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Astrophysical objects and the surrounding geometry must be described by suitable states

in the complete quantum theory of matter and gravity. We attempt at reconstructing

such a state for a Schwarzschild black hole from the analysis of a collapsing ball of dust
and describing the outer geometry by means of a coherent state.

Keywords: Quantum gravity; black holes; singularities.

1. Introduction

Astronomical observations are compatible with classical descriptions of astrophys-

ical objects and of the Universe as a whole. This fact might lead us to believe that

quantum physics only regards “small fluctuations” around classical configurations. a

However, a consistent view of Nature demands that all is quantum b and therefore

what the experimental observations really tell us is that the quantum states for

those observed systems reproduce very closely classical solutions of the dynamical

equations. In other words, the expectation values of quantum gravity observables

taken on the actual states that are relevant for the description of our world must

be very close to classical solutions of General Relativity where data are available.

A quantum theory can differ from its classical counterpart 1) by admitting states

that have no classical analogue (for example, half integer spinors) and 2) by not

admitting the existence of all the quantum states which can be approximated by

classical solutions. A prototypical example of the latter is the atom: according to

classical electrodynamics, an electron accelerated by the Coulomb field of the pro-

tons should radiate and spiral down into the nucleus in a very brief time. However,

quantum mechanics predicts a discrete spectrum of energy states for the electron,

with the ground state being several orders of magnitude broader than the size of

aThis is the hard core version of the background field approach.
bOr nothing is, which we know is not the case from plenty of experiments carried out in our

laboratories.
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the nucleus. c This makes the probability for the electron to be captured by the

nucleus negligible, thus explaining the existence of the world we see and ourselves.

Several solutions of the Einstein field equations show similarly pathological be-

haviours in the form of spacetime singularities. It is rather natural to conjecture that

quantum gravity disposes of those like the ultraviolet catastrophe of electrodynam-

ics is cured in quantum mechanics, the latter being an approximation of quantum

field theory stemming from the smart choice of the position of the electron as the

relevant observable. One kind of such singularities of General Relativity appears in

the gravitational collapse of compact objects if a trapping surface appears [1]. It

is obvious that the complexity of real astrophysical objects makes such a problem

intractable without the “smart choice” of a suitable observable to describe the col-

lapse, like it is done with the (much simpler case of the) electron in the atom. In

fact, there are also obvious differences between the collapse of astrophysical objects

and the electron capture by an atom. For instance, we cannot literally see the elec-

tron in its trajectory towards the nucleus, but we only detect the discrete emission

when it transitions from an excited state to a lower energy one. On the other hand,

we have astronomical data from supernovae explosions and accretion disks around

black holes, although our present resolution does not allow us to see very close to

the horizon and such processes involve huge amounts of matter.

The descriptions presented in this topical review should therefore be viewed as

very simple toy models for what actually occurs in nature. In particular, we will

first consider results from Ref. [2], in which the collapse of a ball of dust of mass

M was studied to show that its ground state is much wider than the (naively ex-

pected) Planck length and is in fact characterised by a “principal quantum number”

proportional to M2 (in Planck units). A realistic description of the gravitational

collapse goes way beyond our scope here, but we will also provide some preliminary

comments about how the classical collapse can be recovered in the quantum pic-

ture. The scaling of the ground state size with the mass M2 will then allows us to

connect with results from Ref. [3], in which the existence of a proper quantum state

reproducing the Schwarzschild geometry outside the collapsed body is shown to

imply both the absence of a central singularity and again a scaling of the “graviton

number” with M2, like is required by the horizon area quantisation [4].

2. Discrete spectrum of dust ball

In General Relativity, the areal radius R = R(τ) of a ball of dust with ADM mass

M follows a radial geodesic in the Schwarzschild spacetime

ds2 = − (1 + 2VN) dt
2 +

dr2

1 + 2VN
+ r2 dΩ2 , (1)

cAnd much larger than the Compton length of the electron and well.
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where d

VN = −GN M

r
. (2)

The evolution of R can then be determined from the effective Hamiltonian [2] e

H ≡ P 2

2M
− GN M2

R
=

M

2

(
E2

M2
− 1

)
≡ E , (3)

where the momentum P = M (dR/dτ). Eq. (3) is formally the same as the Newto-

nian conservation law for the energy E , but it is in fact the fully General Relativistic

Hamiltonian constraint. General Relativity differs from Newtonian physics in that

it is non-linear and that difference in this simple toy model is given by the non-linear

relation between E and E.

Quantising the system is tantamount to assuming the uncertainty relation

∆R∆P ≳ ℏ = ℓp mp, which is obtained by means of the usual canonical com-

mutator f [
R̂, P̂

]
= i ℏ , (4)

and expectation values are then taken on wavefunctions Ψ = Ψ(R) satisfying

Ĥ Ψ = E Ψ . (5)

This is just the Schrödinger equation for a gravitational atom and the spectrum

contains the eigenstates

Ψn =

√
M9

π n5 ℓ3p m
9
p

e
− M3 r

nm3
p ℓp L1

n−1

(
2M3 r

nm3
p ℓp

)
. (6)

where L1
n−1 are generalised Laguerre polynomials with n ≥ 1 for zero angular

momentum. The corresponding eigenvalues are given by

En
M

≃ −G2
N M4

2 ℏ2 n2
= − 1

2n2

(
M

mp

)4

=
1

2

(
E2

n

M2
− 1

)
, (7)

and one also has

Rn ≡ ⟨Ψn|R|Ψn⟩ ≃
ℏ2 n2

GN M3
= n2 ℓp

(mp

M

)3

. (8)

In particular, Rn∼1 ∼ ℓp (mp/M)3 ≪ ℓp, and the spectrum contains states Ψn of

infinitesimally small width for M ≫ mp. These lowest states would also have an

energy density of the order of M/R3
1 ∼ (M10/m9

p) ℓ
−3
p , which is hardly a satisfying

alternative to the classical singularity of infinite energy density.

dWe use units with c = 1, GN = ℓp/mp and ℏ = ℓp mp, where ℓp is the Planck length and mp

the Planck mass.
eNumerical coefficients of order one will often be omitted or approximated for the sake of clarity.
f∆O ≡ ⟨ Ô2 ⟩ − ⟨ Ô ⟩2 for Ô = R̂ or P̂ .
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However, the non-linear relation in Eq. (7) yields the constraint

0 ≤ E2
n

M2
≃ 1− 1

n2

(
M

mp

)4

, (9)

and we thus find that

n ≥ NM ≃
(

M

mp

)2

. (10)

This means that, for M ≫ mp, the actual ground state for the collapsed ball in

quantum General Relativity is given by ΨNM
with NM ≫ 1 and

Rn ≳ RNM
∼ GN M . (11)

Moreover, since RNM
< RH ≡ 2GN M , we could also argue that the ground state is

hidden behind the Schwarzschild horizon of the metric (1). It is now important to

remark that the above description is only useful when the dust ball is of macroscopic

mass M ≫ mp, so that the radius R emerges as an effective degree of freedom

from the collective behaviour of a many body system. For example, if we applied

the above description to elementary particles with M ≪ mp, we would find that

RNM
= R1 exceeds the size of the visible Universe for an electron. Since R1 ≫

RH, this simply means that the corresponding wavefunction Ψ1 = Ψ1(R) gives a

negligible probability for the electron to be found inside its gravitational radius and

be a black hole (see Refs. [7] for similar conclusions). However, the wavefunction

Ψ = Ψ(R) only determines the probability (amplitude) for the radius of the object

to take a given value R, whereas this conclusion would need us to reconstruct the

outer geometry from a suitable quantum state. This will be attempted in the next

Section.

It is remarkable that the principal quantum number NM for the ground state

shows the same dependence on the massM as the one derived from the quantisation

of the horizon area [4], which is at the heart of the corpuscular model of black

holes [5], hence hinting to the classicalization of gravity [6]. In particular, we notice

that, for n > NM , the radial spacing between different states is given by

δR = Rn −Rn−1 ≲ ℓp
mp

M
, (12)

so that the size of the dust ball effectively forms a continuum for M ≫ mp. More-

over, since the total energy M is the same for all states in the spectrum, nothing

prevents the ball from “decaying” into the ground state. g This process would be

the analogue of the classical Oppenheimer-Snyder collapse [8], albeit ending at a

“bouncing” radius [9] of the order of RNM
, and will be further investigated in future

works. Finally, the same scaling in Eq. (10) will arise again in the next Section from

the quantum description of the geometry.

gThis is a remarkable difference with respect to the capture of the electron by an atom, which

instead requires the emission of energy from the system.
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3. Quantum Schwarzschild geometry

We next look for a quantum description of the geometry (1) outside the collapsed

object by means of a scalar field Φ = VN/
√
GN [3]. It is important to remark that

this description is not fundamental and Φ is just meant to represent the (non-

perturbative) behaviour of the degrees of freedom of General Relativity. What is

important is that we regard the vacuum state |0⟩ of Φ as the quantum state of a

truly empty spacetime, in which no modes of matter or gravity are excited. It is

therefore natural to quantise Φ as a massless field satisfying the free wave equation

in Minkowski spacetime[
− ∂2

∂t2
+

1

r2
∂

∂r

(
r2

∂

∂r

)]
Φ(t, r) = 0 , (13)

whose normal modes can be conveniently written as

uk(t, r) = e−i k t j0(k r) , (14)

where j0 = sin(k r)/k r are spherical Bessel functions. We can now introduce the

usual annihilation operators âk and creation operators â†k for these modes. The

quantum Minkowski vacuum is then defined by âk |0⟩ = 0 and the corresponding

Fock space is built as usual.

Classical configurations of the scalar field that can be realised in the quantum

theory must correspond to suitable states in this Fock space, and a natural choice

is given by coherent states

|g⟩ = e−NG/2 exp

{∫ ∞

0

k2 dk

2π2
gk â

†
k

}
|0⟩ (15)

such that √
ℓp
mp

⟨g|Φ̂(t, r)|g⟩ = V (r) =

∫ ∞

0

k2 dk

2π2
Ṽ (k) j0(k r) . (16)

The latter condition determines the occupation numbers for each mode k as

gk =

√
k

2

Ṽ (k)

ℓp
. (17)

It is now crucial that the state (15) is well-defined only if it is normalisable, that is

if the total occupation number

NG =

∫ ∞

0

k2 dk

2π2
g2k (18)

is finite.

For the potential VN in the metric (1) we have

gk = − 4πM√
2 k3 mp

, (19)

and the integral in Eq. (18) diverges both in the infrared (IR) and the ultraviolet

(UV). This implies that no quantum state exists in our Fock space which can
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reproduce VN exactly. Any quantum realisation of the Schwarzschild geometry must

therefore contain occupation numbers gk which differ from those in Eq. (17) for

k → 0 and k → ∞, so as to make the quantum state normalisable. Since the

explicit form of such proper occupation numbers will depend on the (unknown and

presumably very complicated) state of matter inside the horizon, we will instead try

to derive some general conclusions from qualitative arguments. In particular, the

IR divergence is simply due to the assumption that the system is completely static

and the potential VN extends to infinite distance from the source centred at r = 0.

To cure the IR divergence we can introduce a cut-off kIR = 1/R∞ to account for

the necessarily finite life-time τ ∼ R∞ of any realistic source. The UV divergence is

instead due to the behaviour of VN for r → 0 and would not be present if the source

were extended. This allows us to connect the description of the outer geometry with

the ground state in the previous Section by introducing a cut-off kUV ∼ 1/RNM
.

The total occupation number finally reads

NG =
4M2

m2
p

∫ kUV

kIR

dk

k
=

4M2

m2
p

ln

(
R∞

RNM

)
, (20)

and we have again recovered a scaling of the mass compatible with the horizon area

quantisation [4]. Moreover, the average radial momentum is given by

⟨ k ⟩ = 4M2

m2
p

∫ kUV

kIR

dk =
4M2

m2
p

(
1

RNM

− 1

R∞

)
, (21)

and the typical wavelength λG = NG/⟨ k ⟩ ∼ ℓp M/mp also reproduces the scaling

found in the corpuscular picture of black holes [5].

We can next recompute the expectation value of the scalar field in the proper

quantum state |g⟩ and find

VQN ≃
∫ kUV

kIR

k2 dk

2π2
ṼN(k) j0(k r)

≃ VN

{
1−

[
1− 2

π
Si

(
r

RNM

)]}
, (22)

where Si denotes the sine integral function (see Fig. 1 for some examples). We

remark that the oscillations occur around the expected classical behaviour VN and

become smaller and smaller for decreasing values of RNM
in the region r > RH.

On the other hand, V ′
QN(r = 0) = 0 and tidal forces should vanish at the centre.

In fact, the quantum corrected metric will have the form in Eq. (1) with VN replaced

by VQN. The Ricci scalar R ∼ r−2 and the Kretschmann scalar Rαβµν Rαβµν ∼
R2 ∼ r−4. Hence, tidal forces remain finite all the way into the centre of the

system, which is technically an integrable singularity . This can be confronted with

the standard Schwarzschild geometry, for which Rαβµν Rαβµν ∼ R2 ∼ r−6 and

tidal forces acting on neighbouring geodesics diverge for r → 0, causing the so-called

“spaghettification” of infalling matter (for more details, see Ref. [3]). It is perhaps

surprising that the avoidance of diverging tidal forces can just follow from the very
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Fig. 1. Quantum potential VQN in Eq. (22) (solid line) compared to VN (dashed line) for RNM
=

GN M = RH/2 (left panel) and RNM
= RH/20 (right panel). The horizontal thin line marks the

location of the horizon for V = −1/2.

existence of proper quantum states and does not seem to require any modification

of the fundamental dynamics of gravity given by the General Relativistic Eq. (3).

For RNM
≲ GN M , it also follows that the quantum corrected metric always

contains an event horizon (see thin horizontal line in Fig. 1) and the matter core

in the ground state of the previous Section therefore gives rise to a black hole

geometry. Another nice property of this metric is that it contains no inner horizon

and none of the conceptual issues associated with Cauchy horizons.

4. Conclusions

In this short topical review, we brought together the analyses from Refs. [2] and [3]

about the quantum description of black holes. The main results are: 1) the matter

which forms a black hole does not end into a singularity but maintains macroscopic

size; 2) the effective metric is regular everywhere, including the centre; 3) the outer

region contains information about (at least) the size of the material core, which

constitutes a form of quantum hair [10], and 4) both the quantum ground state of

the collapsed matter and the quantum state of the outer geometry are characterised

by similar scalings of the massM2 ∼ NM ∼ NG, from Eqs. (10) and (20). The above

picture is thus compatible with the quantisation of the horizon area.

We would also like to mention that a similar description of the Schwarzschild-

de Sitter spacetime in terms of a coherent quantum state was given in Ref. [11]

and that a contribution reproducing MOND was obtained from the finite size of

the visible Universe. Finally, from the conceptual point of view, it would certainly

be interesting to improve our understanding of the interplay between spacetime

singularities (or the removal thereof) and the fundamental quantum dynamics of

matter and gravity, as it is described, for instance, in Refs. [12] and [13].
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