### Supplemental Material

This supplemental material includes additional information to that already provided in the main letter. A full set of results for the nominal analysis is presented in both graphical and tabular form in Sec. 1. A complete description of the corresponding systematic uncertainties is given in Sec. 2. The correlations between the angular observables are presented for the  $S_i$  observables in Sec. 3 and for the  $P_i^{(\prime)}$  observables in Sec. 4. The angular and mass distributions of the selected candidates in the different  $q^2$  bins are shown in Sec. 5.

#### 1 Results

The values of  $S_3$ ,  $S_4$  and  $S_7$ - $S_9$  obtained from the simultaneous fit are shown in Fig. 1. The data are compared to theoretical predictions based on the prescription of Ref. [1]. The predictions combine light-cone sum rule calculations [2] with lattice determinations [3,4] of the  $B^0 \to K^{*0}$  form factors. Figure 2 shows the values of the optimised observables,  $P_i^{(\prime)}$ , obtained from the fit. The data are compared to predictions based on the prescription in Ref. [5]. These predictions use form factors from Ref. [6]. The values of the observables in the standard and optimised basis are given in Tables 1 and 2, respectively. The statistical correlation between the observables in each  $q^2$  bin is provided in Tables 4–13 and Tables 14–23.



Figure 1: Results for the *CP*-averaged angular observables  $S_3$ ,  $S_4$  and  $S_7$ – $S_9$  in bins of  $q^2$ . The data are compared to SM predictions based on the prescription of Refs. [1,2].



Figure 2: Results for the optimised angular observables  $P_1-P_3$ ,  $P'_4$ ,  $P'_6$  and  $P'_8$  in bins of  $q^2$ . The data are compared to SM predictions based on Refs. [5,6].

Table 1: Results for the CP-averaged observables  $F_{\rm L}$ ,  $A_{\rm FB}$  and  $S_3-S_9$ . The first uncertainties are statistical and the second systematic.

| 0.1                                                                                                                                     | $0 < q^2 < 0.98 \mathrm{GeV}^2/c^4$                                                                                                                                                                                                                                                                               | 1.                                                                                                                                                                                                                                       | $1 < q^2 < 2.5 \mathrm{GeV}^2/c^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.                                                                                                                                                                                                                                   | $5 < q^2 < 4.0 \mathrm{GeV}^2/c^4$                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $F_{\mathrm{L}}$                                                                                                                        | $0.255 \pm 0.032 \pm 0.007$                                                                                                                                                                                                                                                                                       | $F_{\rm L}$                                                                                                                                                                                                                              | $0.655 \pm 0.046 \pm 0.017$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $F_{\rm L}$                                                                                                                                                                                                                          | $0.756 \pm 0.047 \pm 0.023$                                                                                                                                                                                                                                                                                         |
| $S_3$                                                                                                                                   | $0.034 \pm 0.044 \pm 0.003$                                                                                                                                                                                                                                                                                       | $S_3$                                                                                                                                                                                                                                    | $-0.107\pm0.052\pm0.003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $S_3$                                                                                                                                                                                                                                | $0.020 \pm 0.053 \pm 0.002$                                                                                                                                                                                                                                                                                         |
| $S_4$                                                                                                                                   | $0.059 \pm 0.050 \pm 0.004$                                                                                                                                                                                                                                                                                       | $S_4$                                                                                                                                                                                                                                    | $-0.038 \pm 0.070 \pm 0.011$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S_4$                                                                                                                                                                                                                                | $-0.187 \pm 0.074 \pm 0.008$                                                                                                                                                                                                                                                                                        |
| $S_5$                                                                                                                                   | $0.227 \pm 0.041 \pm 0.008$                                                                                                                                                                                                                                                                                       | $S_5$                                                                                                                                                                                                                                    | $0.174 \pm 0.060 \pm 0.007$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $S_5$                                                                                                                                                                                                                                | $-0.064 \pm 0.068 \pm 0.010$                                                                                                                                                                                                                                                                                        |
| $A_{\rm FB}$                                                                                                                            | $-0.004 \pm 0.040 \pm 0.004$                                                                                                                                                                                                                                                                                      | $A_{\rm FB}$                                                                                                                                                                                                                             | $-0.229 \pm 0.046 \pm 0.009$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $A_{\rm FB}$                                                                                                                                                                                                                         | $-0.070 \pm 0.043 \pm 0.006$                                                                                                                                                                                                                                                                                        |
| $S_7$                                                                                                                                   | $0.006 \pm 0.042 \pm 0.002$                                                                                                                                                                                                                                                                                       | $S_7$                                                                                                                                                                                                                                    | $-0.107\pm0.063\pm0.004$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $S_7$                                                                                                                                                                                                                                | $-0.066 \pm 0.065 \pm 0.004$                                                                                                                                                                                                                                                                                        |
| $S_8$                                                                                                                                   | $-0.003 \pm 0.051 \pm 0.001$                                                                                                                                                                                                                                                                                      | $S_8$                                                                                                                                                                                                                                    | $-0.174 \pm 0.075 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S_8$                                                                                                                                                                                                                                | $0.016 \pm 0.074 \pm 0.002$                                                                                                                                                                                                                                                                                         |
| $S_9$                                                                                                                                   | $-0.055 \pm 0.041 \pm 0.002$                                                                                                                                                                                                                                                                                      | $S_9$                                                                                                                                                                                                                                    | $-0.112\pm0.054\pm0.005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $S_9$                                                                                                                                                                                                                                | $-0.012\pm0.055\pm0.003$                                                                                                                                                                                                                                                                                            |
| 4.                                                                                                                                      | $0 < q^2 < 6.0 \mathrm{GeV}^2 / c^4$                                                                                                                                                                                                                                                                              | 6.                                                                                                                                                                                                                                       | $0 < q^2 < 8.0  {\rm GeV}^2 / c^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.                                                                                                                                                                                                                                  | $0 < q^2 < 12.5  {\rm GeV}^2/c^4$                                                                                                                                                                                                                                                                                   |
| $F_{\rm L}$                                                                                                                             | $0.684 \pm 0.035 \pm 0.015$                                                                                                                                                                                                                                                                                       | $F_{\rm L}$                                                                                                                                                                                                                              | $0.645 \pm 0.030 \pm 0.011$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $F_{\rm L}$                                                                                                                                                                                                                          | $0.461 \pm 0.031 \pm 0.010$                                                                                                                                                                                                                                                                                         |
| $S_3$                                                                                                                                   | $0.014 \pm 0.038 \pm 0.003$                                                                                                                                                                                                                                                                                       | $S_3$                                                                                                                                                                                                                                    | $-0.013 \pm 0.038 \pm 0.004$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S_3$                                                                                                                                                                                                                                | $-0.124 \pm 0.037 \pm 0.003$                                                                                                                                                                                                                                                                                        |
| $S_4$                                                                                                                                   | $-0.145\pm0.057\pm0.004$                                                                                                                                                                                                                                                                                          | $S_4$                                                                                                                                                                                                                                    | $-0.275\pm0.045\pm0.006$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $S_4$                                                                                                                                                                                                                                | $-0.245 \pm 0.047 \pm 0.007$                                                                                                                                                                                                                                                                                        |
| $S_5$                                                                                                                                   | $-0.204 \pm 0.051 \pm 0.013$                                                                                                                                                                                                                                                                                      | $S_5$                                                                                                                                                                                                                                    | $-0.279 \pm 0.043 \pm 0.013$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S_5$                                                                                                                                                                                                                                | $-0.310 \pm 0.043 \pm 0.011$                                                                                                                                                                                                                                                                                        |
| $A_{\rm FB}$                                                                                                                            | $0.050 \pm 0.033 \pm 0.002$                                                                                                                                                                                                                                                                                       | $A_{\rm FB}$                                                                                                                                                                                                                             | $0.110 \pm 0.027 \pm 0.005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $A_{\rm FB}$                                                                                                                                                                                                                         | $0.333 \pm 0.030 \pm 0.008$                                                                                                                                                                                                                                                                                         |
| $S_7$                                                                                                                                   | $-0.136 \pm 0.053 \pm 0.002$                                                                                                                                                                                                                                                                                      | $S_7$                                                                                                                                                                                                                                    | $-0.074 \pm 0.046 \pm 0.003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S_7$                                                                                                                                                                                                                                | $-0.096 \pm 0.050 \pm 0.003$                                                                                                                                                                                                                                                                                        |
| $S_8$                                                                                                                                   | $0.077 \pm 0.062 \pm 0.001$                                                                                                                                                                                                                                                                                       | $S_8$                                                                                                                                                                                                                                    | $-0.062\pm0.047\pm0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $S_8$                                                                                                                                                                                                                                | $0.009 \pm 0.049 \pm 0.001$                                                                                                                                                                                                                                                                                         |
| $S_9$                                                                                                                                   | $0.029 \pm 0.045 \pm 0.002$                                                                                                                                                                                                                                                                                       | $S_9$                                                                                                                                                                                                                                    | $0.024 \pm 0.035 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $S_9$                                                                                                                                                                                                                                | $0.042 \pm 0.040 \pm 0.003$                                                                                                                                                                                                                                                                                         |
|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                     |
| 15.                                                                                                                                     | $0 < q^2 < 17.0 \mathrm{GeV}^2/c^4$                                                                                                                                                                                                                                                                               | 17.                                                                                                                                                                                                                                      | $0 < q^2 < 19.0 \mathrm{GeV}^2/c^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.                                                                                                                                                                                                                                   | $1 < q^2 < 6.0 \mathrm{GeV}^2/c^4$                                                                                                                                                                                                                                                                                  |
| $\frac{15}{F_{\rm L}}$                                                                                                                  | $\frac{0 < q^2 < 17.0 \mathrm{GeV}^2/c^4}{0.352 \pm 0.026 \pm 0.009}$                                                                                                                                                                                                                                             | $\frac{17}{F_{\rm L}}$                                                                                                                                                                                                                   | $\frac{0 < q^2 < 19.0 \mathrm{GeV}^2/c^4}{0.344 \pm 0.032 \pm 0.025}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{1}{F_{\rm L}}$                                                                                                                                                                                                                | $\frac{1 < q^2 < 6.0 \text{GeV}^2/c^4}{0.700 \pm 0.025 \pm 0.013}$                                                                                                                                                                                                                                                  |
| $\frac{15}{F_{\rm L}}$ $S_3$                                                                                                            | $\frac{0 < q^2 < 17.0 \text{GeV}^2/c^4}{0.352 \pm 0.026 \pm 0.009} \\ -0.166 \pm 0.034 \pm 0.007$                                                                                                                                                                                                                 | $\frac{17}{\begin{array}{c}F_{\rm L}\\S_3\end{array}}$                                                                                                                                                                                   | $\frac{0 < q^2 < 19.0 \text{GeV}^2/c^4}{0.344 \pm 0.032 \pm 0.025} \\ -0.250 \pm 0.050 \pm 0.025$                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{1}{\begin{array}{c}F_{\rm L}\\S_3\end{array}}$                                                                                                                                                                                | $\begin{array}{l} \frac{1 < q^2 < 6.0  \mathrm{GeV}^2/c^4}{0.700 \pm 0.025 \pm 0.013} \\ -0.012 \pm 0.025 \pm 0.003 \end{array}$                                                                                                                                                                                    |
| $\frac{15}{F_{\rm L}}$ $\frac{S_3}{S_4}$                                                                                                | $\begin{array}{c} 0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline 0.352 \pm 0.026 \pm 0.009 \\ -0.166 \pm 0.034 \pm 0.007 \\ -0.299 \pm 0.033 \pm 0.008 \end{array}$                                                                                                                                                   | $\frac{17.}{\begin{array}{c}F_{\mathrm{L}}\\S_{3}\\S_{4}\end{array}}$                                                                                                                                                                    | $\begin{array}{l} 0 < q^2 < 19.0 \ {\rm GeV}^2/c^4 \\ \hline 0.344 \pm 0.032 \pm 0.025 \\ -0.250 \pm 0.050 \pm 0.025 \\ -0.307 \pm 0.041 \pm 0.008 \end{array}$                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1}{\begin{array}{c}F_{\mathrm{L}}\\S_{3}\\S_{4}\end{array}}$                                                                                                                                                                  | $\begin{array}{l} 1 < q^2 < 6.0  {\rm GeV}^2/c^4 \\ \hline 0.700 \pm 0.025 \pm 0.013 \\ -0.012 \pm 0.025 \pm 0.003 \\ -0.136 \pm 0.039 \pm 0.003 \end{array}$                                                                                                                                                       |
| $\frac{15}{F_{\rm L}}$ $\frac{S_3}{S_4}$ $\frac{S_5}{S_5}$                                                                              | $\begin{array}{c} 0 < q^2 < 17.0  {\rm GeV}^2/c^4 \\ \hline 0.352 \pm 0.026 \pm 0.009 \\ -0.166 \pm 0.034 \pm 0.007 \\ -0.299 \pm 0.033 \pm 0.008 \\ -0.341 \pm 0.034 \pm 0.009 \end{array}$                                                                                                                      | $\frac{17}{F_{\rm L}}$ $\frac{S_3}{S_4}$ $S_5$                                                                                                                                                                                           | $\begin{array}{c} 0 < q^2 < 19.0  {\rm GeV}^2/c^4 \\ \hline 0.344 \pm 0.032 \pm 0.025 \\ -0.250 \pm 0.050 \pm 0.025 \\ -0.307 \pm 0.041 \pm 0.008 \\ -0.280 \pm 0.040 \pm 0.014 \end{array}$                                                                                                                                                                                                                                                                                                                                                | $     \frac{1}{F_{\rm L}}     S_3     S_4     S_5 $                                                                                                                                                                                  | $\begin{array}{c} 1 < q^2 < 6.0  {\rm GeV}^2/c^4 \\ \hline 0.700 \pm 0.025 \pm 0.013 \\ -0.012 \pm 0.025 \pm 0.003 \\ -0.136 \pm 0.039 \pm 0.003 \\ -0.052 \pm 0.034 \pm 0.007 \end{array}$                                                                                                                         |
| $     \begin{array}{r} 15. \\       F_{\rm L} \\       S_3 \\       S_4 \\       S_5 \\       A_{\rm FB} \end{array} $                  | $\begin{array}{c} 0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline 0.352 \pm 0.026 \pm 0.009 \\ -0.166 \pm 0.034 \pm 0.007 \\ -0.299 \pm 0.033 \pm 0.008 \\ -0.341 \pm 0.034 \pm 0.009 \\ 0.385 \pm 0.024 \pm 0.007 \end{array}$                                                                                        | $\frac{17.}{F_{\rm L}}$ $S_3$ $S_4$ $S_5$ $A_{\rm FB}$                                                                                                                                                                                   | $\begin{array}{c} 0 < q^2 < 19.0 \ {\rm GeV}^2/c^4 \\ \hline 0.344 \pm 0.032 \pm 0.025 \\ -0.250 \pm 0.050 \pm 0.025 \\ -0.307 \pm 0.041 \pm 0.008 \\ -0.280 \pm 0.040 \pm 0.014 \\ 0.323 \pm 0.032 \pm 0.019 \end{array}$                                                                                                                                                                                                                                                                                                                  | $\frac{1}{F_{\rm L}}$ $S_3$ $S_4$ $S_5$ $A_{\rm FB}$                                                                                                                                                                                 | $\begin{array}{l} 1 < q^2 < 6.0  {\rm GeV}^2/c^4 \\ \hline 0.700 \pm 0.025 \pm 0.013 \\ -0.012 \pm 0.025 \pm 0.003 \\ -0.136 \pm 0.039 \pm 0.003 \\ -0.052 \pm 0.034 \pm 0.007 \\ -0.073 \pm 0.021 \pm 0.002 \end{array}$                                                                                           |
| $     \begin{array}{r} 15. \\       F_{\rm L} \\       S_3 \\       S_4 \\       S_5 \\       A_{\rm FB} \\       S_7     \end{array} $ | $\begin{array}{c} 0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline 0.352 \pm 0.026 \pm 0.009 \\ -0.166 \pm 0.034 \pm 0.007 \\ -0.299 \pm 0.033 \pm 0.008 \\ -0.341 \pm 0.034 \pm 0.009 \\ 0.385 \pm 0.024 \pm 0.007 \\ 0.029 \pm 0.039 \pm 0.001 \end{array}$                                                           | $\frac{17.}{F_{\rm L}} \\ S_3 \\ S_4 \\ S_5 \\ A_{\rm FB} \\ S_7 $                                                                                                                                                                       | $\begin{array}{c} 0 < q^2 < 19.0 \ {\rm GeV}^2/c^4 \\ \hline 0.344 \pm 0.032 \pm 0.025 \\ -0.250 \pm 0.050 \pm 0.025 \\ -0.307 \pm 0.041 \pm 0.008 \\ -0.280 \pm 0.040 \pm 0.014 \\ 0.323 \pm 0.032 \pm 0.019 \\ 0.049 \pm 0.049 \pm 0.007 \end{array}$                                                                                                                                                                                                                                                                                     | $\frac{1}{F_{\rm L}} \\ S_3 \\ S_4 \\ S_5 \\ A_{\rm FB} \\ S_7 $                                                                                                                                                                     | $\begin{array}{c} 1 < q^2 < 6.0  {\rm GeV}^2/c^4 \\ \hline 0.700 \pm 0.025 \pm 0.013 \\ -0.012 \pm 0.025 \pm 0.003 \\ -0.136 \pm 0.039 \pm 0.003 \\ -0.052 \pm 0.034 \pm 0.007 \\ -0.073 \pm 0.021 \pm 0.002 \\ -0.090 \pm 0.034 \pm 0.002 \end{array}$                                                             |
| $\begin{array}{c} 15. \\ F_{\rm L} \\ S_3 \\ S_4 \\ S_5 \\ A_{\rm FB} \\ S_7 \\ S_8 \end{array}$                                        | $\begin{array}{c} 0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline 0.352 \pm 0.026 \pm 0.009 \\ -0.166 \pm 0.034 \pm 0.007 \\ -0.299 \pm 0.033 \pm 0.008 \\ -0.341 \pm 0.034 \pm 0.009 \\ 0.385 \pm 0.024 \pm 0.007 \\ 0.029 \pm 0.039 \pm 0.001 \\ 0.003 \pm 0.042 \pm 0.002 \end{array}$                              | $\frac{17}{F_{\rm L}}$ $S_3$ $S_4$ $S_5$ $A_{\rm FB}$ $S_7$ $S_8$                                                                                                                                                                        | $\begin{array}{c} 0 < q^2 < 19.0 \ {\rm GeV}^2/c^4 \\ \hline 0.344 \pm 0.032 \pm 0.025 \\ -0.250 \pm 0.050 \pm 0.025 \\ -0.307 \pm 0.041 \pm 0.008 \\ -0.280 \pm 0.040 \pm 0.014 \\ 0.323 \pm 0.032 \pm 0.019 \\ 0.049 \pm 0.049 \pm 0.007 \\ -0.026 \pm 0.046 \pm 0.002 \end{array}$                                                                                                                                                                                                                                                       | $\frac{1}{F_{\rm L}}$ $S_3$ $S_4$ $S_5$ $A_{\rm FB}$ $S_7$ $S_8$                                                                                                                                                                     | $\begin{array}{c} 1 < q^2 < 6.0  {\rm GeV}^2/c^4 \\ \hline 0.700 \pm 0.025 \pm 0.013 \\ -0.012 \pm 0.025 \pm 0.003 \\ -0.136 \pm 0.039 \pm 0.003 \\ -0.052 \pm 0.034 \pm 0.007 \\ -0.073 \pm 0.021 \pm 0.002 \\ -0.090 \pm 0.034 \pm 0.002 \\ -0.009 \pm 0.037 \pm 0.002 \end{array}$                               |
| $\begin{array}{c} 15. \\ F_{\rm L} \\ S_3 \\ S_4 \\ S_5 \\ A_{\rm FB} \\ S_7 \\ S_8 \\ S_9 \end{array}$                                 | $\begin{array}{c} 0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline 0.352 \pm 0.026 \pm 0.009 \\ -0.166 \pm 0.034 \pm 0.007 \\ -0.299 \pm 0.033 \pm 0.008 \\ -0.341 \pm 0.034 \pm 0.009 \\ 0.385 \pm 0.024 \pm 0.007 \\ 0.029 \pm 0.039 \pm 0.001 \\ 0.003 \pm 0.042 \pm 0.002 \\ 0.000 \pm 0.037 \pm 0.002 \end{array}$ | $\frac{17.}{F_{\rm L}} \\ S_3 \\ S_4 \\ S_5 \\ A_{\rm FB} \\ S_7 \\ S_8 \\ S_9$                                                                                                                                                          | $\begin{array}{l} 0 < q^2 < 19.0 \ {\rm GeV}^2/c^4 \\ \hline 0.344 \pm 0.032 \pm 0.025 \\ -0.250 \pm 0.050 \pm 0.025 \\ -0.307 \pm 0.041 \pm 0.008 \\ -0.280 \pm 0.040 \pm 0.014 \\ 0.323 \pm 0.032 \pm 0.019 \\ 0.049 \pm 0.049 \pm 0.007 \\ -0.026 \pm 0.046 \pm 0.002 \\ -0.056 \pm 0.045 \pm 0.002 \end{array}$                                                                                                                                                                                                                         | $\begin{array}{c} 1.\\ F_{\rm L}\\ S_3\\ S_4\\ S_5\\ A_{\rm FB}\\ S_7\\ S_8\\ S_9 \end{array}$                                                                                                                                       | $\begin{array}{l} 1 < q^2 < 6.0  {\rm GeV}^2/c^4 \\ \hline 0.700 \pm 0.025 \pm 0.013 \\ -0.012 \pm 0.025 \pm 0.003 \\ -0.136 \pm 0.039 \pm 0.003 \\ -0.052 \pm 0.034 \pm 0.007 \\ -0.073 \pm 0.021 \pm 0.002 \\ -0.090 \pm 0.034 \pm 0.002 \\ -0.009 \pm 0.037 \pm 0.002 \\ -0.025 \pm 0.026 \pm 0.002 \end{array}$ |
| $\begin{array}{c} 15.\\ F_{\rm L}\\ S_3\\ S_4\\ S_5\\ A_{\rm FB}\\ S_7\\ S_8\\ S_9 \end{array}$                                         | $\begin{array}{c} 0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline 0.352 \pm 0.026 \pm 0.009 \\ -0.166 \pm 0.034 \pm 0.007 \\ -0.299 \pm 0.033 \pm 0.008 \\ -0.341 \pm 0.034 \pm 0.009 \\ 0.385 \pm 0.024 \pm 0.007 \\ 0.029 \pm 0.039 \pm 0.001 \\ 0.003 \pm 0.042 \pm 0.002 \\ 0.000 \pm 0.037 \pm 0.002 \end{array}$ | $     \begin{array}{r} 17. \\             F_{\rm L} \\             S_3 \\             S_4 \\             S_5 \\             A_{\rm FB} \\             S_7 \\             S_8 \\             S_9 \\             15.         \end{array} $ | $\begin{array}{l} 0 < q^2 < 19.0 \ {\rm GeV}^2/c^4 \\ \hline 0.344 \pm 0.032 \pm 0.025 \\ -0.250 \pm 0.050 \pm 0.025 \\ -0.307 \pm 0.041 \pm 0.008 \\ -0.280 \pm 0.040 \pm 0.014 \\ 0.323 \pm 0.032 \pm 0.019 \\ 0.049 \pm 0.049 \pm 0.007 \\ -0.026 \pm 0.046 \pm 0.002 \\ -0.056 \pm 0.045 \pm 0.002 \\ 0 < q^2 < 19.0 \ {\rm GeV}^2/c^4 \end{array}$                                                                                                                                                                                     | $\frac{1}{F_{\rm L}} \\ S_3 \\ S_4 \\ S_5 \\ A_{\rm FB} \\ S_7 \\ S_8 \\ S_9$                                                                                                                                                        | $\begin{array}{l} 1 < q^2 < 6.0  {\rm GeV}^2/c^4 \\ \hline 0.700 \pm 0.025 \pm 0.013 \\ -0.012 \pm 0.025 \pm 0.003 \\ -0.136 \pm 0.039 \pm 0.003 \\ -0.052 \pm 0.034 \pm 0.007 \\ -0.073 \pm 0.021 \pm 0.002 \\ -0.090 \pm 0.034 \pm 0.002 \\ -0.009 \pm 0.037 \pm 0.002 \\ -0.025 \pm 0.026 \pm 0.002 \end{array}$ |
| $\begin{array}{c} 15.\\ F_{\rm L}\\ S_3\\ S_4\\ S_5\\ A_{\rm FB}\\ S_7\\ S_8\\ S_9\end{array}$                                          | $\begin{array}{l} 0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline 0.352 \pm 0.026 \pm 0.009 \\ -0.166 \pm 0.034 \pm 0.007 \\ -0.299 \pm 0.033 \pm 0.008 \\ -0.341 \pm 0.034 \pm 0.009 \\ 0.385 \pm 0.024 \pm 0.007 \\ 0.029 \pm 0.039 \pm 0.001 \\ 0.003 \pm 0.042 \pm 0.002 \\ 0.000 \pm 0.037 \pm 0.002 \end{array}$ | $\begin{array}{c} 17. \\ F_{\rm L} \\ S_3 \\ S_4 \\ S_5 \\ A_{\rm FB} \\ S_7 \\ S_8 \\ S_9 \\ \hline 15. \\ \hline F_{\rm L} \end{array}$                                                                                                | $\begin{array}{l} 0 < q^2 < 19.0 \ {\rm GeV}^2/c^4 \\ \hline 0.344 \pm 0.032 \pm 0.025 \\ -0.250 \pm 0.050 \pm 0.025 \\ -0.307 \pm 0.041 \pm 0.008 \\ -0.280 \pm 0.040 \pm 0.014 \\ 0.323 \pm 0.032 \pm 0.019 \\ 0.049 \pm 0.049 \pm 0.007 \\ -0.026 \pm 0.046 \pm 0.002 \\ -0.056 \pm 0.045 \pm 0.002 \\ \hline 0.345 \pm 0.020 \pm 0.007 \end{array}$                                                                                                                                                                                     | $\begin{array}{c} 1.\\ F_{\rm L}\\ S_3\\ S_4\\ S_5\\ A_{\rm FB}\\ S_7\\ S_8\\ S_9 \end{array}$                                                                                                                                       | $\begin{array}{l} 1 < q^2 < 6.0  {\rm GeV}^2/c^4 \\ \hline 0.700 \pm 0.025 \pm 0.013 \\ -0.012 \pm 0.025 \pm 0.003 \\ -0.136 \pm 0.039 \pm 0.003 \\ -0.052 \pm 0.034 \pm 0.007 \\ -0.073 \pm 0.021 \pm 0.002 \\ -0.090 \pm 0.034 \pm 0.002 \\ -0.009 \pm 0.037 \pm 0.002 \\ -0.025 \pm 0.026 \pm 0.002 \end{array}$ |
| $\begin{array}{c} 15.\\ F_{\rm L}\\ S_3\\ S_4\\ S_5\\ A_{\rm FB}\\ S_7\\ S_8\\ S_9\end{array}$                                          | $\begin{array}{l} 0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline 0.352 \pm 0.026 \pm 0.009 \\ -0.166 \pm 0.034 \pm 0.007 \\ -0.299 \pm 0.033 \pm 0.008 \\ -0.341 \pm 0.034 \pm 0.009 \\ 0.385 \pm 0.024 \pm 0.007 \\ 0.029 \pm 0.039 \pm 0.001 \\ 0.003 \pm 0.042 \pm 0.002 \\ 0.000 \pm 0.037 \pm 0.002 \end{array}$ | $\begin{array}{c} 17.\\ \hline F_{\rm L}\\ S_3\\ S_4\\ S_5\\ A_{\rm FB}\\ S_7\\ S_8\\ S_9\\ \hline 15.\\ \hline F_{\rm L}\\ S_3 \end{array}$                                                                                             | $\begin{array}{l} 0 < q^2 < 19.0 \ {\rm GeV}^2/c^4 \\ \hline 0.344 \pm 0.032 \pm 0.025 \\ -0.250 \pm 0.050 \pm 0.025 \\ -0.307 \pm 0.041 \pm 0.008 \\ -0.280 \pm 0.040 \pm 0.014 \\ 0.323 \pm 0.032 \pm 0.019 \\ 0.049 \pm 0.049 \pm 0.007 \\ -0.026 \pm 0.046 \pm 0.002 \\ -0.056 \pm 0.045 \pm 0.002 \\ \hline 0.345 \pm 0.020 \pm 0.007 \\ -0.189 \pm 0.030 \pm 0.009 \\ \end{array}$                                                                                                                                                    | $\frac{1}{F_{\rm L}} \\ S_3 \\ S_4 \\ S_5 \\ A_{\rm FB} \\ S_7 \\ S_8 \\ S_9$                                                                                                                                                        | $\begin{array}{l} 1 < q^2 < 6.0  {\rm GeV}^2/c^4 \\ \hline 0.700 \pm 0.025 \pm 0.013 \\ -0.012 \pm 0.025 \pm 0.003 \\ -0.136 \pm 0.039 \pm 0.003 \\ -0.052 \pm 0.034 \pm 0.007 \\ -0.073 \pm 0.021 \pm 0.002 \\ -0.090 \pm 0.034 \pm 0.002 \\ -0.009 \pm 0.037 \pm 0.002 \\ -0.025 \pm 0.026 \pm 0.002 \end{array}$ |
| $\begin{array}{c} 15.\\ F_{\rm L}\\ S_3\\ S_4\\ S_5\\ A_{\rm FB}\\ S_7\\ S_8\\ S_9 \end{array}$                                         | $\begin{array}{c} 0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline 0.352 \pm 0.026 \pm 0.009 \\ -0.166 \pm 0.034 \pm 0.007 \\ -0.299 \pm 0.033 \pm 0.008 \\ -0.341 \pm 0.034 \pm 0.009 \\ 0.385 \pm 0.024 \pm 0.007 \\ 0.029 \pm 0.039 \pm 0.001 \\ 0.003 \pm 0.042 \pm 0.002 \\ 0.000 \pm 0.037 \pm 0.002 \end{array}$ | $\begin{array}{c} 17.\\ \hline F_{\rm L}\\ S_3\\ S_4\\ S_5\\ A_{\rm FB}\\ S_7\\ S_8\\ S_9\\ \hline S_8\\ S_9\\ \hline 15.\\ \hline F_{\rm L}\\ S_3\\ S_4\\ \end{array}$                                                                  | $\begin{array}{c} 0 < q^2 < 19.0  {\rm GeV}^2/c^4 \\ \hline 0.344 \pm 0.032 \pm 0.025 \\ -0.250 \pm 0.050 \pm 0.025 \\ -0.307 \pm 0.041 \pm 0.008 \\ -0.280 \pm 0.040 \pm 0.014 \\ 0.323 \pm 0.032 \pm 0.019 \\ 0.049 \pm 0.049 \pm 0.007 \\ -0.026 \pm 0.046 \pm 0.002 \\ -0.056 \pm 0.045 \pm 0.002 \\ \hline 0.345 \pm 0.020 \pm 0.007 \\ -0.189 \pm 0.030 \pm 0.009 \\ -0.303 \pm 0.024 \pm 0.008 \\ \end{array}$                                                                                                                       | $\begin{array}{c} 1.\\ F_{\rm L}\\ S_3\\ S_4\\ S_5\\ A_{\rm FB}\\ S_7\\ S_8\\ S_9 \end{array}$                                                                                                                                       | $\begin{array}{l} 1 < q^2 < 6.0  {\rm GeV}^2/c^4 \\ \hline 0.700 \pm 0.025 \pm 0.013 \\ -0.012 \pm 0.025 \pm 0.003 \\ -0.136 \pm 0.039 \pm 0.003 \\ -0.052 \pm 0.034 \pm 0.007 \\ -0.073 \pm 0.021 \pm 0.002 \\ -0.090 \pm 0.034 \pm 0.002 \\ -0.009 \pm 0.037 \pm 0.002 \\ -0.025 \pm 0.026 \pm 0.002 \end{array}$ |
| $\begin{array}{c} 15.\\ F_{\rm L}\\ S_3\\ S_4\\ S_5\\ A_{\rm FB}\\ S_7\\ S_8\\ S_9 \end{array}$                                         | $\begin{array}{l} 0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline 0.352 \pm 0.026 \pm 0.009 \\ -0.166 \pm 0.034 \pm 0.007 \\ -0.299 \pm 0.033 \pm 0.008 \\ -0.341 \pm 0.034 \pm 0.009 \\ 0.385 \pm 0.024 \pm 0.007 \\ 0.029 \pm 0.039 \pm 0.001 \\ 0.003 \pm 0.042 \pm 0.002 \\ 0.000 \pm 0.037 \pm 0.002 \end{array}$ | $\begin{array}{c} 177.\\ \hline F_{\rm L}\\ S_3\\ S_4\\ S_5\\ A_{\rm FB}\\ S_7\\ S_8\\ S_9\\ \hline S_7\\ S_8\\ S_9\\ \hline 155.\\ \hline F_{\rm L}\\ S_3\\ S_4\\ S_5\\ \end{array}$                                                    | $\begin{array}{l} 0 < q^2 < 19.0 \ {\rm GeV}^2/c^4 \\ \hline 0.344 \pm 0.032 \pm 0.025 \\ -0.250 \pm 0.050 \pm 0.025 \\ -0.307 \pm 0.041 \pm 0.008 \\ -0.280 \pm 0.040 \pm 0.014 \\ 0.323 \pm 0.032 \pm 0.019 \\ 0.049 \pm 0.049 \pm 0.007 \\ -0.026 \pm 0.046 \pm 0.002 \\ -0.056 \pm 0.045 \pm 0.002 \\ \hline 0.345 \pm 0.020 \pm 0.007 \\ -0.189 \pm 0.030 \pm 0.009 \\ -0.303 \pm 0.024 \pm 0.008 \\ -0.317 \pm 0.024 \pm 0.011 \\ \end{array}$                                                                                        | $     \begin{array}{r}             1. \\             F_{\rm L} \\             S_3 \\             S_4 \\             S_5 \\             A_{\rm FB} \\             S_7 \\             S_8 \\             S_9         \end{array}     $ | $\begin{array}{l} 1 < q^2 < 6.0  {\rm GeV}^2/c^4 \\ \hline 0.700 \pm 0.025 \pm 0.013 \\ -0.012 \pm 0.025 \pm 0.003 \\ -0.136 \pm 0.039 \pm 0.003 \\ -0.052 \pm 0.034 \pm 0.007 \\ -0.073 \pm 0.021 \pm 0.002 \\ -0.090 \pm 0.034 \pm 0.002 \\ -0.009 \pm 0.037 \pm 0.002 \\ -0.025 \pm 0.026 \pm 0.002 \end{array}$ |
| $\begin{array}{c} 15.\\ F_{\rm L}\\ S_3\\ S_4\\ S_5\\ A_{\rm FB}\\ S_7\\ S_8\\ S_9 \end{array}$                                         | $\begin{array}{l} 0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline 0.352 \pm 0.026 \pm 0.009 \\ -0.166 \pm 0.034 \pm 0.007 \\ -0.299 \pm 0.033 \pm 0.008 \\ -0.341 \pm 0.034 \pm 0.009 \\ 0.385 \pm 0.024 \pm 0.007 \\ 0.029 \pm 0.039 \pm 0.001 \\ 0.003 \pm 0.042 \pm 0.002 \\ 0.000 \pm 0.037 \pm 0.002 \end{array}$ | $\begin{array}{c} 177.\\ \hline F_{\rm L}\\ S_3\\ S_4\\ S_5\\ A_{\rm FB}\\ S_7\\ S_8\\ S_9\\ \hline 15.\\ \hline F_{\rm L}\\ S_3\\ S_4\\ S_5\\ A_{\rm FB}\\ \end{array}$                                                                 | $\begin{array}{l} 0 < q^2 < 19.0 \ {\rm GeV}^2/c^4 \\ \hline 0.344 \pm 0.032 \pm 0.025 \\ -0.250 \pm 0.050 \pm 0.025 \\ -0.307 \pm 0.041 \pm 0.008 \\ -0.280 \pm 0.040 \pm 0.014 \\ 0.323 \pm 0.032 \pm 0.019 \\ 0.049 \pm 0.049 \pm 0.007 \\ -0.026 \pm 0.046 \pm 0.002 \\ -0.056 \pm 0.045 \pm 0.002 \\ \hline 0.345 \pm 0.020 \pm 0.007 \\ -0.189 \pm 0.030 \pm 0.009 \\ -0.303 \pm 0.024 \pm 0.008 \\ -0.317 \pm 0.024 \pm 0.011 \\ 0.353 \pm 0.020 \pm 0.010 \\ \hline \end{array}$                                                    | $\frac{1}{F_{\rm L}} \frac{F_{\rm S}}{S_3} \frac{S_4}{S_5} \frac{S_5}{A_{\rm FB}} \frac{S_7}{S_8} \frac{S_9}{S_9}$                                                                                                                   | $\begin{array}{l} 1 < q^2 < 6.0  {\rm GeV}^2/c^4 \\ \hline 0.700 \pm 0.025 \pm 0.013 \\ -0.012 \pm 0.025 \pm 0.003 \\ -0.136 \pm 0.039 \pm 0.003 \\ -0.052 \pm 0.034 \pm 0.007 \\ -0.073 \pm 0.021 \pm 0.002 \\ -0.090 \pm 0.034 \pm 0.002 \\ -0.009 \pm 0.037 \pm 0.002 \\ -0.025 \pm 0.026 \pm 0.002 \end{array}$ |
| $\begin{array}{c} 15.\\ F_{\rm L}\\ S_3\\ S_4\\ S_5\\ A_{\rm FB}\\ S_7\\ S_8\\ S_9 \end{array}$                                         | $\begin{array}{l} 0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline 0.352 \pm 0.026 \pm 0.009 \\ -0.166 \pm 0.034 \pm 0.007 \\ -0.299 \pm 0.033 \pm 0.008 \\ -0.341 \pm 0.034 \pm 0.009 \\ 0.385 \pm 0.024 \pm 0.007 \\ 0.029 \pm 0.039 \pm 0.001 \\ 0.003 \pm 0.042 \pm 0.002 \\ 0.000 \pm 0.037 \pm 0.002 \end{array}$ | $\begin{array}{c} 17.\\ F_{\rm L}\\ S_3\\ S_4\\ S_5\\ A_{\rm FB}\\ S_7\\ S_8\\ S_9\\ \hline 15.\\ F_{\rm L}\\ S_3\\ S_4\\ S_5\\ A_{\rm FB}\\ S_7\\ \end{array}$                                                                          | $\begin{array}{c} 0 < q^2 < 19.0 \ {\rm GeV}^2/c^4 \\ \hline 0.344 \pm 0.032 \pm 0.025 \\ -0.250 \pm 0.050 \pm 0.025 \\ -0.307 \pm 0.041 \pm 0.008 \\ -0.280 \pm 0.040 \pm 0.014 \\ 0.323 \pm 0.032 \pm 0.019 \\ 0.049 \pm 0.049 \pm 0.007 \\ -0.026 \pm 0.046 \pm 0.002 \\ -0.056 \pm 0.045 \pm 0.002 \\ \hline 0.345 \pm 0.020 \pm 0.007 \\ -0.189 \pm 0.030 \pm 0.009 \\ -0.303 \pm 0.024 \pm 0.008 \\ -0.317 \pm 0.024 \pm 0.011 \\ 0.353 \pm 0.020 \pm 0.003 \\ \hline 0.035 \pm 0.030 \pm 0.003 \\ \hline \end{array}$                | $\frac{1}{F_{\rm L}} \\ S_3 \\ S_4 \\ S_5 \\ A_{\rm FB} \\ S_7 \\ S_8 \\ S_9$                                                                                                                                                        | $\begin{array}{l} \frac{1 < q^2 < 6.0  {\rm GeV}^2/c^4}{0.700 \pm 0.025 \pm 0.013} \\ -0.012 \pm 0.025 \pm 0.003 \\ -0.136 \pm 0.039 \pm 0.003 \\ -0.052 \pm 0.034 \pm 0.007 \\ -0.073 \pm 0.021 \pm 0.002 \\ -0.090 \pm 0.034 \pm 0.002 \\ -0.009 \pm 0.037 \pm 0.002 \\ -0.025 \pm 0.026 \pm 0.002 \end{array}$   |
| $\begin{array}{c} 15.\\ F_{\rm L}\\ S_3\\ S_4\\ S_5\\ A_{\rm FB}\\ S_7\\ S_8\\ S_9 \end{array}$                                         | $\begin{array}{l} 0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline 0.352 \pm 0.026 \pm 0.009 \\ -0.166 \pm 0.034 \pm 0.007 \\ -0.299 \pm 0.033 \pm 0.008 \\ -0.341 \pm 0.034 \pm 0.009 \\ 0.385 \pm 0.024 \pm 0.007 \\ 0.029 \pm 0.039 \pm 0.001 \\ 0.003 \pm 0.042 \pm 0.002 \\ 0.000 \pm 0.037 \pm 0.002 \end{array}$ | $\begin{array}{c} 17.\\ F_{\rm L}\\ S_3\\ S_4\\ S_5\\ A_{\rm FB}\\ S_7\\ S_8\\ S_9\\ \hline 15.\\ F_{\rm L}\\ S_3\\ S_4\\ S_5\\ A_{\rm FB}\\ S_7\\ S_8\\ \end{array}$                                                                    | $\begin{array}{c} 0 < q^2 < 19.0 \ {\rm GeV}^2/c^4 \\ \hline 0.344 \pm 0.032 \pm 0.025 \\ -0.250 \pm 0.050 \pm 0.025 \\ -0.307 \pm 0.041 \pm 0.008 \\ -0.280 \pm 0.040 \pm 0.014 \\ 0.323 \pm 0.032 \pm 0.019 \\ 0.049 \pm 0.049 \pm 0.007 \\ -0.026 \pm 0.046 \pm 0.002 \\ -0.056 \pm 0.045 \pm 0.002 \\ \hline 0.345 \pm 0.020 \pm 0.007 \\ -0.189 \pm 0.030 \pm 0.009 \\ -0.303 \pm 0.024 \pm 0.008 \\ -0.317 \pm 0.024 \pm 0.011 \\ 0.353 \pm 0.020 \pm 0.010 \\ 0.035 \pm 0.030 \pm 0.003 \\ 0.005 \pm 0.031 \pm 0.001 \\ \end{array}$ | $ \frac{1}{F_{\rm L}} \\ \frac{F_{\rm S}}{S_3} \\ \frac{S_4}{S_5} \\ \frac{S_5}{A_{\rm FB}} \\ \frac{S_7}{S_8} \\ \frac{S_9}{S_9} $                                                                                                  | $\begin{array}{l} \frac{1 < q^2 < 6.0  {\rm GeV}^2/c^4}{0.700 \pm 0.025 \pm 0.013} \\ -0.012 \pm 0.025 \pm 0.003 \\ -0.136 \pm 0.039 \pm 0.003 \\ -0.052 \pm 0.034 \pm 0.007 \\ -0.073 \pm 0.021 \pm 0.002 \\ -0.090 \pm 0.034 \pm 0.002 \\ -0.009 \pm 0.037 \pm 0.002 \\ -0.025 \pm 0.026 \pm 0.002 \end{array}$   |

Table 2: Results for the optimised observables  $P_i^{(\prime)}$ . The first uncertainties are statistical and the second systematic.

| 0.1                                                                                                                                                                                 | $10 < q^2 < 0.98 \mathrm{GeV}^2/c^4$                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                 | $.1 < q^2 < 2.5 \mathrm{GeV}^2/c^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                               | $2.5 < q^2 < 4.0 \mathrm{GeV}^2/c^4$                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $P_1$                                                                                                                                                                               | $0.090 \pm 0.119 \pm 0.009$                                                                                                                                                                                                                                                            | $P_1$                                                                                                                                                                                                                                             | $-0.617 \pm 0.296 \pm 0.023$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $P_1$                                                                                                                                                                                           | $0.168 \pm 0.371 \pm 0.043$                                                                                                                                                                                                                                                             |
| $P_2$                                                                                                                                                                               | $-0.003\pm0.038\pm0.003$                                                                                                                                                                                                                                                               | $P_2$                                                                                                                                                                                                                                             | $-0.443 \pm 0.100 \pm 0.027$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $P_2$                                                                                                                                                                                           | $-0.191 \pm 0.116 \pm 0.043$                                                                                                                                                                                                                                                            |
| $P_3$                                                                                                                                                                               | $0.073 \pm 0.057 \pm 0.003$                                                                                                                                                                                                                                                            | $P_3$                                                                                                                                                                                                                                             | $0.324 \pm 0.147 \pm 0.014$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $P_3$                                                                                                                                                                                           | $0.049 \pm 0.195 \pm 0.014$                                                                                                                                                                                                                                                             |
| $P'_4$                                                                                                                                                                              | $0.135 \pm 0.118 \pm 0.010$                                                                                                                                                                                                                                                            | $P'_4$                                                                                                                                                                                                                                            | $-0.080 \pm 0.142 \pm 0.019$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $P'_4$                                                                                                                                                                                          | $-0.435 \pm 0.169 \pm 0.035$                                                                                                                                                                                                                                                            |
| $P'_5$                                                                                                                                                                              | $0.521 \pm 0.095 \pm 0.024$                                                                                                                                                                                                                                                            | $P'_5$                                                                                                                                                                                                                                            | $0.365 \pm 0.122 \pm 0.013$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $P'_5$                                                                                                                                                                                          | $-0.150 \pm 0.144 \pm 0.032$                                                                                                                                                                                                                                                            |
| $P'_6$                                                                                                                                                                              | $0.015 \pm 0.094 \pm 0.007$                                                                                                                                                                                                                                                            | $P_6'$                                                                                                                                                                                                                                            | $-0.226 \pm 0.128 \pm 0.005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $P_6'$                                                                                                                                                                                          | $-0.155 \pm 0.148 \pm 0.024$                                                                                                                                                                                                                                                            |
| $P'_8$                                                                                                                                                                              | $-0.007 \pm 0.122 \pm 0.002$                                                                                                                                                                                                                                                           | $P'_8$                                                                                                                                                                                                                                            | $-0.366 \pm 0.158 \pm 0.005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $P'_8$                                                                                                                                                                                          | $0.037 \pm 0.169 \pm 0.007$                                                                                                                                                                                                                                                             |
| 4                                                                                                                                                                                   | $0 < q^2 < 6.0 \mathrm{GeV}^2/c^4$                                                                                                                                                                                                                                                     | 6                                                                                                                                                                                                                                                 | $1.0 < q^2 < 8.0 \mathrm{GeV}^2/c^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                              | $0.0 < q^2 < 12.5 \mathrm{GeV}^2/c^4$                                                                                                                                                                                                                                                   |
| $P_1$                                                                                                                                                                               | $0.088 \pm 0.235 \pm 0.029$                                                                                                                                                                                                                                                            | $P_1$                                                                                                                                                                                                                                             | $-0.071 \pm 0.211 \pm 0.020$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $P_1$                                                                                                                                                                                           | $-0.460 \pm 0.132 \pm 0.015$                                                                                                                                                                                                                                                            |
| $P_2$                                                                                                                                                                               | $0.105 \pm 0.068 \pm 0.009$                                                                                                                                                                                                                                                            | $P_2$                                                                                                                                                                                                                                             | $0.207 \pm 0.048 \pm 0.013$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $P_2$                                                                                                                                                                                           | $0.411 \pm 0.033 \pm 0.008$                                                                                                                                                                                                                                                             |
| $P_3$                                                                                                                                                                               | $-0.090 \pm 0.139 \pm 0.006$                                                                                                                                                                                                                                                           | $P_3$                                                                                                                                                                                                                                             | $-0.068\pm0.104\pm0.007$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $P_3$                                                                                                                                                                                           | $-0.078\pm0.077\pm0.007$                                                                                                                                                                                                                                                                |
| $P'_4$                                                                                                                                                                              | $-0.312\pm0.115\pm0.013$                                                                                                                                                                                                                                                               | $P'_4$                                                                                                                                                                                                                                            | $-0.574 \pm 0.091 \pm 0.018$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $P'_4$                                                                                                                                                                                          | $-0.491 \pm 0.095 \pm 0.013$                                                                                                                                                                                                                                                            |
| $P_5'$                                                                                                                                                                              | $-0.439 \pm 0.111 \pm 0.036$                                                                                                                                                                                                                                                           | $P'_5$                                                                                                                                                                                                                                            | $-0.583 \pm 0.090 \pm 0.030$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $P_5'$                                                                                                                                                                                          | $-0.622 \pm 0.088 \pm 0.017$                                                                                                                                                                                                                                                            |
| $P'_6$                                                                                                                                                                              | $-0.293 \pm 0.117 \pm 0.004$                                                                                                                                                                                                                                                           | $P_6'$                                                                                                                                                                                                                                            | $-0.155 \pm 0.098 \pm 0.009$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $P_6'$                                                                                                                                                                                          | $-0.193 \pm 0.100 \pm 0.003$                                                                                                                                                                                                                                                            |
| $P'_8$                                                                                                                                                                              | $0.166 \pm 0.127 \pm 0.004$                                                                                                                                                                                                                                                            | $P'_8$                                                                                                                                                                                                                                            | $-0.129 \pm 0.098 \pm 0.005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $P'_8$                                                                                                                                                                                          | $0.018 \pm 0.099 \pm 0.009$                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                         |
| 15                                                                                                                                                                                  | $.0 < q^2 < 17.0  {\rm GeV}^2/c^4$                                                                                                                                                                                                                                                     | 17                                                                                                                                                                                                                                                | $1.0 < q^2 < 19.0 \mathrm{GeV}^2/c^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                               | $1.1 < q^2 < 6.0 \mathrm{GeV}^2/c^4$                                                                                                                                                                                                                                                    |
| $\frac{15}{P_1}$                                                                                                                                                                    | $\frac{.0 < q^2 < 17.0 \mathrm{GeV}^2/c^4}{-0.511 \pm 0.096 \pm 0.020}$                                                                                                                                                                                                                | $\frac{17}{P_1}$                                                                                                                                                                                                                                  | $\frac{7.0 < q^2 < 19.0 \mathrm{GeV}^2/c^4}{-0.763 \pm 0.152 \pm 0.094}$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{1}{P_1}$                                                                                                                                                                                 | $\frac{.1 < q^2 < 6.0 \text{GeV}^2/c^4}{-0.079 \pm 0.159 \pm 0.021}$                                                                                                                                                                                                                    |
| $\frac{15}{\begin{array}{c}P_1\\P_2\end{array}}$                                                                                                                                    | $\begin{array}{c} .0 < q^2 < 17.0  {\rm GeV}^2/c^4 \\ \hline -0.511 \pm 0.096 \pm 0.020 \\ 0.396 \pm 0.022 \pm 0.004 \end{array}$                                                                                                                                                      | $\frac{17}{P_1}\\P_2$                                                                                                                                                                                                                             | $\frac{1.0 < q^2 < 19.0 \text{GeV}^2/c^4}{-0.763 \pm 0.152 \pm 0.094}$ $0.328 \pm 0.032 \pm 0.017$                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{1}{\begin{array}{c}P_1\\P_2\end{array}}$                                                                                                                                                 | $\begin{array}{l} .1 < q^2 < 6.0  {\rm GeV}^2/c^4 \\ \hline -0.079 \pm 0.159 \pm 0.021 \\ -0.162 \pm 0.050 \pm 0.012 \end{array}$                                                                                                                                                       |
| $\frac{15}{\begin{array}{c}P_1\\P_2\\P_3\end{array}}$                                                                                                                               | $\begin{array}{l} 0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline -0.511 \pm 0.096 \pm 0.020 \\ 0.396 \pm 0.022 \pm 0.004 \\ -0.000 \pm 0.056 \pm 0.003 \end{array}$                                                                                                                        | $\begin{array}{c} 17\\ \hline P_1\\ P_2\\ P_3 \end{array}$                                                                                                                                                                                        | $ \begin{array}{l} \frac{1.0 < q^2 < 19.0  {\rm GeV}^2/c^4}{-0.763 \pm 0.152 \pm 0.094} \\ 0.328 \pm 0.032 \pm 0.017 \\ 0.085 \pm 0.068 \pm 0.004 \end{array} $                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 1\\ \hline P_1\\ P_2\\ P_3 \end{array}$                                                                                                                                       | $\begin{array}{c} .1 < q^2 < 6.0  {\rm GeV}^2/c^4 \\ \hline -0.079 \pm 0.159 \pm 0.021 \\ -0.162 \pm 0.050 \pm 0.012 \\ 0.085 \pm 0.090 \pm 0.005 \end{array}$                                                                                                                          |
| $\frac{15}{P_1}\\P_2\\P_3\\P'_4$                                                                                                                                                    | $\begin{array}{c} .0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline -0.511 \pm 0.096 \pm 0.020 \\ 0.396 \pm 0.022 \pm 0.004 \\ -0.000 \pm 0.056 \pm 0.003 \\ -0.626 \pm 0.069 \pm 0.018 \end{array}$                                                                                         | $\begin{array}{c} 17\\ \hline P_1\\ P_2\\ P_3\\ P'_4 \end{array}$                                                                                                                                                                                 | $\begin{array}{c} \hline 1.0 < q^2 < 19.0  {\rm GeV}^2/c^4 \\ \hline -0.763 \pm 0.152 \pm 0.094 \\ \hline 0.328 \pm 0.032 \pm 0.017 \\ \hline 0.085 \pm 0.068 \pm 0.004 \\ -0.647 \pm 0.086 \pm 0.057 \end{array}$                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 1\\ \hline P_1\\ P_2\\ P_3\\ P'_4 \end{array}$                                                                                                                                | $\begin{array}{l} .1 < q^2 < 6.0  {\rm GeV}^2/c^4 \\ \hline -0.079 \pm 0.159 \pm 0.021 \\ -0.162 \pm 0.050 \pm 0.012 \\ 0.085 \pm 0.090 \pm 0.005 \\ -0.298 \pm 0.087 \pm 0.016 \end{array}$                                                                                            |
| $\frac{15}{P_1}$ $\frac{P_2}{P_3}$ $\frac{P_4}{P_5'}$                                                                                                                               | $\begin{array}{l} 0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline -0.511 \pm 0.096 \pm 0.020 \\ 0.396 \pm 0.022 \pm 0.004 \\ -0.000 \pm 0.056 \pm 0.003 \\ -0.626 \pm 0.069 \pm 0.018 \\ -0.714 \pm 0.074 \pm 0.021 \end{array}$                                                            | $\begin{array}{c} 17\\ \hline P_1\\ P_2\\ P_3\\ P'_4\\ P'_5 \end{array}$                                                                                                                                                                          | $\begin{array}{c} \frac{10 < q^2 < 19.0  {\rm GeV}^2/c^4}{-0.763 \pm 0.152 \pm 0.094} \\ 0.328 \pm 0.032 \pm 0.017 \\ 0.085 \pm 0.068 \pm 0.004 \\ -0.647 \pm 0.086 \pm 0.057 \\ -0.590 \pm 0.084 \pm 0.059 \end{array}$                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 1\\ \hline P_1\\ P_2\\ P_3\\ P'_4\\ P'_5 \end{array}$                                                                                                                         | $\begin{array}{c} .1 < q^2 < 6.0 \ {\rm GeV}^2/c^4 \\ \hline -0.079 \pm 0.159 \pm 0.021 \\ -0.162 \pm 0.050 \pm 0.012 \\ 0.085 \pm 0.090 \pm 0.005 \\ -0.298 \pm 0.087 \pm 0.016 \\ -0.114 \pm 0.068 \pm 0.026 \end{array}$                                                             |
| $     \frac{15}{P_1} \\     P_2 \\     P_3 \\     P'_4 \\     P'_5 \\     P'_6   $                                                                                                  | $\begin{array}{l} .0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline -0.511 \pm 0.096 \pm 0.020 \\ 0.396 \pm 0.022 \pm 0.004 \\ -0.000 \pm 0.056 \pm 0.003 \\ -0.626 \pm 0.069 \pm 0.018 \\ -0.714 \pm 0.074 \pm 0.021 \\ 0.061 \pm 0.085 \pm 0.003 \end{array}$                              | $   \begin{array}{r} 17 \\         P_1 \\         P_2 \\         P_3 \\         P'_4 \\         P'_5 \\         P'_6 \\         P'_6   \end{array} $                                                                                              | $ \begin{array}{l} \frac{1.0 < q^2 < 19.0 \ {\rm GeV}^2/c^4}{-0.763 \pm 0.152 \pm 0.094} \\ 0.328 \pm 0.032 \pm 0.017 \\ 0.085 \pm 0.068 \pm 0.004 \\ -0.647 \pm 0.086 \pm 0.057 \\ -0.590 \pm 0.084 \pm 0.059 \\ 0.103 \pm 0.105 \pm 0.016 \end{array} $                                                                                                                                                                                                                                                                         | $     \begin{array}{r} 1 \\             P_1 \\             P_2 \\             P_3 \\             P'_4 \\             P'_5 \\             P'_6 \\             P'_6         $                     | $\begin{array}{c} .1 < q^2 < 6.0  {\rm GeV}^2/c^4 \\ \hline -0.079 \pm 0.159 \pm 0.021 \\ -0.162 \pm 0.050 \pm 0.012 \\ 0.085 \pm 0.090 \pm 0.005 \\ -0.298 \pm 0.087 \pm 0.016 \\ -0.114 \pm 0.068 \pm 0.026 \\ -0.197 \pm 0.075 \pm 0.009 \end{array}$                                |
| $   \begin{array}{c}     15 \\     \hline     P_1 \\     P_2 \\     P_3 \\     P'_4 \\     P'_5 \\     P'_6 \\     P'_8   \end{array} $                                             | $\begin{array}{l} 0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline -0.511 \pm 0.096 \pm 0.020 \\ 0.396 \pm 0.022 \pm 0.004 \\ -0.000 \pm 0.056 \pm 0.003 \\ -0.626 \pm 0.069 \pm 0.018 \\ -0.714 \pm 0.074 \pm 0.021 \\ 0.061 \pm 0.085 \pm 0.003 \\ 0.007 \pm 0.086 \pm 0.002 \end{array}$  | $   \begin{array}{c}     17 \\     \hline     P_1 \\     P_2 \\     P_3 \\     P'_4 \\     P'_5 \\     P'_6 \\     P'_8 \\   \end{array} $                                                                                                        | $\begin{array}{l} \frac{1.0 < q^2 < 19.0 \ {\rm GeV}^2/c^4}{-0.763 \pm 0.152 \pm 0.094} \\ 0.328 \pm 0.032 \pm 0.017 \\ 0.085 \pm 0.068 \pm 0.004 \\ -0.647 \pm 0.086 \pm 0.057 \\ -0.590 \pm 0.084 \pm 0.059 \\ 0.103 \pm 0.105 \pm 0.016 \\ -0.055 \pm 0.099 \pm 0.006 \end{array}$                                                                                                                                                                                                                                             | $   \begin{array}{c}     1 \\     P_1 \\     P_2 \\     P_3 \\     P'_4 \\     P'_5 \\     P'_6 \\     P'_8 \\   \end{array} $                                                                  | $\begin{array}{c} .1 < q^2 < 6.0 \ {\rm GeV}^2/c^4 \\ \hline -0.079 \pm 0.159 \pm 0.021 \\ -0.162 \pm 0.050 \pm 0.012 \\ 0.085 \pm 0.090 \pm 0.005 \\ -0.298 \pm 0.087 \pm 0.016 \\ -0.114 \pm 0.068 \pm 0.026 \\ -0.197 \pm 0.075 \pm 0.009 \\ -0.020 \pm 0.089 \pm 0.009 \end{array}$ |
| $   \begin{array}{c}     15 \\     \hline     P_1 \\     P_2 \\     P_3 \\     P'_4 \\     P'_5 \\     P'_6 \\     P'_8   \end{array} $                                             | $\begin{array}{l} 0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline -0.511 \pm 0.096 \pm 0.020 \\ 0.396 \pm 0.022 \pm 0.004 \\ -0.000 \pm 0.056 \pm 0.003 \\ -0.626 \pm 0.069 \pm 0.018 \\ -0.714 \pm 0.074 \pm 0.021 \\ 0.061 \pm 0.085 \pm 0.003 \\ 0.007 \pm 0.086 \pm 0.002 \end{array}$  | $     \begin{array}{r} 17 \\             P_1 \\             P_2 \\             P_3 \\             P'_4 \\             P'_5 \\             P'_6 \\             P'_8 \\             15         $                                                    | $\begin{split} & \frac{10 < q^2 < 19.0 \text{GeV}^2/c^4}{-0.763 \pm 0.152 \pm 0.094} \\ & 0.328 \pm 0.032 \pm 0.017 \\ & 0.085 \pm 0.068 \pm 0.004 \\ -0.647 \pm 0.086 \pm 0.057 \\ & -0.590 \pm 0.084 \pm 0.059 \\ & 0.103 \pm 0.105 \pm 0.016 \\ & -0.055 \pm 0.099 \pm 0.006 \\ \hline & .0 < q^2 < 19.0 \text{GeV}^2/c^4 \end{split}$                                                                                                                                                                                         | $\frac{1}{P_1} \\ P_2 \\ P_3 \\ P'_4 \\ P'_5 \\ P'_6 \\ P'_8 \\ P'_8$                                                                                                                           | $\begin{array}{c} .1 < q^2 < 6.0 \ {\rm GeV}^2/c^4 \\ \hline -0.079 \pm 0.159 \pm 0.021 \\ -0.162 \pm 0.050 \pm 0.012 \\ 0.085 \pm 0.090 \pm 0.005 \\ -0.298 \pm 0.087 \pm 0.016 \\ -0.114 \pm 0.068 \pm 0.026 \\ -0.197 \pm 0.075 \pm 0.009 \\ -0.020 \pm 0.089 \pm 0.009 \end{array}$ |
| $     \begin{array}{r}         15 \\         \overline{P_1} \\         P_2 \\         P_3 \\         P'_4 \\         P'_5 \\         P'_6 \\         P'_8 \\         P'_8         $ | $\begin{array}{l} .0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline -0.511 \pm 0.096 \pm 0.020 \\ 0.396 \pm 0.022 \pm 0.004 \\ -0.000 \pm 0.056 \pm 0.003 \\ -0.626 \pm 0.069 \pm 0.018 \\ -0.714 \pm 0.074 \pm 0.021 \\ 0.061 \pm 0.085 \pm 0.003 \\ 0.007 \pm 0.086 \pm 0.002 \end{array}$ | $     \begin{array}{r} 177 \\             P_1 \\             P_2 \\             P_3 \\             P'_4 \\             P'_5 \\             P'_6 \\             P'_8 \\             \hline             115 \\             \overline{P_1}         $ | $\begin{split} &\frac{1.0 < q^2 < 19.0  {\rm GeV}^2/c^4}{-0.763 \pm 0.152 \pm 0.094} \\ &\frac{0.328 \pm 0.032 \pm 0.017}{0.085 \pm 0.068 \pm 0.004} \\ &-0.647 \pm 0.086 \pm 0.057 \\ &-0.590 \pm 0.084 \pm 0.059 \\ &0.103 \pm 0.105 \pm 0.016 \\ &-0.055 \pm 0.099 \pm 0.006 \\ \\ &\frac{.0 < q^2 < 19.0  {\rm GeV}^2/c^4}{-0.577 \pm 0.090 \pm 0.031} \end{split}$                                                                                                                                                           | $     \begin{array}{r} 1 \\             P_1 \\             P_2 \\             P_3 \\             P'_4 \\             P'_5 \\             P'_6 \\             P'_8 \\             P'_8         $ | $\begin{array}{c} .1 < q^2 < 6.0 \ {\rm GeV}^2/c^4 \\ \hline -0.079 \pm 0.159 \pm 0.021 \\ -0.162 \pm 0.050 \pm 0.012 \\ 0.085 \pm 0.090 \pm 0.005 \\ -0.298 \pm 0.087 \pm 0.016 \\ -0.114 \pm 0.068 \pm 0.026 \\ -0.197 \pm 0.075 \pm 0.009 \\ -0.020 \pm 0.089 \pm 0.009 \end{array}$ |
| $   \begin{array}{c}     15 \\     \hline     P_1 \\     P_2 \\     P_3 \\     P'_4 \\     P'_5 \\     P'_6 \\     P'_8 \\   \end{array} $                                          | $\begin{array}{l} .0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline -0.511 \pm 0.096 \pm 0.020 \\ 0.396 \pm 0.022 \pm 0.004 \\ -0.000 \pm 0.056 \pm 0.003 \\ -0.626 \pm 0.069 \pm 0.018 \\ -0.714 \pm 0.074 \pm 0.021 \\ 0.061 \pm 0.085 \pm 0.003 \\ 0.007 \pm 0.086 \pm 0.002 \end{array}$ | $     \begin{array}{r} 177 \\             P_1 \\             P_2 \\             P_3 \\             P'_4 \\             P'_5 \\             P'_6 \\             P'_8 \\             155 \\             \overline{P_1} \\             P_2         $ | $\begin{split} &\frac{1.0 < q^2 < 19.0  \text{GeV}^2/c^4}{-0.763 \pm 0.152 \pm 0.094} \\ &\frac{0.328 \pm 0.032 \pm 0.017}{0.085 \pm 0.068 \pm 0.004} \\ &-0.647 \pm 0.086 \pm 0.057 \\ &-0.590 \pm 0.084 \pm 0.059 \\ &0.103 \pm 0.105 \pm 0.016 \\ &-0.055 \pm 0.099 \pm 0.006 \\ \hline &\frac{.0 < q^2 < 19.0  \text{GeV}^2/c^4}{-0.577 \pm 0.090 \pm 0.031} \\ &0.359 \pm 0.018 \pm 0.009 \end{split}$                                                                                                                       | $     \begin{array}{r} 1 \\             P_1 \\             P_2 \\             P_3 \\             P'_4 \\             P'_5 \\             P'_6 \\             P'_8 \\             P'_8         $ | $\begin{array}{c} .1 < q^2 < 6.0 \ {\rm GeV}^2/c^4 \\ \hline -0.079 \pm 0.159 \pm 0.021 \\ -0.162 \pm 0.050 \pm 0.012 \\ 0.085 \pm 0.090 \pm 0.005 \\ -0.298 \pm 0.087 \pm 0.016 \\ -0.114 \pm 0.068 \pm 0.026 \\ -0.197 \pm 0.075 \pm 0.009 \\ -0.020 \pm 0.089 \pm 0.009 \end{array}$ |
| $   \begin{array}{c}     15 \\     \hline     P_1 \\     P_2 \\     P_3 \\     P'_4 \\     P'_5 \\     P'_6 \\     P'_8   \end{array} $                                             | $\begin{array}{l} .0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline -0.511 \pm 0.096 \pm 0.020 \\ 0.396 \pm 0.022 \pm 0.004 \\ -0.000 \pm 0.056 \pm 0.003 \\ -0.626 \pm 0.069 \pm 0.018 \\ -0.714 \pm 0.074 \pm 0.021 \\ 0.061 \pm 0.085 \pm 0.003 \\ 0.007 \pm 0.086 \pm 0.002 \end{array}$ | $ \begin{array}{r} 177 \\ \hline P_1 \\ P_2 \\ P_3 \\ P'_4 \\ P'_5 \\ P'_6 \\ P'_8 \\ \hline P'_8 \\ \hline P_1 \\ P_2 \\ P_3 \\ \end{array} $                                                                                                    | $\begin{split} &\frac{1.0 < q^2 < 19.0  \text{GeV}^2/c^4}{-0.763 \pm 0.152 \pm 0.094} \\ &\frac{0.328 \pm 0.032 \pm 0.017}{0.085 \pm 0.068 \pm 0.004} \\ &-0.647 \pm 0.086 \pm 0.057 \\ &-0.590 \pm 0.084 \pm 0.059 \\ &0.103 \pm 0.105 \pm 0.016 \\ &-0.055 \pm 0.099 \pm 0.006 \\ \hline &\frac{.0 < q^2 < 19.0  \text{GeV}^2/c^4}{-0.577 \pm 0.090 \pm 0.031} \\ &0.359 \pm 0.018 \pm 0.009 \\ &0.048 \pm 0.045 \pm 0.002 \end{split}$                                                                                         | $   \begin{array}{c}     1 \\     P_1 \\     P_2 \\     P_3 \\     P'_4 \\     P'_5 \\     P'_6 \\     P'_8 \\   \end{array} $                                                                  | $\begin{array}{l} .1 < q^2 < 6.0 \ {\rm GeV}^2/c^4 \\ \hline -0.079 \pm 0.159 \pm 0.021 \\ -0.162 \pm 0.050 \pm 0.012 \\ 0.085 \pm 0.090 \pm 0.005 \\ -0.298 \pm 0.087 \pm 0.016 \\ -0.114 \pm 0.068 \pm 0.026 \\ -0.197 \pm 0.075 \pm 0.009 \\ -0.020 \pm 0.089 \pm 0.009 \end{array}$ |
| $   \begin{array}{c}     15 \\     \hline     P_1 \\     P_2 \\     P_3 \\     P'_4 \\     P'_5 \\     P'_6 \\     P'_8   \end{array} $                                             | $\begin{array}{l} .0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline -0.511 \pm 0.096 \pm 0.020 \\ 0.396 \pm 0.022 \pm 0.004 \\ -0.000 \pm 0.056 \pm 0.003 \\ -0.626 \pm 0.069 \pm 0.018 \\ -0.714 \pm 0.074 \pm 0.021 \\ 0.061 \pm 0.085 \pm 0.003 \\ 0.007 \pm 0.086 \pm 0.002 \end{array}$ | $ \begin{array}{r} 17 \\ \hline P_1 \\ P_2 \\ P_3 \\ P'_4 \\ P'_5 \\ P'_6 \\ P'_8 \\ \hline 15 \\ \hline P_1 \\ P_2 \\ P_3 \\ P'_4 \\ \end{array} $                                                                                               | $\begin{split} & \frac{1.0 < q^2 < 19.0  \text{GeV}^2/c^4}{-0.763 \pm 0.152 \pm 0.094} \\ & 0.328 \pm 0.032 \pm 0.017 \\ & 0.085 \pm 0.068 \pm 0.004 \\ -0.647 \pm 0.086 \pm 0.057 \\ & -0.590 \pm 0.084 \pm 0.059 \\ & 0.103 \pm 0.105 \pm 0.016 \\ & -0.055 \pm 0.099 \pm 0.006 \\ \hline & .0 < q^2 < 19.0  \text{GeV}^2/c^4 \\ \hline & -0.577 \pm 0.090 \pm 0.031 \\ & 0.359 \pm 0.018 \pm 0.009 \\ & 0.048 \pm 0.045 \pm 0.002 \\ & -0.638 \pm 0.055 \pm 0.020 \end{split}$                                                 | $ \frac{1}{P_1} \\ P_2 \\ P_3 \\ P_4' \\ P_5' \\ P_6' \\ P_8' $                                                                                                                                 | $\begin{array}{l} .1 < q^2 < 6.0 \ {\rm GeV}^2/c^4 \\ \hline -0.079 \pm 0.159 \pm 0.021 \\ -0.162 \pm 0.050 \pm 0.012 \\ 0.085 \pm 0.090 \pm 0.005 \\ -0.298 \pm 0.087 \pm 0.016 \\ -0.114 \pm 0.068 \pm 0.026 \\ -0.197 \pm 0.075 \pm 0.009 \\ -0.020 \pm 0.089 \pm 0.009 \end{array}$ |
| $   \begin{array}{c}     15 \\     \hline     P_1 \\     P_2 \\     P_3 \\     P'_4 \\     P'_5 \\     P'_6 \\     P'_8   \end{array} $                                             | $\begin{array}{l} .0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline -0.511 \pm 0.096 \pm 0.020 \\ 0.396 \pm 0.022 \pm 0.004 \\ -0.000 \pm 0.056 \pm 0.003 \\ -0.626 \pm 0.069 \pm 0.018 \\ -0.714 \pm 0.074 \pm 0.021 \\ 0.061 \pm 0.085 \pm 0.003 \\ 0.007 \pm 0.086 \pm 0.002 \end{array}$ | $\begin{array}{c} 17\\ \hline P_1\\ P_2\\ P_3\\ P'_4\\ P'_5\\ P'_6\\ P'_8\\ \hline 15\\ \hline P_1\\ P_2\\ P_3\\ P'_4\\ P'_5\\ \end{array}$                                                                                                       | $\begin{split} & \frac{1.0 < q^2 < 19.0  \text{GeV}^2/c^4}{-0.763 \pm 0.152 \pm 0.094} \\ & 0.328 \pm 0.032 \pm 0.017 \\ & 0.085 \pm 0.068 \pm 0.004 \\ -0.647 \pm 0.086 \pm 0.057 \\ & -0.590 \pm 0.084 \pm 0.059 \\ & 0.103 \pm 0.105 \pm 0.016 \\ & -0.055 \pm 0.099 \pm 0.006 \\ \hline & \frac{.0 < q^2 < 19.0  \text{GeV}^2/c^4}{-0.577 \pm 0.090 \pm 0.031} \\ & 0.359 \pm 0.018 \pm 0.009 \\ & 0.048 \pm 0.045 \pm 0.002 \\ & -0.663 \pm 0.029 \\ \hline & -0.667 \pm 0.053 \pm 0.029 \\ \end{split}$                     | $ \begin{array}{c}     1 \\     \hline     P_1 \\     P_2 \\     P_3 \\     P'_4 \\     P'_5 \\     P'_6 \\     P'_8 \\ \end{array} $                                                           | $\begin{array}{l} .1 < q^2 < 6.0  {\rm GeV}^2/c^4 \\ \hline -0.079 \pm 0.159 \pm 0.021 \\ -0.162 \pm 0.050 \pm 0.012 \\ 0.085 \pm 0.090 \pm 0.005 \\ -0.298 \pm 0.087 \pm 0.016 \\ -0.114 \pm 0.068 \pm 0.026 \\ -0.197 \pm 0.075 \pm 0.009 \\ -0.020 \pm 0.089 \pm 0.009 \end{array}$  |
| $   \begin{array}{r}     15 \\     \hline     P_1 \\     P_2 \\     P_3 \\     P'_4 \\     P'_5 \\     P'_6 \\     P'_8 \\   \end{array} $                                          | $\begin{array}{l} .0 < q^2 < 17.0 \ {\rm GeV}^2/c^4 \\ \hline -0.511 \pm 0.096 \pm 0.020 \\ 0.396 \pm 0.022 \pm 0.004 \\ -0.000 \pm 0.056 \pm 0.003 \\ -0.626 \pm 0.069 \pm 0.018 \\ -0.714 \pm 0.074 \pm 0.021 \\ 0.061 \pm 0.085 \pm 0.003 \\ 0.007 \pm 0.086 \pm 0.002 \end{array}$ | $\begin{array}{c} 17\\ \hline P_1\\ P_2\\ P_3\\ P'_4\\ P'_5\\ P'_6\\ P'_8\\ \hline 15\\ \hline P_1\\ P_2\\ P_3\\ P'_4\\ P'_5\\ P'_6\\ \end{array}$                                                                                                | $\begin{array}{l} \hline 0 < q^2 < 19.0  {\rm GeV}^2/c^4 \\ \hline -0.763 \pm 0.152 \pm 0.094 \\ \hline 0.328 \pm 0.032 \pm 0.017 \\ \hline 0.085 \pm 0.068 \pm 0.004 \\ \hline -0.647 \pm 0.086 \pm 0.057 \\ \hline -0.590 \pm 0.084 \pm 0.059 \\ \hline 0.103 \pm 0.105 \pm 0.016 \\ \hline -0.055 \pm 0.099 \pm 0.006 \\ \hline \hline 0.577 \pm 0.090 \pm 0.031 \\ \hline 0.359 \pm 0.018 \pm 0.009 \\ \hline 0.048 \pm 0.045 \pm 0.020 \\ \hline -0.667 \pm 0.053 \pm 0.029 \\ \hline 0.073 \pm 0.006 \\ \hline \end{array}$ | $ \begin{array}{c}     1 \\     \hline     P_1 \\     P_2 \\     P_3 \\     P'_4 \\     P'_5 \\     P'_6 \\     P'_8 \\   \end{array} $                                                         | $\begin{array}{l} .1 < q^2 < 6.0 \ {\rm GeV}^2/c^4 \\ \hline -0.079 \pm 0.159 \pm 0.021 \\ -0.162 \pm 0.050 \pm 0.012 \\ 0.085 \pm 0.090 \pm 0.005 \\ -0.298 \pm 0.087 \pm 0.016 \\ -0.114 \pm 0.068 \pm 0.026 \\ -0.197 \pm 0.075 \pm 0.009 \\ -0.020 \pm 0.089 \pm 0.009 \end{array}$ |

#### 2 Systematic uncertainties

A summary of the sources of systematic uncertainty on the angular observables is shown in Table 3. Details of how the systematic uncertainties are estimated are given in the letter. The dominant systematic uncertainties arise from the peaking backgrounds that are neglected in the analysis (*peaking backgrounds* in Table 3) and, for the narrow  $q^2$ bins, from the uncertainty associated with evaluating the acceptance at a fixed point in  $q^2$  (acceptance variation with  $q^2$  in Table 3). The bias correction in Table 3 refers to the biases observed when generating pseudoexperiments using the result of the best fit to data, as discussed in the letter. The systematic uncertainty associated with the *background* model is calculated by increasing the polynomial order to four.

| Source                          | $F_{\rm L}$ | $A_{\rm FB},~S_3$ – $S_9$ | $P_1 - P'_8$ |
|---------------------------------|-------------|---------------------------|--------------|
| Acceptance stat. uncertainty    | < 0.01      | < 0.01                    | < 0.01       |
| Acceptance polynomial order     | < 0.01      | < 0.01                    | < 0.02       |
| Data-simulation differences     | < 0.01      | < 0.01                    | < 0.01       |
| Acceptance variation with $q^2$ | < 0.03      | < 0.03                    | < 0.09       |
| $m(K^+\pi^-)$ model             | < 0.01      | < 0.01                    | < 0.02       |
| Background model                | < 0.01      | < 0.01                    | < 0.03       |
| Peaking backgrounds             | < 0.02      | < 0.02                    | < 0.03       |
| $m(K^+\pi^-\mu^+\mu^-)$ model   | < 0.01      | < 0.01                    | < 0.02       |
| $K^+\mu^+\mu^-$ veto            | < 0.01      | < 0.01                    | < 0.01       |
| Trigger                         | < 0.01      | < 0.01                    | < 0.01       |
| Bias correction                 | < 0.02      | < 0.02                    | < 0.04       |

Table 3: Summary of the different sources of systematic uncertainty on the angular observables.

## 3 Correlation matrices for the *CP*-averaged observables

Correlation matrices between the *CP*-averaged observables in the different  $q^2$  bins are provided in Tables 4–13. The different  $q^2$  bins are statistically independent.

Table 4: Correlation matrix for the CP-averaged observables from the maximum-likelihood fit in the bin  $0.10 < q^2 < 0.98 \,\text{GeV}^2/c^4$ .

|              | $F_{\rm L}$ | $S_3$ | $S_4$ | $S_5$ | $A_{\rm FB}$ | $S_7$ | $S_8$ | $S_9$ |
|--------------|-------------|-------|-------|-------|--------------|-------|-------|-------|
| $F_{\rm L}$  | 1.00        | -0.00 | -0.03 | 0.09  | 0.03         | -0.01 | 0.06  | 0.03  |
| $S_3$        |             | 1.00  | 0.02  | 0.14  | 0.02         | -0.06 | 0.01  | -0.01 |
| $S_4$        |             |       | 1.00  | 0.06  | 0.15         | -0.03 | 0.06  | 0.00  |
| $S_5$        |             |       |       | 1.00  | 0.04         | -0.03 | -0.01 | 0.00  |
| $A_{\rm FB}$ |             |       |       |       | 1.00         | -0.02 | -0.01 | -0.02 |
| $S_7$        |             |       |       |       |              | 1.00  | -0.04 | 0.10  |
| $S_8$        |             |       |       |       |              |       | 1.00  | 0.02  |
| $S_9$        |             |       |       |       |              |       |       | 1.00  |

Table 5: Correlation matrix for the CP-averaged observables from the maximum-likelihood fit in the bin  $1.1 < q^2 < 2.5 \,\text{GeV}^2/c^4$ .

|              | $F_{\rm L}$ | $S_3$ | $S_4$ | $S_5$ | $A_{\rm FB}$ | $S_7$ | $S_8$ | $S_9$ |
|--------------|-------------|-------|-------|-------|--------------|-------|-------|-------|
| $F_{\rm L}$  | 1.00        | 0.05  | 0.04  | 0.16  | 0.11         | -0.08 | -0.06 | 0.05  |
| $S_3$        |             | 1.00  | 0.00  | 0.04  | 0.05         | 0.08  | 0.08  | 0.18  |
| $S_4$        |             |       | 1.00  | -0.20 | -0.01        | 0.02  | -0.09 | -0.07 |
| $S_5$        |             |       |       | 1.00  | -0.09        | -0.11 | -0.02 | -0.12 |
| $A_{\rm FB}$ |             |       |       |       | 1.00         | -0.03 | 0.08  | -0.04 |
| $S_7$        |             |       |       |       |              | 1.00  | -0.16 | 0.14  |
| $S_8$        |             |       |       |       |              |       | 1.00  | -0.04 |
| $S_9$        |             |       |       |       |              |       |       | 1.00  |

Table 6: Correlation matrix for the CP-averaged observables from the maximum-likelihood fit in the bin  $2.5 < q^2 < 4.0 \,\text{GeV}^2/c^4$ .

|              | $F_{\rm L}$ | $S_3$ | $S_4$ | $S_5$ | $A_{\rm FB}$ | $S_7$ | $S_8$ | $S_9$ |
|--------------|-------------|-------|-------|-------|--------------|-------|-------|-------|
| $F_{\rm L}$  | 1.00        | -0.02 | -0.03 | -0.02 | -0.03        | -0.01 | -0.08 | 0.06  |
| $S_3$        |             | 1.00  | -0.05 | -0.03 | 0.05         | 0.02  | -0.07 | 0.02  |
| $S_4$        |             |       | 1.00  | -0.13 | -0.10        | 0.01  | 0.03  | -0.03 |
| $S_5$        |             |       |       | 1.00  | -0.08        | 0.01  | 0.02  | 0.03  |
| $A_{\rm FB}$ |             |       |       |       | 1.00         | 0.06  | -0.05 | -0.08 |
| $S_7$        |             |       |       |       |              | 1.00  | 0.01  | 0.03  |
| $S_8$        |             |       |       |       |              |       | 1.00  | -0.08 |
| $S_9$        |             |       |       |       |              |       |       | 1.00  |

Table 7: Correlation matrix for the CP-averaged observables from the maximum-likelihood fit in the bin  $4.0 < q^2 < 6.0 \,\text{GeV}^2/c^4$ .

|              | $F_{\rm L}$ | $S_3$ | $S_4$ | $S_5$ | $A_{\rm FB}$ | $S_7$ | $S_8$ | $S_9$ |
|--------------|-------------|-------|-------|-------|--------------|-------|-------|-------|
| $F_{\rm L}$  | 1.00        | -0.01 | 0.05  | -0.02 | -0.14        | -0.10 | 0.09  | 0.04  |
| $S_3$        |             | 1.00  | -0.06 | -0.10 | 0.06         | -0.02 | 0.02  | -0.08 |
| $S_4$        |             |       | 1.00  | 0.01  | -0.14        | 0.03  | 0.02  | 0.01  |
| $S_5$        |             |       |       | 1.00  | -0.08        | 0.07  | 0.02  | -0.05 |
| $A_{\rm FB}$ |             |       |       |       | 1.00         | -0.01 | -0.03 | 0.01  |
| $S_7$        |             |       |       |       |              | 1.00  | 0.03  | -0.18 |
| $S_8$        |             |       |       |       |              |       | 1.00  | -0.00 |
| $S_9$        |             |       |       |       |              |       |       | 1.00  |

Table 8: Correlation matrix for the CP-averaged observables from the maximum-likelihood fit in the bin  $6.0 < q^2 < 8.0 \,\text{GeV}^2/c^4$ .

|                                                                | $F_{\rm L}$ | $S_3$ | $S_4$ | $S_5$ | $A_{\rm FB}$  | $S_7$                    | $S_8$                          | $S_9$                                   |
|----------------------------------------------------------------|-------------|-------|-------|-------|---------------|--------------------------|--------------------------------|-----------------------------------------|
| $F_{\rm L}$                                                    | 1.00        | 0.00  | -0.01 | -0.06 | -0.20         | -0.05                    | 0.00                           | -0.06                                   |
| $S_3$                                                          |             | 1.00  | -0.12 | -0.24 | 0.01          | 0.05                     | 0.04                           | -0.10                                   |
| $S_4$                                                          |             |       | 1.00  | 0.13  | -0.10         | 0.02                     | -0.04                          | -0.04                                   |
| $S_5$                                                          |             |       |       | 1.00  | -0.16         | -0.01                    | 0.02                           | -0.06                                   |
| $A_{\rm FB}$                                                   |             |       |       |       | 1.00          | -0.03                    | 0.02                           | 0.02                                    |
| $S_7$                                                          |             |       |       |       |               | 1.00                     | 0.08                           | -0.09                                   |
| $S_8$                                                          |             |       |       |       |               |                          | 1.00                           | -0.08                                   |
| $S_9$                                                          |             |       |       |       |               |                          |                                | 1.00                                    |
| $egin{array}{c} S_5 \ A_{ m FB} \ S_7 \ S_8 \ S_9 \end{array}$ |             |       |       | 1.00  | -0.16<br>1.00 | $-0.01 \\ -0.03 \\ 1.00$ | $0.02 \\ 0.02 \\ 0.08 \\ 1.00$ | -0.06<br>0.02<br>-0.09<br>-0.08<br>1.00 |

Table 9: Correlation matrix for the CP-averaged observables from the maximum-likelihood fit in the bin  $11.0 < q^2 < 12.5 \,\text{GeV}^2/c^4$ .

|              | $F_{\rm L}$ | $S_3$ | $S_4$ | $S_5$ | $A_{\rm FB}$ | $S_7$ | $S_8$ | $S_9$ |
|--------------|-------------|-------|-------|-------|--------------|-------|-------|-------|
| $F_{\rm L}$  | 1.00        | 0.14  | 0.02  | -0.09 | -0.56        | 0.02  | 0.01  | 0.01  |
| $S_3$        |             | 1.00  | 0.08  | -0.08 | -0.15        | 0.02  | 0.06  | -0.10 |
| $S_4$        |             |       | 1.00  | 0.08  | -0.12        | 0.03  | -0.02 | -0.02 |
| $S_5$        |             |       |       | 1.00  | -0.13        | 0.03  | -0.00 | -0.17 |
| $A_{\rm FB}$ |             |       |       |       | 1.00         | -0.05 | -0.10 | 0.12  |
| $S_7$        |             |       |       |       |              | 1.00  | 0.27  | -0.10 |
| $S_8$        |             |       |       |       |              |       | 1.00  | -0.01 |
| $S_9$        |             |       |       |       |              |       |       | 1.00  |

Table 10: Correlation matrix for the CP-averaged observables from the maximum-likelihood fit in the bin  $15.0 < q^2 < 17.0 \,\text{GeV}^2/c^4$ .

|              | $F_{\rm L}$ | $S_3$ | $S_4$ | $S_5$ | $A_{\rm FB}$ | $S_7$ | $S_8$ | $S_9$ |
|--------------|-------------|-------|-------|-------|--------------|-------|-------|-------|
| $F_{\rm L}$  | 1.00        | 0.27  | 0.02  | 0.07  | -0.53        | 0.00  | -0.04 | 0.06  |
| $S_3$        |             | 1.00  | -0.05 | 0.01  | -0.12        | -0.02 | -0.04 | 0.10  |
| $S_4$        |             |       | 1.00  | 0.29  | -0.15        | 0.02  | 0.06  | 0.03  |
| $S_5$        |             |       |       | 1.00  | -0.28        | 0.06  | 0.03  | 0.04  |
| $A_{\rm FB}$ |             |       |       |       | 1.00         | 0.01  | -0.00 | 0.01  |
| $S_7$        |             |       |       |       |              | 1.00  | 0.31  | -0.23 |
| $S_8$        |             |       |       |       |              |       | 1.00  | -0.13 |
| $S_9$        |             |       |       |       |              |       |       | 1.00  |

Table 11: Correlation matrix for the CP-averaged observables from the maximum-likelihood fit in the bin  $17.0 < q^2 < 19.0 \,\text{GeV}^2/c^4$ .

|              | $F_{\rm L}$ | $S_3$ | $S_4$ | $S_5$ | $A_{\rm FB}$ | $S_7$ | $S_8$ | $S_9$ |
|--------------|-------------|-------|-------|-------|--------------|-------|-------|-------|
| $F_{\rm L}$  | 1.00        | 0.14  | 0.06  | 0.00  | -0.35        | 0.02  | -0.02 | 0.08  |
| $S_3$        |             | 1.00  | -0.04 | -0.15 | -0.12        | -0.04 | 0.03  | -0.04 |
| $S_4$        |             |       | 1.00  | 0.25  | -0.14        | -0.10 | 0.08  | 0.02  |
| $S_5$        |             |       |       | 1.00  | -0.25        | -0.07 | -0.08 | 0.05  |
| $A_{\rm FB}$ |             |       |       |       | 1.00         | -0.00 | -0.03 | -0.09 |
| $S_7$        |             |       |       |       |              | 1.00  | 0.33  | -0.09 |
| $S_8$        |             |       |       |       |              |       | 1.00  | -0.13 |
| $S_9$        |             |       |       |       |              |       |       | 1.00  |
|              | •           |       |       |       |              |       |       |       |

Table 12: Correlation matrix for the CP-averaged observables from the maximum-likelihood fit in the bin  $1.1 < q^2 < 6.0 \,\text{GeV}^2/c^4$ .

|              | $F_{\rm L}$ | $S_3$ | $S_4$ | $S_5$ | $A_{\rm FB}$ | $S_7$ | $S_8$ | $S_9$ |
|--------------|-------------|-------|-------|-------|--------------|-------|-------|-------|
| $F_{\rm L}$  | 1.00        | -0.01 | -0.02 | 0.00  | 0.01         | -0.08 | 0.02  | 0.03  |
| $S_3$        |             | 1.00  | -0.04 | -0.01 | 0.04         | 0.03  | 0.00  | -0.02 |
| $S_4$        |             |       | 1.00  | -0.07 | -0.09        | 0.01  | 0.01  | -0.03 |
| $S_5$        |             |       |       | 1.00  | -0.07        | 0.00  | 0.01  | -0.04 |
| $A_{\rm FB}$ |             |       |       |       | 1.00         | -0.01 | -0.03 | -0.03 |
| $S_7$        |             |       |       |       |              | 1.00  | -0.02 | -0.04 |
| $S_8$        |             |       |       |       |              |       | 1.00  | -0.08 |
| $S_9$        |             |       |       |       |              |       |       | 1.00  |

Table 13: Correlation matrix for the CP-averaged observables from the maximum-likelihood fit in the bin  $15.0 < q^2 < 19.0 \,\text{GeV}^2/c^4$ .

|              | $F_{\rm L}$ | $S_3$ | $S_4$ | $S_5$ | $A_{\rm FB}$ | $S_7$ | $S_8$ | $S_9$ |
|--------------|-------------|-------|-------|-------|--------------|-------|-------|-------|
| $F_{\rm L}$  | 1.00        | 0.18  | -0.06 | -0.07 | -0.37        | 0.00  | -0.03 | 0.07  |
| $S_3$        |             | 1.00  | -0.04 | -0.03 | -0.07        | -0.00 | -0.04 | 0.02  |
| $S_4$        |             |       | 1.00  | 0.21  | -0.13        | -0.03 | 0.04  | 0.06  |
| $S_5$        |             |       |       | 1.00  | -0.23        | 0.02  | -0.01 | 0.04  |
| $A_{\rm FB}$ |             |       |       |       | 1.00         | 0.03  | -0.01 | 0.00  |
| $S_7$        |             |       |       |       |              | 1.00  | 0.28  | -0.18 |
| $S_8$        |             |       |       |       |              |       | 1.00  | -0.14 |
| $S_9$        |             |       |       |       |              |       |       | 1.00  |

# 4 Correlation matrices for the optimised angular observables

Correlation matrices between the optimised  $P_i^{(\prime)}$  basis of observables in the different  $q^2$  bins are provided in Tables 14–23.

Table 14: Correlation matrix for the optimised angular observables from the maximum-likelihood fit in the bin  $0.10 < q^2 < 0.98 \text{ GeV}^2/c^4$ .

|             | $F_{\rm L}$ | $P_1$ | $P_2$ | $P_3$ | $P'_4$ | $P'_5$ | $P_6'$ | $P'_8$ |
|-------------|-------------|-------|-------|-------|--------|--------|--------|--------|
| $F_{\rm L}$ | 1.00        | 0.03  | 0.02  | 0.03  | -0.08  | -0.13  | -0.02  | 0.06   |
| $P_1$       |             | 1.00  | 0.02  | 0.01  | 0.02   | 0.14   | -0.06  | 0.01   |
| $P_2$       |             |       | 1.00  | 0.02  | 0.14   | 0.03   | -0.02  | -0.01  |
| $P_3$       |             |       |       | 1.00  | -0.01  | -0.00  | -0.10  | -0.02  |
| $P'_4$      |             |       |       |       | 1.00   | 0.07   | -0.03  | 0.06   |
| $P'_5$      |             |       |       |       |        | 1.00   | -0.03  | -0.02  |
| $P'_6$      |             |       |       |       |        |        | 1.00   | -0.04  |
| $P'_8$      |             |       |       |       |        |        |        | 1.00   |

Table 15: Correlation matrix for the optimised angular observables from the maximum-likelihood fit in the bin  $1.1 < q^2 < 2.5 \,\text{GeV}^2/c^4$ .

|             | $F_{\rm L}$ | $P_1$ | $P_2$ | $P_3$ | $P'_4$ | $P'_5$ | $P_6'$ | $P'_8$ |
|-------------|-------------|-------|-------|-------|--------|--------|--------|--------|
| $F_{\rm L}$ | 1.00        | -0.23 | -0.51 | 0.26  | 0.03   | 0.24   | -0.13  | -0.13  |
| $P_1$       |             | 1.00  | 0.15  | -0.23 | -0.00  | -0.02  | 0.11   | 0.11   |
| $P_2$       |             |       | 1.00  | -0.09 | -0.03  | -0.22  | 0.05   | 0.14   |
| $P_3$       |             |       |       | 1.00  | 0.07   | 0.19   | -0.17  | -0.00  |
| $P'_4$      |             |       |       |       | 1.00   | -0.20  | 0.02   | -0.09  |
| $P'_5$      |             |       |       |       |        | 1.00   | -0.12  | -0.04  |
| $P'_6$      |             |       |       |       |        |        | 1.00   | -0.14  |
| $P'_8$      |             |       |       |       |        |        |        | 1.00   |

Table 16: Correlation matrix for the optimised angular observables from the maximum-likelihood fit in the bin  $2.5 < q^2 < 4.0 \,\text{GeV}^2/c^4$ .

|             | $F_{\rm L}$ | $P_1$ | $P_2$ | $P_3$ | $P'_4$ | $P'_5$ | $P'_6$ | $P'_8$ |
|-------------|-------------|-------|-------|-------|--------|--------|--------|--------|
| $F_{\rm L}$ | 1.00        | 0.08  | -0.34 | 0.01  | -0.21  | -0.09  | -0.08  | -0.06  |
| $P_1$       |             | 1.00  | 0.02  | -0.02 | -0.07  | -0.03  | 0.00   | -0.08  |
| $P_2$       |             |       | 1.00  | 0.07  | -0.02  | -0.05  | 0.08   | -0.03  |
| $P_3$       |             |       |       | 1.00  | 0.02   | -0.04  | -0.04  | 0.07   |
| $P'_4$      |             |       |       |       | 1.00   | -0.10  | 0.02   | 0.04   |
| $P'_5$      |             |       |       |       |        | 1.00   | 0.01   | 0.02   |
| $P'_6$      |             |       |       |       |        |        | 1.00   | 0.01   |
| $P'_8$      |             |       |       |       |        |        |        | 1.00   |
|             |             |       |       |       |        |        |        |        |

Table 17: Correlation matrix for the optimised angular observables from the maximum-likelihood fit in the bin  $4.0 < q^2 < 6.0 \,\text{GeV}^2/c^4$ .

|             | $F_{\rm L}$ | $P_1$ | $P_2$ | $P_3$ | $P'_4$ | $P'_5$ | $P_6'$ | $P'_8$ |
|-------------|-------------|-------|-------|-------|--------|--------|--------|--------|
| $F_{\rm L}$ | 1.00        | 0.04  | 0.05  | -0.10 | -0.04  | -0.14  | -0.17  | 0.14   |
| $P_1$       |             | 1.00  | 0.06  | 0.07  | -0.06  | -0.10  | -0.03  | 0.02   |
| $P_2$       |             |       | 1.00  | -0.02 | -0.14  | -0.09  | -0.03  | -0.01  |
| $P_3$       |             |       |       | 1.00  | -0.01  | 0.07   | 0.19   | -0.01  |
| $P'_4$      |             |       |       |       | 1.00   | 0.02   | 0.04   | 0.01   |
| $P'_5$      |             |       |       |       |        | 1.00   | 0.09   | 0.00   |
| $P'_6$      |             |       |       |       |        |        | 1.00   | 0.02   |
| $P_8'$      |             |       |       |       |        |        |        | 1.00   |

Table 18: Correlation matrix for the optimised angular observables from the maximum-likelihood fit in the bin  $6.0 < q^2 < 8.0 \,\text{GeV}^2/c^4$ .

|             | $F_{\rm L}$ | $P_1$ | $P_2$ | $P_3$ | $P'_4$ | $P'_5$ | $P_6'$ | $P'_8$ |
|-------------|-------------|-------|-------|-------|--------|--------|--------|--------|
| $F_{\rm L}$ | 1.00        | -0.02 | 0.17  | 0.01  | -0.14  | -0.18  | -0.08  | -0.02  |
| $P_1$       |             | 1.00  | 0.01  | 0.10  | -0.12  | -0.23  | 0.04   | 0.04   |
| $P_2$       |             |       | 1.00  | -0.00 | -0.13  | -0.21  | -0.06  | 0.02   |
| $P_3$       |             |       |       | 1.00  | 0.03   | 0.06   | 0.09   | 0.08   |
| $P'_4$      |             |       |       |       | 1.00   | 0.15   | 0.03   | -0.03  |
| $P'_5$      |             |       |       |       |        | 1.00   | 0.00   | 0.02   |
| $P'_6$      |             |       |       |       |        |        | 1.00   | 0.08   |
| $P_8'$      |             |       |       |       |        |        |        | 1.00   |

Table 19: Correlation matrix for the optimised angular observables from the maximum-likelihood fit in the bin  $11.0 < q^2 < 12.5 \,\text{GeV}^2/c^4$ .

|             | $F_{\rm L}$ | $P_1$ | $P_2$ | $P_3$ | $P'_4$ | $P'_5$ | $P_6'$ | $P'_8$ |
|-------------|-------------|-------|-------|-------|--------|--------|--------|--------|
| $F_{\rm L}$ | 1.00        | -0.07 | 0.13  | -0.07 | 0.04   | -0.07  | 0.03   | 0.00   |
| $P_1$       |             | 1.00  | -0.09 | 0.10  | 0.07   | -0.06  | 0.01   | 0.05   |
| $P_2$       |             |       | 1.00  | -0.16 | -0.12  | -0.23  | -0.05  | -0.11  |
| $P_3$       |             |       |       | 1.00  | 0.01   | 0.18   | 0.10   | 0.00   |
| $P'_4$      |             |       |       |       | 1.00   | 0.08   | 0.03   | -0.02  |
| $P'_5$      |             |       |       |       |        | 1.00   | 0.03   | 0.00   |
| $P'_6$      |             |       |       |       |        |        | 1.00   | 0.27   |
| $P'_8$      |             |       |       |       |        |        |        | 1.00   |

Table 20: Correlation matrix for the optimised angular observables from the maximum-likelihood fit in the bin  $15.0 < q^2 < 17.0 \,\text{GeV}^2/c^4$ .

|             | $F_{\rm L}$ | $P_1$ | $P_2$ | $P_3$ | $P'_4$ | $P'_5$ | $P_6'$ | $P'_8$ |
|-------------|-------------|-------|-------|-------|--------|--------|--------|--------|
| $F_{\rm L}$ | 1.00        | 0.06  | 0.14  | -0.06 | 0.18   | 0.23   | -0.01  | -0.04  |
| $P_1$       |             | 1.00  | 0.03  | -0.09 | -0.04  | 0.00   | -0.03  | -0.04  |
| $P_2$       |             |       | 1.00  | -0.06 | -0.13  | -0.25  | 0.01   | -0.03  |
| $P_3$       |             |       |       | 1.00  | -0.04  | -0.05  | 0.23   | 0.13   |
| $P'_4$      |             |       |       |       | 1.00   | 0.32   | 0.02   | 0.06   |
| $P'_5$      |             |       |       |       |        | 1.00   | 0.06   | 0.03   |
| $P_6'$      |             |       |       |       |        |        | 1.00   | 0.31   |
| $P'_8$      |             |       |       |       |        |        |        | 1.00   |

Table 21: Correlation matrix for the optimised angular observables from the maximum-likelihood fit in the bin  $17.0 < q^2 < 19.0 \,\text{GeV}^2/c^4$ .

|             | $F_{\rm L}$ | $P_1$ | $P_2$ | $P_3$ | $P'_4$ | $P'_5$ | $P'_6$ | $P'_8$ |
|-------------|-------------|-------|-------|-------|--------|--------|--------|--------|
| $F_{\rm L}$ | 1.00        | -0.10 | 0.16  | -0.01 | 0.22   | 0.14   | -0.01  | -0.01  |
| $P_1$       |             | 1.00  | -0.10 | 0.05  | -0.07  | -0.16  | -0.05  | 0.03   |
| $P_2$       |             |       | 1.00  | 0.06  | -0.09  | -0.23  | 0.00   | -0.05  |
| $P_3$       |             |       |       | 1.00  | -0.01  | -0.06  | 0.09   | 0.14   |
| $P'_4$      |             |       |       |       | 1.00   | 0.27   | -0.09  | 0.08   |
| $P'_5$      |             |       |       |       |        | 1.00   | -0.07  | -0.09  |
| $P_6'$      |             |       |       |       |        |        | 1.00   | 0.34   |
| $P'_8$      |             |       |       |       |        |        |        | 1.00   |
| -           |             |       |       |       |        |        |        |        |

Table 22: Correlation matrix for the optimised angular observables from the maximum-likelihood fit in the bin  $1.1 < q^2 < 6.0 \,\text{GeV}^2/c^4$ .

|             | $F_{\rm L}$ | $P_1$ | $P_2$ | $P_3$ | $P'_4$ | $P'_5$ | $P'_6$ | $P'_8$ |
|-------------|-------------|-------|-------|-------|--------|--------|--------|--------|
| $F_{\rm L}$ | 1.00        | -0.05 | -0.33 | 0.09  | -0.11  | -0.03  | -0.14  | 0.02   |
| $P_1$       |             | 1.00  | 0.05  | 0.02  | -0.04  | -0.00  | 0.03   | 0.01   |
| $P_2$       |             |       | 1.00  | -0.00 | -0.04  | -0.06  | 0.03   | -0.04  |
| $P_3$       |             |       |       | 1.00  | 0.02   | 0.03   | 0.03   | 0.08   |
| $P'_4$      |             |       |       |       | 1.00   | -0.06  | 0.03   | 0.01   |
| $P'_5$      |             |       |       |       |        | 1.00   | 0.01   | 0.00   |
| $P_6'$      |             |       |       |       |        |        | 1.00   | -0.02  |
| $P'_8$      |             |       |       |       |        |        |        | 1.00   |

Table 23: Correlation matrix for the optimised angular observables from the maximum-likelihood fit in the bin  $15.0 < q^2 < 19.0 \,\text{GeV}^2/c^4$ .

|                | $F_{\rm L}$ | $P_1$ | $P_2$ | $P_3$ | $P'_4$ | $P'_5$ | $P'_6$ | $P'_8$ |
|----------------|-------------|-------|-------|-------|--------|--------|--------|--------|
| $F_{\rm L}$    | 1.00        | -0.08 | 0.19  | -0.02 | 0.11   | 0.09   | -0.01  | -0.04  |
| $P_1$          |             | 1.00  | -0.01 | -0.00 | -0.04  | -0.02  | 0.00   | -0.04  |
| $P_2$          |             |       | 1.00  | -0.04 | -0.14  | -0.25  | 0.03   | -0.03  |
| $P_3$          |             |       |       | 1.00  | -0.06  | -0.04  | 0.18   | 0.14   |
| $P'_4$         |             |       |       |       | 1.00   | 0.21   | -0.03  | 0.04   |
| $P_5^{\prime}$ |             |       |       |       |        | 1.00   | 0.02   | -0.01  |
| $P'_6$         |             |       |       |       |        |        | 1.00   | 0.28   |
| $P_8'$         |             |       |       |       |        |        |        | 1.00   |

### 5 Fit projections of the signal channel

The angular and mass distributions of the candidates in bins of  $q^2$  for the Run 1 and the 2016 data, along with the projections of the simultaneous fit, are shown in Figs. 3–12.



Figure 3: Projections of the fitted probability density function on the decay angles,  $m(K^+\pi^-)$ and  $m(K^+\pi^-\mu^+\mu^-)$  for the bin  $0.10 < q^2 < 0.98 \,\text{GeV}^2/c^4$ . The blue shaded region indicates background.



Figure 4: Projections of the fitted probability density function on the decay angles,  $m(K^+\pi^-)$ and  $m(K^+\pi^-\mu^+\mu^-)$  for the bin  $1.1 < q^2 < 2.5 \,\text{GeV}^2/c^4$ . The blue shaded region indicates background.



Figure 5: Projections of the fitted probability density function on the decay angles,  $m(K^+\pi^-)$ and  $m(K^+\pi^-\mu^+\mu^-)$  for the bin 2.5 <  $q^2$  < 4.0 GeV<sup>2</sup>/c<sup>4</sup>. The blue shaded region indicates background.



Figure 6: Projections of the fitted probability density function on the decay angles,  $m(K^+\pi^-)$ and  $m(K^+\pi^-\mu^+\mu^-)$  for the bin  $4.0 < q^2 < 6.0 \,\text{GeV}^2/c^4$ . The blue shaded region indicates background.



Figure 7: Projections of the fitted probability density function on the decay angles,  $m(K^+\pi^-)$ and  $m(K^+\pi^-\mu^+\mu^-)$  for the bin  $6.0 < q^2 < 8.0 \,\text{GeV}^2/c^4$ . The blue shaded region indicates background.



Figure 8: Projections of the fitted probability density function on the decay angles,  $m(K^+\pi^-)$ and  $m(K^+\pi^-\mu^+\mu^-)$  for the bin  $11.0 < q^2 < 12.5 \,\text{GeV}^2/c^4$ . The blue shaded region indicates background.



Figure 9: Projections of the fitted probability density function on the decay angles,  $m(K^+\pi^-)$ and  $m(K^+\pi^-\mu^+\mu^-)$  for the bin  $15.0 < q^2 < 17.0 \,\text{GeV}^2/c^4$ . The blue shaded region indicates background.



Figure 10: Projections of the fitted probability density function on the decay angles,  $m(K^+\pi^-)$ and  $m(K^+\pi^-\mu^+\mu^-)$  for the bin 17.0 <  $q^2$  < 19.0 GeV<sup>2</sup>/ $c^4$ . The blue shaded region indicates background.



Figure 11: Projections of the fitted probability density function on the decay angles,  $m(K^+\pi^-)$ and  $m(K^+\pi^-\mu^+\mu^-)$  for the bin  $1.1 < q^2 < 6.0 \,\text{GeV}^2/c^4$ . The blue shaded region indicates background.



Figure 12: Projections of the fitted probability density function on the decay angles,  $m(K^+\pi^-)$ and  $m(K^+\pi^-\mu^+\mu^-)$  for the bin  $15.0 < q^2 < 19.0 \,\text{GeV}^2/c^4$ . The blue shaded region indicates background.

#### References

- [1] W. Altmannshofer and D. M. Straub, New physics in  $b \rightarrow s$  transitions after LHC run 1, Eur. Phys. J. C75 (2015) 382, arXiv:1411.3161.
- [2] A. Bharucha, D. M. Straub, and R. Zwicky,  $B \to V \ell^+ \ell^-$  in the Standard Model from light-cone sum rules, JHEP **08** (2016) 098, arXiv:1503.05534.
- [3] R. R. Horgan, Z. Liu, S. Meinel, and M. Wingate, Lattice QCD calculation of form factors describing the rare decays B → K<sup>\*</sup>ℓ<sup>+</sup>ℓ<sup>-</sup> and B<sub>s</sub> → φℓ<sup>+</sup>ℓ<sup>-</sup>, Phys. Rev. D89 (2014) 094501, arXiv:1310.3722.
- [4] R. R. Horgan, Z. Liu, S. Meinel, and M. Wingate, Rare B decays using lattice QCD form factors, PoS LATTICE2014 (2015) 372, arXiv:1501.00367.
- [5] S. Descotes-Genon, L. Hofer, J. Matias, and J. Virto, On the impact of power corrections in the prediction of  $B \to K^* \mu^+ \mu^-$  observables, JHEP **12** (2014) 125, arXiv:1407.8526.
- [6] A. Khodjamirian, T. Mannel, A. A. Pivovarov, and Y.-M. Wang, Charm-loop effect in  $B \to K^{(*)}\ell^+\ell^-$  and  $B \to K^*\gamma$ , JHEP **09** (2010) 089, arXiv:1006.4945.