {x : x ∈ D, gj(x) ≤ 0, ∀j} is the feasible set, which means that a solution x is feasible

if it is in the optimization domain and it satisfies all the constraints. Thus, a

chance-constrained reformulation of the optimization problem adds to model (5) the

following set of H probabilistic constraints:

P [gh(x, ξ) ≤ 0] ≥ 1 − α, h = 1, . . . , H, (6)

where ξ is a vector of random variables, which represent the uncertain parameters. This

formulation seeks a decision vector x that maximizes the function f(x) while satisfying the

chance-constraints gh(x, ξ) ≤ 0 with probability at least equal to (1 − α).

CC models represent a fully customizable robust approach to optimization.

However, although they were proposed in the 1950s, they are still hard to be solved. In

fact, a major issue is the general non-convexity of the probabilistic constraints. Even

though the original deterministic constraints gh(x, ξ) with non-random ξ are convex, the

respective chance-constraints may be non-convex. Moreover, the chance-constraints are

usually intractable because the quantiles of the random variables are difficult or impossible

to compute (see Nemirovski & Shapiro, 2006) or involve non-convex functions. Several
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methods of approximating the chance-constraints have been proposed in the literature (see

Ahmed & Shapiro, 2008; Kataria et al., 2010; Margellos et al., 2014; Song et al., 2014;

Tarim et al., 2006; Wang et al., 2011).

Chance-Constrained Automated Test Assembly

In order to develop a conservative approach that incorporates the uncertainty of

item parameters into the ATA model, we propose a stochastic optimization approach for

the maximin test assembly model based on the CC method. Under this approach, the TIF

is not considered a fixed quantity but a random variable. As explained further on, the

distribution of the TIF is retrieved by using the bootstrap technique. Whenever a maximin

principle is applied, the CC model can be seen as a percentile optimization problem

(Krokhmal et al., 2002). In fact, the probability in the inequality (6) is replaced by the α

quantile of the distribution function of gh(x, ξ), and this quantile is maximized. In our

case, ξ is the vector of the IIFs, and the function g(·) is the summation over items.

By considering the maximin model (4a), the constraints (4b) involved in the

maximization of the TIF are replaced by the chance-constrained equivalents as follows

P
[

I∑
i=1

Ii(θkt)xit ≥ y

]
≥ 1 − α, ∀t, k, (7)

where t = 1, . . . , T are the tests to be assembled, and θkt are the ability points at which the

TIF of the test form t must be maximized, with k = 1, ..., K. Usually, these points are

chosen within a limited set of values around the mean of the population’s ability.

Commonly, θ = 0 is chosen, i.e., the TIF is peaked at θ = 0, so that the expected standard

error of ability estimates at this ability point is reduced. Finally, α is a real-valued variable

defined in the interval [0, 1]. In the proposed approach, the chance-constraints are

optimized independently of each other. We call the model (7) chance-constrained maximin

ATA, or briefly CCATA. Again, the key element of this model is the information function

assumed to be random.
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The CCATA model maximizes the expected precision of the assembled tests in

estimating the latent trait values of the test-takers at the predetermined ability points with

a high confidence level if the α is chosen to be close to zero. In probabilistic terms, we can

say that the constraints in the model (4b) must be fulfilled with a probability of at least

(1 − α). By adjusting the confidence level (1 − α), it is possible to relax or tighten the

attainment of the chance-constraints to reflect a specific conservative extent, e.g., a small α

means a high level of conservativeness. On the contrary, a large α means an almost

complete relaxation of the constraints. The introduction of a confidence level is one of the

most relevant novelties of the CCATA model compared to the robust approach proposed by

Veldkamp (2013) and Veldkamp et al. (2013), who, instead, performed a worst-case

optimization.

Once the chance-constraints have been defined, a method to compute the

probability appearing in the inequality (7) should be found. A possible solution is to make

assumptions on the probability distribution of ξ, such as the multivariate normal (Kim

et al., 1990). For example, Ahmed and Shapiro (2008) try to approximate the probability

distribution using samples of the random variable of interest by a Monte Carlo simulation,

a specific case of scenario generation2 where all the scenarios have the same probability of

occurrence. We decided to use the Monte Carlo method because of its flexibility and

adaptability to our problem.

The proposed CCATA model for ATA is based on the empirical distribution of the

TIFs of the assembled tests. Therefore, our random variable is the TIF of a test form. This

statistic depends on the uncertain IRT item parameter estimates, such as the discrimination

and the intercept. There are different ways to retrieve the distribution function of the TIF:

given the standard errors of the estimates, the samples can be uniformly drawn from their

confidence intervals as in the robust approach of Veldkamp (2013); otherwise, if a Bayesian

2 The idea of scenario generation is to sample a finite number of values, the scenarios, from a reasonable

distribution of ξ.
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estimation is carried out, the samples in the Markov chain can be used.

In this paper, another approach is used: a bootstrap procedure is performed to

resample the response data and obtain a batch of estimates for each item parameter (see

next subsection). At the end of this phase, the IIF for all the items in the pool is computed

at predefined ability points using the bootstrapped samples. These quantities are then used

in the CCATA model to compute the α-quantiles of the TIFs, and the model is optimized

by looking for the combination of items that compose the test forms with the highest

quantiles. A percentile optimization model would maximize a reasonable lower bound of

the TIF: its α-quantile, approximated by the ⌈αR⌉-th ranked value of the TIF computed

on the R bootstrap replications of the item parameter estimates. The following sections

explain the details of the retrieval of the TIF empirical distribution function by the

bootstrap and the heuristic proposed to solve the model.

Empirical Measure of the TIF

The test forms built using the CCATA model should have the maximum possible

empirical α-quantile of their TIFs. The optimality in this sense will ensure that the

assembled tests are conservative in terms of accuracy of ability estimation (indeed, the

TIF), taking into account the uncertainty in the item parameter estimates. A standard

approach to extract the uncertainty could be to sample many plausible values of the item

parameters from the confidence intervals built using the standard errors and, subsequently,

compute the related IIFs at θ target points. The latter may be an optimal starting point to

assemble robust tests (see Veldkamp, 2013; Veldkamp et al., 2013), but it has its own

downsides as a uniform interval of plausible values is assumed. Another attempt to account

for the influence of sampling error in the Bayesian framework has been made by Yang et al.

(2012). They proposed a multiple-imputation approach with the aim of better measuring

the latent ability of a respondent.

Our approach is based on bootstrapping the calibration process. In particular, the
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observed vectors of responses coming from the full sample (one vector for each test-taker)

are resampled with replacement R times, and the item parameters are estimated for each

sample. In this way, it is possible to preserve the natural relationship of dependence

between the items, and, given the ability targets, it is possible to compute their IIFs. After

that, given a set of items, we can build a test form and compute its TIF for each of the R

replications. The resulting sample constitutes the empirical distribution function of the

TIF.

More formally, let ξ1, . . . , ξR be an independent and identically distributed (iid)

sample of R realizations of the random vector ξ, and F̂R := R−1 ∑R
r=1 ∆ξr be the respective

empirical measure. Here ∆(ξ) denotes the measure of mass one at point ξ, i.e., ∆ξr(A) = 1

if ξr ∈ A. Hence F̂R is a discrete measure assigning probability 1/R to each sample. In this

way, we can approximate the probability in the left-hand side of the inequality (7) by

replacing the true cumulative distribution function of ξ with F̂R.

The Approximated Model

The retrieved empirical distribution function of the TIF is now incorporated into

the CCATA model in the following way. Let 1(−∞,0]{x} : R → {0, 1} be the indicator

function of x in the interval (−∞, 0], i.e.,

1(−∞,0]{x} =


0, if x > 0

1, if x ≤ 0.

(8)

Thus, given a specific chance-constraint h, a known set of optimization variables x

and samples ξ1, . . . , ξR of our random vector, we can rewrite

P [gh(x, ξ) ≤ 0] =EF

[
1(−∞,0]{gh(x, ξ)}

]
≈EF̂R

[
1(−∞,0]{gh(x, ξ)}

]
(9)

= 1
R

R∑
r=1

1(−∞,0]{gh(x, ξr)}.



CHANCE-CONSTRAINED ATA 16

Equation (9) means that the chance-constraint is approximated by the fraction of

the R bootstrap samples in which gh(x, ξr) ≤ 0.

Adopting the same principle to the left-hand side of the chance-constraints in the

inequality (7), the CCATA model can be approximated by

max
x

y

subject to 1
R

R∑
r=1

1[y,∞){⃗Ir(θkt)′xt} ≥ 1 − α, ∀t, k, (10)

gj(xt) ≤ 0 ∀j, t,

xt ∈ {0, 1}I , y ∈ R+, ∀t.

where I⃗r(θkt) = I1r(θkt), . . . , IIr(θkt). The following issues characterize model (10): it is

non-convex because of the indicator function used in the chance-constraints (see

Rockafellar & Uryasev, 2000, 2001, for the demonstrations), and commercial solvers do not

well handle the indicator function. To overcome these problems, we propose to solve the

model by the heuristic described below.

The Heuristic

Since a linear formulation cannot effortlessly approximate the proposed CCATA

model, a heuristic based on simulated annealing (SA) (Goffe, 1996) has been developed.

This technique can handle large-sized models and non-linear functions. The theory of SA is

derived from the physics of annealing substances. Briefly, we adapted the annealing process

to our ATA model by replacing the random selection of a decision variable with the random

selection of an item from the item bank. The perturbation of the decision variables is done

by adding, removing or switching the chosen item with another available item. At each

modification, the objective function is evaluated and the solution is accepted in accordance

with an exponential function based on a parameter called temperature. The higher the

temperature, the higher the probability of accepting a worse solution. The temperature is

decremented until only better solutions are accepted. The way the temperature is
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controlled is referred to as the cooling schedule. If there are no further improvements in the

area (neighborhood) around the current solution, the process is stopped. At the end, the

re-annealing phase is actuated if the global stopping criteria have not been reached. In this

phase, the best solution obtained is perturbed, the temperature is heated (set to its initial

value) and another area is explored. Consequently, more than one neighborhood of the

solution space is explored by adopting the SA algorithm, avoiding being trapped in a local

optimum. More information about the implementation of the SA algorithm can be found

in Spaccapanico P. (2020) and in the pseudo code in Section A of the Appendix.

Unfortunately, the SA algorithm is not able to deal with the constraints, so they are

incorporated into the objective function using the hinge function and the Lagrange

relaxation, as in Stocking and Swanson (1993). Moreover, the SA has the disadvantage

that it can hardly find the feasible space for a problem. Thus, we decided to start our

heuristic with a fill up sequential phase: the worst performing test, both in terms of

optimality and feasibility, is filled up with the best item available in the item pool. After

the selected item has been assigned, the process is repeated until all the tests have reached

their maximum length, i.e., they are all filled up. Once the first step is performed, we

process the solution with the SA principle. The result of the heuristic is a set of solutions

with a length equal to the number of neighborhoods explored. Finally, the solution with

the best objective function is selected.

Simulation Study

The performance and advantages of the CCATA test assembly model (10) are

investigated through a simulation study. Our specific scenario is the on-the-fly test

assembly for individualized testing. In fact, we will focus on the average examinee with

θ = 0, at which the TIF should be maximized. In this way, the estimation error of the

population average ability is reduced. This setting allows us to evaluate the effects of using

probabilistic methods in the field of ATA models and to control the conservativeness of the
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produced tests. To assess under which conditions our proposal is preferable, the true TIFs

of the tests assembled by our CCATA model are compared to those obtained with four

alternative models under several conditions. The alternative models are: the classical

maximin model (classical, see Equation (4a)), the mean minus 3 standard deviations model

(3sd, Soyster, 1973), the mean minus 1 standard deviation model (1sd, De Jong et al.,

2009), and the robust model (robust, Veldkamp et al., 2013). The mean and the standard

deviations of the IIFs used in models 3sd and 1sd are computed on the bootstrap samples.

For the robust model, the protection level Γ, which indicates how many items in the model

should be changed in order to affect the solution, is set equal to 40, following the

suggestion in Veldkamp et al. (2013), so 41 sub-models are solved, and the solution which

produced the highest objective is retained.

All the models are solved using the ATA.jl Julia package (Spaccapanico P.,

2021a). For the classical, 1sd, 3sd, and robust models, the CPLEX solver interfaced by

JuMP.jl3 is chosen. On the other hand, the CCATA model is solved by our heuristic. The

data needed for assembling the CC tests consists of the sample of the IIFs computed at

θ = 0, for each item in the pool, namely the vector I⃗r(0), for r = 1 . . . , R. These quantities

are obtained by estimating the item parameters by bootstrapping where the 2PL model is

assumed. The item parameters a (discrimination) and b (intercept) are sampled from the

following distributions: a ∼ LN(0, 0.25), b ∼ N(0, 1).

The results are compared in terms of the true TIFs averaged across tests and

replications. Other benchmarks used to compare the model performances are the relative

BIAS and relative RMSE between the true and observed TIFs. The true TIF is the

reciprocal of the real expected ability estimation error; higher values indicate that the test

will produce on average more accurate ability estimates. Moreover, by comparing the values

of the relative BIASes and RMSEs, we can evaluate the accuracy and conservativeness of

the models under the specified conditions. In particular, the BIAS asserts if the observed

3 http://www.juliaopt.org/JuMP.jl/0.18/

http://www.juliaopt.org/JuMP.jl/0.18/
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TIF underestimates (negative values) or overestimates (positive values) the true one.

Moreover, as the RMSE approaches zero, the model’s capability to estimate the true TIF

increases. On the other hand, high absolute values of the RMSE and BIAS indicate that

the observed TIF is not reproducing the real expected ability estimation error of the test.

Simulation Design

The optimization has been performed on a personal computer with an AMD Ryzen

7 PRO 4750U processor and 16 GB of RAM. Two Julia packages have been used for the

computational tasks: Psychometrics.jl for calibration and bootstrap (Spaccapanico P.,

2021b), and ATA.jl for the ATA models (Spaccapanico P., 2021a). The steps addressed in

the simulation study are described below:

1. A pool of I = 250 true items with contents: content_A={type1, type2, type3},

content_B={type4, type5, type6} is simulated.

2. For each replication m = 1, . . . , M , the responses of N = 3000 subjects with

θ ∼ N(0, 1) are generated. Then, the items are calibrated with the marginal

maximum likelihood estimation approach with an unbalanced design of 500-1000

responses per item. M = 10 replications are performed. To investigate the validity of

the methods in multiple scenarios, we also implemented the cases N = 1200 and

N = 6000, where each item gets 200-400 and 2000-4000 responses, respectively.

3. The items are re-calibrated R = 500 times on N∗ = N respondents sampled with

replacement (bootstrap). The I⃗r(0) for r = 1, . . . , R are computed.

4. The test specifications (see Table 2) are added to the models, and the optimization

hyperparameters are set as explained in the next paragraph.

5. For each combination of sample size and set of test specifications, the models

classical, 3sd, 1sd, robust, and CCATA are solved. The CCATA model is solved both

with α = 0.01 and α = 0.05.
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Performing the bootstrap procedure on the item calibration and solving each ATA

model is computationally intensive. In detail, each model requires about 500 seconds to

approach its theoretical upper bound of the objective, and the bootstrap procedure takes

about 6-7 hours, depending on the sample size.

Test Specifications

The mentioned models are solved under different settings, such as the number of test

forms and confidence levels. The assembly is performed in a parallel framework, i.e., the T

tests must meet the same constraints. Two fictitious categorical variables, content_A, and

content_B, with three possible categories each, are simulated to constrain the tests to have

certain content validity. The following specifications replicate realistic ATA applications

where feasibility is the main concern, along with the search for the optimal set of tests in

terms of the TIF. The complete set of test specifications is summarized in Table 2.

Table 2

Test Specifications

Case T Max item use

1 10 4

2 10 2

3 20 4

4 25 4

Case Variable Bounds

All Test length [38, 40]

All content_A [6, 10], [9, 12], [18, 25]

All content_B [9, 12], [15, 19], [9, 12]

All Maximum overlap between tests 11

For example, the constraints described for variable content_A require that tests have

6 to 10 items of the first category of the variable content_A, 9 to 12 items of the second



CHANCE-CONSTRAINED ATA 21

category, and so forth. For classical, 3sd, 1sd, and robust models, different combinations of

the specifications in Table 2 create four cases to be investigated in increasing order of

complexity. For the CCATA model, 8 cases are investigated (4 cases for each α level).

Moreover, the hyperparameters for the heuristic are chosen as follows. The starting

temperature is equal to 0.1, so the solver does not check solutions too far from the last

explored neighborhood, while the geometric cooling parameter is set equal to 0.1. At the

beginning of the optimization, we perform one fill up phase, only taking into account the

feasibility of the model. Then, we proceed to look for the most optimal combination of

items by randomly selecting one item in all the tests to be added, removed, or switched. A

Lagrange multiplier equal to 0.1 is chosen to balance the model’s feasibility and optimality.

The amount of time needed to solve the model is imposed as the termination criterion, and

it is set equal to 500 seconds. This stopping criterion is also valid for the other models.

Results

In Table 3 and Figure 1, the mean of the true TIFs computed at θ = 0, TIF †(0), is

reported. It is obtained by averaging the true TIF †
tm across the t = 1, . . . , T tests and

m = 1 . . . , M replications, as follows:

TIF †(0) = M−1T −1
M∑

m=1

T∑
t=1

TIF †
tm(0). (11)

Table 4 and Figure 2 show the results for the relative BIAS between the observed

and true TIF, while Table 5 and Figure 3 for the corresponding relative RMSE. Relative

measures are chosen to make the results of the different conditions comparable. The two

indicators are obtained as follows. First, for each test t and replication m, the observed

TIF, TIF ††
tm(0), and the true TIF, TIF †

tm(0), are computed; then, they are averaged with

respect to the T tests, getting TIF ††
m (0) and TIF †

m(0), respectively. Finally, BIAS and

RMSE are computed as:

BIAS = M−1
M∑

m=1

[(
TIF ††

m (0) − TIF †
m(0)

)
/TIF †

m(0)
]
, (12)
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RMSE =

√√√√M−1
M∑

m=1

(
TIF ††

m (0) − TIF †
m(0)

)2
/TIF †(0). (13)

Clearly, the observed TIFs are different for each model. For example, the observed

TIF for a particular test under the CCATA model corresponds to the α quantile of its

empirical distribution function. In contrast, for the 3sd and 1sd models, the observed TIF

is the sum of the mean of the R = 500 IIFs values obtained with the bootstrap, minus 3 or

1 bootstrap standard deviations, respectively. Finally, for the classical and robust ATA

models, the observed TIF is the sum of the IIFs computed on the item parameters

estimated on the full sample, following the classical approach.



CHANCE-CONSTRAINED ATA 23

Table 3

TIF †(0), true TIF at θ = 0 averaged across T tests and M replications.

Case
CCATA

(α = 0.01)

CCATA

(α = 0.05)
classical 3sd 1sd robust

N = 1200

1 12.6274 12.7517 13.0457 9.8415 13.0052 12.9474

2 10.3974 10.4868 10.5739 9.4460 10.5651 10.5706

3 9.7330 10.2992 10.3712 9.3373 10.3727 -

4 9.4686 9.4603 8.9815 8.9878 8.9815 -

N = 3000

1 13.4907 13.5446 13.5599 13.2208 13.5487 13.3787

2 10.6187 10.6286 10.6792 10.5404 10.6741 10.6781

3 10.5389 10.5506 10.3151 10.0580 10.6204 -

4 9.4715 9.4700 8.9815 8.9775 8.9815 -

N = 6000

1 13.6271 13.3121 13.5403 13.4735 13.6565 13.6889

2 10.6664 10.5988 10.7347 10.7079 10.7310 10.7332

3 10.5452 10.3929 10.5362 10.5249 10.3805 -

4 9.4684 9.4516 8.9815 8.9815 8.9815 -
Note. The robust model could not be solved for cases 3 and 4.
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Table 4

Relative BIAS of the TIF.

Case
CCATA

(α = 0.01)

CCATA

(α = 0.05)
classical 3sd 1sd robust

N = 1200

1 0.1191 0.1658 0.2248 -0.8973 -0.1553 0.2218

2 0.0239 0.0699 0.1228 -0.9298 -0.2429 0.1231

3 -0.0182 0.0604 0.1187 -0.9319 -0.2462 -

4 -0.0360 0.0148 0.0733 -0.9368 -0.2811 -

N = 3000

1 -0.0063 0.0196 0.0667 -0.6081 -0.1448 0.0666

2 -0.0412 -0.0174 0.0312 -0.6725 -0.1847 0.0310

3 -0.0474 -0.0204 0.0263 -0.6819 -0.1852 -

4 -0.0752 -0.0449 0.0078 -0.7004 -0.2082 -

N = 6000

1 -0.0211 -0.0032 0.0378 -0.4268 -0.1103 0.0374

2 -0.0369 -0.0219 0.0191 -0.4679 -0.1344 0.0192

3 -0.0408 -0.0246 0.0177 -0.4703 -0.1379 -

4 -0.0574 -0.0349 0.0064 -0.4901 -0.1494 -
Note. The robust model could not be solved for cases 3 and 4.
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Table 5

Relative RMSE of the TIF.

Case
CCATA

(α = 0.01)

CCATA

(α = 0.05)
classical 3sd 1sd robust

N = 1200

1 0.1212 0.1674 0.2262 0.8980 0.1564 0.2235

2 0.0280 0.0721 0.1248 0.9297 0.2435 0.1251

3 0.0269 0.0624 0.1222 0.9318 0.2463 -

4 0.0382 0.0209 0.0757 0.9369 0.2813 -

N = 3000

1 0.0207 0.0253 0.0693 0.6083 0.1455 0.0689

2 0.0443 0.0235 0.0356 0.6725 0.1853 0.0353

3 0.0507 0.0260 0.0343 0.6817 0.1857 -

4 0.0769 0.0475 0.0183 0.7005 0.2086 -

N = 6000

1 0.0237 0.0121 0.0392 0.4269 0.1108 0.0391

2 0.0374 0.0229 0.0206 0.4679 0.1345 0.0208

3 0.0413 0.0256 0.0199 0.4703 0.1378 -

4 0.0578 0.0356 0.0098 0.4901 0.1496 -
Note. The robust model could not be solved for cases 3 and 4.

As can be noticed from Tables 3, 4, and 5, the robust model could not produce any

solution under conditions 3 and 4. These models reached the termination criterion of 500

seconds before a feasible solution was found for all their sub-models. For this reason, the

robust approach turned out to be impractical for complex, i.e., large-sized, ATA models.

Specifically, large-sized ATA models are characterized by having several optimization

variables and constraints. This condition occurs especially when overlap constraints are

imposed, because many auxiliary optimization variables are needed to linearize the model.
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Looking at Table 3 and Figure 1, the results on the mean TIF are very similar for

all the approaches. However, some patterns have been detected and explained afterward.

Lower values of the true TIFs are observed for the 3sd model mainly for the smallest

sample size and for N = 6000, in case 1. The CCATA model never produces the worst

results and outperforms the other approaches in case 4, where the underlying ATA model is

more constrained and has a higher number of decision variables. In particular, the

configuration with α = 0.05 seems to behave slightly better than the configuration with

α = 0.01. Overall, we can say that our approach is stable and reliable. Also, the heuristic

is able to find satisfying optimal solutions for our model.

Likewise, the relative BIASes and RMSEs shown in Tables 4 and 5 and depicted in

Figures 2 and 3 are very interesting. As expected, the relative BIAS and RMSE tend to

approach zero as the sample size increases for all the approaches. This behavior is more

evident for the classical ATA model. Previous findings about the classical ATA maximin

model are confirmed by this simulation. In detail, we observe that the mean TIF obtained

with this method overestimates the mean true TIF for all the cases under inspection. The

positive bias goes from 0.6%, if the responses per item are 1000 or 2000 (N = 6000) to

22.48%, if each item gets from 200 to 400 responses (N = 1200). This aspect highlights the

importance of using a more conservative ATA model in order to keep the results

interpretable. Otherwise, the expected measurement precision of the tests is overestimated

as well. On the other hand, it is evident that the 3sd and 1sd models produce very low

estimates of the true TIFs since these approaches are too conservative. For example, the

3sd model always generates meaningless values since the negative relative BIAS never

exceeds the 42%, even with the largest sample size. Moderately better results are obtained

with the 1sd model, but the negative difference is still not above the −11%. In general, the

3sd and 1sd models tend to underestimate the true TIF in all the cases. The robust model

produces quite accurate results, very similar to the classical model, but given its complex

structure, it requires too much time to be solved. Thus, the robust model can be applied to
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large-sized ATA models only if large investments in equipment or cloud computing are

made. Instead, the CCATA model always tends to produce relative BIAS and RMSE close

to zero and likely negative. In particular, the CCATA outperforms all the other approaches

for N = 1200 in all the cases in terms of BIAS and RMSE, turning out to be a powerful

method when the sample size is small. The advantage of the CCATA solution compared to

the other approaches is noticeable, especially for cases 2, 3, and 4. For N = 3000, the

CCATA method outperforms the other approaches for cases 1, 2, and 3 in terms of BIAS

and RMSE. However, with this sample size, the results are pretty similar, especially to the

classical and the robust methods. Finally, for N = 6000, the CCATA solution outperforms

the other approaches for case 1. The results are again very similar to the classical and the

robust solutions.

The CCATA approach significantly improves the interpretation of the test’s

expected precision, which can be expressed as "the tests have a 1 − α probability of having

a mean TIF higher than..." denoting the level of conservativeness of the solution.

Furthermore, for the CCATA model, the relative BIAS decreases when α passes from 0.05

to 0.01, showing that the risk level of the solution is, as expected, positively correlated with

α and hence, customizable. In other words, we could say that, to increase the probability

of having a true TIF higher than the observed one, i.e., a lower risk level, α should be

decreased.

Application to Real Data

The data used in this application come from the 2015 TIMSS survey, a large-scale

standardized student assessment conducted by the International Association for the

Evaluation of Educational Achievement (IEA). Since 1995, this project has monitored

mathematics and science achievement trends in 39 countries every four years, in the fourth

and eighth grades and in the final year of secondary school. TIMSS 2015 was the sixth of

such assessments. Further information regarding this study is available on the TIMSS 2015

https://www.iea.nl/studies/iea/timss/2015
https://www.iea.nl/studies/iea/timss/2015
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web page. We selected the Italian sample of grade 8 students for the science test

(n = 4479). The greater availability of science items, compared to the mathematics ones,

has driven the choice of the subject. The original item pool has been filtered, removing

derived4 and polytomous items, retaining only original binary items. The final dataset

contains 234 items with the following categorical features:

• four content domains (69 Biology items, 57 Chemistry items, 58 Physics items, and

50 Earth Science items)

• three cognitive domains (98 Applying items, 88 Knowing items, and 48 Reasoning

items)

• four topics (110 items with topic 1, 80 items with topic 2, 33 items with topic 3, 11

items with topic 4)

Furthermore, a subset of these items is grouped into 27 units.

The design is unbalanced, as students are given only a subset of the items, so

missing values appear in the response data. In particular, each item has from 611 to 663

responses. The item parameters were estimated according to the 2PL model. After the

calibration, we performed a non-parametric bootstrap with R = 500 replications on the

item parameters, and we computed the IIF at θ = 0 for all the items in the pool. The two

already mentioned Julia packages Psychometrics.jl and ATA.jl were used for

calibration, bootstrap, and test assembly tasks.

In the calibrated item pool, the discrimination parameter estimates range from

1e-05 to 4.708, with a mean of 0.920 and a median of 0.867. There are two items with the

minimum allowed value of the discrimination estimate. On the other hand, the intercept

estimates range from -4.340 to 4.546, with mean and median equal to 0.071 and 0.025,

respectively.

4 According to TIMSS technical report (Foy, 2016, p. 54), derived items are created combining two or

more items.

https://www.iea.nl/studies/iea/timss/2015
https://www.iea.nl/studies/iea/timss/2015
https://www.iea.nl/studies/iea/timss/2015
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The final matrix of the IIFs contains 234 × 500 samples. Subsequently, we solved

the CCATA model by using the proposed approach and imposing the following

specifications in terms of test constraints, which were based on the features of the tests

administered in the TIMSS 2015. In detail, a set of T = 14 tests with length from 29 to 31

items is assembled. The already mentioned friend sets are included in the assembly as

constraints. We imposed the tests to have at least 6 items for each content domain

(Biology, Chemistry, Physics, and Earth Science), a minimum of 8 items in the Applying

and Knowing cognitive domains, and a minimum of 7 items in the Reasoning cognitive

domain. The first and the second topic must be present at least 10 times in each test form.

Forms must contain at least 2 items on the third topic and 1 item on the fourth topic.

Each item can be used in at most 3 test forms. The overlap must be less than or equal to

15 items between adjacent forms, 5 items between forms at a distance equal to 2 (e.g.,

forms 1 and 3 can have at most 5 items in common), and no overlap is allowed for the pairs

at a distance greater than 2. For the CCATA model, we chose α = 0.05 and a Lagrange

multiplier equal to 0.01. The last choice is motivated by the high level of infeasibility of the

model. We excluded from the assembly 11 items that had an IRT b parameter higher than

3 or lower than -3. Removing items with extreme difficulty parameters helped the solver

assemble the tests with a TIF peaked at θ = 0.

After we included all the specifications in the model, we ran the optimization

algorithm, which implements our heuristic. We selected the same termination criteria as in

the simulation study. Before the time limit was reached, the algorithm explored 4

neighborhoods: the first and the second neighborhoods were not feasible, while the third

and the fourth neighborhoods produced feasible tests with a minimum 0.05-quantile of the

TIF equal to 4.55 and 4.84, respectively.

Thus, the best solution is produced within the last neighborhood, where the

smallest 0.05-quantile among the tests is equal to 4.843. The assembled tests fulfill all the

constraints, as shown in Table 6. Also, constraints on overlap and item use are satisfied.
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Table 6

TIMSS Data, Features of the Test Forms Assembled by the CCATA Model.

Test (t) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Length 29 29 29 30 29 29 29 29 29 30 30 29 29 29

Content Domain

Biology 9 6 7 6 10 10 10 10 7 7 9 8 9 10

Chemistry 6 6 8 9 6 7 6 6 6 8 9 8 7 6

Physics 8 9 8 6 7 6 7 7 8 8 6 7 7 7

Earth Science 6 8 6 9 6 6 6 6 8 7 6 6 6 6

Cognitive Domain

Applying 12 13 10 12 12 13 12 8 11 13 12 10 12 10

Knowing 9 8 12 11 9 9 10 12 11 9 11 11 9 11

Reasoning 8 8 7 7 8 7 7 9 7 8 7 8 8 8

Topic

1 11 10 11 11 11 10 12 15 16 15 17 13 10 15

2 10 12 10 10 10 10 10 10 10 10 10 10 13 10

3 7 6 6 7 6 8 6 3 2 4 2 2 2 3

4 1 1 2 2 2 1 1 1 1 1 1 4 4 1

The maximized α-quantiles together with the TIF at θ = 0 computed on the sample

are reported in Table 7. A graphical representation of the sampling distributions of the

TIFs is shown in Figure 4.
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Table 7

Test Information Function of the Assembled Tests for TIMSS Data at θ = 0.

Test (t) Q(TIFt(0), 0.05) TIFt(0)

1 4.856 5.157

2 4.844 5.166

3 4.895 5.243

4 4.861 5.175

5 4.999 5.325

6 4.878 5.178

7 4.896 5.276

8 4.856 5.259

9 4.868 5.243

10 4.861 5.175

11 4.870 5.286

12 4.907 5.355

13 4.880 5.308

14 4.853 5.185

The resulting TIFs and quantiles do not considerably differ among the test forms,

this is a signal that the model reached an optimal solution which is very proximal to the

global one. However, the high complexity of the model and the low values of the IIFs at

θ = 0 contributed to low TIFs. In particular, we found that the TIFs of the assembled tests

have their peaks in the interval θ > 0 (Figure 4), suggesting that the item bank is

appropriate to measure the ability of examinees more proficient than the Italian ones.

Analyzing the sampling distribution of the TIFs of the assembled tests illustrated in

Figure 4, we can notice that the TIF computed on the full sample is consistently higher

than the 0.05-quantile. Thus, we could say that there is a low possibility that test 2
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produces estimates of the ability of an examinee with a true θ = 0 with a standard error of

measurement greater than
√

(1/4.843) = 0.454.

Concluding Remarks

In this work, a chance-constrained version of the maximin ATA model, namely

CCATA, has been introduced. This new test assembly model is able to deal with

uncertainty in item parameters affected by calibration errors, which, in practice, can be

relevant especially for small sample sizes where the classical approaches highly overestimate

the true TIF. In particular, the proposed approach can take into account the structure of

the uncertainty observed in the response data used in the calibration phase, with the aim

of reducing the risk of misinterpreting the test accuracy in estimating the examinee’s

ability. This goal is achieved by approximating the distribution function of the TIF using

the bootstrapped replicates of the item parameter estimates. The new model reformulates

the classical maximin ATA model in a percentile optimization problem a sub-category of

CC models. To deal with the non-linear formulation of the proposed CCATA model, we

developed a heuristic based on the SA principle for finding the optimal conservative tests.

In this way, unlike classical and robust optimization techniques, it is also possible to handle

large-sized models.

The results of a simulation study in the context of on-the-fly assembly for

individualized testing show that the CCATA model, together with our heuristic, maximizes

an adjustable conservative version of the TIF, i.e., its α-quantile, where α can be

arbitrarily chosen from the test assembler. In particular, it has been empirically proven

that these quantiles are lower bounds to the true TIF for small αs, such as 0.05 or 0.01.

Thus, using the sampling distribution function of the TIF along with the CC formulation

gives a better idea of the accuracy of the tests in estimating future abilities and reduces the

potential side effects of calibration errors. In contrast, with alternative methods, the

observed TIF is often higher or excessively lower than the true one giving dangerous
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misinterpretations. An application on real data from the TIMSS survey demonstrated that

our approach is replicable in real-world situations.

The results are encouraging, especially for complex and large-sized ATA models and

for small sample sizes. A further contribution to the ATA research field is the development

of two open-source Julia packages Psychometrics.jl and ATA.jl (Spaccapanico P.,

2021a, 2021b), which do not rely on commercial solvers and can be used free of charge.

However, further studies are needed to consider different test constraints and more Monte

Carlo replicates. Moreover, unlike other robust ATA models, the CCATA model requires

the availability of response data for the application of the bootstrap technique. To perform

the study under these conditions, it would be useful to reduce the computational effort

required for item calibration.
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Figure 1

True TIF averaged across tests and replications. Plots are grouped by Case = {1,2,3,4} and

by N = {1200,3000,6000}.

Figure 2

Relative BIAS of the TIF. Plots are grouped by Case = {1,2,3,4} and by N =

{1200,3000,6000}.

Figure 3

Relative RMSE of the TIF. Plots are grouped by Case = {1,2,3,4} and by N =

{1200,3000,6000}.
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Figure 4

Examples of TIFs of the Assembled Tests 1 and 2. TIF Estimated on the Full Sample (solid

black) against Quantiles.
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Appendix

The Heuristic Pseudo Code

The heuristic we developed is inspired by the work of Stocking and Swanson (1993) where

the constraints are treated as part of the loss function using the Lagrange relaxation. The

algorithm is based on the separability of the problem. This means that the fulfillment of

the constraints and the objective function are computed separately for each test. In this

way, it is possible to evaluate the optimality optt(xt), and the feasibility, feast(xt), at the

test level and hence determine which test should be modified in order to obtain a better

solution for the ATA model. To simplify the notation, we define the quality of a test as the

sum of its optimality and feasibility weighted by the Lagrange multiplier β, i.e.,

ft(xt) = βoptt(xt) − (1 − β)feast(xt), where xt is the portion of objective variables related

to test t. Given these quantities, the fulfillment of the ATA model global constraints is

given by the sum of the feasibility of each test. In contrast, the global optimality depends

on the objective of the ATA model. In the maximin ATA model, the global objective is the

value of the lowest test information function among all tests.

Along with the iterations of the SA algorithm, each modification to the tests (e.g.,

an item is added to a test form) is accepted with a probability given by the Boltzmann

factor P [∆f ] = e
−∆f(x)

T which is a function of the temperature T and of the variation,

∆f(x), of the global objective function produced by the test modification. In detail, the

heuristic is described through the following pseudo code:

Define the constraints and the objective function of the ATA model.

Initialize the decision variables and objective function to zero.

Set the hyperparameters:

G: number of neighborhoods to explore

T0: starting temperature

g: temperature geometric decreasing rate

τ : maximum time

C: convergence
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β: Lagrange multiplier (for balancing feasibility and optimality)

for g=1 to G do

procedure Fill up

repeat

Find and select the test with the lowest quality.

Add the best item to the selected test, i.e., the item that increases test quality the

most.

until All tests are filled up

end procedure

procedure Simulated Annealing

c = 0

repeat

Find and select the test with the lowest quality.

procedure Add item

for all Items available in the item bank do

Accept to add the item with probability equal to the Boltzmann factor.

if The add is accepted then

Go to Check convergence

end if

end for

end procedure

procedure Switch items

for all Items already in the selected test do

for all Items available in the item bank do

Accept to switch the items with probability equal to the Boltzmann factor.

if The switch is accepted then

Go to Check convergence

end if

end for
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end for

end procedure

procedure Check convergence

if The value of the objective function is increased then

c = 0, decrease temperature geometrically by g.

else

c+ = 1

end if

end procedure

until (c < C)

end procedure

Increase the temperature to T0

if Elapsed time is greater than τ then

Stop the algorithm.

end if

end for

Save the best solution


