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Learning Nonlinear Electrical Impedance Tomography

Francesco Colibazzi∗ Damiana Lazzaro† Serena Morigi‡ Andrea Samoré§

Abstract

Electrical impedance tomography (EIT) is the problem of determining the electrical conductivity
distribution of an unknown medium by making voltage and current measurements at the boundary
of the object. The image reconstruction inverse problem of EIT is a nonlinear and severely ill-posed
problem. The non-linear approach to this challenging problem commonly relies on the iterative
regularized Gauss-Newton method, which, however, has several drawbacks: the critical choice of
the regularization matrix and parameter and the difficulty in reconstructing step changes, as smooth
solutions are favored. We address these problems by learning a data-adaptive neural network as the
regularization functional and integrating a local anisotropic total variation layer as an attention-
like function into an unrolled Gauss-Newton network. We finally show that the proposed learned
non-linear EIT approach strengthen the Gauss-Newton approach providing robust and qualitatively
superior reconstructions.

Keywords: nonlinear inverse problems; Electrical Impedance Tomography; sparsity-inducing regu-
larization; unrolled optimization; anisotropic total variation.

1 Introduction

Electrical Impedance Tomography (EIT) is a nondestructive imaging technique that aims at recon-
structing the inner conductivity distribution of a medium from a set of voltages registered on the
boundary of the domain by a series of electrodes. This technique was developed in the early 1900s,
to determine the distribution of electrical potential within the ground [24], but since then it has been
adopted in a variety of fields, from medical imaging [20] and industrial process monitoring [22], to
structural health monitoring [25] and tissue engineering [8],[5]. An integral part of EIT is the re-
construction algorithm which retrieves the conductivity distribution from boundary voltages. This
can be formulated as an inverse conductivity problem, where the forward problem corresponds to the
prediction of the voltages at electrode’s location when the conductivity distribution and the injected
current are known [2]. The forward problem has the form of an elliptic partial differential equation
with Neumann boundary conditions, and it is usually solved with a finite element method.

The solution to the inverse EIT problem can be obtained by inverting the forward operator,
the nonlinear mapping that characterizes the forward problem. The backprojection method, derived
from the Radon transform and once commonly used in Computed Tomography, has been among the
earliest numerical approaches, [23]. This approach, however, was associated with strong artifacts that
severely impacted the reconstruction. For this reason the Landweber method [27], a modification of
the generalized inverse matrix method, largely supplanted it. Despite the improvements that have
followed over the years, the ill-posed nature of the EIT inverse problem still posed many challenges,
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and meaningful reconstructions could often not be obtained, especially in the most common case
of limited and noisy data. Regularization strategies proved to be essential to address this issue.
Regularization methods constrain the space of possible reconstructions by embedding prior information
about the expected structure of the domain. Among them, Total Variation (TV) promotes sparsity
in the reconstructed distribution, thus favor piecewise constant (step changes) conductivities, while,
Tikhonov regularization favours smooth solutions. Generalized Tikhonov methods make use of a
smoothing penalty term that can include approximations of differential operators [16] or structural
priors [26] to further improve reconstruction quality.

In addition to these model-based approaches, deep learning has recently become a new frontier of
EIT and in general of inverse problems in imaging. Recent works for solving EIT inverse problems
with deep learning focused on fully learned (end-to-end) and post-processing learned approaches. The
former utilizes conventional neural networks as ’black-box’ by feeding sufficiently large amount of
training samples to learn the linear/non-linear mapping from the measured data to the target image
without explicitly modeling the domain knowledge, i.e. the forward operator [4]. In this approach,
the deep learning model must learn the underlying physics of the problem, which is difficult when
the forward operator is nonlinear and not trivial as for EIT problems. Additionally, the ‘black-box’
nature of this approach makes it more difficult to identify erroneous solutions when the ground truth
is not available, as the neural network will tend to produce reasonable solutions. Post-processing
methods, on the other hand, are used after the reconstruction to remove artifacts and improve the
result. As an example, in [10, 12] a deep learning based image post-processing is applied to the
EIT result generated by D-bar direct method on the inverse Fourier domain [11]. While in [29], a
cascaded end-to-end CNN, based on induced-current learning method (ICLM), processes the result of
an approximated reconstruction computed by truncated singular value decomposition method. The
effectiveness of these methods is however strongly linked to the success of the first reconstruction
phase, as the deep learning is not used to integrate data driven knowledge into the regularization
process.

In this work we present a model-based data-learning approach which aims at combining the advan-
tages of model-based and data-driven paradigms. It relies on a physical forward model to describe
the data generation, and on a prior model learned by data, that better promotes the desired features,
while preserving the well-conditioning of the numerical problem. The key idea of the model-based
data-learning proposal, inspired by many works on inverse imaging, consists in embedding a varia-
tional model in an unrolled iterative optimization algorithm which learns all the parameters for the
prior model during the training procedure.

Unrolled optimization techniques consist of unfolding the iterative loop of a classical iterative
algorithm with a given number of iterations and representing each iteration of the linearized version
of the algorithm as processing layer of a neural network. This network can then be trained and
optimized as any other network, learning from data while keeping the knowledge of the inverse problem
in its internal structure. Unrolled architectures based on the linearized version of the most popular
optimization algorithms have been successful in various inverse problems. Among them, the unrolled
Gauss-Newton [30], Proximal Forward Backward Splitting [9], and Alternating Directions Method of
Multipliers [21].

Following this framework, we unroll the iterative Gauss-Newton method, well assessed for opti-
mizing a general nonlinear smooth model, to solve the inverse EIT nonlinear problem. This allows us
to incorporate knowledge on the forward model into the neural network as well as directly optimize
conductivity reconstruction quality based on training examples.

In addition, we introduce an attention-like strategy that can both sparsify the output of each
iteration, driven by the structural anisotropic properties of the input. This feature has been inspired
by Total-Variation Sparse Attention (TVMAX), a recently introduced attention mechanism to select
visual attention over features generated by a CNN which further encourages the joint selection of
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adjacent spatial locations [18]. We named the proposed mechanism Anisotropic Total Variation (ATV).
Unlike TVMAX, ATV does not map all the probability mass onto a probability simplex, and does
not rely on iterative forward computations. Although non-linear, ATV can be solved with a non-
iterative algorithm, and we provide a closed-form expression for its Jacobian. This leads to an efficient
implementation of its forward and backward steps.

ATV is then incorporated in each block of our unrolled Gauss-Newton EIT network as to transform
non-linearly the output of the block and encourage structured and sparse attention over contiguous
regions.

The work contents will be organized as follows. We introduce the mathematical formulations
of the forward and inverse EIT problem in Section 2, and the Regularized Gauss-Newton (RGN)
method for solving nonlinear least squares problems in Section 3. We formulate the proposed unrolled
RGN network in Section 4 which contains numerical implementations details on the newly introduced
regularizer network in Section 4.2, and on the ATV mechanism in Section 4.3. Numerical results are
reported in Section 5, and, in Section 6, concluding remarks are presented.

2 EIT forward and inverse problem

In inverse EIT, small alternating currents are applied to conducting surface electrodes attached at
the boundary of the object Ω. The measured voltages Vm on the electrodes are used to reconstruct
electrical conductivity distribution σ of the internal part of the object.

In the corresponding forward EIT problem one wants to find the electric potential u in the interior
of the object Ω and at the electrodes, given some applied current and inner conductivity σ. Following
the accurate Complete Electrode Model (CEM), introduced in [7], the forward EIT problem can be
formulated as follows: 

∇ · (σ(x)∇u(x)) = 0 in Ω,

u+ zlσ
∂u
∂n = Vl on El, l = 1, .., L,∫

El
σ ∂u∂n ds = Il on Γ,

σ ∂u∂n = 0 on Γ̃,

(1)

where Γ (Γ̃) is the boundary ∂Ω with (without) electrodes, Vl is the unknown voltage to be measured
by l-th electrode El when the currents Il are applied, zl are the contact impedances. The solution of
forward EIT problem amounts to solving the boundary value problem (1).

The Forward Operator F̃ , which operates between the Hilbert spaces X and Y , maps the conduc-
tivity σ to the solution of the forward problem:

F̃ : S ⊂ X → Y (2)

σ 7→ (u, V )

where S = {σ ∈ L∞(Ω) | σ∇u = 0}, denotes the domain of definition of F̃ .
From now on we restrict the conductivities σ to a finite dimensional space of piecewise polynomials.

We consider the object domain Ω discretized into nT subdomains {τj}nT
j=1 and σ constant over each of

them. In particular we discretize Ω with a triangular mesh. Given a Finite Elements Model (FEM)
of an EIT medium, we calculate the vector of voltages, Vm, for each FEM degree of freedom. For
a given stimulation pattern a vector of nM measurements is acquired, obtained by injecting current
through an electrodes pair and then measuring the corresponding voltage Vm induced on another pair
of electrodes. Then F : RnT → RnM represents the discrete version of the Forward Operator (2) as a
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nonlinear vector map. Since F̃ is Fréchet differentiable, F ′ is a matrix, called the Jacobian of F and
denoted by J ; each element of J ∈ RnM×nT is defined as

{J(ud, um)}i,j =

∫
τj

∇ud · ∇umdΩ , (3)

where the row index i corresponds to the ith measurement, associated with the dth driving potential
ud and mth measurement potential um, while the column index j corresponds to the subdomain τj .

Considering measured data corrupted by additive noise, we can assume the following noisy non-
linear observation model

Vm = F (σ) + η, (4)

where Vm ∈ RnM represents the vector of all the measured electrode potentials whose dimension nM
depends on the choice of a measurement protocol, and η ∈ RnM is a zero-mean Gaussian distributed
measurement noise vector.

Assuming the non-linear degradation model (4) and the given measurements Vm, the so called
absolute imaging problem aims to estimate the (static) conductivity σ by solving the following non-
linear least squares problem

σ∗ = arg min
σ
f(σ), f(σ) =

∫
Ω

(F (σ)− Vm)2 dΩ. (EITNL)

The underlying optimization problem is hard to solve, as the boundary currents depend non-linearly
on the conductivity. This means that the optimization problem is nonconvex.

For the reconstruction of small conductivity changes, conventional approaches rely on the simplest
linearized model of the non-linear forward operator F ,

F (σ) ≈ F (σ0) + Jδσ = F (σ0) + J(σ − σ0), (5)

where J represents the Jacobian matrix defined in (3), and calculated at the initial conductivity
estimate σ0. The reconstruction is thus obtained by solving the following linear least squares problem

δσ∗ = arg min
δσ

f(δσ), f(δσ) =

∫
Ω

(J δσ − δVm)2 dΩ, (EITL)

where δσ = σ − σ0 and δVm = Vm − F (σ0).
A benefit of the linear approach is that it leads to computationally fast reconstruction, however,

the linearization leads to a very ill-conditioned undetermined linear system to solve, and the solution
is only valid for sufficiently small deviations from the conductivity σ0 at which the Jacobian is initially
calculated.

We consider a two-dimensional convex domain Ω, where some inclusions with conductivity σ
are embedded in a background material with conductivity σ0. In difference imaging the unknown
conductivity to be reconstructed in the inversion model is the contrast σ - σ0 , i.e., conductivity change
when the measurement data before the change is available; here σ0 is the background conductivity.
The proposed approach allows to reconstruct the absolute conductivity distribution when only the
data after the change is available (σ0 is not known).

3 Regularized Gauss-Newton for EITNL

The Gauss-Newton method is the most commonly used one for minimizing nonlinear least squares
(NLLS) problems such as the EITNL and performs a line search strategy with a specific choice of a
descent direction. It simplifies the Newton-Raphson (NR) method which relies on the second-order
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Taylor’s expansion approximation of the function f(σ). Specifically, the Newton-Raphson method
approximates

f(σ + p) ≈ f(σ) +∇f(σ)T p+
1

2
pT∇2f(σ)p, (6)

where the gradient and the Hessian of f(σ) are given respectively by

∇f(σ) = J(σ)T (F (σ)− Vm), ∇2f(σ) = J(σ)TJ(σ) +
∑
k

rk(σ)∇2rk(σ), (7)

with J(σ) the Jacobian matrix of r(σ) := F (σ)−Vm. The search direction p is computed by imposing
optimality conditions for p to EITNL with f(σ) approximated as in (6):

∂f(σ + p)

∂p
= ∇f(σ)T +∇2f(σ)p = 0, (8)

which implies that
∇2f(σ)pNR = −∇f(σ). (NR)

The Gauss-Newton method essentially approximates the Hessian matrix in (7) by ignoring all the
second order terms from ∇2f(σ), so that the search direction p is obtained by solving the following
linear system

JT (σ)J(σ)pGN = −JT (σ)(F (σ)− Vm). (GN)

Gauss-Newton method starts from an initial guess σ0 and performs a line search along the direction
pGNk to obtain the new conductivity iterate σk+1 as

σk+1 = σk + pGNk . (9)

In (GN), Vm is the measurement vector, and the coefficient matrix, which involves the Jacobian
matrix, is a linear operator. However, due to its compact nature, the operator has an unbounded (dis-
continuous) inverse. This causes the solution to be unstable against variations in the data, hence vio-
lating Hadamard’s third criterion for well posedness. Therefore, applying the Gauss-Newton method
to problem (EITNL) yields inaccurate solutions; one could instead employ some form of regulariza-
tion on the sought solution σ. The regularized Gauss-Newton method, using a generalized Tikhonov
regularizer, consists in applying GN to the minimization problem:

σ∗ = arg min
σ
{J (σ;λ) = f(σ) + λg(σ)} , g(σ) = ‖Lσ‖22, (10)

where λ > 0 is the regularization parameter, and L ∈ RnT×nT is a matrix representing either a discrete
first/second order differential operator, or a positive diagonal matrix, or simply the identity matrix.

The gradient and the approximated Hessian matrix of the objective function in (10) are respectively
given as follows:

∇J (σ;λ) = J(σ)T (F (σ)− Vm) + λLTLσ, (11)

∇2J (σ;λ) = ∇2F (σ)(F (σ)− Vm) + J(σ)TJ(σ) + λLTL.

The search direction pk from the current iterate satisfies the linear system

(J(σk)
TJ(σk) + λLTL)pRGN-Tik

k = J(σk)
T (Vm − F (σk)) + λLTLσk. (RGN-Tik)

The Tikhonov-type regularization g(σ) in (10), regardless of the choice of L, favors smooth solu-
tions and fails in reconstructing step conductivity changes. A popular alternative to the Tikhonov
regularizer, is the L1−norm Total Variation regularizer, defined as

g(σ) =
∑
i

|(Lσ)i|, (12)
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with L in (12) the discrete gradient matrix. Replacing (12) in (10) enforces piecewise-constant con-
ductivity reconstructions, and well preserves sharp conductivity changes, at the cost of a non-smooth
optimization problem to solve. Recent TV regularized approaches to the EIT problem have pro-
vided efficient solutions to the non-differentiability: see [13] for nonlinear EIT problem solved via a
forward-backward splitting strategy, [3] for a primal dual interior point method, [14] for an Alter-
nating Direction Methods of Multipliers applied to linear EIT problems, and [1] for a simple lagged
diffusivity method. Following [1], the approximate solution to the EIT problem (10) with a smoothed
TV regularizer reads as

(J(σk)
TJ(σk) + λLTE−1L)pRGN-TV

k = J(σk)
T (Vm − F (σk)) + λLTE−1Lσk, (RGN-TV)

where E is a diagonal matrix defined as E := diag(
√

(Lσ)2 + γ), and γ > 0 is the smoothing param-
eter.

Alternatively, the Levenberg-Marquardt algorithm directly regularizes the ill-conditioned linear
system (GN) adding a scaled identity matrix λI, or even λL, to the coefficient matrix, thus improving
its condition number. The approximate solution of the EIT non-linear problem is then given by

(J(σk)
TJ(σk) + λLTL)pLM

k = J(σk)
T (Vm − F (σk)). (LM)

The linear systems (RGN-Tik), (RGN-TV), and (LM) can be described by the following unified
formulation

(J(σk)
TJ(σk) + λR)pk = bk, (RGN)

where bk is the associated right hand side and R is a generic regularizer operator. Then the linear
systems (RGN-Tik), (RGN-TV), and (LM) can be directly solved by

pk = VRΣ−1
R UTR bk, (13)

where UR, ΣR, and VR are given by the singular value decomposition (SVD) of the coefficient matrix
in (RGN-Tik), (RGN-TV) or (LM).

Algorithm 1 RGN

Input: σ0, Vm, λ > 0,
Output: σ∗ % conductivity distribution

For k = 0, 1, . . ., do until convergence:
compute direction pk by (13)
σk+1 = σk + pk

end

In Algorithm 1 we summarize the iterative steps of the regularized Gauss-Newton algorithm where
the convergence is satisfied when two successive iterates differ for a given threshold.

The success of all these approaches is based on the critical choice of the λ regularization parameter,
that is, on a long and painful exhaustive research that in practical applications is not in general
sustainable.

3.1 Learning the regularization matrix

The a priori choice of the regularization operator g(σ) in (RGN-Tik), (RGN-TV), and (LM), and
the crucial selection of the regularization parameter λ can be avoided by learning automatically the
regularizer from data, and simply setting λ = 1.
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Let J(σk) = UΣV T denote the SVD of J(σk), where U ∈ RnM×nM , and V ∈ RnT×nM are orthog-
onal matrices and Σ ∈ RnM×nM is the diagonal matrix which contains non-increasing singular values
on the main diagonal. We construct the regularizer operator Rθ as:

Rθ := V ΣθV
T , (14)

where Σθ, the diagonal matrix of singular values, will be learned by the network, as will be described
in Section 4.2. Considering Rθ in (14), and the decomposition JTJ = V Σ2V T , then the linear system
(RGN) can be rewritten as follows

(V Σ2V T + V ΣθV
T )pk = J(σk)

T (Vm − F (σk)) +Rθσk. (15)

This choice for Rθ allowed us to exploit the low-dimensional SVD for J ∈ RnM×nT instead of a more
expensive SVD decomposition for the coefficient matrix in (RGN) of dimension nT ×nT (nT >> nM ).
Moreover, the solution pk of the linear system reduces to the following matrix-vector product:

pk = V (Σ2 + ΣΘ)−1V T (J(σk)
T (Vm − F (σk)) +Rθσk). (16)

4 Unrolled Iterative Regularized Gauss-Newton

Our goal is to iteratively solve (9)-(16) by executing a pre-determined number of iterations K of the
regularized Gauss-Newton Algorithm 1, where the regularization operator g(σ) is learned across a
fully connected network. Moreover, the regularization parameter λ is avoided, so that to provide a
parameter-free algorithmic approach to the nonlinear EIT problem. The resulting unrolled iterative
architecture, named EITGN-NET, is depicted in Figure 1, and can be interpreted as a neural network
which generates a sequence of approximated solutions σk, for k = 1, . . . ,K, with σ∗ = σK .

Starting with an initial guess σ0, the update mapping at a given iteration k ∈ {0, . . . ,K−1} reads
as σk+1 ← G(σk; J, Vm,Σθ), where

G(σk; J, Vm,Σθ) := σk − (J(σk)
TJ(σk) +Rθ)−1r(σk) = σk − pk (17)

where r(σk) = J(σk)
T (Vm − F (σk)) +Rθσk, and pk is computed by solving (16).

The regularization operator Rθ is a prior defined in (14) and computed by a Fully Connected Neural
Network (FCNN). To encompass a large family of priors, we advocate a fully connected-based estimator
Rθ with weights θ, described in Section 4.2, that can be learned from historical (training) data.

The k-th iterative block Lk corresponds to one iteration in algorithm RGN: first updates G accord-
ing to (17), and then combines the result with the ATV attention-like function to encourage piece-wise
structures over contiguous regions on the intermediate reconstructions. In formulas, given an initial
σ0, for k = 1, . . . ,K each block performs the following steps{

σ̄k = G(σk−1; J, Vm,Σθ)
σk = ATV (σ̄k).

(18)

The unrolled data flow is sketched in Algorithm 2. In the experiments reported in Section 5 we
used K = 10, which provided a sufficiently good compromise between efficiency and accuracy in the
reconstruction.
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Figure 1: EITGN-NET architecture

Algorithm 2 EITGN-NET

Input: σ0, Vm,
Output: σ∗ % conductivity distribution

Σθ ← FCNN(Vm)
For k = 1, . . . ,K do:
σ̄k ← G(σk−1; J, Vm,Σθ)
σk ← ATV (σ̄k)

end
σ∗ = σK

end

The loss function used during the network training is defined in Section 4.1, while the regulariza-
tion network to construct Rθ, and the ATV layer will be described in Section 4.2 and Section 4.3,
respectively.

4.1 Loss function design

In the network training process, EITGN-NET is applied on Ns training samples {V (i)
m , σGTi }

Ns
i=1 to

obtain Ns reconstruction results σ∗i . This allows for tuning the unknown parameters Θ of EITGN-
NET defined in (25), by minimizing a loss function. Specifically, the loss function encodes both
reconstruction and regularization costs and can be formulated as follows:

Ltot(Θ) = Lrec + Lreg
= 1

Ns

∑Ns
i=1 ‖σ∗i − σGTi ‖22 + 1

Ns

∑Ns
i=1 ‖Rθσ∗i ‖22.

(19)

The loss function Lrec measures how well the estimated conductivity distributions σ∗i by the
EITGN-NET matches the ground-truth ones σGTi . The second term Lreg penalizes the network when
the regularization contribution is too large, which could deviate from the original linear system to be
solved.

Given the training samples and a loss function Ltot(Θ), the network EITGN-NET learns a param-
eter set Θ by iteratively training such that the loss functional (19) is minimized in Θ, by applying a
gradient descent algorithm. Then the derivatives ∂Ltot

∂Θk can be calculated by back-propagation tech-
nique using chain-rule

∂Ltot
∂Θk

=
∂Ltot
∂σ̄k

· ∂GΘk

∂Θk
=
∂Ltot
∂σ̄k

· ∂σ̄k
∂Θk

. (20)
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Considering the functional operator on a generic block k given by (18), we have

∂Ltot
∂σ̄k

=

K∑
k=1

∂Ltot
∂ATVk

· ∂ATVk
∂σ̄k

, (21)

where ∂Ltot
∂ATVk

is in the backward propagation stage, and ∂ATVk
∂σ̄k

will be defined in (35).

4.2 Regularizer network

The regularization matrix Rθ is constructed starting from its singular values Σθ following (14), by
learning Σθ across a fully connected regression network FCNN(Vm) consisting of four hidden layers
each composed of nM neurons The input layer is initialized with the nM measurement values Vm, and
the output layer has nM nodes that represent the sorted singular value vector Σθ.

In a fully connected network each neuron of a given layer has a connection (or synapse) towards
each neuron of the next layer. For a given artificial neural node i, let there be m inputs, x1 through
xm, and weights θi,1 through θi,m. The output of the ith neuron is:

yi = φ1(
m∑
j=1

θi,jxj + bi)

where φ1 is the LeakyReLU activation function, defined as LeakyReLU(z) = max(α1z, z), with a
negative region slope of α1 = 0.5. For the output layer the function φ1 is replaced by φ2 which is the
Rectified Linear Unit (ReLU) activation function

ReLU(z) = max(α2, z + α2), (22)

with translation factor α2 = 1× 10−9. The output vector of each layer ` can be represented as

y[`] = φ1(W [`]x+ b[`]), (23)

where the matrix W [`] ∈ RnM×nM and the vector b[`] ∈ RnM , are the weights and the bias of the `th
layer. Hence the FCNN output is a vector

Σθ(θ;Vm) = φ2(φ1(W [5](φ1(W [4]φ1(W [3]φ1(W [2]φ1(W [1]Vm + b[1]) + b[2]) + b[3]) + b[4]) + b[5]), (24)

where the set of weights and bias is denoted by

Θ = {W [1],W [2],W [3],W [4],W [5], b[1], b[2], b[3], b[4], b[5]}. (25)

The choice of φ2 as defined in (22) guarantees the non-singularity of Σθ and of the associated coefficient
matrix in (15).

4.3 2D-Mesh anisotropic TV attention-like mechanism

The proposed attention-like mechanism, named ATV, acts inbetween the blocks of the EITGN-NET.
It is derived by extending the total variation image denoising algorithm introduced in [15] to an
arbitrary 2D triangular mesh domain.

The ATV mechanism operates on a 2D domain represented by a triangular mesh. Before discussing
the proposed ATV operator, we introduce some notations and we formulate the total variation operator
on a 2D mesh. Let us assume a planar domain Ω ⊂ R2 which is approximated by a triangulated mesh
(V, T,E), where V ∈ RnV ×2 , V = {vi}nV

i=1 represents the set of vertices, T ∈ RnT×3 , T = {τm}nT
m=1

is the set of triangles and E ∈ RnE×2 , E = {ej}nE
j=1 is the set of edges.
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We denote by N (τi) = {τj ∈ T : τj ∩ τi ∈ V } the set of the triangles τj ∈ T which share one of
their vertices or edges with the triangle τi. A basic N (τi) could simply consider the edge intersection,
thus reducing the cardinality of N (τi) to 3 for inner triangles and 2 for boundary triangles.

We assume a piece-wise constant strictly bounded measurable function σ : Ω → R over the mesh
triangles, thus the gradient operator vanishes to zero everywhere but the mesh edges along which it
is constant. In particular, the discrete anisotropic gradient magnitude ‖(∇σ)i‖1 on a triangle τi is
defined as a weighted sum over the neighborhood triangles in N (τi) as follows

‖(∇σ)i‖1 :=
∑

k∈N (τi)

wk|σi − σk|, i = 1, . . . , nT , (26)

where each weight wk is associated to the triangle neighbor τk ∈ N (τi), and is defined as:

wk =
1

‖barycentre(τk)− barycentre(τi)‖2
. (27)

We notice that (26) approximates the local variation of σ as sum of the weighted variations in each
neighbors direction, thus discretizing an anisotropic total variation operator.

For a given triangle τi, we assume to know the values σ̄k for all the neighbors in N (τi), then the
unknown value σ at τi is obtained as solution of the following local minimization problem:

σ∗ = ATV (σ) := arg min
σ∈R
F(σ), F(σ) :=

∑
k∈N (τi)

wk|σ − σ̄k|+ µ|σ − σ̄i|2, i = 1, . . . , nT . (28)

The proposed ATV carries out the triangle-wise anisotropic TV, by solving the optimization problem
(28) for any triangle τi. In Proposition 1, following [15], we report the explicit solution of the local
optimization problem (28).

Proposition 1. Let τ be a generic triangle with n the cardinality of N (τ). Assuming wk > 0 be
the weight defined in (27) and associated to τk ∈ N (τ), the values σ̄k on τk ∈ N (τ) be sorted as
σ̄1 ≤ σ̄2 ≤ . . . ≤ σ̄n. Then the minimizer of problem (28) is given by σ∗ ∈ R which is the unique
minimizer of the anisotropic total variation problem

σ∗ = arg min
σ∈R
F(σ) = median{σ̄1, . . . , σ̄n, σ̄i +

1

2µ
W0, σ̄i +

1

2µ
W1 . . . , σ̄i +

1

2µ
Wn}, (29)

where

Wj = −
j∑

k=1

wk +

n∑
k=j+1

wk, j = 0, .., n. (30)

The ATV optimization problem (28) is solved by applying the closed formula (29) on the 2D-
mesh, as outlined in Algorithm 3. The median value computation in the algorithm could represent
a computational bottleneck. However, this computation becomes cheap by using the smart strategy
proposed in [15].

10



Algorithm 3 ATV

Input: σ̄ ∈ RnT , µ > 0,
Output: σ∗ ∈ RnT

Initialize σ = σ̄
For each τi ∈ T do:

compute W ∈ Rn+1 as in (30)
set u = (σ0, . . . , σi−1, σi+1, . . . , σn) ∈ Rn
u← sort(u) in ascending order
compute p ∈ Rn+1, with pk = σi + 1

µWk, k = 0, .., n

σ∗i ← median(u1, u2, ..., un, p0, p1, p2, ..., pn)
end

end

Note that Algorithm 3 realizes a local anisotropic total variation. The result in Proposition 2
guarantees instead that, by iterating Algorithm 3, the convergence to the global anisotropic total
variation is guaranteed. The attention module here proposed applies local ATV using only Algorithm
3, and thus does not need any iterative procedure to converge.

Proposition 2. The algorithm ATV repeated until convergence, defines the vector σ∗ = (σ∗1, . . . , σ
∗
nT

) ∈
RnT which is the global minimizer of the anisotropic total variation problem

σ∗ = arg min
σ∈RnT

‖∇σ‖1 + µ‖σ − σ̄‖22. (31)

Proof. By iterating (28) j times for the `th component σ
(j)
` , we get σ

(j+1)
` = arg minσ`∈RF (j)(σ`)

Hence
F (j)(σ

(j+1)
` ) ≤ F (j)(σ

(j)
` ). (32)

This implies that the energy over all triangles decreases, that is

F(σ(j+1)) ≤ F(σ(j)), (33)

and since it is also bounded from below, the sequence F(σ(j)) converges.
From Lemma 3.1 in [15], we have

|σ(j) − σ(j+1)| ≤

√
F(σ(j))−F(σ(j+1))

µ
. (34)

Therefore σ(j) converges to the vector σ∗ ∈ RnT .

In order to apply the ATV (σ) attention-like mechanism in a neural network trained by backprop-
agation, two problems must be addressed. The first is the forward computation: how to evaluate
ATV (σ), i.e., how to solve the optimization problem in (28). The second is the backward computa-
tion: how to evaluate the Jacobian of ATV (σ). The forward computation is solved by the closed-form
(29). For the backward computation the main challenge is how to compute the derivatives of ATV (σ).
Note that ATV is smooth everywhere except on the (zero-measure) set of non-differentiable points.
In particular, on a triangle τi, the partial derivative of ATV are defined as

∂ATV

∂σ̄i
=

∑
k∈N (τi)

wksign(σ − σ̄k) + 2µ(σ − σ̄i), (35)
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which simplifies as follows

∂ATV

∂σ̄i
=

{
2k − n+ 2µ(σ∗ − σ̄k) if σ̄k < σ∗ < σ̄k+1

`+ (m− `)ε− (n−m) + 2µ(σ∗ − σ̄i) if σ̄` < σ̄`+1 = . . . = σ̄m = σ∗ < σ̄m+1
. (36)

The bottom condition in (36) corresponds to the case σ∗ coincides with one of the σ̄k. In this case ε
satisfies

ε =


1 if i ≤ `,

p ∈ [−1, 1] if `+ 1 ≤ i ≤ m,
−1 if i > m.

(37)

The backpropagation task in (20) is then completed by using (36).

5 Simulations and Numerical Experiments

To evaluate the performance of the proposed network, a series of numerical and experimental tests
was conducted on a set of synthetic 2D experiments. All examples simulate a circular tank slice of
unitary radius represented by a mesh grid of 660 triangles. In the circular boundary ring 16 electrodes
are equally spaced located. The conductivity of the background liquid is set to be σ0 = 1.0 Ωm−1.
Measurements are simulated through opposite injection - adjacent measurement protocol via pyEIT
[17] a python based framework for Electrical Impedance Tomography. In all the examples the setup
is considered blind, that is no a priori information about the sizes or locations of the inclusions is
considered.

In the examples illustrated in Section 5.4-5.6 we compare the performance of the proposed EITGN-
NET with the iterative Regularized Gauss Newton method (RGN), and the Levemberg Marquardt
(LM) implemented using pyEIT library, and the D-bar method [19], with code kindly provided by the
authors. The D-bar output is provided and visualized in image form, suitably handled for comparisons.
The comparisons are conducted qualitatively by visually inspecting the artifacts and quantitatively by
calculating the metrics described in Section 5.2 such as mean-square error (MSE), structural similarity
(SSIM), dynamic range (DR), and the evaluation index for EIT images (EIEI). In all the experiments
with RGN and LM algorithms, we hand-tuned the regularization parameter λ so as to fairly achieve
the best performance in terms of MSE values.

The learning rate is set to 10−3. The learning is performed for 20 epochs. The network is imple-
mented on a PC with Intel i7 CPU and 32-GB RAM with Pytorch and AdamW has been used for
optimization. The training process took nearly 30min each epoch of the training.

5.1 Training and Testing Data Sets

In the training process, we employed 250 randomly generated test cases, where 200 of them were used
as training dataset and the other 50 test cases were used as testing dataset. Experimentally, we found
that 20 epochs were enough to sufficiently decrease the total loss function. The collected weights Θ
at epoch 20 have been used in EITGN-NET in the testing phase.

A training dataset contains a total number of 200 pairs of the ground-truth conductivity σGT and
their corresponding collected voltages, Vm. Each test case consists of a random number from 1 to 4 of
anomalies inside a circular tank, localized randomly and characterized by random radius in the range
[0.15−0.25] and magnitude in the range [0.2, 2]. Here it is assumed that each actual anomaly approxi-
mately consists of the same material, while the background consists of another homogeneous material.
Consequently, a preferable EIT reconstruction meets the following conditions: C1) Anomalies of ho-
mogeneous material must have the same intensity. C2) Anomalies and backgrounds have higher and
lower intensities than those of artifacts, respectively. C3) The number of triangles partitioned into the
cluster of artifacts should be as small as possible.
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5.2 Figures of merit

The performance is assessed both qualitatively and quantitatively. The quantitative analysis is per-
formed on the mesh elements, via the Mean Squared Error (MSE) defined as

MSEσ =
‖σGT − σ∗‖22

nT
, (38)

which measures how well the original conductivity distribution is reconstructed in case a ground truth
conductivity distribution σGT is known.

Another metric commonly used for measuring the similarity between two images is the Structural
SIMilarity (SSIM) Index, which has been suitably modified to act directly on a mesh. In particular,
local SSIMτi measures are computed on local neighborhoods N (τi), which move triangle by triangle
on the entire mesh Ω. In other words, for each triangle τi, the SSIMτi is calculated on its neighbor-
hood. The global structural similarity measure SSIM between a reconstructed conductivity σ∗ and
the corresponding ground truth σGT is defined as follows

SSIM(σGT , σ∗) :=
1

nT

nT∑
i=1

SSIMτi(σ
GT
i , σ∗i ), (39)

where for each triangle ith,

SSIMτi(σ
GT
i , σ∗i ) =

(2µGTi µ∗i + c1)(2sGT∗i + c2)

((µGTi )2 + (µ∗i )
2 + c1)((sGTi )2 + (s∗i )

2)
, (40)

with µi denotes the mean of the σ values in the neighbors N (τi) of the triangle τi, si represents its
associated standard deviation

sGT∗i :=
1

|N (τi)|
∑

k∈N (τi)

(σGTk − µGTk )(σ∗k − µ∗k)

and finally c1 = max(σGT ) ∗ 0.012 and c2 = max(σGT ) ∗ 0.032.
Analogously to the use in image processing, SSIM(X,Y ) in (39) quantifies how much X and Y

are different, with SSIM = 1 if X and Y are identical and SSIM tends toward 0 when X and Y are
very different.

According to conditions C1)-C2)-C3) the quality of any EIT reconstruction will increase as the
number of artifact values decreases. In [28] an ad hoc evaluation index for EIT (Evaluation Index
Electrical Impedence - EIEI-) has been introduced, which measures the homogeneity of the anomalies.
Let n1 be the number of triangles of backgrounds, with associated values denoted by σ(1), n2 the
number of triangles classified as artifacts, with associated values σ(2), and n3 the number of triangles
containing anomalies, with associated values σ(3). Unlike in [28], in our work the anomalies can have
different values, thus we adapted the clusterization phase, accordingly. The variances of these clusters
are given by

δj =

nj∑
i=1

|σ(j)
i − σ̄

(j)|/nj , j = 1, 2, 3. (41)

The values of variances reflect the homogeneity of backgrounds, anomalies and artifacts. Then the
EIEI measure is defined as follows

EIEI := w1T1 + w2T2 (42)

with T1 := 1− n2/nT the quantity of artifact triangles, T2 := 1− (δ1n1/nT + δ3n3/nT ), the quantity
of background and anomalies, the weighting values w1 and w2 represent the certainty of T1 and T2,
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Blocks (K) 8 10 12

MSE 0.0039 0.0037 0.0038

SSIM 0.87 0.89 0.89

Table 1: Effect of a different numbers of blocks K in the unrolled iterative EITGN-NET.

(0.013,0.80) (0.0054,0.88) (0.0007,0.91)

(0.013, 0.67) (0.0090,0.66) (0.0009,0.84)

Figure 2: First row: EITGN-NET with ATV. Second row: EITGN-NET without ATV. (MSE, SSIM)
values are reported for each test cases GT 225, GT 226, GT 232.

which is evaluated as

w1 :=

n2∑
i=1

σ
(2)
i /n2, w2 :=

(
n1∑
i=1

σ
(1)
i +

n3∑
i=1

σ
(3)
i

)
/(n1 + n3). (43)

Together with the quantitative EIEI measure defined in (42), this figure of merit allows for a qualitative
insight provided by a structure maps (EIEI map) where yellow color identifies the artefacts, red color
the anomalies and blue color the background.

Finally, another significant metric to assess the quality of the reconstructed conductivity is the
dynamic range defined as

DR =
maxσ∗ −minσ∗

maxσGT −minσGT
× 100%. (44)

A DR value which widely differs from 100, indicates that the conductivity contrast was not well
preserved in the numerical optimization process.

5.3 Effect of the number of blocks and benefit of the ATV mechanism

To evaluate the effect of the number of blocks K used by the proposed EITGN-NET, we evaluated
the performance for varying K values. In particular, we report in Table 1 the quantitative measures
MSE and SSIM, averaging the results on the testing set, with K = {8, 10, 12}. We noticed that the
performance is gradually improved for increasing K values and tends to remain stable when K is
larger than 10. Therefore the choice K = 10 configuration is a preferable setting which represents a
good compromise between the result quality and the computational cost.

The conductivity reconstruction quality obtained by EITGN-NET is affected by the new ATV
mechanism introduced. To highlight how much this mechanism influences the results, in Fig.5.2
we illustrate the reconstructions produced by the EITGN-NET with ATV (top row) and without
activating the ATV stage (bottom row). From a visual inspection we can observe sharper and more
artifact-free results when ATV is applied.
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GT EITGN-NET LM RGN-TV D-bar

Figure 3: Performance in terms of MSE, DR, EIEI metrics of the reconstructions by EITGN-NET,
LM, RGN-TV, and D-bar for test case GT 211, GT 225 and GT 221 (from top to bottom).

EITGN-NET LM DBar RGN-TV

MSE 0.0037 0.0072 0.0060 0.0038

SSIM 0.89 0.77 0.82 0.93

DR 110 119 107 89

Table 2: Performance on averaged MSE, SSIM, DR metrics on the entire set of test cases.

5.4 Example 1 - Performance comparisons

In Fig.3 we illustrate the performance of EITGN-NET with respect to RGN-TV, LM and D-bar when
applied to the reconstruction of three test cases. In Fig.3 (right panel) we plot the graphs corresponding
to MSE and DR, while the maps on the left panel visualize the GT, EITGN-NET, RGN-TV, LM and
D-bar reconstructions with their associated EIEI maps (bottom row). We recall that, for MSE the
lower, the better, while for DR the values closest to 100 are preferred. A qualitative inspection in Fig.
3 (left panel) highlights the superior quality of EITGN-NET which better recovers sharper structures,
presents a lower number of artifacts, and in general improves the separation between the anomalies.

By a visual inspection of Fig.4, we can compare σGT with the reconstructed results obtained by
EITGN-NET (σ∗, first column), RGN-TV (second column) and D-bar (third column). The associated
EIEI structure maps are illustrated in the bottom rows, yellow for artefacts, red for anomalies and
blue for background; the EIEI values are reported for each test case. The test case GT 237 contains
4 anomalies, two of which present intensity values very close to the background value. Nevertheless
all the methods are able to detect them properly. The well known contrast reduction effect of the TV
regularizer is slightly visible everywhere. In particular, in the test case GT 208, the intensity of the
anomalies is significantly reduced by the other methods, while accurately recovered by our network. In
general, the EITGN-NET is able to automatically detect all the anomalies with the minimum artifacts,
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GT 202 GT 208

EITGN-NET RGN-TV D-bar

1.68 1.72 1.60

EITGN-NET RGN-TV D-bar

2.21 2.16 2.01

GT heart and lungs GT 223

EITGN-NET RGN-TV D-bar

1.88 1.83 1.76

EITGN-NET RGN-TV D-bar

2.10 2.11 1.97

GT 237 GT 238

EITGN-NET RGN-TV D-bar

2.12 2.16 2.04

EITGN-NET RGN-TV D-bar

1.71 1.67 1.66

Figure 4: Comparisons between σGT (top rows) and conductivity results reconstructed by EITGN-
NET (first column), RGN-TV (second column) and D-bar (third column) with the associated structure
maps (EIEI metric) on the bottom. EIEI values are reported for each test case.
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GT EITGN-NET D-bar

1.61 1.55

GT EITGN-NET D-bar

1.96 1.77

1.97 1.93 1.99 1.85

2.02 1.82 1.67 1.62

Figure 5: Robustness to the noise: comparison between σGT and reconstructions from noisy mea-
surements obtained by EITGN-NET (first column) and D-bar (second column): the reconstructed
conductivities σ∗ (first row) and associated structure maps for EIEI metric (second row). EIEI values
are reported for each test case.

EITGN-NET D-bar

noise 54dB

MSE 0.0078 0.0107

SSIM 0.75 0.75

DR 102 88

noise 48dB

MSE 0.0085 0.0111

SSIM 0.67 0.62

DR 110 84

Table 3: Noisy measurements: performance on averaged MSE, SSIM, and DR metrics on the entire
set of test cases.
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as confirmed by the EIEI values reported below each structure map, while preserving faithfully the
anomalies shape and piecewise-constant amplitudes. Performance on averaged MSE, SSIM, and DR
metrics on the entire set of test cases are reported in Table 2.

The proposed EITGN-NET has been trained on datasets with circular anomalies. To verify the
robustness to other shaped anomalies, we tested different shaped conductivities. By the way of illustra-
tion in Fig.4 (case labelled by heart and lungs) we report the results of a phantom image representing
heart and lungs anomalies which are effectively detected by the proposed network. As expected, the
RGN-TV behaves slightly better in this case since the network was trained with different shaped
anomalies. This confirms the well-know drawback of the learning-based approaches when the testing
dataset is different from what they have been trained with. We trust that, with a suitable training,
EITGN-NET will provide more accurate reconstructions even in case of similar anomalies.

5.5 Example 2 - robustness to the noise

The measured voltages are easily contaminated in practical EIT measurements. In order to evaluate
the robustness of the proposed method to noisy measurements we corrupted the voltage measurements
generated from the solution of the forward model by additive white Gaussian noise. In particular, we
generated the noisy measurement vector Vm by adding a vector n̄ ∼ N (0, s2) of Gaussian noise char-
acterized by zero-mean and standard deviation ηV̄m, with V̄m the average value. The corresponding
degradation model is the following:

Vm = Vm + η V̄m rand(nM ).

We trained the network using 50% samples corresponding to corrupted Vm and 50% samples corre-
sponding to noise-free Vm measurements. During the training phase we used η = 5 × 10−3 which
corresponds to a quality SNR = 48dB, while we validated the network with two different noise levels
η = 2.5× 10−3 (SNR=54dB) and the more severe η = 5× 10−3 (SNR=48dB).

The conductivities obtained by the EITGN-NET with noisy measurements (SNR=48dB) are il-
lustrated in Fig.5 for the test cases reported in Fig.3. The results in Fig.5 show the robustness of the
proposed neural network to noise levels up to SNR=48dB. The results with degradations less severe
than SNR=48dB are not reported. From a visual comparison of the associated EIEI results we can
observe how the noise affects the quality of the reconstructions, slightly corrupting the identification
of the different anomalies. We recall that for EIEI metric, the higher, the better. Hence, more severe
noise levels demand for new training of the proposed EITGN-NET with a tuning of the α2 parameter
in (22).

To summarize the performance, in Table 3 we report the averaged values on 50 test samples,
both for the noise-free test cases, using the network trained without noisy samples, and for the two
different degraded input, corresponding to a SNR of 48dB and 54dB. We do not report the results
from noisy measures for RGN-TV and LM since for each test case we should have tuned manually the
regularization parameter.

The reported metrics confirm the overall better performance of the proposed network.

5.6 Example 3 - Regularizer efficacy

We illustrate the effectiveness of the learned regularizer by checking the behaviours of different pop-
ular regularizers with respect to the proposed Rθ obtained by the network described in Section 4.2.
Specifically, we denote by R1 = LTL the Laplace regularizer, by R2 =

√
diag(JTJ) the popular regu-

larizer proposed in NOSER [6], and by R3 the TV regularizer defined in (12). The averaged condition
number of the linear systems (15) during the testing phase is reduced through the network blocks
from 1021 to 107, thus confirming the benefit of the network regularizer Rθ.
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By the way of illustration we report in Fig.6 four test cases of conductivity reconstructions pro-
duced by the Gauss Newton method using as regularizer R1, R2 and R3 for different regularization
parameters λ, together with the EITGN-NET results obtained with the learned regularizer Rθ. The
fully variational RGN method with R1, R2 and R3 requires the critical selection of the optimal reg-
ularization parameter λ to get the best result, which is obtained by manually tuning λ in order to
improve the accuracy of the results. We report only three λ values for each regularizer, between them
the optimal ones. Unlike, the learned regularizer Rθ automatically varies itself since it is driven by
the data, and thus it is completely parameter free.

The learned regularizers, starting from different settings of initial weights in the FCNN, for the same
data set Vm, lead to conductivity reconstructions of the same quality and to a significant improvement
of the condition number of the linear system (15) preserving the same order of magnitude. This allows
to produce a quasi optimal reconstruction.
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GT 206 Rθ

(0.00257,100)

R1 10−4 10−6 10−8

(0.0062,48) (0.0039,80) (0.0028,99)

R2 10−1 10−2 10−4

(0.0069,37) (0.0051,61) (0.0029,99)

R3 10−5 10−6 10−8

(0.010,79) (0.0078,26) (0.0028,99)

GT 232 Rθ

(0.0007,99)

R1 10−4 10−6 10−8

(0.0122,1) (0.0013,81) (0.0009,104)

R2 10−1 10−2 10−4

(0.0021,43) (0.0017,63) (0.0010,94)

R3 10−5 10−6 10−8

(0.0031,9) (0.0024,33) (0.001,72)

GT 225 Rθ

(0.013,101)

R1 10−4 10−6 10−8

(0.029,59) (0.018,89) (0.0134,111)

R2 10−1 10−2 10−4

(0.033,52) (0.023,75) (0.014,110)

R3 10−5 10−6 10−8

(0.045,25) (0.038,40) (0.016,75)

GT 226 Rθ

(0.0054,102)

R1 10−4 10−6 10−8

(0.0110,73) (0.007,101) (0.0058,115)

R2 10−1 10−2 10−4

(0.0248,1) (0.009,84) (0.011,73)

R3 10−5 10−6 10−8

(0.018,34) (0.0103,62) (0.0048,93)

Figure 6: Regularized Gauss-Newton reconstruction results with associated (MSE,DR) values for
different regularizers and different λ values together with our learned regularizer Rθ.20



6 Conclusion

In this work, we have proposed a hybrid model-based and data-based method for solving nonlinear
EIT inverse problems which exploits a fully connected neural network to learn the regularizer of the
Gauss-Newton method from data. Moreover, we proposed an attention-like mechanism, based on
anisotropic total variation, which efficacy in piece-wise conductivity reconstructions is demonstrated
in the numerical section. This approach was shown to yield higher accuracy with respect to other
state-of-the-art approaches for absolute EIT reconstruction (i.e. RGN, D-bar). The extensive testing
presented in the previous sections supports this conclusion, that was verified in a number of different
configurations: (i) different number of anomalies, (ii) noisy conditions, (iii) heart and lung model,
potentially useful for respiration monitoring. While manual hyperparameter tuning and regularizer
operator choice is often critical to obtain good reconstruction, in EITGN-NET the regularizer operator
is intrinsically tuned, as the training procedure automatically optimizes it for the chosen dataset.
Overall, EITGN-NET holds great potential for the integration of model and data-based methods
for nonlinear EIT reconstruction, providing a framework for the automation of lengthy, error-prone
steps while maintaining explicit modeling constraints that allow for greater interpretability of the
reconstruction with respect to end-to-end approaches, a crucial feature for mission-critical fields such
as medical imaging.
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[8] M. Cortesi, A. Samoré, J. Lovecchio, R. Ramilli, M. Tartagni, E. Giordano, and M. Crescentini.
Development of an electrical impedance tomography set-up for the quantification of mineralization
in biopolymer scaffolds. Physiological Measurement, 42(6):064001, 2021.

21



[9] Q. Ding, G. Chen, X. Zhang, Q. Huang, H. Ji, and H. Gao. Low-dose ct with deep learning regular-
ization via proximal forward–backward splitting. Physics in Medicine & Biology, 65(12):125009,
Jun 2020.

[10] S. J. Hamilton and A. Hauptmann. Deep d-bar: Real-time electrical impedance tomography
imaging with deep neural networks. IEEE Transactions on Medical Imaging, 37(10):2367–2377,
2018.

[11] S. J. Hamilton, C. N. Herrera, J. L. Mueller, and A. Von Herrmann. A direct D-bar reconstruction
algorithm for recovering a complex conductivity in 2D. Inverse Problems, 28(9), 2012.

[12] S. J. Hamilton, A. Hänninen, A. Hauptmann, and V. Kolehmainen. Beltrami-net: domain-
independent deep d-bar learning for absolute imaging with electrical impedance tomography
(a-EIT). Physiological Measurement, 40(7):074002, jul 2019.

[13] M. Huska, D. Lazzaro, and S. Morigi. A forward-backward strategy for handling non-linearity in
electrical impedance tomography. In O. Gervasi and et al., editors, Lecture Notes in Computer
Science (vol 12951) Computational Science and Its Applications – ICCSA 2021, pages 635–651,
Cham, 2021. Springer International Publishing.
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