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Abstract

Both experimental and modeling studies have attempted to determine mechanisms by

which a small anatomical region, such as the sinoatrial node (SAN), can robustly drive elec-

trical activity in the human heart. However, despite many advances from prior research,

important questions remain unanswered. This study aimed to investigate, through mathe-

matical modeling, the roles of intercellular coupling and cellular heterogeneity in synchroni-

zation and pacemaking within the healthy and diseased SAN. In a multicellular

computational model of a monolayer of either human or rabbit SAN cells, simulations

revealed that heterogenous cells synchronize their discharge frequency into a unique beat-

ing rhythm across a wide range of heterogeneity and intercellular coupling values. However,

an unanticipated behavior appeared under pathological conditions where perturbation of

ionic currents led to reduced excitability. Under these conditions, an intermediate range of

intercellular coupling (900–4000 MΩ) was beneficial to SAN automaticity, enabling a very

small portion of tissue (3.4%) to drive propagation, with propagation failure occurring at both

lower and higher resistances. This protective effect of intercellular coupling and heterogene-

ity, seen in both human and rabbit tissues, highlights the remarkable resilience of the SAN.

Overall, the model presented in this work allowed insight into how spontaneous beating of

the SAN tissue may be preserved in the face of perturbations that can cause individual cells

to lose automaticity. The simulations suggest that certain degrees of gap junctional coupling

protect the SAN from ionic perturbations that can be caused by drugs or mutations.

Author summary

In the mammalian heart, a small region of cells known as the sinoatrial node drives electri-

cal activity in the remainder of the organ, and this mechanism avoids failure through the
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lifetimes of most individuals. It is unclear how such robust function can be maintained in

the face of perturbations such as drugs, disease, and alterations in physiological state.

Here we explored, through mathematical modeling of sinoatrial nodal tissue, how hetero-

geneity between cells and alterations in intercellular coupling affect the collective electrical

behavior of the tissue. Our simulations showed that normal, synchronous electrical activ-

ity could be maintained under a wide range of conditions, even when a substantial per-

centage of the cells lost their capacity for autonomous electrical excitation. Under

simultated disease conditions, we found that only reduced coupling between cells allowed

for collective electrical activity, contrary to expectations that stronger coupling would

always be beneficial. Together, these computational results provide insight into how this

vitally important region of the heart maintains robust activity under a wide range of

conditions.

Introduction

Understanding the mechanisms that coordinate the spontaneous firing of the sinoatrial node

(SAN) has long been an issue of great interest in cardiac electrophysiology. After early studies

believed that a single pacemaker region drives the entire SAN, more recent research has shown

that the heartbeat originates from the coordination of a complex structure [1]. Many studies

have worked to unravel the basis of this coordination, through both experiments [2–4] and

mathematical modeling [5–7]. Despite the many insights obtained by these studies, important

questions remain unresolved, particularly with respect to how heterogeneity between SAN

myocytes and inter-cellular coupling combine to influence coordinated beating in tissue. For

example, although it has recently been shown experimentally that not all SAN cells fire sponta-

neously when they are enzymatically isolated [8–10], we do not know how non-firing cells

behave when they are electrically coupled in tissue, nor how the percentage of non-firing cells

influences the overall electrical activity of the SAN.

Multiple mathematical models exist in the literature that describe the electrophysiology of

isolated SA nodal myocytes [11,12]. Most of these have been developed on the basis of data

obtained in animal models, especially rabbits [13,14], but a model based on human data has

been published more recently [15]. Although it is obviously helpful to have multiple tools avail-

able for computational analyses, a question that commonly arises in such circumstances is the

extent to which the behavior observed in a particular model is generalizable. On the other

hand, when similar trends are seen across multiple mathematical representations, this can pro-

vide confidence in the model predictions [16–18].

In this investigation, we performed cellular and tissue simulations to examine how hetero-

geneity between SAN myocytes and intercellular coupling influence the coordination of beat-

ing within the SA node. The main goals were to: i) assess the effect of cellular heterogeneity in

isolated SAN cells; ii) gain mechanistic insight into how electrical coupling between SAN cells

modulates pacemaker activity at different levels of heterogeneity; and iii) investigate how sim-

ulated Sinus Node Disease (SND) influences SAN automaticity. Heterogeneous populations of

SAN myocytes were generated at several levels of variability, and physiological behavior was

simulated in both isolated cells and 2-dimensional tissue. Major results of the simulations

were: i) cellular heterogeneity increases AP frequency and duration as well as the percentage of

“dormant” cells, with remarkable consistency between three SAN myocyte models [13–15]; ii)

intercellular coupling allows the cells to synchronize the beating rate in all conditions, except

when heterogeneity is large and coupling between myocytes is weak; and iii) blockade of
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particular ionic currents leads to a loss of robustness in which coordinated beating of the tissue

fails at high and low coupling but can be maintained within a narrow range of intermediate

coupling values. Overall, these simulations provide insight into the conditions that promote

synchronized beating in the SAN, and how this can be maintained in the presence of

heterogeneity.

Methods

Study design

The goal of our study was to analyze, through mechanistic simulations, how heterogeneity

between cells and gap junctional coupling influence the automaticity of the sinoatrial node

and entrainment of the Action Potential (AP). As schematically shown in Fig 1, a two-dimen-

sional tissue model was developed using, as the building block, models of the isolated SAN cell

of different species (human and rabbit). For human SAN, the recent Fabbri et al. [15] model

was used, whereas for rabbit SAN, both the Maltsev-Lakatta [13] and Severi et al. [14] models

were considered. As shown in the expanded section of the center panel, each myocyte is elec-

trically connected to its neighbors through gap junctional resistances. These connections may

result from connexin 43 or connexin 45 isoforms, or both, with the composition of SAN gap

junctions still a topic of active debate [19,20]. This tissue model can then be used to simulate

normal beating in the well-coupled SAN and to determine the effect of structural remodeling

due to conditions such as reduced coupling (mimicking diffuse fibrosis [21,22]) and clusters of

non-spontaneous (“dormant”) cells [8–10].

Modeling heterogeneous populations of SAN cells

Heterogeneity between myocytes was simulated in each model by varying the maximal con-

ductances of the ionic currents such that each current’s baseline conductance was multiplied

by a random scale factor chosen from a lognormal distribution [23,24]. Five different values of

the lognormal distribution shape factor (σ; from 0.1 to 0.5) were used to account for different

levels of heterogeneity. Measurements from relatively large numbers of SAN myocytes (30–

Fig 1. Schematic of multicellular study design. A multiscale mathematical modeling approach was employed to

study the mechanisms of sinoatrial node excitability. The effect of cell-to-cell coupling and cellular heterogeneity on

tissue synchronization were evaluated in both healthy sinoatrial nodes and those that mimicked Sinus Node Disease.

Blue inset in central top panel shows that cells were connected to 4 neighbors using ohmic resistances that modeled

gap junctions between adjacent myocytes.

https://doi.org/10.1371/journal.pcbi.1010098.g001
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130) have revealed considerable heterogeneity in ionic current magnitudes, up to a 10-fold dif-

ference between cells with the largest and those with the smallest ionic currents [25]. As a log-

normally-distributed random variable with σ = 0.5 shows a ratio of approximately 5 between

the 95th and the 5th percentiles, these simulations may in fact underestimate true biological

variability.

The purpose of creating heterogeneous populations of cells was three-fold. First, we

used these populations to run a sensitivity analysis where the contributions of individual ionic

currents on the cell’s automaticity were evaluated with a logistic regression model [26,27]. Sec-

ond, isolated cell simulations were performed to assess the effects of σ on the AP parameters

and on each model’s robustness (that is, how many cells showed spontaneous beating after

parameter randomization). Third, the cellular populations were used to create the two-dimen-

sional propagation model in an attempt to recapitulate a small part of the complexity charac-

teristic of the SAN structure. In particular, we aim to compare the behavior of isolated and

coupled cells to gain a mechanistic understanding of how coupling modulates the effects of

heterogeneity.

Logistic regression analysis of isolated cell results

When heterogeneity was imposed in isolated SAN myocyte simulations, spontaneous APs

stopped in a percentage of cells. To evaluate which parameters influenced this transition, we

developed a logistical regression model that could be used to predict the cellular state (e.g.

“spontaneous” or “dormant”) from a cell’s set of randomly-varied parameters, similar to previ-

ous studies on Ca2+ spark probability [26] or arrhythmic behavior [27]. In this statistical

model, a logistic relationship is derived to relate the heterogeneous ionic conductances, placed

in an input matrix, to the vector of cellular states, consisting of 1’s and 0’s for spontaneous and

dormant cells, respectively. Each regression coefficient quantifies by how much, and in which

direction, a model parameter needs to change to move a myocyte from the spontaneous to the

dormant category.

Mathematical modeling of electrical propagation throughout the SAN

We implemented a tissue model by connecting individual SAN cells through an intercellular

resistance that represents the gap junctional channels. In this model, each cell is described by a

system of ordinary differential equations that, integrated over time, yields the values of ionic

concentrations and gating variables (state vector). In addition, the membrane potential is cal-

culated through a partial differential equation since its value depends both on the individual

cell and the neighboring cells in the tissue. Thus, the updating of the membrane potential is

described by the following equation:

dVm

dt
¼
� ðIion þ IgjÞ

Cm

where Vm is the membrane potential, Cm is the cellular capacitance, Iion is the sum of all the

ionic currents (dependent on the model), and Igj is the sum of the currents exchanged with the

four neighboring cells. We define the sign of Igj such that negative Igj represents current flow-

ing into a particular cell from its neighbors, which will depolarize that cell. To speed computa-

tion time, Vm, which depends on Vm in neighboring cells, and the remaining state variables,

which are specific to each cell, were updated separately. This allowed the updates to be com-

puted in a massively parallel fashion using Graphical Processing Units, as described in more

detail elsewhere [28]. Hardware and software specifications are provided in Table 1; model

code is available at https://github.com/Eugenio95/2D_hetero_SAN_parallel_models.git.
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Simulation protocols and conventions for model outputs

We considered a tissue formed of 2500 cells of equal size, arranged in a 50 x 50 matrix. Simula-

tions were executed for a duration of 20 s. In addition to different amounts of cellular hetero-

geneity, we tested multiple levels of intercellular coupling from a resistance value of 10 MO

(100 nS; strongly coupled cells) to 10,000 MO (0.1 nS; weakly coupled cells) [29,30]. The out-

puts of these simulations for each cell in the tissue were: membrane potential (Vm), ionic cur-

rent of each SAN cell (Iion), and gap junctional current (Igj). Additionally, Inet is defined as the

sum of Igj and Iion, reflecting the total net current of each cell. A negative Inet depolarizes the

membrane, whereas a positive Inet hyperpolarizes it.

From the AP trace (Fig 2) we defined maximum diastolic potential (MDP; in mV) as the

minimum value of voltage during the cycle; overshoot (OS; mV) as the peak membrane voltage

during the AP; and take-off potential (TOP; mV), as the voltage at the first time step during

diastolic depolarization when
d2Vm
dt2 exceeds 15% of the maximum

d2Vm
dt2 [31]. These three outputs

were then used to compute the metrics on which our analysis relied: DD (ms), or diastolic

depolarization, is the phase of the AP between MDP and TOP; APD (ms), or action potential

duration, is the time difference between TOP and the following MDP; CL (ms), or cycle length,

Table 1. Hardware and software specification for model reproducibility.

Hardware

Workstation 1 Workstation 2
Operating system Ubuntu 19.04 Operating system Windows 10

RAM 64.0 GB RAM 16.0 GB

CPU 16-core AMD Ryzen threadripper 2950x CPU Intel1 Core™ i7-8700K

GPU 12 GB Nvidia Titan V GPU NVIDIA GeForce GTX 1060 6 GB

Software

Workstation 1 Workstation 2
Simulation MATLAB R2019b; MATLAB GPU coder Simulation MATLAB R2020a; CUDA 8.0; Visual Studio 2015

Integration Euler method (fixed step of 10 μs) Integration Euler method (fixed step of 10 μs)

Analysis MATLAB R2019b Python 3.7 Analysis MATLAB R2020a R-4.0.3

https://doi.org/10.1371/journal.pcbi.1010098.t001

Fig 2. Features extracted from sinoatrial node AP simulations. A schematic AP trace is annotated with

characteristic features. The full waveform is divided into the AP phase (solid line) and diastolic phase (dashed line)

based on the criteria described. Critical voltages and durations are defined as labeled. Abbreviations: APA, action

potential amplitude (mV); APD, action potential duration (ms); CL, cycle length (ms); DD, diastolic depolarization

(ms); MDP, maximum diastolic potential (mV); OS, overshoot (mV); TOP, take off potential (mV).

https://doi.org/10.1371/journal.pcbi.1010098.g002
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is the time difference between two consecutive peaks; APA (mV), or action potential ampli-

tude, is the difference in voltage between OS and MDP. Cells were classified as spontaneously

beating when the following criteria were satisfied: (1) OS� 0 mV; (2) MDP� -40 mV; (3) at

least 3 peaks in the final 5 s of simulation.

Categorization of cells inside the tissue

To better describe their behavior, the cells forming the 2D tissue were divided into categories.

Initially, cells were defined as “spontaneous” or “dormant” depending on whether they showed

rhythmic electrical activity when simulated in an uncoupled condition (R =1MO). When a

mixture of spontaneous and dormant cells is coupled in tissue, conditions may allow the dor-

mant cells to exhibit action potentials. Understanding this concept requires the definition of

subcategories, as illustrated in Fig 3, that capture different types of cellular behavior.

As schematized in Fig 3, based on their behavior when coupled within the tissue, “sponta-

neous” isolated cells could be further classified into: (1) “driving” if they continued to show

rhythmic APs and had a positive (outward) Igj at TOP, indicating that they reached threshold

before adjacent cells and delivered current to their neighbors; (2) “followers” if, in spite of

their spontaneous activity when uncoupled, they had a negative inward Igj at TOP in the cou-

pled condition, meaning that adjacent cells supplied current to assist their depolarization; (3)

“stopped” if they did not show APs. On the other hand, “dormant” cells showed two different

behaviors when coupled: (1) isolated dormant cells that started to beat thanks to coupling were

called “driven,” whereas (2) cells that remained silent were termed “unexcitable.” Note that

since “unexcitable” cells do not show APs under any condition, features such as TOP and DD

are undefined for these cells. For “stopped” cells we calculated DD and TOP based on simula-

tions performed in the uncoupled condition. This procedure allowed us to investigate the cur-

rent generated and exchanged at corresponding time points when they were coupled.

Results

Increased heterogeneity causes failure of spontaneous beating in a fraction

of isolated SAN cells

Following the approach described in the Methods, we introduced heterogeneity in the ionic

currents underlying the APs of the 3 models studied [13–15]. Fig 4 illustrates the impact of

Fig 3. Cell categorization. Cells forming the tissue have been divided into different categories, depending on whether

they exhibited action potentials, or not, under both coupled and uncoupled conditions. Alterations in intercellular

coupling can cause an individual cell to switch categories, for instance from dormant at one value of coupling to driven

at another value.

https://doi.org/10.1371/journal.pcbi.1010098.g003
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heterogeneity on the excitability and electrical properties of the isolated SAN cells. It is evident

from Fig 4A that at increasing levels of the heterogeneity factor σ, some cells within the popu-

lation lose their automaticity. The percentage of dormant cells depends on the model, with the

Severi model more resistant, and the Fabbri and Maltsev models more susceptible to increased

variability in parameter values. In Fig 4B the AP metrics are summarized for the cells that

retain their automaticity throughout various levels of heterogeneity. Across all models, there is

a positive relationship between the level of heterogeneity and variability in AP amplitude,

duration and frequency. Additionally, the Fabbri model shows a substantial decrease in the

mean value of cycle length at increasing heterogeneity (-20% for σ = 0.5 vs σ = 0.1), while only

much smaller decreases are seen in the other two models (-3% for Maltsev and -0.2% for Severi

model). In Fig 4C, we examined which specific ionic currents were responsible for the automa-

ticity. The results of the logistic regression analysis shown in this panel indicate how much

each parameter needs to be altered to move the cell from the spontaneously beating to the

silent group [26,27]. One notable difference between the 3 models is the background Na+

Fig 4. Modeling conductance heterogeneity using virtual populations of isolated SAN cells. (A) The effect of

heterogeneous ionic channel expression on the automaticity of SAN cells was compared across models. In all three

models the percentage of dormant cells rose with increasing levels of heterogeneity. (B) The effect of heterogeneity on

the SA node AP properties was evaluated in spontaneously beating cells, by measuring cycle length (CL), AP amplitude

(APA) and AP duration (APD) at varying σ levels. Outliers (values more than three median absolute deviations) were

removed from distributions. (C) Logistic regression analysis was utilized to deduce which specific ionic currents across

the three models are responsible for SA node cell’s automaticity. Positive values indicate that an increase in the

parameter increases the probability of the cell to be spontaneously beating.

https://doi.org/10.1371/journal.pcbi.1010098.g004
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current IbNa, a current that is not even present in the Severi or Fabbri models, but which ranks

as the third most important current in the Maltsev model. Despite this key difference, what is

more notable is the consistency between the 3 models in terms of the relative importance of

different currents in maintaining spontaneous activity. In all 3 cases, the L-type Ca2+ current,

Na+-K+ pump, and rapid delayed rectifier K+ current IKr ranked as 3 of the most important

parameters. Also notable is the relatively small regression coefficient corresponding to the

“funny” current If in all 3 models. Considering that they were developed for different species

(human vs. rabbit), from different data, and based on different hypotheses (Membrane clock

vs. Ca2+-clock), this is not an obvious result.

Well-coupled SAN tissues synchronize their behavior despite intercellular

heterogeneity

Next we sought to investigate how variability between SAN myocytes influenced spontaneous

beating at the tissue level. Since heterogeneity is known to be an important feature of the sinus

node [8,32], we expected cells in well-coupled tissue to coordinate their beating and fire at a

common rate. Fig 5 shows that this occurs in human tissue, which confirms previous findings

obtained in rabbit multicellular simulations [5]. When cells are coupled in tissue, the percent-

age of dormant cells drops to near zero at all levels of heterogeneity (Fig 5A), and the CL shifts

to a single value throughout the tissue (Fig 5B), which we define as tissue synchronization.

Coupled SA nodal cells also mostly synchronize their action potential amplitudes (Fig 5C) and

durations (Fig 5D), although some residual variability is observed when heterogeneity between

cells is high (σ = 0.5). Thus intercellular coupling can act as a powerful synchronization mech-

anism in human SA node, as previously demonstrated in rabbit [5].

Ionic current perturbations alter the relationship between gap junctional

coupling and SAN automaticity

The previous simulations suggested that strong intercellular coupling favors synchronization

of SAN cells, since, for high levels of heterogeneity between isolated SAN myocytes, previously

dormant cells exhibited synchronized beating in tissues. Next we explored the combined

effects of heterogeneity and perturbations that inhibit spontaneous beating and are potential

causes of SND. Fig 6A shows the impact of diminished ICaL on the single cell AP of the Fabbri

model. Blocking PCaL, the permeability controlling ICaL, by 10% or 25% causes a reduction in

beating frequency and AP amplitude, and spontaneous beating stops at 50% block. Next, we

analyzed the consequences of the same perturbations in heterogeneous tissue, which implies a

shift in the distribution of PCaL (Fig 6B). Unexpected results were seen, however, when these

heterogeneous cells with reduced PCaL were coupled in tissue. Fig 6C, for example, compares

results at different levels of coupling in heterogeneous tissue (σ = 0.1), before (left) and after

(right) 50% reduction of PCaL in all cells. With normal PCaL, Cell #1120 exhibited spontaneous

beating when uncoupled, and beat synchronously with the remainder of the tissue with both

high and intermediate levels of intercellular coupling (left panels). The same cell, however, lost

its ability to spontaneously beat when PCaL was reduced by 50%. Surprisingly, however, this

cell recovered its ability to beat at intermediate, but not at high, levels of intercellular cou-

pling–i.e. certain levels of intermediate coupling encouraged SAN tissue automaticity. Gener-

alizing to the whole tissue, Fig 6D shows that although the vast majority of cells (96.6%) did

not beat spontaneously when electrically isolated, a middle range of coupling values (900 MO

to 4000 MO), allowed these cells and the entire tissue to beat synchronously. The electrical

properties of the tissue at different levels of PCaL reduction and at intermediate coupling resis-

tance (R = 1,000 MO) are quantified in Fig 6E. Blockade of ICaL up to 25% caused the
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Fig 5. SAN cells synchronize their electrical properties when coupled in a tissue. (A) When coupled together heterogeneous SAN cells give rise to a

spontaneously beating tissue. The only exception occurs at very high values of heterogeneity (σ equal to 0.4 and 0.5, with 0.5% and 2.8% of dormant cells

respectively) and very high levels of intercellular resistance (R = 10,000 MO). (B-D) The population of cells synchronizes its AP metrics: cycle length (CL),

action potential amplitude (APA) and action potential duration (APD) when well-connected in tissue.

https://doi.org/10.1371/journal.pcbi.1010098.g005
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monolayer of SAN cells to beat at a lower frequency, but then at a higher rate when ICaL is

inhibited by 50% due to micro-reentry within the tissue (see S1 Movie).

Next we asked whether the protective effects of intermediate intercellular coupling were

specific to the Fabbri model at 50% ICaL reduction, or if this was a more general phenomenon.

Fig 7 shows example results obtained in all 3 models where particular combinations of hetero-

geneity and ionic current perturbation led to synchronization of SA nodal tissue only at inter-

mediate values of coupling. For example, when combined with heterogeneity, a 50% reduction

Fig 6. Certain coupling conditions restore automaticity to a prevalently dormant SA node tissue. (A) Effect of Ca2+

blockade in the Fabbri model with published parameters. (B) Distribution of PCaL in the tissue at varying degrees of

Ca2+ blockade (cellular heterogeneity factor σ equals 0.1). (C) Comparison of the electrical activity of a cell within the

tissue (σ equals 0.1) before and after blockade of Ca2+ by 50%. (D) Dormant cells within the tissue beat at intermediate

values of coupling. (E) Quantification of the average tissue CL, APA and APD at varying degrees of Ca2+ blockade.

https://doi.org/10.1371/journal.pcbi.1010098.g006
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of ICaL in the Fabbri model (Fig 7A), either an increase in INaK or a decrease in ICaL in the Mal-

tsev model (Fig 7B), or a combination of 3 parameter changes in the Severi model (Fig 7C), all

led to failure of spontaneous beating with strong intercellular coupling, successful propagation

through the tissue at intermediate levels of coupling, and a substantial percentage of non-beat-

ing myocytes (> 60%) when cells were completely uncoupled. These results therefore suggest

that intermediate coupling may enable the SA nodal tissue to beat spontaneously under a

range of conditions that will lead to failure when coupling between myocytes is strong. S2 and

S3 Movies show the patterns of electrical activity in representative simulations from the Mal-

tsev-Lakatta and Severi tissue models, respectively.

Clusters of beating cells can drive AP propagation over a range of coupling

strengths

The results shown in Fig 6 demonstrated that a small number of spontaneously beating SAN

myocytes could, at certain coupling strengths, drive propagation in the entire tissue. In that

case, however, cells were distributed randomly throughout the tissue, whereas anatomical

studies suggest clustering of similar cells in different regions of the SA node [33,34]. We there-

fore tested the effects of placing all spontaneously-beating SA nodal cells within a defined

Fig 7. Pathophysiological changes in ionic currents lead to a pattern of tissue automaticity dependent on the

degree of intercellular coupling. (A) Effect of L-type Ca2+ current (ICaL) perturbation in the Fabbri tissue model (σ
equal to 0.1). (B) Effect of perturbation in ICaL and Na+/K+ pump (INaK) in the Maltsev-Lakatta tissue model (σ equal to

0.4). (C) Effect of combined ICaL, rapid delayed rectifier K+ current (IKr), and INaK perturbation in the Severi tissue

model (σ equal to 0.2).

https://doi.org/10.1371/journal.pcbi.1010098.g007
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cluster (Fig 8A). Results show that the clustered myocytes can drive propagation through the

rest of the tissue over a wider range of coupling strengths, compared with the randomly-dis-

tributed, spontaneously-beating cells (Fig 8B). These results therefore suggest that pacemaker

cells, when co-localized in a subregion of the node, may be protected from the influences of

neighboring cells of a different type [35].

Intermediate coupling encourages tissue beating due to interactions

between driving cells and dormant cells

Results presented thus far suggest that to understand the mechanisms of excitability in the

overall tissue, we need to take a closer look at what occurs in the vicinity of the few pacemaker

cells present in the tissue. In particular, we are interested in uncovering how, under conditions

when a majority of cells do not exhibit spontaneous beating, a small percentage of cells is able

to drive tissue depolarization within a narrow range of intercellular coupling.

To investigate this question, we performed simulations with a spontaneously beating and a

dormant cell (both extracted from tissue with σ = 0.3, 50% PCaL reduction). From the simula-

tion results of the two cells, we computed the average Inet during the central portion of the DD

and, when action potentials occurred, Inet at the TOP (Fig 9A). Plots of these quantities over a

range of coupling resistances (Fig 9B) help to explain why the spontaneously beating cell (Cell

1) is only able to drive the dormant cell (Cell 2) at intermediate coupling values. When the cou-

pling between the two cells is strong (R = 101 MO), the dormant cell can suppress action

potentials in the cell that would otherwise beat spontaneously (Fig 9C, right). This occurs

because the large gap junctional current through the low resistance junction results in a small

magnitude of diastolic Inet in the spontaneous cell. Under these conditions, TOP Inet is

Fig 8. A small cluster of pacemaker cells can drive a prevalently dormant tissue. (A-top) (A) In the random tissue

configuration dormant and pacemaker cells are interspersed in the matrix. (A-bottom) In the cluster configuration

pacemaker cells are confined to a small portion of the matrix surrounded by dormant cells. Here dormant cells are cells

that fail to depolarize after inhibition of ICaL by 50%. (B) The range of intercellular coupling compatible with AP

generation and entrainment, i.e. reduced percentage of dormant cells, is wider in the cluster tissue configuration

compared to the random. Results shown here were obtained with Fabbri human model (σ equal to 0.1).

https://doi.org/10.1371/journal.pcbi.1010098.g008
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undefined since neither cell reaches TOP. With reduced coupling between the two cells

(R = 103 MO) gap junctional current between the two cells is reduced, which allows a larger

magnitude of diastolic Inet in Cell 1 (Fig 9B, top). This enables Cell 1 to reach its TOP and fully

activate its inward current, thereby supplying enough current to Cell 2 for it to reach its TOP

(Fig 9B, bottom) and fire an AP (Fig 9C, middle). Finally, when the coupling between the cells

is reduced further (R = 104 and higher), a large inward diastolic Inet in Cell 1 is able to bring

this cell to TOP, but the small magnitude of coupling current means that Cell 1 is unable to

drive beating in Cell 2. Thus, intermediate values of coupling represent a “sweet spot” at which

the spontaneously beating cell and the dormant cell can be synchronized.

To further support this view, the same analysis of Inet was applied to the whole 2D tissue (σ
= 0.3, 50% PCaL reduction). To understand this significantly more complex situation, cells

were divided into categories based on their behavior, as explained in the Methods section. In

these simulations, the initial condition for each spontaneous cell was set as state vector at the

MDP in the uncoupled condition, and initial conditions for dormant cells were set at those of

the spontaneous cell with the most depolarized MDP.

As with the cell pair, strong coupling (R = 101−102 MO) allows dormant cells to suppress

electrical activity in spontaneous cells (

Fig 10C, right) by draining current during the diastolic phase. Thus, TOP is not reached

and the entirety of the tissue becomes “stopped” or “dormant” (right side of Fig 10A). With

reduced coupling (R = 103 MO), spontaneous cells retain a larger fraction of diastolic Inet

which allows them to reach the TOP. The first cells to reach TOP are classified as “driving,”

since they supply current to the other cells in the tissue, which are either “followers,” if they

Fig 9. Coupling between a spontaneous cell and a dormant cell. (A) Average Inet and Igj were extracted from the

central 80% portion of the first occurrence of DD (from the beginning of the simulation to the first TOP); TOP Inet and

Igj were sampled at the time of the TOP. (B) Inet and Igj trends during diastole (top) for Cell 1 (spontaneous) and at

TOP (bottom) for Cell 2 (dormant) with respect to different degrees of cellular coupling. Igj is plotted in green for Cell

1 in both panels (the positive sign indicates an outward current, supplied to Cell 2). (C) Behavior of the two cells

depending on coupling: both cells are beating periodically only for intermediate coupling values.

https://doi.org/10.1371/journal.pcbi.1010098.g009
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beat spontaneously, or “driven,” if they are otherwise dormant. A further reduction in the cou-

pling (R = 104 and higher, left part of Fig 10A) allows more cells to reach the TOP on their

own, but these spontaneously-beating cells are able to only drive a small percentage of the

remainder of the tissue, due to reduced gap junctional currents between myocytes. Thus,

under conditions of reduced excitability, the magnitudes of currents flowing between sponta-

neous and dormant cells determine whether the tissue can become entrained.

Discussion

In the present study, we investigated how different levels of cellular heterogeneity and intercel-

lular coupling influenced human and rabbit SAN pacemaking. We simulated both healthy tis-

sue and conditions of reduced excitability that were meant to approximate SND arising from

diverse causes. Results showed that although increased cellular heterogeneity leads to a grow-

ing fraction of cells losing automaticity, intercellular coupling allows for synchronous and

rhythmic activity in the whole tissue. Of note, this remained true for nearly all combinations of

heterogeneity and coupling, highlighting the robustness of beating in nodal tissue. When we

simulated diseased conditions by increasing or decreasing levels of fundamental ionic cur-

rents, the SAN tissue could fail to depolarize spontaneously. However, even under these

extreme conditions, intermediate values of gap junctional resistance could rescue SAN electri-

cal activity, and simulations provided mechanistic insight into this unusual phenomenon. This

Fig 10. Coupling spontaneous cells with dormant cells inside a tissue. (A) Percentages of cells composing each

category at different degrees of intercellular coupling. (B) Inet trends during diastole (top) and at TOP (bottom) with

respect to different degrees of intercellular coupling for every cell category. Average value (symbol) ± standard

deviation (dashed line). (C) Electrical activity of 50 cells (4th column of the 2D tissue matrix) when they are coupled

with different intercellular resistances.

https://doi.org/10.1371/journal.pcbi.1010098.g010
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behavior was seen in all 3 models that we examined [13–15], and with different causes of

reduced cellular excitability, suggesting that it may be a general property of SAN entrainment

rather than specific to particular circumstances.

Comparison with previous computational SAN studies

Mathematical modeling has been employed as a tool to understand the mechanisms of SAN

coupling and entrainment for more than two decades. Early studies [7,36] demonstrated how

simulations of SAN pacemaker activity in models of coupled cells can provide insights and

encourage new hypotheses about cardiac electrical conduction. Combined with animal experi-

ments, modeling has been instrumental in developing our understanding that the heartbeat is

likely to be dictated by the mutual entrainment of multiple spontaneously beating cells that

synchronize their activity. Over the years, many investigators developed models to further

describe the role of mutual entrainment of heterogeneous cells in the generation of the pace-

maker activity. For instance, Oren and Clancy [37] showed that connections between the SAN

and the atrium might be sufficient to impart the different features of peripheral SAN compared

with central SAN APs. Conversely, Inada and colleagues [30] argued for the necessity of grad-

ual changes in cell size, ionic current densities, and intercellular coupling from center to

periphery. In particular, they suggested that the expression of Nav1.5 and Cx43 in the periph-

ery of the SAN might be fundamental for driving propagation to the atrium. Additional rele-

vant insights were obtained by Gratz et al. [5], who studied interactions between ion channel

conductances and intercellular coupling and found that the factors determining synchrony

depended on whether this was defined by a metric based on activation times or one based on

peak voltages. This study [5] is especially relevant to our work, as these authors examined syn-

chronization of heterogeneous SAN tissue over a range of coupling strengths. Also pertinent is

a recent study by Maltsev et al. [38], who examined tissue under conditions where the average

cell was close to the border between spontaneously beating and dormant, finding that hetero-

geneity between myocytes enhanced the firing stability of the tissue. Our work builds on this

prior research by perturbing myocytes in a heterogeneous population and demonstrating that

a small percentage of spontaneously-excitable cells can sometimes be sufficient to drive the

remainder of the tissue.

Modeling insights into the physiology and pathophysiology of the SAN

We simulated the effects on SAN automaticity of both physiological heterogeneity in ionic cur-

rent densities and pathological changes to these currents. The results showed that this hetero-

geneity is compatible with synchronization of a large monolayer of either human or rabbit

SAN cells. Moreover, we suggest that under conditions of reduced coupling between nodal

cells, this heterogeneity helps to impart remarkable resilience that allows for AP entrainment

even in the presence of pathological changes in the cellular electrical properties.

Sinus Node Disease (SND), also referred to as Sick Sinus Syndrome, is a general term that

encompasses SA nodal dysfunction resulting from a wide variety of causes. Most cases of SND

are acquired and associated with aging [39], but several congenital forms caused by mutations

in ion channels or associated proteins have also been described [34,40]. Normal aging, which

frequently produces a reduction in heart rate, is also associated with decreases in expression of

peripheral Na+ channels [41,42] and Cx43 [43]. Heart failure (HF), chronic atrial fibrillation

and cell apoptosis [44] can also contribute to structural and electrical remodeling of the node

and SAN dysfunction. Given the complexity involved in different types of SND, our goal was

to broadly study conditions that caused some cells to lose automaticity, rather than any
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particular pathological state. Accordingly, we inhibited automaticity by altering different ionic

currents in the 3 models (see Fig 7).

Whatever the cause of dysfunction, our results show that heterogeneity and intercellular

coupling are important factors in allowing SAN tissue to continue to exhibit spontaneous beat-

ing in the face of potentially pathological perturbations. Our simulations revealed that specific

coupling strengths, falling in the range 900–4000 MO, or 0.25–1.1 nS when expressed as con-

ductances (Fig 6D), allow the tissue to beat even under conditions where many cells no longer

spontaneously fire. Comparing this range of coupling strengths to the existing literature, we

find that it sits at the low end of previously reported values. For instance, experimental studies

on rabbit SAN suggested that 0.5 nS would allow for frequency entrainment and 10 nS for

waveform entrainment [3]. Other computational investigations have employed intercellular

resistances of 7.5 nS [37] and 25 nS [30], whereas experiments have estimated values such as

0.6–25 nS [29] and 2.6±0.6 nS [45]. Values of intercellular coupling may be non-uniform

across the SAN if different connexin isoforms are expressed in different SAN regions. Thus,

the protective range of coupling that our simulations identified, which became relevant under

simulated pathological conditions, is consistent with the fibrosis observed under pathological

conditions [21,22], which is likely to be associated with reduced coupling between SAN cells.

One could even speculate that fibrosis, remodeling of gap junctions, and decreased connexin

expression in SND may help to protect the SAN from failure.

Naively, one might expect that stronger coupling between SA nodal myocytes will be bene-

ficial, since this will lead to faster propagation and enhanced synchronization of the cells

within the node. Although our results are consistent with this idea under normal conditions,

our findings also highlight a potential advantage of reduced coupling–namely that this can

impart the tissue with greater resilience under conditions that impair spontaneous beating in

individual myocytes. Indeed, it is remarkable that under particular conditions, fewer than 10%

of the cells in the tissue can drive electrical activity in the remaining 90% of myocytes that do

not.

The protection provided by intermediate coupling: AP vs. DD intercellular

interactions

To attempt to explain the protective range of coupling strengths under pathological condi-

tions, (Figs 6 and 7), we formulated a hypothesis based on the concepts of tonic and phasic

entrainment that are well-established in the SAN literature [3,46]. What differentiates our

results from these previous ideas is that in our simulations these two types of interaction not

only regulate SAN synchronization, but also determine the presence of spontaneous beating

inside the tissue. In other words, spontaneous cells manage to drive dormant cells only if two

conditions are satisfied. First, spontaneous cells have to reach the take-off potential. Second,

they have to supply enough current to the neighboring dormant cells. In this scenario, cou-

pling resistance becomes the most critical parameter, since deviations in either direction can

cause spontaneous firing of the tissue to fail. If resistance is too low, dormant cells will hyper-

polarize the spontaneous ones during the DD phase, preventing them from reaching the

threshold for AP firing. On the other hand, if coupling resistance is too high, spontaneous cells

will not supply enough current to depolarize dormant cells. However, intermediate values of

coupling guarantee that both conditions are satisfied. During diastole, when the voltage differ-

ence is low, Igj is negligible, whereas during the upstroke, Igj increases and allows dormant

cells to depolarize (Figs 9 and 10). Although the cell types are different, this general phenome-

non resembles the propagation of ectopic beats in ventricular tissue, where reduced coupling

encourages propagation by inhibiting dissipation of depolarizing current [47,48].
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Are dormant cells present inside the sinoatrial node?

Given the numerous mechanisms that interact to produce SA nodal pacemaking at the cellular

level [49,50], it was not especially surprising that heterogeneity in ionic current properties

caused a percentage of cells to cease beating spontaneously. Although it seems reasonable to

ask whether this behavior is realistic or an artifact of the modeling, recent studies strongly sug-

gest that dormant cells do indeed exist, both in isolated cell studies and within intact SA nodal

tissue. A combined experimental and computational work published in 2018 [8] reported that

about half of SAN cells isolated from guinea pig hearts did not exhibit spontaneous APs,

although many of these cells recovered spontaneous beating when β-adrenergic signaling was

stimulated with isoproterenol. A limitation of that study, however, is that results could have

been influenced by the enzymatic dissociation procedure used to isolate individual cells. More

recent studies, from that group and others [9,51,52], have confirmed the existence of dormant

SA nodal cells in tissue under a variety of conditions. Our results, along with similar recent

modeling studies [38], demonstrate that when dormant cells are coupled with a minority of

spontaneous cells, the tissue can exhibit stable electrical activity even in the absence of sympa-

thetic stimulation. Our results also suggest that relatively large percentages of dormant cells

can indeed be consistent with normal pacemaker function at the tissue level due to the protec-

tive effects of heterogeneity and intercellular coupling. An excessive presence of dormant cells

nevertheless poses a threat to SAN function, since these conditions restrict the coupling range

in which rhythmic electrical activity can be generated. This highlights the perils of pathologies

such as SND that depress SAN cellular excitability.

Limitations and future developments

Although the modeling strategy we used in this study allowed us to investigate tissue automa-

ticity under a wide range of conditions, several limitations of our approach should be men-

tioned. First, the cellular heterogeneity was represented as random differences in ion channel

expression between cells, and we did not consider gradients across the tissue in cell type, size,

or shape. Several different types of myocytes have been proposed to exist within the SA node

[22,34], and non-myocyte cell types such as fibroblasts, atrial cells and adipocytes have been

hypothesized to play important roles [21,33,53], and we did not examine these possibilities.

Another structural simplification is the idealized geometry represented by a square sheet, far

from the 3D banana-shaped anatomy of the SAN [22,33]. Our tissue, which comprised 2500

cells, is comparable in size to the rabbit SAN (about 5000 cells [54]), but represents only a frac-

tion of the human SAN. An additional limitation is that the isolated cell models we used are

appropriate for for tissue simulations of electrical propagation, but not well-suited for local cal-

cium release events that contribute to normal pacemaking and can appear even in dormant

cells [8,55]. More complex cellular models that consider stochastic gating of intracellular

release channels [56] are required to simulate these local phenomena. These limitations can be

addressed in future work to shed additional light on mechanisms of SAN pacemaking.

Conclusions

In conclusion, we have shown how multiscale mathematical modeling can be used to gain

insight into the importance of cellular heterogeneity and intercellular coupling for efficacious

cardiac entrainment. Previous multicellular studies have shown that synchronization of heter-

ogenous cells is responsible for the SAN pacemaker function in rabbits [5,38]. Our data con-

firmed that the same phenomenon occurs in a two-dimensional model of the human sinoatrial

node. In addition, our study suggests that certain degrees of intercellular coupling make the
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sinoatrial node resistant to ionic perturbations that might be provoked by mutations and/or

drug therapies.

Supporting information

S1 Movie. Dynamic SAN activity in the Fabbri model. Movie illustrates electrical activity in

the SAN tissue using the Fabbri model under conditions close to propagation failure. Simula-

tion performed with PCaL reduced by 50%, R = 1000 MO, σ = 0.2.

(AVI)

S2 Movie. Dynamic SAN activity in the Maltsev model. Movie illustrates electrical activity in

the SAN tissue using the Maltsev model with INaK increased by 50%, R = 1000 MO, σ = 0.4.

(AVI)

S3 Movie. Dynamic SAN activity in the Severi model. Movie illustrates electrical activity in

the SAN tissue using the Severi model with ionic current perturbations as shown in Fig 7,

R = 1000 MO, σ = 0.2.

(AVI)
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