
28 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Bambini G., Balas R., Conficoni C., Tilli A., Benini L., Benatti S., et al. (2020). An Open-Source Scalable
Thermal and Power Controller for HPC Processors. Institute of Electrical and Electronics Engineers Inc.
[10.1109/ICCD50377.2020.00067].

Published Version:

An Open-Source Scalable Thermal and Power Controller for HPC Processors

Published:
DOI: http://doi.org/10.1109/ICCD50377.2020.00067

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/788609 since: 2021-01-13

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/ICCD50377.2020.00067
https://hdl.handle.net/11585/788609

An Open-Source Scalable Thermal and Power
Controller for HPC Processors

Giovanni Bambini∗, Robert Balas†, Christian Conficoni∗, Andrea Tilli∗,
Luca Benini∗†, Simone Benatti∗, Andrea Bartolini∗

∗Università ALMA Mater Studiorum, Bologna, Italy, †ETH Zürich University, Zürich, Switzerland
∗{giovanni.bambini2, christian.conficoni3, andrea.tilli, luca.benini, simone.benatti, a.bartolini}@unibo.it,

†{balasr, lbenini}@iis.ee.ethz.ch

Abstract—In the last decade, high performance multi-core
processor designs have followed an increase in number of cores,
interfaces, heterogeneity and System-on-chip (SoC) complexity.
HPC applications also require tailored chip designs with specific
operating points and performance indexes. In this scenario, an
advanced and configurable Power Controller System (PCS) is
necessary to meet power and thermal constraints, without the
necessity of static ultra-conservative margins on the operating
points. In this paper, we propose an open-source PCS design,
based on a parallel ultra-low power microcontroller with RISC-
V cores, and an open-source software environment based on a
Real-time operating system (RTOS) with a configurable Power-
thermal control algorithm. Considering a 1ms control interval,
the overhead of the RTOS is about 6% of the cycles in the
nominal case. The control algorithm is able to limit temperature
and power consumption within given bounds, while maximizing
performance. The PCS is able to control up to 76 different
cores/computing units with headroom for larger core counts.

Index Terms—Real-time OS, HPC Processor, Power Control,
Thermal Control, Scalable, Parallel microcontroller

I. INTRODUCTION

Modern HPC processors comprise tens of cores, with vec-
tor units, specialized Hardware co-processors, and memory
subsystems. Today, the OS handles power management by a
dedicated driver, which selects the HW operating points based
on cores’ utilization. In HPC environment, the applications
are composed by multiple processes running in parallel on
distributed computing nodes, each featuring multi-core CPUs.
Applications often use all the cores available, and request the
fastest possible computation. Since the application’s processes
need to synchronize on barriers, ensuring the same computa-
tional performance on all the cores enables higher utilization
and shorter execution time [1]. The HW selects autonomously
the operating point for each computing resource leveraging
on/off-chip power, voltage, and temperature (PVT) sensors.

To this aim, processors in this field embed dedicated HW re-
sources (Power Controller Systems, PCS) to control the power
consumption dynamically, to prevent thermal hazards (thermal
capping), to ensure the TDP power budget (power capping),
and ultimately to increase the energy efficiency. Hardware
vendors use different PCS architectures: IBM Power9 pro-
cessors use a heterogeneous SoC based on a PowerPC 405
and four additional General Purpose Engines1. ARM defines

This research was partially funded by the European Union’s Horizon 2020
research and innovation programme “European Processor Initiative” under
grant agreement No 826647.

1http://developercongress2017.openpowerfoundation.org/wp-
content/uploads/2017/05/Part3-On-Chip-Controller-OCC-Tutorial-1.pdf

the System Control Management Interface (SCMI) standard
with an M3 core2 to implement the PCS. The firmware is
based on several tasks, scheduled by a SW state machine.
Both vendors release their PCS firmware open-source, but the
implementation depends on close-source hardware. The PCS
has to: (i) interface with several on/off-chip sensors, power
management interfaces and actuators; (ii) perform complex
computational tasks, like automatic controls, signal processing,
optimisation and machine learning algorithms; (iii) support a
large number of processing elements; (iv) interface with the
OS and the board management controller (BMC) [2].

Naive thermal and power capping algorithms are not capable
of delivering the desired energy-efficiency on a wide set of
working conditions and workloads for the processors in this
market segment [1], [3]. For this reason, advanced controllers
and advanced policies are needed. More computationally-
intensive tasks require more powerful microcontrollers (uC) to
comply with the tight timing constraints of the thermal control
in HPC. More capable uC also allow the implementation of
more sophisticated software, like RTOS or parallel compu-
tation, while still decreasing the discrete-time output update
interval. Shorter and more deterministic intervals increase the
quality and the responsiveness of the control, the robustness of
thermal and power capping, thus allowing for more aggressive
control parameters and improved performance.

This work proposes a novel PCS based on an open-source
multi-core architecture, namely PULP [4]. The PULP SoC has
been recently compared [4] with M4 and H7 ARM cores on
computationally intensive tasks, where it shows 19.6x lower
latency and 8.67x higher energy efficiency. A configurable
algorithm for power and thermal control is implemented
relying on an open-source RTOS. By leveraging an open-
source SoC, RTOS and firmware we aim to provide a flexible
and powerful PCS reference design ready for the current and
future HPC systems.

The controller algorithm is can manage up to 76 processor
tiles with an overhead of 6% in the cycle count. The power
constraint is enforced with a 500us delay considering perfect
prediction of the workload, and with a 42ms delay considering
high varying (every 50ms) mixed workloads, with the aid
of a Recursive Weighted Least Mean Square algorithm. The
thermal constraint is enforced with a 7.5°C margin and a
maximum settling time of 41ms. All the results have been
obtained with HW-in-the-loop simulation.

2https://connect.linaro.org/resources/bkk19/bkk19-pm05/

II. BACKGROUND

In this paper we consider an HPC processors composed
of many processing units (cores). We assume each core to
be controlled by varying the frequency of its clock, and its
temperature reading is available by means of PVT sensors.
We also consider the processor total power consumption to
be provided from power gauges. Roughly speaking, the aim
of a thermal/power control system is to dynamically choose
the “best operating point” for each core3, while keeping the
entire system within its thermal, power and structural bounds
expressed by the following inequalities:

ns∑
i=1

Pi ≤ Pbudget, TSi,i ≤ TCRIT ,

fmin ≤fi ≤ fmax, Vdd min ≤ Vdd i ≤ Vdd max, (1)

with: i = 1, . . . ns.

where ns is the number of cores, and TCRIT the critical
temperature threshold not to be exceeded for the silicon
devices whose temperature and consumed power are denoted
with TSi,i, and Pi, respectively. The core thermal behavior can
be characterized by an ordinary differential equation (ODE)

ṪSi,i = f(Pi, TSi,i, zi) (2)

depending on the core power and temperature, as well as other
external variables collected as zi (e.g., neighbour cores and
ambient temperature [3]). Also, the core power depends mainly
on its voltage and frequency, as well as other parameters we
denote with wi (such as the workload), with a map

Pi = g(fi, Vdd,i, wi) (3)

Additional constraints could be added to the problem, such as
one on the power consumption per chip section, differentiated
by the connection to different external power lines, or cores
“binding constraints”. The latter refers to the need to have
always identical frequencies for cores executing parallel com-
putations, to avoid workload imbalance. These requirements
can be formulated as:

nj∑
i=1

Pi ≤ Pquad j max, j = 1, . . . , nquad (4)

fti = ftj if B(i, j) = 1 (5)

where B(i, k) is a ns × ns symmetric matrix whose entries
are 0 if the cores are not subject to binding constraints, 1
otherwise.
Finally, the control strategy can be cast as an optimization
problem

min
f

N−1∑
j=0

|ft(k + j|k)− f(k + j|k)|2R

subject to: (1), discretized (2), (3), (4) (5)

(6)

3Indeed, also the core voltage has to be suitably scaled as well. However,
since core frequency and voltage values are coupled, in this work we consider
frequency as the main control knob, assuming voltage is scaled accordingly.

where k denotes the (discrete) time variable, N is the number
of steps assumed as the horizon, f = (f1, . . . , fns)T represent
the decision variables of the problem, i.e. the frequencies to be
assigned to the cores by solving the problem above with the set
of target frequencies ft = (ft,1, . . . , ft,ns)T and R ∈ Rns×ns

is a symmetric positive definite weight matrix and | · |R is the
corresponding norm.

Problem (6) can be transformed into a convex Quadratic
Problem (replacing fi with Pi as decision variables and relying
on the linearity of thermal models (2)). However, this problem
cannot be solved offline, because the workload is not available
for the entire time horizon and the optimization relies on the
exact knowledge of the chip thermal and power models (2),
(3). Moreover, even though the optimization problem could
be solved on-line, it would be computationally demanding
to carry out such operation on a single conventional micro-
controller (the Power Controller) for a large number of cores.

For these reasons, our proposed approach is based on a sub-
optimal, yet efficient two-layer algorithm4

III. CONTROLLER DESIGN

The proposed two-layer strategy approach consists of:
• a Power Dispatching Layer which distributes the re-

quested power Pbudget among cores, according to power
limitations and other constraints;

• a Thermal Regulator which allocates core frequencies
(and associated power) according to values computed
by the Power Dispatching Layer, and to meet the core
temperature constraints TCRIT

A. The Power Dispatching Layer

The first step that the Power Dispatching Layer has to
perform is the power consumption estimation. We compute
the estimated power consumption with equation (7), where the
parameters Icci and Ceffi vary from chip to chip and depend
on the current workload.

Pti = IcciVddi
+ CeffiV

2
ddi
fi (7)

The estimated power consumption of the chip is obtained by
summing all the power consumption of the cores. The total
value is then compared to the input power budget Pbudget.

∆ =

ns∑
i=1

Pti − Pbudget (8)

If ∆ > 0, an algorithm should be deployed to reduce
power consumption. To this aim, a simple heuristic strategy
is proposed to achieve power reduction based on the
thermal room of each core (TCRITi − TSi,i). In other
words, the frequency reduction is not uniform but inversely
proportional to the core temperature. A naive power dispatcher
algorithm would share an equal budget to all the cores. This
would limit the performance of CPU intensive tasks under
imbalance workload, which are the ones for which the overall
performance depends mostly on core’s frequency.

4It is further to note that the binding constraint can be enforced aligning
the frequencies of all the coupled cores to the one with the lower value.

Specifically, the main power dispatching steps are:
1) Compute weights to reduce cores power:

αi = (TCRITi − TSi,i)
−1

2) Evaluate and enforce binding constraint as:
αi = max{αi, αj} if B(i, j) = 1;

3) Normalize the weights αi as: ᾱi = αi · (
∑ns

i=1 αi)
−1

4) cut cores powers as follows: P ∗
ti = Pt − ᾱi∆

B. The Thermal Regulator
This layer imposes the temperature limitation based on the

thermal dynamics of each core, which are disregarded at the
power dispatching level. To this aim, a Proportional-Integral
(PI) temperature regulator for each core is proposed. The PI
law is computationally light, and, besides its tuning, takes
into account the core dynamic thermal model without strongly
relying on it for the control action. Furthermore, each PI is
distinct and independent of others, allowing flexibility and
decentralization in the code execution.

The thermal layer’s philosophy is to decrease the power
indication P ∗

ti received by the Power Dispatcher layer only
when the core’s temperature is approaching its critical value.
To this purpose, the reference input of the regulator is set to be
a constant value corresponding to the temperature limit TCRIT

reduced by a safety margin. The PI output is saturated between
[P ∗

ti, 0] obtaining a null control action if the temperature is less
than the reference input value, and negative control action
in case the error is negative. This action is subtracted to
the target power P ∗

ti received by the Power Dispatch layer
to obtain the final output, which is then converted into the
corresponding core frequency exploiting the power model (3).
Clearly, this part relies on knowledge of the core power charac-
teristic. However, uncertainties can be managed thanks to the
robustness of the output feedback PI algorithm. Furthermore,
online adaptation of the power model can be plugged into the
strategy, exploiting power measurements available from the
voltage regulators supplying the different chip sections.

C. System infrastructure
The proposed control structure requires a hard real-time

deadline regarding the output of the control values (frequencies
and voltages); this implies that the computation of the power
controller has to be time-bounded and executed with a precise
periodicity; it also requires the ability to communicate with
multiple agents without interfering with the control action.

To achieve this requirements we deployed our power control
firmware over a RTOS. This brings other benefits, such as:
(i) scalability and portability, given by the abstraction that an
RTOS provides; (ii) modularity, upgradability and maintain-
ability of the code; (iii) capability to execute multiple functions
“simultaneously” by using multiple tasks and exploiting pre-
emptive scheduling; (iv) more flexibility and the possibility to
execute code with mixed computation requirements (periodic,
event-driven, soft and hard real-time).

However, implementation over an OS also poses some
challenges and raises concern over the required performances
(considering the characteristics of the HPC systems over which
the PCS is performing its control action), and the safety and
reliability of the entire system.

Item Nominal Worst Case
Overhead: Total Cycles 14 887 23 607
% of total cycles 5.95 % 9.44 %
Total (with Semaphores) 47 955 63 761
% of total cycles 11.24 % 15.86 %

TABLE I: Total overhead of using FreeRTOS in our Application

FreeRTOS was chosen as the real-time OS because it is a
well-established RTOS with the necessary characteristics and
tools to meet the above-mentioned control requirements. It is
also open-source, which enabled to inspect the source code
while developing, and it is aligned with the scope of the PCS
project. Lastly, FreeRTOS provides a safety-critical version,
called safeRTOS, which is pre-certified for all standards and
can be used in medical, industrial and automotive applications.

The chosen microarchitecture is Control-PULP, which is a
hardware platform based on the open-source PULP project [5].

IV. EXPERIMENTAL RESULTS

The proposed PCS is tested in a Hardware-in-the-loop
environment on a commercial PULP-based platform (i.e.
GAP8 from GWT), with a FreeRTOS v.10.2.1 implementation.
The thermal and power model computation to perform the
hardware-in-the-loop test are entrusted to an STM32 F401RE
Nucleo micro-controller.

A. Timings

We performed several tests to evaluate the feasibility of
using a RTOS, analyze its overheads and performance. In
particular, we analyzed the overhead generated from the
FreeRTOS notification System, the overhead introduced by the
task context switch in an RTOS environment, and the overhead
of the context switch generated by a binary semaphore.

Table I illustrates the total overhead of our application in
the nominal and the worst-case scenario, and the percentage
of these overheads w.r.t. to the available cycles of our interval.
The second part of the table shows the same indexes consid-
ering semaphores as an overhead derived from the utilization
of FreeRTOS. Note that, even if the percentage of overhead
cycles is acceptable if compared to the total cycles in the
interval, semaphores overheads represent a significant part of
the cycles occupied by our application.

B. Scalability

We ran tests to assess the scalability of our code w.r.t.
the number of cores to be managed. Some parts of the code
are almost invariant (the FreeRTOS overheads, the parameter
adaptation, other internal management) and others are almost
linearly dependent on cores number (PIDs, read/write of global
core variables, power algorithm). Equation (9) shows the
number of cycles occupied by our application in the periodic
time interval, in function of the number of cores ns:

CyclesNom = 42685 + 1629 · ns
Cyclesworst = 63358 + 1669 · ns

(9)

From equation (9), by leaving 20% of the cycles free, and
adding the cycles occupied by the sporadic overheads, the

Fig. 1: Perfect Knowledge scenario test: the input commands are: high
frequency w. maximum workload, a low power capping constraint, high fre-
quency w. mixed workloads, low frequency, mixed frequencies w. DGEMM.

maximum number of cores which can be controlled is 76 in
the worst case scenario and 93 in the nominal case.

C. Control Performance
In the first test, we show the control capability in a perfect-

knowledge scenario: the control inputs are changed every
400ms, and the controller is perfectly aware of the system
parameters, as well as the workload to be executed. From
Figure 1, we can observe that both the power and temperature
limits are met, while the frequency is at its maximum value.
In particular, the stricter thermal limit is always respected, the
longer overshoot in our test is about 41 ms (due mainly to
the slow response typical of thermal systems). The frequency
reduction due to thermal control is 834 MHz on average.

Then we changed the model to reflect a more realistic
scenario, adding: (i) multiplicative and additive errors in the
plant parameters (ii) noise in the temperature sensors and the
total power measurement, (iii) additional power consumed by
other components which is unknown by the controller. We also
(iv) modeled mixed workloads that vary every 50ms and (v)
are not known by the controller.

In this more realistic, yet challenging scenario, thermal
limits are still ensured due to the feedback control (PID)
properties. Instead, the total power consumption is above the
power budget of the 10% for the 68% of the time. To tackle
this issue, we implemented a Recursive Weighted Least Square
algorithm (RWLS) which estimates the workloads parameters
in the power formula and adapts them to the varying mixed-
workloads values that are running in the model [6]. Using the
RWLS we obtained that: (i) The temperature with the RWLS
is a little lower (2.625°C in average); (ii) The power capping
requirement is better met. The total power consumption is
above the Power budget limit of the 10% for only the 3%
of the time, compared to the 68% of time without a parameter
adaptation. (i) The average frequencies are the same (we
considered only the parts in which both algorithms respect
the power budget limit).

We also designed a test to stress the proposed power re-
duction compered to a simple equal power-division algorithm.
In this test, two groups of cores have really different constant
workloads, while the power budget requirement is kept low
and varied every 200 ms. From the graph 2 we can observe

Fig. 2: Comparison test between the Alpha reduction algorithm and a basic
Power Dispatching

that our power reduction algorithm has better utilization of
the available budget by using on average 99.5% of it, while
the basic algorithmsexploits only the 87.5%. Also, with our
reduction algorithm, the cores with the higher temperature
(i.e. doing the most intensive workload) have an average of
700MHz higher frequency than the basic power dispatching,
and this increase goes up to a 1.8GHz boost.

V. CONCLUSION

This paper presents an open-source versatile design for a
Power Control Subsystem, with an adaptive control algorithm
implemented on a Real-Time Operating System. Our frame-
work is based on a parallel ultra-low-power microcontroller.
By virtue of the efficient task manager, a 1ms base interval
requires only 6% of the cycles for the overheads, under
nominal conditions. To limit the maximum temperature and
to control the power consumption, a re-configurable algorithm
is used showing the capability to manage up to 76 tiles. The
HiL emulation framework is fully implemented using off-the-
shelf digital platforms.

REFERENCES

[1] D. Cesarini, A. Bartolini, P. Bonfa, C. Cavazzoni, and L. Benini, “Count-
down: a run-time library for performance-neutral energy saving in mpi
applications,” IEEE Transactions on Computers, pp. 1–1, 2020.

[2] A. Bartolini, D. Rossi, A. Mastrandrea, C. Conficoni, S. Benatti, A. Tilli,
and L. Benini, “A pulp-based parallel power controller for future exascale
systems,” in 2019 26th IEEE International Conference on Electronics,
Circuits and Systems (ICECS), 2019, pp. 771–774.

[3] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini, “Thermal and en-
ergy management of high-performance multicores: Distributed and self-
calibrating model-predictive controller,” IEEE Transactions on Parallel
and Distributed Systems, vol. 24, no. 1, pp. 170–183, 2013.

[4] A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini, “Pulp-nn: A
computing library for quantized neural network inference at the edge
on risc-v based parallel ultra low power clusters,” in 2019 26th IEEE
International Conference on Electronics, Circuits and Systems (ICECS),
2019, pp. 33–36.

[5] P. D. Schiavone, D. Rossi, A. Pullini, A. Di Mauro, F. Conti, and
L. Benini, “Quentin: an ultra-low-power pulpissimo soc in 22nm fdx,”
in 2018 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified
Conference (S3S), 2018, pp. 1–3.

[6] R. Diversi, A. Tilli, A. Bartolini, F. Beneventi, and L. Benini, “Bias-
compensated least squares identification of distributed thermal models for
many-core systems-on-chip,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 61, no. 9, pp. 2663–2676, 2014.

