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Abstract: The occurrence of extreme windstorms and increasing heat and drought events induced 
by climate change leads to severe damage and stress in coniferous forests, making trees more vul-
nerable to spruce bark beetle infestations. The combination of abiotic and biotic disturbances in for-
ests can cause drastic environmental and economic losses. The first step to containing such damage 
is establishing a monitoring framework for the early detection of vulnerable plots and distinguish-
ing the cause of forest damage at scales from the management unit to the region. To develop and 
evaluate the functionality of such a monitoring framework, we first selected an area of interest af-
fected by windthrow damage and bark beetles at the border between Italy and Austria in the Friu-
lian Dolomites, Carnic and Julian Alps and the Carinthian Gailtal. Secondly, we implemented a 
framework for time-series analysis with open-access Sentinel-2 data over four years (2017–2020) by 
quantifying single-band sensitivity to disturbances. Additionally, we enhanced the framework by 
deploying vegetation indices to monitor spectral changes and perform supervised image classifica-
tion for change detection. A mean overall accuracy of 89% was achieved; thus, Sentinel-2 imagery 
proved to be suitable for distinguishing stressed stands, bark-beetle-attacked canopies and wind-
felled patches. The advantages of our methodology are its large-scale applicability to monitoring 
forest health and forest-cover changes and its usability to support the development of forest man-
agement strategies for dealing with massive bark beetle outbreaks. 

Keywords: forests; spruce bark beetle; windstorms; drought; remote sensing; Sentinel-2;  
spectral signatures; vegetation indices; supervised image classification;  
forest-cover change detection 
 

1. Introduction 
Due to ongoing global climate change, forest ecosystems are increasingly exposed to 

unfavourable environmental conditions, such as droughts and cold spells. Such changes 
are linked to contemporaneously rising temperatures and changing precipitation patterns 
[1]. At the same time, the frequency of disturbances such as major windthrows and snow 
damage exposes forest ecosystems to an increase in the frequency and severity of biotic 
damage [1]. Thus, native and alien insect, fungal and nematode infestations are expected 
to be a major threat to European forests in the future [1]. In this context, the homogeneity 
of even-aged monoculture stands of Norway spruce (Picea abies) is a favourable condition 
for the diffusion of the European spruce bark beetle (Ips typographus) [2]. Increasing stress 
conditions of such forest stands have supported the uncontrolled growth of the bark bee-
tle population to epidemic proportions to the point that the insect has already destroyed 
more forested areas than any other natural disturbance [2,3]. Spruce bark beetle infesta-
tions are affected by rising temperatures due to the exothermic physiology of the insects 
and the drought sensitivity of the defence system of trees [4]. Female beetles drill egg 
galleries under the bark. Later, larvae emerge and feed in the phloem before changing 
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into pupae. The adults may move on to another host two to five weeks after the attack. 
The larvae feed in the phloem after hatching and pupate beneath the bark [1]. Each year, 
up to three generations are possible [1]. The successful beetle colonisation of a healthy tree 
is typically fatal, because hundreds of beetle attacks destroy the inner bark and disrupt 
nutrient transport to the roots [1]. If this increase in mortality persists for a more extended 
period, large patches of forest (Figure 1) could be affected with a consequently altered 
forest structure and composition and losses of biodiversity and ecosystem service provi-
sion (e.g., hydrological regulation and carbon storage capacity) [5]. To prevent massive 
outbreaks and to minimise economic losses induced by a range of cascading impacts on 
markets, such as oversupply and decreasing timber prices, the early detection of infesta-
tions is crucial, that is, before the infestation is visible on the ground [6]. Management 
measures successfully applied in the past are becoming inefficient under a warmer cli-
mate, particularly in forests dominated by Norway spruce because of their lower re-
sistance to drought stress. On the other hand, forests managed for diversity have shown 
lower disturbance rates [7]. 

 
Figure 1. An example of combined abiotic (wind-felled patches) and biotic (bark beetle infestations) 
disturbances in Norway spruce stands at a site located in the Carnic Alps (picture taken from Mount 
Tersadia, 1960 m a.s.l.). 

A prerequisite for effective management is understanding forest damage’s spatial 
distribution and severity. From a forestry perspective, detecting outbreaks at the initial 
stage is the most important, as the management aims to preclude a mass outbreak by san-
itation harvesting [8]. The phenology of bark beetle attacks can be divided into three 
stages: green, red and grey attacks, with varying degrees of visibility [9,10]. These stages 
were named after the characteristic foliage colour, which is related to the time since the 
phloem damage occurred [9,10]. 

Infested trees in a managed forest are traditionally located during field surveys, but 
the method is laborious and hardly applicable to large or inaccessible areas [11]. An im-
portant new management strategy might be to reduce risks by looking at the whole land-
scape configuration rather than at single stands to account for measures that foster forest 
resilience at ecosystem level [12]. Remote sensing data are useful for detecting and moni-
toring areas infested by spruce bark beetles, as they provide global, spatially continuous 
and periodic data on vegetation conditions [13]. Remote sensing data can also reduce costs 
associated with field observations, as there are many freely available data sources with 
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global coverage and regular revisit times, such as Sentinel-2 [14]. The availability of high-
quality (i.e., cloud-free) Sentinel-2 images is an important prerequisite for the successful 
monitoring of bark beetle damage dynamics, as they show high variability in space and 
time [15]. Accurate estimates of leaf pigments, nitrogen, dry matter and water content 
from remote sensing can assist in determining the vegetation’s physiological status and 
serve as bioindicators of vegetation stress [16,17,18]. Einzmann et al. [19] found that in an 
artificially induced stress experiment on Norway spruce, the spectra of stressed trees dif-
fered significantly from the mean of the control trees. In contrast, the control tree spectral 
signature did not change over time. Compared to the mean of the control trees, both the 
needle and the canopy reflectance of artificially stressed trees increased in the visible 
(mainly red) and SWIR ranges, while a decrease was observed in the Near-Infrared (NIR) 
range. Furthermore, a slight decrease in the Red-Edge Inflection Point (REIP) was ob-
served. The primary and secondary effects of water content on leaf reflectance showed 
that the sensitivity of leaf reflectance to water content is greatest in spectral bands in the 
SWIR region [18]. These changes are caused by a typical reaction to vitality losses and cell 
structure alterations when chlorophyll and leaf water are reduced. In addition to altered 
leaf optical properties, needle loss affects canopy-scale spectral signatures [19]. Both the 
changes in the photosynthetic activity of green leaves and water content variations trig-
gered by bark beetle can be detected in early infestation stages using imaging spectros-
copy. The resolution of Sentinel-2 imagery was demonstrated to be advantageous for such 
purposes [20]. An overall accuracy of 67% in detecting the bark beetle green attack stage 
with Sentinel-2 data was obtained for 2016 in the Bavarian Forest National Park without 
relying on field data and only on the visual interpretation of aerial photographs taken in 
the year following the attack [20]. Reflectance changes in infested Norway spruce trees 
were observable, especially in the Red-Edge and SWIR regions, as well as in vegetation 
indices calculated from those bands, such as the Normalised Difference Red-Edge Index 
(NDREI) and the Normalised Difference Water Index (NDWI), for both leaf and canopy 
levels [20,21]. Research in 2020 showed that Sentinel-2 data were able to accurately distin-
guish areas with bark beetle disturbances and to detect the individual phases of the re-
covery mode of the forest vegetation using the Normalised Difference Vegetation Index 
(NDVI), the Normalised Difference Moisture Index (NDMI) and Tasselled Cap Wetness 
(TCW) during the period of 2017 to 2019 in the Low Tatras National Park (Slovakia) and 
the Sumava National Park (Czech Republic) [22]. The reflectance of healthy forest vegeta-
tion was higher in the NIR band than in the SWIR band; however, the SWIR reflectivity 
was higher in the case of bark beetle disturbances. This aspect played an important role, 
as the SWIR bands responded sensitively in the case of the degradation of the forest [22]. 
Spectral changes in healthy and attacked spruce monoculture stands within a single veg-
etation season were monitored in the Bohemian–Moravian Highlands (Czech Republic) 
using a dense time series of Sentinel-2 satellite observations to identify the most sensitive 
spectral bands and vegetation indices for the early detection of bark beetle infestation [15]. 
The highest potential for separation between healthy and infestation classes was observed 
for the Red, Red-Edge and SWIR regions of the spectrum, with an overall accuracy of 78%. 
In this study [15], NIR bands seemed less appropriate for early bark beetle detection, de-
spite the recent evidence from Abdullah et al. [20] pointing to significant differences in 
leaf-level NIR spectra between healthy and infested trees. Spectral indices using Red-Edge 
and Short-Wave Infrared might be potentially useful to detect infestations even earlier 
than indices based solely on the VIS/NIR region [15,23]. Approaches based on multi-tem-
poral spectral analysis have proven to be the most effective in detecting bark beetle infes-
tations at an early stage with Sentinel-2 data [14–16,22–24]. 

Herein, we propose a new multi-temporal framework for regional-scale wind and 
bark beetle damage mapping from Sentinel-2 imagery and field surveys. In doing this, we 
first evaluated the detection of early stages of bark beetle attacks on Norway spruce stands 
over four years (2017–2020) by tracking their within-season changes in canopy reflectance. 
Individual spectral bands and vegetation indices were used to develop a supervised 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spectral-band
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image classification model in order to separate classes of healthy, stressed, “red_attack” 
stage or windstorm-damaged stands over an area of 1,000,000 ha, of which 120,000 ha is 
covered by Norway spruce. Lastly, the results were validated with field reference data 
and implemented for the analysis of forest-cover change by post-classification change de-
tection over the time series concerning both spruce bark beetle infestations and windstorm 
damage. 

2. Materials and Methods 
2.1. Study Area 

The chosen study site for bark beetle detection and the analysis of forest-cover change 
(2017–2020) is located at the border between Italy, Austria and Slovenia in the Friulian 
Dolomites, Carnic and Julian Alps and the Carinthian Gailtal (Figure 2). In Friuli Venezia 
Giulia, Norway spruce is the main forest species, covering about 66,100 ha and scattered 
in seven main types of mixed and pure forests. The other common diffused tree species 
are European beech, Silver fir, and Black and Scots pines [25]. Typical pure and even-aged 
spruce forests grow on fertile soils from 1000 to 1500 m a.s.l., and non-native even-aged 
spruce forests, sometimes mixed with natural spruce reforestation (secondary stands), 
grow from 800 to 1600 m a.s.l. in abandoned pastures. Several areas have been replanted 
with Norway spruce owing to market-oriented reforestation management of the XX cen-
tury. There has been recent low-altitude spruce reforestation with pure and even-aged 
spruce plantations, which normally grow in small stands from 200 to 800 m a.s.l in areas 
that are dominated by broadleaved species [26]. In addition, on the Carinthian side of the 
study area, Norway spruce, followed by Silver fir, Black and Scots pines, European beech 
and Larch are the main tree species [27]. For the purpose of this study, only sites in the 
study area with Norway spruce stands (pure or mixed) were considered (Figure 2). 

 
Figure 2. Location of the study area, with polygons in green representing mixed and pure Norway 
spruce stands and state borders in yellow (ESRI Satellite base map). Reference system: WGS84-
UTM33N. 
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The mountain areas of the study area are characterised, at lower latitudes, by high 
annual precipitation, ranging from 2700 to 3200 mm per year, while in the internal alpine 
area, it only amounts to ca. 1500 mm. The average annual air temperature ranges between 
6 and 10 °C [28,29]. Regarding the yearly average climate conditions of the study region, 
2018 was very hot and dry, having a mean temperature of 13 °C in mountain areas, while 
2019 and 2020 had a mean temperature of 10°C [30–32]. Nevertheless, both 2019 and 2020 
were characterised by an annual temperature anomaly of 1°C for 2019 and of 2.4 °C for 
2020 compared to the last two decades [31,32]. Spring average precipitation strongly im-
pacts bark beetle population development [33]. While the spring months of 2018 showed 
a mean increase in rainfall of 20–40% compared to the average values in 1961–2010 [30,34], 
the spring (including June) of 2019 was 20–50% drier than usual [31]. March and April 
2020 were even 60–80% drier than the reference period [32]. 

The Vaia Storm 
The Vaia storm hit the northeastern part of Italy and southern Austria between the 

28 and 29 October 2018, with winds exceeding 200 km/h and intense rainfall [35]. It caused 
extensive forest damage in 494 Italian municipalities, destroying or severely damaging 
forests over an area of about 42,500 ha, with the damage estimated to cover 9.6 million 
cubic metres across an area of 42,500 ha [35]. For the Friuli Venezia Giulia region, the local 
forest service provided estimates of the forest damage using aerial photographs and 
ground surveys, which estimated that a surface extending 3700 ha was damaged and that 
the volume affected by the storm was 780,000 cubic meters [35]. In Carinthia, Vaia caused 
1.5 million cubic metres of damaged wood [30]. Vaia mainly affected pure and mixed 
Norway spruce stands, as their roots are relatively superficial and prone to uprooting [36]. 
In forest stands where trees were more diversified in age and species, the devastating 
effects of the wind were more restricted, with better resistance due to the different mor-
phology of the root system [36].  

2.2. Data 
We utilised satellite imagery to detect forest stress due to bark beetle attacks and to 

monitor forest change over the study period. For this purpose, we made use of Sentinel-
2A and Sentinel-2B images in the form of Level-2A products (atmospherically corrected 
to bottom-of-atmosphere reflectance) [37]. We collected Sentinel-2 tiles with the R package 
“getSpatialData” (version 0.1.0), selecting images with less than 10% cloud cover. Images 
were cropped to the area of interest, and bands with an original resolution of 20 m × 20 m 
(B05, B06, B07, B11 and B12) were resampled to 10 m × 10 m pixels. We did not use bands 
with a 60 m spatial resolution (B01 and B09) because they are mainly relevant for atmos-
pheric corrections [38]. The dataset was collected with a monthly time step for the period 
from July to September from the years 2017 to 2020. We included May based on data avail-
ability due to higher cloud cover in spring (Table 1). The timeframe was chosen according 
to the bark beetle life cycle phenology in the study area, which begins in May for over-
wintered beetles, expands to July for the second generation and ends in September. The 
attacked trees are initially stressed (“green_attack”) and later encounter a browning pro-
cess, the timing of which is diverse, depending on the time of the year at which the trees 
were initially attacked. The culmination of such a browning process is commonly called a 
“red_attack”. Stands attacked in May usually show visible symptoms such as needle loss 
and initial discolouration in July, while those infested in summer show “red_attack” 
symptoms in the following spring [39]. Forest cover masks were obtained from the Co-
pernicus Land Monitoring Service [40], which provides the tree cover density (TCD) and 
dominant leaf type (DLT), indicating a broadleaf or needle-leaf majority. These datasets 
are available with 20 m resolution starting from the year 2018. Secondly, we merged these 
datasets with the forest cover polygons—which include the dominant tree species—from 
the Autonomous Region Friuli Venezia Giulia and Land Kärnten to increase the accuracy 
and to include the specific forest cover type. 
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Table 1. Sentinel-2 data. 

Number Date Data 
1 20 June 2017 Sentinel-2 L2A 
2 2 August 2017 Sentinel-2 L2A 
3 29 August 2017 Sentinel-2 L2A 
4 6 May 2018 Sentinel-2 L2A 
5 30 July 2018 Sentinel-2 L2A 
6 17 August 2018 Sentinel-2 L2A 
7 28 September 2018 Sentinel-2 L2A 
8 24 May 2019 Sentinel-2 L2A 
9 30 June 2019 Sentinel-2 L2A 

10 27 August 2019 Sentinel-2 L2A 
11 21 September 2019 Sentinel-2 L2A 
13 07 July 2020 Sentinel-2 L2A 
14 29 July 2020 Sentinel-2 L2A 
15 15 September 2020 Sentinel-2 L2A 

We gathered information about the bark beetle population counts from pheromone 
traps in Friuli Venezia Giulia for the years from 2017 to 2020 (Figure 3). This dataset, pro-
vided by the Regional Agency for Rural Development (ERSA FVG), contains the location 
and altitude of the trap, its installation date, captures per week and total captures. Bark 
beetle captures by pheromone traps in the northern part of the region showed an increase 
in the population and diffusion in 2019, especially related to areas covered by wind-felled 
trees [41]. On the Austrian side of the study area, we used the PHENIPS model and trap 
captures from the Austrian Federal Forest Office (BFW) [42]. Additionally, we included 
polygons of sites damaged by bark beetle infestations with information about the stand 
species and the age and volume of damaged trees and polygons representing wind-felled 
sites from the Vaia storm of 2018, located during field surveys and provided by the Re-
gional Forestry Service (Friuli Venezia Giulia) and the Carinthian Institute for Geographic 
Information Systems (KAGIS) (Figure 3). Orthophotos from 2017–2020 provided by the 
Regional Infrastructure of Environmental and Territorial Data (Irdat FVG) [43] were used 
for the photointerpretation of wind-felled areas and sites affected by bark beetle damage. 
We extracted the topographic parameters from a digital elevation model (Global Digital 
Elevation Model from the NASA Earth Data Portal) [44] for the areas affected by bark 
beetle attacks and wind damage. 
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Figure 3. Reference data distribution over the study area showing the location of bark beetle pher-
omone traps and wind-felled patches (ESRI Shaded Relief base map). Reference system: WGS84-
UTM33N. 

Additionally, we exploited the Soil Water Index (SWI) from the Copernicus Global 
Land Service [40] to quantify the moisture conditions. Moreover, we gathered land surface 
temperature (LST) data from the Sentinel-3 mission from the Copernicus Open Access 
Hub [45]. We carried out the analysis for this study in the R programming language (ver-
sion 4.1.2). 

2.3. Methods 
Cloud masks were applied to every scene according to the native cloud cover infor-

mation of Sentinel-2 Level 2-A products [37] (Figure 4). Such masks do not account for 
shadowed areas, which can be easily distinguished by unusually low reflectance in the 
visible part of the spectrum. Consequently, such areas were treated as a separate training 
site class for each dataset during the classification process. 
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Figure 4. Workflow diagram. 

2.3.1. Single Bands and Vegetation Indices  
Single-band pixel values from Sentinel-2 images were analysed for each available ac-

quisition date (Figure 4) considering ground-truth reference data and photointerpretation 
from RGB and false-colour products. Especially the reflectance trends of the NIR (B08) 
and SWIR (B12) bands were taken into account because they are the most sensitive ones 
to chlorophyll decreases (B08 band) and water stress/lower absorption rates (B12 band) 
[15,21]. Training data, i.e., training polygons drawn for the classes of healthy, stressed and 
“red attack” stage canopies from 2020, were used to extract spectral profiles for both bands 
(B08 and B12) in order to quantify the variables’ separability and seasonal changes over 
time. 

From the Sentinel-2 imagery, we extracted the time series of vegetation indices (Fig-
ure 4 and Table 2) for the growing seasons of 2019 and 2020 to detect forest health changes 
using training polygons from 2020.  
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Table 2. Vegetation indices tested in this study. 

Index Sentinel-2 Bands Application 
NDWI NIR, SWIR2 Water content 
NDVI NIR, Red Greenness 
DWSI NIR, Red Greenness 
NMDI NIR, Green, SWIR1, Red Water content 
NDRS Red, SWIR1 Greenness, water content 
REIP Red, RedEdge2, RedEdge1 Greenness, water content 

NDREI1 RedEdge2, RedEdge1 Chlorophyll, biomass 
NDREI2 RedEdge3, RedEdge1 Chlorophyll, biomass 
RENDVI Red, RedEdge1, RedEdge2 Greenness, biomass 

TCW Blue, Green, Red, NIR, SWIR1, SWIR2 Water content 

The indices were chosen based on the bands’ sensitivity to stress-induced variations 
in chlorophyll content (VIS), biomass (NIR) and water content (SWIR). For the green-at-
tack stage detection, mainly water-content-based indices are suitable, such as the Normal-
ised Difference Water Index (NDWI, Equation (1)), which is dimensionless with a range 
of ±1, where high values indicate high leaf water content and high vegetation cover. This 
index is handy in early stress detection. It allows the more accurate mapping of temporal 
changes, as it exhibits faster feedback than the Normalised Difference Vegetation Index 
(NDVI, Equation (2)) for decreasing leaf water content [46,47]. Additionally, the NDWI is 
more robust to atmospheric influences, as atmospheric aerosol scattering effects are 
stronger in the VIS spectral wavelengths [46,47]: 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2)
(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2)

 (1) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅)
(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅)

 (2) 

Disease Water Stress Index (DWSI, Equation (3)) was calculated, as it proved to be 
able to detect changeable climatic conditions, especially the impact of drought on forest 
ecosystems, in which case DWSI decreases. DWSI values range between 0 and 2.5 for for-
ests, according to a previous study. In the case of pure conifers, there is a distinct differ-
ence in the DWSI index for dry sites, especially for the first part of the vegetation period, 
from April to July [48]:  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 + 𝑅𝑅𝑅𝑅𝑅𝑅)

 (3) 

The Normalised Multi-band Drought Index (NMDI, Equation (4)) was adopted for 
detecting vegetation water by using three channels centred near 860 nm, 1640 nm and 
2130 nm. By combining information from multiple NIR and SWIR channels, NMDI en-
hances the sensitivity to drought severity and is well suited to estimate the water content 
for both soil and vegetation [47]. NMDI values are within the range of 0.7 to 1 when soil 
moisture is less than 0.1, which means dry soil conditions. NMDI values are around 0.6 
when soil is under intermediate moisture conditions. When NMDI is less than 0.6, the soil 
is under wet conditions. Lower NMDI values indicate the increasing severity of vegeta-
tion drought [47]. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
(𝑁𝑁𝑁𝑁𝑁𝑁 − (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2))
(𝑁𝑁𝑁𝑁𝑁𝑁 + (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2))

 (4) 

The Normalised Distance Red and SWIR (NDRS, Equation (5)) vegetation index, 
which was recently implemented for the early detection of forest stress from spruce bark 
beetle attacks, was also used in this research [24]: 
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𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
(𝐷𝐷𝐷𝐷𝐷𝐷 − 𝐷𝐷𝐷𝐷𝐷𝐷´min)

(𝐷𝐷𝐷𝐷𝐷𝐷´𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐷𝐷𝐷𝐷𝐷𝐷´min)
 (5) 

where 

𝐷𝐷𝐷𝐷𝐷𝐷 = �(𝑅𝑅𝑅𝑅𝑅𝑅)2 + (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1)2 (6) 

DRS’max and DRS’min are the ranges of the DRS values for all spruce pixels in the 
image, and a threshold of 0.5 is applied to classify pixels as stressed or healthy if lower 
[24].  

Red-Edge-based vegetation indices were calculated for bark beetle detection, too. 
Among them is the REIP (Equation (7)), as with increasing stress, the abrupt transition 
that is typically seen between the visible and NIR bands in the Red-Edge range in green 
vegetation begins to shift towards shorter wavelengths [49]. The Normalised Difference 
Red-Edge Index (NDREI, Equation (8)) can be applied to estimate chlorophyll concentra-
tions, minimising the effects of background soil reflectance, with values below 0.5 indicat-
ing stress conditions [23]: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
0.705 + 0.35 (𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅3

2 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1 )

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1
 (7) 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1 =
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1)
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1)

 (8) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 =  
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅3 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1)
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅3 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1)

 (9) 

The Red-Edge Normalised Difference Vegetation Index (RENDVI, Equation (10)), 
also called Red-Edge NDVI or NDVI 705, which was used to assess post-fire regeneration 
and based on Red and Red-Edge bands in another study [50], was compared with other 
indexes in this study. Both bands B04 and B05 and bands B04 and B06 were used. In the 
following formula, R represents the bottom-of-atmosphere (BOA) reflectance observed by 
the satellite sensor: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
(𝑅𝑅750𝑛𝑛𝑛𝑛 − 𝑅𝑅705𝑛𝑛𝑛𝑛)
(𝑅𝑅750𝑛𝑛𝑛𝑛 + 𝑅𝑅705𝑛𝑛𝑛𝑛)

 (10) 

This index proved to be useful, as it considers a narrower waveband at the edge of 
the chlorophyll absorption feature (e.g., 705 nm). NDVI 705 is more affected by the chlo-
rophyll content when compared to the NDVI, and typical applications include precision 
agriculture, forest monitoring, forest fires and vegetation stress detection [51]. 

Additionally, Tasselled Cap Wetness (TCW, Equation (11)) was calculated to further 
distinguish between disturbed and undisturbed forest areas with the specific parameters 
from the Index Database [52]:  

𝑇𝑇𝑇𝑇𝑇𝑇 =  0.1509 ×  B02 +  0.1973 ×  B03 +  0.3279 ×  B04 
+  0.3406 ×  B08 –  0.7112 ×  B11 –  0.4572 ×  B12  

(11) 

TCW has previously proven to be helpful for the detection of forest stands attacked 
by bark beetles, showing negative values for infested forest sites [22].  

2.3.2. Supervised Classification of Multi-Temporal Imagery 
We first performed supervised image classification (Figure 3) to assign each pixel to 

a particular forest class of interest (“healthy”, “stressed”, “red_attack” or “vaia”) based 
on the statistical characteristics of the reflectance values of the training samples. Four non-
parametric machine learning methods were used: Random Forest (RF), Support Vector 
Machine (SVM), Artificial Neural Networks (ANNs) and k-Nearest Neighbours (KNN). 
Training polygons were manually selected based on RGB and false-colour composites, as 
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well as single-band reflectance values and reference data (trap captures, areas damaged 
by bark beetles, wind-felled areas and orthophotos) for each dataset. The training poly-
gons were based only on reference data (Figure 4) available at the time of the respective 
image acquisition to avoid taking a retrospective approach through ground-truth infor-
mation gathered afterwards, as it would have compromised the green-attack stage detec-
tion. At least ten polygons per class, 30 m × 30 m each (3 × 3 pixels), were drawn. We chose 
the size of the training dataset based on a rule of thumb according to which a subset size 
of at least ten times the number of bands used during the classification (in this case, 9) has 
to be considered for each training class [53]. 

The training polygons were sampled for each Sentinel-2 dataset and split into a train-
ing (70%) and a test (30%) dataset. Spectral signatures were extracted for each date to de-
tect a reflectance trend for each class. The classification algorithms were trained using both 
single bands and vegetation indices as explanatory variables, as in a recent study [15]. 
Variable importance was calculated in order to evaluate which explanatory variables were 
the most significant during the classification process in distinguishing between classes 
based on their reflectance values. The classifications were finally assessed with confusion 
matrices, overall accuracy and the kappa coefficient (Figure 4).  

2.3.3. Post-Classification Forest-Cover Change Detection 
We carried out post-classification change detection (PCC) by Intensity Analysis (IA) 

to quantitatively analyse Land-Use Capability (LUC) maps at several time steps using 
cross-tabulation matrices, where each matrix summarises the LUC change at each time 
interval (Figure 4). IA evaluates in three levels the deviation between the observed change 
intensity and the hypothesised uniform change intensity. As a result of this, each level 
details information provided by the previous analysis level. Firstly, the interval level in-
dicates how the size and rate of change vary across time intervals. Secondly, the category 
level examines how the size and intensity of gross losses and gross gains in each category 
vary across categories for each time interval. Thirdly, the transition level determines how 
the size and intensity of a category’s transitions vary across the other categories available 
for that transition. At each level, the method tests for the stationarity of patterns across 
time intervals [54]. The discrete variables obtained from the results of supervised classifi-
cation were used for this purpose. The R-package “OpenLand” (version 1.0.2) was used 
to calculate the number of times a pixel changed during the analysed period. A raster with 
the number of changes in the pixel value and a table containing the areal percentage of 
every pixel value (number of changes) were obtained. Further, the calculation of differ-
ences in the frequencies of pixels assigned per class for each dataset was performed. 
Changes in land cover area per class were plotted to visualise changes in forest cover be-
fore and after the Vaia storm and how it affected bark beetle infestations. Finally, we used 
classification maps from 2017 to 2020 to evaluate two focus areas showing relevant 
changes in forest cover and health.  

3. Results 
3.1. Single Bands and Vegetation Indices Reflectance Values  

The results obtained from single-band change detection over time using training data 
from 2020 showed that in the NIR band (B08) (Figure 5A) and in the SWIR band (B12) 
(Figure 5B), there is a significant variation in reflectance within areas damaged by bark 
beetles compared to the reflectance values of healthy forest stands. On the other hand, the 
differences between healthy and stressed stands are more significant in the B08 band, with 
values of the stressed sites being more similar to the spectral profile of stands in the bark 
beetle “red_attack” stage than to the healthy ones (Figure 5A). In addition, healthy stands 
displayed seasonal variation in reflectance, with values increasing until July (2019) or Au-
gust (2020) and decreasing from summer to early autumn (September 2019 and 2020). 
Considering the seasonal reflectance of the summer months in the B08 band, while healthy 
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stands witnessed a significant increase in NIR reflectance, the stands of stressed and 
“red_attack” sites only showed a slight rise in reflectance (Figure 5A). In the B12 band, 
forest stands in the bark beetle “red_attack” stage can clearly be distinguished by higher 
reflectance values, while healthy and stressed stands had very similar spectral responses 
for both seasons. 

 
Figure 5. Mean seasonal B08 (A) and B12 (B) band reflectance (line) and standard error from 95% CI 
(confidence band) in a time series from 2018 to 2020 for healthy, stressed and red-attack stage cano-
pies using training data from 2020. 

Nevertheless, a slight increase in reflectance was observed in stressed stands begin-
ning in August 2020 compared to the values of healthy stands (Figure 5B). Stands identi-
fied as being in the bark beetle red-attack stage in 2020 already showed significantly de-
viating values in 2019 compared to the healthy canopies for both bands (Figure 5A,B). 
Forest areas selected as stressed according to training data from 2020 exhibited similar 
spectral responses for both 2019 and 2020, however, with overall lower values in 2020 in 
the B08 band (Figure 5A) and higher reflectance in August and September 2020 in the B12 
band (Figure 5B). 

The vegetation indices NDWI, DWSI, NMDI, NDRS, NDREI2 and TCW, among the 
ten that were later considered for classification, were found to be suitable to successfully 
distinguish between healthy and stressed or damaged forest stands. The most frequently 
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used band for these indices is the B12 band. The reported indices further rely on the B08 
band, B05, B06 and B07 (Red-Edge bands), B03 (green band) and/or B04 (red band). For 
all vegetation indices and for both considered seasons, the values of healthy and stressed 
stands are more similar to each other compared to forests undergoing “red_attack” bark 
beetle infestation, which show very significant differences (Figure 6). For normalised in-
dices (NDWI, NDMI and NDREI2), in all cases, healthy stands displayed the highest val-
ues, followed by samples from stressed stands, with the lowest values for stands in the 
bark beetle “red-attack” stage (Figure 6A,B,E). NDRS was found to have very similar val-
ues for healthy and stressed stands, while forest stands in the “red_attack” stage resulted 
in significantly higher values (Figure 6D). TCW exhibited positive values for healthy 
stands, values between 0 and −250 for stressed stands and an even lower range (between 
−125 and −625) for “red_attack” stage canopies (Figure 6F). NDWI, NMDI, DWSI and 
TCW showed the largest difference between healthy and stressed pixels (Figure 6A,B,C,F). 
While healthy and stressed stands showed very similar seasonal trends for both seasons, 
stands already in the “red-attack” stage in 2020 showed the most significant decreases 
beginning in July 2020 for NDWI, NMDI, DWSI and NDREI2 compared to the values of 
2019 (Figure 6A,B,C,E). However, both stressed and “red_attack” stage canopies from 
2020 already showed deviating values in 2019 compared to the reflectance of healthy 
crowns (Figure 6). The seasonal trajectories showed reflectance changes in absolute values 
from one year to another independently of bark beetle infestations (healthy forest stands 
were also affected), which indicates that an absolute threshold of discrimination between 
classes cannot be applied and that the specific seasonal reflectance of healthy forest stands 
should instead be used as a reference baseline to differentiate between the variables (Fig-
ure 6).  
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Figure 6. Mean seasonal reflectance trends (line) and standard error from 95% CI (confidence band) 
of vegetation indices (NDWI (A), NMDI (B), DWSI (C), NDRS (D), NDREI2 (E ) and TCW (F) from 
2018 to 2020 with training data from 2020 for the classes of healthy, stressed and “red_attack” stage 
canopies. 

3.2. Supervised Classification 
3.2.1. Spectral Signatures 

Spectral signatures were extracted for the chosen classes of each dataset in order to 
identify changes in reflectance between bands for each class (Figure 7). For the visible 
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region of the electromagnetic spectrum, an increase in both green (B03) and red (B04) was 
found for the “red_attack” stage class compared to the reflectance values of healthy 
stands, while the Red-Edge bands (B06 and B07) showed a significant decrease (Figure 
7A,C). In the SWIR bands (B11 and B12), an increase in reflectance is shown for the 
“red_attack” class (Figure 7A,C). The “stressed” class showed a decrease in reflectance for 
the green band (B03) towards values of the red band (B04) (Figure 7A,C). The Red-Edge 
region (B05, B06 and B07) is characterised by lower reflectance values compared to those 
of the “healthy” class, while the SWIR bands (B11 and B12) are characterised by similar 
values to those of healthy stands (Figure 7A,C). The “stressed” class was also the one with 
the lowest variation for all bands (Figure 7B,D). 

 
Figure 7. Mean spectral profiles from training site classes for each band (A) and (C) and variation 
per class for each band (B) and (D) in July 2019 and July 2020 for forest cover classes of healthy 
vegetation, stands in the bark beetle “red-attack” stage, shadows, stressed forest stands and Vaia-
storm-related windthrows. 

3.2.2. Maps of Damage 
Supervised classification was performed over the entire area of interest at once. For 

demonstration purposes, we focus on two cropped areas to highlight the classification 
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results (Figure 8). The maps were compared with validation ground surveys and the vis-
ual interpretation of orthophotos from 2020 provided by Irdat FVG [43]. 

 
Figure 8. Location of two cropped areas in the study area selected to visualise classification results 
and changes in forest cover and health based on classes of healthy forest stands, stressed vegetation, 
stands in the bark beetle “red-attack” stage and Vaia-storm-related windthrows (OpenStreetMap 
base map). Reference System: WGS84-UTM33N. 

Forest stands in cropped area nr. 1 already showed conditions of stress and the 
“red_attack” stage in June 2017 (Figure 9A). The sites detected as stressed in June 2017 
(Figure 9A) were classified as “red_attack” stage stands in the classification map of July 
2018 (Figure 9B). The area was already suffering from bark beetle infestations before the 
Vaia storm occurred. However, a significant increase in damage can be seen in the “after 
Vaia” situation in 2019 and 2020, especially beginning in September 2019 (Figure 9E) and 
July 2020 (Figure 9, F). Some of the stands that were already stressed in May 2019 (Figure 
9C) changed into the “red_attack” stage in July 2019 (Figure 9D), and others changed in 
September 2019 (Figure 9E). Not all of the stands detected as stressed turned into the 
“red_attack” stage, but all of those which eventually turned out to have been infested by 
bark beetles had previously been classified as stressed. The bark beetle spread that oc-
curred after the Vaia storm progressed along forest edges and/or in proximity to wind-
felled patches (Figure 9D,E,F). At the same time, according to the classification results 
(Figure 9), forest stands that suffered damage from Vaia were located along forest edges 
and/or next to forest stands that were already suffering from bark beetle infestations be-
fore the storm occurred. 
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Figure 9. Classification maps of cropped area 1 from 2017 to 2020 (June 2017 (A), July 2018 (B), May 
2019 (C), July 2019 (D), September 2019 (E ) and July 2020 (F) according to forest cover classes 
(“healthy”, “red_attack”, “shadows”, “stressed” and “vaia”). Reference System: WGS84-UTM33N. 

As in cropped area nr. 1, the forest stands of cropped area 2 (Figure 10) also already 
showed conditions of stress and the “red_attack” stage in June 2017 (Figure 10A). The sites 
detected as stressed in June 2017 (Figure 10A) were classified as “red_attack” stage stands 
in the classification map of July 2018 (Figure 10B). Some of the canopies detected as 
stressed in May 2019 (Figure 10C) turned into the “red_attack” stage class as early as in 
July 2019 (Figure 10D), while most of them changed class in September 2019 (Figure 10E) 
or even in the following season (Figure 10F). Orthophoto details from 2020 showed that 
several forest stands located near wind-felled areas (top-right corner of the orthophoto 
details) were classified as stressed in 2019 (Figure 10C–E) and turned into the “red_attack” 
stage in July 2020 (Figure 10F). According to the classification results, bark beetle infesta-
tions generally intensified after the Vaia storm, especially in 2020, two years after the event 
(Figure 10F), and spread in proximity to wind-felled patches (Figure 10E). 
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Figure 10. Classification maps of cropped area 2 (June 2017 (A), July 2018 (B) , May 2019 (C), July 
2019 (D), September 2019 (E ) and July 2020 (F)) according to forest cover classes (“healthy”, “red_at-
tack”, “shadows”, “stressed” and “vaia”) and details showing orthophotos from 2020 with a spatial 
resolution of 10 cm provided by IRDAT. The orthophotos were overlayed by classification products 
in the form of polygons and transparent rasters. Reference system: WGS84-UTM33N. 

The overall accuracies of all supervised classifications reported varied between 0.8 
and 1, with kappa values between 0.7 and 1 (Appendix A Table A1). The variable im-
portance slightly varied between the different classification algorithms, of which ANN 
and RF were found to be the most suitable for forest health detection and forest-cover 
change detection. The most important variables for ANN classification were the Red-Edge 
bands (B06 and B07) and the green band (B03), as well as vegetation indices containing 
Red-Edge bands, such as NDREI1, NDREI2 and REIP, as well as TCW (Figure 11B,D; Ap-
pendix A Figure A1B,D and A2B,D). The RF algorithm mainly relied on the Red-Edge 
band (B06), the NIR band (B08) and the NDRS index containing the red (B04) and SWIR 
(B12) bands, as well as on vegetation indices containing Red-Edge bands (NDREI2 and 
REIP) (Figure 11A,C; Appendix A Figure A1A,C and A2A,C). 
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Figure 11. Variable importance for RF and ANN for two classification datasets (June 2017 (A,B) and 
July 2018 (C,D). Importance values for each explanatory variable for RF are expressed on a scale 
from 0 to 100 and were calculated with the R “caret” package (version 6.0.91). Variable importance 
for ANN was calculated with the R “NeuralNetTools” package (version 1.5.3) based on the relative 
importance of input variables in neural networks as the sum of the products of raw input–hidden 
and hidden–output connection weights, proposed by Olden et al. [55]. The importance values as-
signed to each variable are in units based directly on the summed product of the connection weights. 
The actual values should only be interpreted based on the relative sign and magnitude between 
explanatory variables, and comparisons between different models should be avoided [55]. 

3.3. Post-Classification Change Detection 
Considering forest-cover changes that occurred in cropped areas 1 and 2 affected by 

both Vaia and bark beetle infestation damage, while the first change, represented in yel-
low, includes damages by both Vaia and bark beetles, the second change, represented in 
red, was caused only by bark beetle damage (Figure 12A,C). Cropped area 1 witnessed a 
change in forest cover of approximately 36% in the two years following the Vaia storm 
(Figure 12A), while cropped area 2 suffered a decrease in forest health of 65% from 2018 
to 2020 (Figure 12C). As shown by the classification results and ground monitoring, we 
could confirm that both areas experienced an increase in bark beetle damage in the two 
years following the Vaia storm (mostly in 2020) compared to before the Vaia situation in 
2018 (Figure 12B,D). In both cases, several forest stands were already suffering from stress 
in 2018, a year characterised by exceptionally high drought and low levels of precipitation 
[34,38], which led to a further increase in stressed canopies in 2019 (Figure 12B,D). 
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Figure 12. Forest-cover change maps in % (A) and (C) and land cover change per class in km2 (B) 
and (D) for cropped areas 1 and 2 from 2018 to 2020 according to forest cover classes (healthy, 
red_attack, shadows, stressed and Vaia). 

4. Discussion 
According to the study results, Sentinel-2 data are suitable for the evaluation of forest 

health (forest condition before, during and after disturbance events), and the process of 
forest decline is detectable at the spatial resolution of a Sentinel-2 pixel. For this reason, 
the study areas represent a forest under different circumstances and development (Vaia 
storm damage, stressed forest stands, infested and dead trees after a bark beetle outbreak 
and forest vegetation without any significant influence). We could quantify an increase in 
forest loss after the Vaia storm, which triggered the outbreak of bark beetle populations 
(Figures 9, 10 and 12), also induced by increasing temperatures, low spring precipitation 
and drought, as indicated by climate reference data [28–34]. This scenario confirms that 
stands already suffering from biotic disturbances (e.g., bark beetles) are weakened and 
predisposed to suffer further damage from abiotic disturbances (e.g., windstorms and 
drought), which, again, trigger bark beetle infestations. This is consistent with previous 
studies [3,4,12,56]. 

The NIR (B08) and SWIR (B12) bands (Figure 5), as well as the vegetation indices 
NDWI, DWSI, NMDI, NDRS, NDREI, NDREI2 and especially TCW (Figure 6), were able 
to distinguish between healthy and stressed or damaged forest stands. The Red-Edge 
band (B06) and the NIR (B08) band exhibited the greatest potential for identifying stress 
and forest change during the classification process (Figure 11; Appendix A Figure A1 and 
A2). This can be explained by the fact that the Red-Edge and NIR parts of the electromag-
netic spectrum are sensitive to changes in leaf pigments and canopy structure [15]. Red-
Edge values were found to be helpful in estimating the chlorophyll concentrations as well 
as minimising the effects of background soil reflectance [23]. Furthermore, Red-Edge spec-
tral reflectance indices should be used to increase the accuracy of mapping green-attacked 
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trees since they are less correlated with changes in the forest structure, needle age, leaf 
intercellular structure of air-to-cell wall interfaces, forest floor moisture content and tree 
physiology over the growing seasons in healthy forests [23]. Vegetation indices relying on 
the Red-Edge (B06 and B07), SWIR (B12) and red (B04) bands performed better in identi-
fying stressed forests during classification (Figure 11; Appendix A Figure A1 and A2). 
Pixels covering forest stands in the bark beetle “red_attack” stage showed an increase in 
reflectance values in the red (B04) and SWIR (B12) bands (Figure 7). A reduction in chlo-
rophyll decreases the spectral absorption in the visible region, resulting in higher reflec-
tance, especially in the red band [57]. Further, bark beetle attacks are known to decrease 
the canopy water content [20], affecting the SWIR part of the spectrum by causing an in-
crease in reflectance [46]. Previous studies indicate that reflectance changes in infested 
Norway spruce trees were observable, especially in the Red-Edge and SWIR regions for 
both leaf and canopy levels, and that spectral vegetation indices calculated from the Red-
Edge and SWIR spectral bands were able to differentiate between healthy and infested 
trees earlier than the other indices [15,20,21]. 

The classification results showed a high mean overall accuracy (89%) (Appendix A 
Table A1) for forest stand stress detection and proved the suitability of Sentinel-2 image 
processing, as differences in reflectance in comparison to healthy forest stands can already 
be detected when there are no visible changes at the ground level. Pixels covering forest 
stands identified as being in the bark beetle “red_attack” stage already showed symptoms 
of stress in the previous season (Figures 5, 6, 9 and 10). Since spectral differences between 
healthy and stressed trees could very well exist without an ongoing bark beetle infesta-
tion, it is insufficient to conclude that the green-attack stage was successfully detected 
with our Sentinel-2 monitoring framework. The results of previous studies [24,58,59] in-
dicate that spectral differences can already exist at the beginning of the vegetation season, 
before attacks, or even in previous years. The spectral difference existing before attacks 
may be related to weakness and stress, which make the trees vulnerable to the selection 
and then successful infestation by the bark beetles [24]. Indeed, a study has shown that 
these stress-induced spectral changes could be more efficient indicators of early infesta-
tions than green-attack symptoms [24]. Similar spectral trait variations observed for bark 
beetle attacks are produced by various other types of disturbances [60]. However, bark 
beetle spots develop at a certain speed that is greater than that of most abiotic stresses [61]. 

The availability of cloud-free Sentinel-2 images is essential for assessing bark beetle 
activity. Unfortunately, mountain areas are frequently cloud-covered in spring, and there-
fore, only two cloud-free images were found for May within the study period (Table 1). 
Actually, this period can be used as an initial reference, especially for forest stands already 
showing stress before being attacked later on in the season or for forest stands affected by 
infestation from the previous season. We assume that forest stands classified as in the 
“red_attack” stage in July include canopies attacked in the previous season and classified 
as stressed according to our classification results (Figures 9 and 10D,F), as well as trees 
newly infested by the first bark beetle generation, which, according to the PHENIPS 
model, starts swarming in May [42]. Stands suffering from the bark beetle “red_attack” 
stage in September (Figures 9 and 10E) likely correspond to infestations by the second 
bark beetle generation, which, according to the PHENIPS model, starts swarming in July 
[42]. A survey conducted in the southeastern US suggested the high activity of bark bee-
tles in June, with observed signs of infestation and spots in August 2019, two months after 
the activity [61]. The period between mid-June and early July was found to be appropriate 
for mapping beetle-induced early stress in trees in Central Europe [21]. For this reason, 
for the early estimation of forest vulnerability, Sentinel-2 image processing in late spring 
and early summer is also of great use in detecting spectral differences related to the bark 
beetle green-attack stage or general conditions of weakness and stress in tree canopies, as 
they could later be selected and successfully infested by bark beetles or harmed by abiotic 
disturbances. This would theoretically give forest managers sufficient time to proceed 
with salvage logging [62]. However, due to the current high outbreak levels, it is not 
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feasible to monitor large areas in a timely manner [15], and costs for punctual sanitary 
cuts are not sustainable for the forest management sector, especially in mountain areas 
[1]. 

Including information about the forest stand structure (e.g., tree age and density) us-
ing auxiliary data, such as biomass maps, tree species maps and stand attribute tables [24], 
and relying only on pure Norway spruce forest stands rather than forest mixtures would 
most likely increase the accuracy of the overall results and, even more, the ability to detect 
early infestations. Furthermore, according to a previous study [63], the accuracy of infes-
tation detection drastically decreases with the decreasing number of infested trees within 
a mixed pixel. A real qualitative change could already be caused by an improvement in 
the spectral or spatial resolution, as shown by the discussion of the results or the non-pixel 
but object-oriented approach, which analyses not only information from a given pixel but 
also the context in which it is located [64]. Despite that, the general aim of this research 
was to perform image processing in an area with a vast extent and including mixed spruce 
strands to test Sentinel-2’s suitability for early stress detection and general forest-cover 
change detection over broad areas affected by abiotic and biotic disturbances. In addition 
to generating static bark beetle infestation maps, the spatial spread could also be predicted 
by including data such as wetness and brightness slopes, which improved the predictive 
ability of bark beetle infestation models in a recent study [65]. The proportion of stand 
borders exposed to the south and west should also be considered, as they are more sus-
ceptible to bark beetle attacks [8]. 

Furthermore, attacks frequently occur at sites with higher vegetation surface temper-
atures at the border of forest stands, where exposure to sunlight creates warmer condi-
tions [20]. Accurate and high-resolution data on soil moisture and land surface tempera-
ture could significantly improve the predictive ability of bark beetle infestation models 
[66,67]. Therefore, interpolated SWI and LST data from currently available low-resolution 
open-access imagery and evapotranspiration data [68] and prediction models such as 
PHENIPS-TDEF [69] could be implemented. Information about solar radiation, rather 
than commonly used meteorological variables, since increasing canopy surface tempera-
ture was found at attacked stands, is also recommended as a future research direction for 
early bark beetle infestation detection [20,70]. 

5. Conclusions 
This research confirmed that windstorms trigger bark beetle infestations, especially 

in relation to increasing temperatures and drought conditions caused by climate change. 
The multi-temporal remote sensing analysis conducted with Sentinel-2 data was useful 
for studying forest canopy trajectories according to their health status. Single bands, veg-
etation indices and supervised image classification could discriminate between areas af-
fected by stress and bark beetles compared to those of healthy forest stands. Our results 
suggest that remote monitoring is suitable for providing spatial information about 
stressed stands, even in an early stage when there are no visible changes at the canopy 
level but changes can be detected in spectral signatures beyond the visible spectrum. 
Overall, the results obtained by processing a Sentinel-2 multi-temporal series confirmed 
its suitability for early stress detection in forest stands and the evaluation of forest-cover 
changes over vast areas affected by both abiotic and biotic disturbances. Still, there is a 
need for further research for the early and accurate detection of bark-beetle-attacked forest 
stands to distinguish infestations from other stress factors, which is mandatory for the 
operational application of remote monitoring to bark beetle control strategies on a large 
scale. Indeed, a regional-scale assessment of damage is crucial for planning any measure, 
such as trapping and sanitation felling or managing the landscape structure for containing 
the spread. In addition, the proposed multi-temporal monitoring framework for wind and 
bark beetle detection and damage mapping is an initial but necessary step for better un-
derstanding regional-scale population dynamics. Such action is crucial, considering that 
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abiotic and biotic disturbances are predicted to occur with an increasing frequency in the 
future due to the impacts of climate change. 
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Appendix A 

Table A1. Confusion matrices and overall statistics for RF and ANN for each classification dataset. 

06/2017 RF      
Confusion Matrix and Statistics      

  Reference    

 

Prediction healthy red_attack shadows stressed 
healthy 24 1 0 0 

red_attack 0 31 0 3 
shadows 0 0 26 0 
stressed 1 1 0 32 

Overall Statistics      
 Accuracy 0.9535    
 95% CI (0.9015, 0.9827)    

 
No-Information 

Rate 0.2713    

 
p-Value (Acc > 

NIR) <2.2 × 10−16    

 Kappa 0.9377    
06/2017 ANN      

Confusion Matrix and Statistics      
  Reference    

 

Prediction healthy red_attack shadows stressed 
healthy 33 1 0 1 

red_attack 0 31 0 6 
shadows 0 0 26 0 
stressed 2 1 0 28 

Overall Statistics      
 Accuracy 0.9147    
 95% CI (0.8525, 0.9567)    
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 No-Information 
Rate 

0.2713    

 p-Value (Acc > 
NIR) 

<2.2 × 10−16    

 Kappa 0.8859    
07/2018 RF      

Confusion Matrix and Statistics      
  Reference    

 

Prediction healthy red_attack shadows stressed 
healthy 23 1 0 0 

red_attack 0 24 0 1 
shadows 0 0 23 0 
stressed 4 2 0 26 

Overall Statistics      
 Accuracy 0.9231    
 95% CI (0.854, 0.9662)    

 
No-Information 

Rate 0.2596    

 
p-Value (Acc > 

NIR) <2.2 × 10−16    

 Kappa 0.8973    
07/2018 ANN      

Confusion Matrix and Statistics      
  Reference    

 

Prediction healthy red_attack shadows stressed 
healthy 26 0 0 3 

red_attack 0 26 1 0 
shadows 0 0 22 0 
stressed 1 1 0 24 

Overall Statistics      
 Accuracy 0.9423    
 95% CI (0.8787, 0.9785)    

 No-Information 
Rate 

0.2596    

 
p-Value (Acc > 

NIR) <2.2 × 10−16    

 Kappa 0.9229    
05/2019 RF      

Confusion Matrix and Statistics      
  Reference    

 

Prediction healthy shadows stressed vaia 
healthy 23 0 1 0 

shadows 0 19 0 0 
stressed 0 0 23 0 

vaia 0 0 0 19 
Overall Statistics      

 Accuracy 0.9882    
 95% CI (0.9362, 0.9997)    
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 No-Information 
Rate 

0.2824    

 p-Value (Acc > 
NIR) 

<2.2 × 10−16    

 Kappa 0.9843    
05/2019 ANN      

Confusion Matrix and Statistics      
  Reference    

 

Prediction healthy shadows stressed vaia 
healthy 23 0 0 0 

shadows 0 19 0 0 
stressed 0 0 24 0 

vaia 0 0 0 19 
Overall Statistics      

 Accuracy 1    
 95% CI (0.9575, 1)    

 
No-Information 

Rate 0.2824    

 
p-Value (Acc > 

NIR) <2.2 × 10−16    

 Kappa 1    
07/2019 RF       

Confusion Matrix and Statistics       
  Reference     

 

Prediction healthy red_attack shadows stressed vaia 
healthy 45 0 0 0 0 

red_attack 0 23 0 2 5 
shadows 0 0 10 0 0 
stressed 0 3 0 59 0 

 vaia 0 2 0 0 8 
Overall Statistics       

 Accuracy 0.9236     
 95% CI (0.8703, 0.9588)     

 
No-Information 

Rate 0.3885     

 
p-Value (Acc > 

NIR) <2.2 × 10−16     

 Kappa 0.894     
07/2019 ANN       

Confusion Matrix and Statistics       
  Reference     

 

Prediction healthy red_attack shadows stressed vaia 
healthy 27 1 0 1 0 

red_attack 0 21 0 1 2 
shadows 0 0 11 0 0 
stressed 2 3 0 32 1 

 vaia 0 3 0 0 13 
Overall Statistics       

 Accuracy 0.8814     
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 95% CI (0.809, 0.9366)     

 No-Information 
Rate 

0.2881     

 p-Value (Acc > 
NIR) 

<2.2 × 10−16     

 Kappa 0.8462     
09/2019 RF       

Confusion Matrix and Statistics       
  Reference     
 Prediction healthy red_attack shadows stressed vaia 
 healthy 25 0 0 1 0 
 red_attack 1 17 0 2 1 
 shadows 0 0 3 0 0 
 stressed 1 0 0 24 0 
 vaia 0 1 0 0 20 

Overall Statistics       
 Accuracy 0.9271     
 95% CI (0.8555, 0.9702)     

 
No-Information 

Rate 0.2812     

 
p-Value (Acc > 

NIR) <2.2 × 10−16     

 Kappa 0.9042     
09/2019 ANN       

Confusion Matrix and Statistics       
  Reference     

 

Prediction healthy red_attack shadows stressed vaia 
healthy 24 4 0 2 0 

red_attack 2 12 0 3 0 
shadows 0 0 3 0 0 
stressed 1 1 0 21 0 

 vaia 0 1 0 1 21 
Overall Statistics       

 Accuracy 0.8438     
 95% CI (0.7554, 0.9098)     

 
No-Information 

Rate 0.2812     

 
p-Value (Acc > 

NIR) <2.2 × 10−16     

 Kappa 0.7939     
07/2020 RF       

Confusion Matrix and Statistics       
  Reference     

 

Prediction healthy red_attack shadows stressed vaia 
healthy 31 0 0 3 0 

red_attack 0 28 0 2 0 
shadows 0 0 43 2 0 
stressed 4 7 0 28 0 

 vaia 0 0 0 0 7 
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Overall Statistics       
 Accuracy 0.8839     
 95% CI (0.8227, 0.9297)     

 
No-Information 

Rate 0.2774     

 
p-Value (Acc > 

NIR) <2.2 × 10−16     

 Kappa 0.8487     
07/2020 ANN       

Confusion Matrix and Statistics       
  Reference     

 

Prediction healthy red_attack shadows stressed vaia 
healthy 27 0 0 4 0 

red_attack 1 28 0 6 0 
shadows 0 0 43 6 0 
stressed 7 7 0 19 0 

 vaia 0 0 0 0 7 
Overall Statistics       

 Accuracy 0.8     
 95% CI (0.7283, 0.8599)     

 
No-Information 

Rate 0.2774     

 
p-Value (Acc > 

NIR) <2.2 × 10−16     

 Kappa 0.7389     
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Figure A1. Variable importance for RF and ANN for classification datasets (May 2019 (A,B) and July 
2019 (C,D)). Importance values for each explanatory variable for RF are expressed on a scale from 0 
to 100 and were calculated with the R “caret” package (version 6.0.91). Variable importance for ANN 
was calculated with the R “NeuralNetTools” package (version 1.5.3) based on relative importance 
of input variables in neural networks as the sum of the products of raw input–hidden and hidden–
output connection weights, proposed by Olden et al. [55]. The importance values assigned to each 
variable are in units that are based directly on the summed product of the connection weights. The 
actual values should only be interpreted based on relative sign and magnitude between explanatory 
variables. Comparisons between different models should not be made [55]. 
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Figure A2. Variable importance for RF and ANN for classification datasets (September 2019 (A,B) 
and July 2020 (C,D)). Importance values for each explanatory variable for RF are expressed on a 
scale from 0 to 100 and were calculated with the R “caret” package (version 6.0.91). Variable im-
portance for ANN was calculated with the R “NeuralNetTools” package (version 1.5.3) based on 
relative importance of input variables in neural networks as the sum of the products of raw input–
hidden and hidden–output connection weights, proposed by Olden et al. [55]. The importance val-
ues assigned to each variable are in units that are based directly on the summed product of the 
connection weights. The actual values should only be interpreted based on relative sign and mag-
nitude between explanatory variables. Comparisons between different models should not be made 
[55]. 

References 
1. Gandhi, K.J.; Hofstetter, R.W. Bark Beetle Management, Ecology and Climate Change, 1st ed.; Academic Press: London, UK, 2021. 
2. Niemann, K.O.; Quinn, G.; Stephen, R.; Visintini, F.; Parton, D. Hyperspectral Remote Sensing of Mountain Pine Beetle with an 

Emphasis on Previsual Assessment. Can. J. Remote Sens. 2015, 41, 191–202. 
3. Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et 

al. Forest disturbances under climate change. Nat. Clim. Change 2017, 7, 395–402. 
4. Huang, J.; Kautz, M.; Trowbridge, A.M.; Hammerbacher, A.; Raffa, K.F.; Adams, H.D.; Goodsman, D.W.; Xu, C.; Meddens, A.J.; 

Kandasamy, D.; et al. Tree defense and bark beetles in a drying world: Carbon partitioning, functioning and modelling. New 
Phytol. 2020, 225, 26–36. 

5. Montzka, C.; Bayat, B.; Tewes, A.; Mengen, D.; Vereecken, H. Sentinel-2 Analysis of Spruce Crown Transparency Levels and 
Their Environmental Drivers After Summer Drought in the Northern Eifel (Germany). Front. For. Glob. Change 2021, 4, 86. 

6. Morris, J.L.; Cottrell, S.; Fettig, C.J.; Hansen, W.D.; Sherriff, R.L.; Carter, V.A.; Clear, J.L.; Clement, J.; DeRose, R.J.; Hicke, J.A.; 
et al. Managing bark beetle impacts on ecosystems and society: Priority questions to motivate future research. J. Appl. Ecol. 2017, 
54, 750–760. 

7. Dobor, L.; Hlásny, T.; Zimová, S. Contrasting vulnerability of monospecific and species-diverse forests to wind and bark beetle 
disturbance: The role of management. Ecol. Evol. 2020, 10, 12233–12245. 



Remote Sens. 2022, 14, 6105 30 of 32 
 

 

8. Wermelinger, B. Ecology and management of the spruce bark beetle Ips typographus—A review of recent research. For. Ecol. 
Manag. 2004, 202, 67–82. 

9. Niemann, K.O.; Visintini, F. Assessment of Potential for Remote Sensing Detection of Bark Beetle-Infested Areas during Green Attack: A 
Literature Review; Mountain Pine Beetle Initiative Working Paper 2005-02; Natural Resources Canada, Canadian Forest Service, 
Pacific Forestry Centre: Victoria, BC, Canada, 2005. 

10. White, J.; Wulder, M.; Brooks, D.; Reich, R.; Wheate, R. Detection of Red Attack Stage Mountain Pine Beetle Infestation with 
High Spatial Resolution Satellite Imagery. Remote Sens. Environ. 2005, 96, 340–351. 

11. Wulder, M.A.; Dymond, C.C.; White, J.C.; Leckie, D.G.; Carroll, A.L. Surveying Mountain Pine Beetle Damage of Forests: A 
Review of Remote Sensing Opportunities. For. Ecol. Manag. 2006, 221, 27–41. 

12. Hlásny, T.; König, L.; Krokene, P.; Lindner, M.; Montagné-Huck, C.; Müller, J.; Qin, H.; Raffa, K.F.; Schelhaas, M.-J.; Svoboda, M.; 
et al. Bark Beetle Outbreaks in Europe: State of Knowledge and Ways Forward for Management. Curr. For. Rep. 2021, 7, 138–165. 

13. Lechner, A.M.; Foody, G.M.; Boyd, D.S. Applications in Remote Sensing to Forest Ecology and Management. One Earth 2020, 2, 
405–412. 

14. Fernandez-Carrillo, A.; Patočka, Z.; Dobrovolný, L.; Franco-Nieto, A.; Revilla-Romero, B. Monitoring Bark Beetle Forest 
Damage in Central Europe. A Remote Sensing Approach Validated with Field Data. Remote Sens. 2020, 12, 3634. 

15. Bárta, V.; Lukeš, P.; Homolová, L. Early Detection of Bark Beetle Infestation in Norway Spruce Forests of Central Europe Using 
Sentinel-2. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102335. 

16. Senf, C.; Seidl, R.; Hostert, P. Remote Sensing of forest insect disturbances: Current state and future directions. Int. J. Appl. Earth 
Obs. Geoinf. 2017, 60, 49–60. 

17. Zarco-Tejada, P.J.; Sepulcre-Cantó, G. Remote sensing of vegetation biophysical parameters for detecting stress condition and 
land cover changes. Estud. Zona Saturada Suelo 2007, 8, 37–44. 

18. Carter, G.A. Primary and secondary effects of water content on the spectral reflectance of leaves. Am. J. Bot. 1991, 78, 916–924. 
19. Einzmann, K.; Atzberger, C.; Pinnel, N.; Glas, C.; Böck, S.; Seitz, R.; Immitzer, M. Early detection of spruce vitality loss with 

hyperspectral data: Results of an experimental study in Bavaria, Germany. Remote Sens. Environ. 2021, 266, 112676. 
20. Abdullah, H.; Skidmore, A.K.; Darvishzadeh, R.; Heurich, M. Sentinel-2 Accurately Maps Green-Attack Stage of European 

Spruce Bark Beetle (Ips typographus, L.) Compared with Landsat-8. Remote Sens. Ecol. Conserv. 2019, 5, 87–106. 
21. Abdullah, H. Remote Sensing of European Spruce (Ips typographus, L.) Bark Beetle Green Attack. Ph.D. Thesis, University of 

Twente, Twente, The Netherlands, 2019. 
22. Lastovicka, J.; Svec, P.; Paluba, D.; Kobliuk, N.; Svoboda, J.; Hladky, R.; Stych, P. Sentinel-2 Data in an Evaluation of the Impact 

of the Disturbances on Forest Vegetation. Remote Sens. 2020, 12, 1914. 
23. Zabihi, K.; Surovy, P.; Trubin, A.; Singh, V.V.; Jakus, R. A review of major factors influencing the accuracy of mapping green-

attack stage of bark beetle infestations using satellite imagery: Prospects to avoid data redundancy. Remote Sens. Appl. Soc. 
Environ. 2021, 24, 100638. 

24. Huo, L.; Persson, H.J.; Lindberg, E. Early Detection of Forest Stress from European Spruce Bark Beetle Attack, and a New Veg-
etation Index: Normalized Distance Red & SWIR (NDRS). Remote Sens. Environ. 2021, 255, 112240. 

25. Bernardinelli, I.; Stergulc, F.; Frigimelica, G.; Zandigiacomo, P.; Faccoli, M. Spatial analysis of Ips typographus Infestations in 
South-Eastern Alps. In Proceedings of the 7th Workshop on Methodology of Forest Insect and Disease Survey in Central 
Europe (IUFRO Working Party 7.03.10), Gmunden, Austria, 11–14 September 2006. 

26. Del Favero, R. La Vegetazione Forestale e la Silvicoltura Nella Regione Friuli Venezia Giulia, 1st ed.; Colophon: Venezia, Italy, 1998. 
27. Seger, M. Waldschadensforschung im Gailtal, Kärnten. Erfassung des Waldzustandes mittels Farbinfrarot-Fernerkundung und Standort-

Sowie Immissionsökologische Ansätze zur Ursachenforschung; Carinthia II: Klagenfurt, Austria, 1994; pp. 555–625. 
28. Regione Autonoma Friuli Venezia Giulia, Arpa, FVG. Available online: https://www.arpa.fvg.it/temi/temi/meteo-e-

clima/sezioni-principali/clima-e-cambiamenti-climatici/clima/ (accessed on 7 July 2022). 
29. ZAMG, Zentralanstalt für Meteorologie und Geodynamik. Available online: https://www.zamg.ac.at/cms/de/for-

schung/klima/klimatografien/klimaatlas-kaernten (accessed on 7 July 2022). 
30. Unione Meteorologica del Friuli Venezia Giulia. Available online: https://www.umfvg.org/drupal/sites/default/files/Meteorolog-

ica-2019-01_02-compresso.pdf (accessed on 7 July 2022). 
31. Regione Autonoma Friuli Venezia Giulia, Arpa, FVG. Available online: https://www.arpa.fvg.it/temi/temi/meteo-e-clima/news/e-

online-il-report-meteofvg-dedicato-al-2019-un-anno-molto-caldo-con-piogge-abbondanti-in-autunno/ (accessed on 7 July 2022). 
32. Regione Autonoma Friuli Venezia Giulia, Arpa, FVG. Available online: https://www.arpa.fvg.it/temi/temi/meteo-e-clima/news/2020-

un-anno-caldo-con-piogge-eccezionali-a-dicembre-il-riepilogo-nel-report-annuale-meteofvg/ (accessed on 7 July 2022). 
33. Faccoli, M. Effect of weather on Ips typographus (Coleoptera Curculionidae) phenology, voltinims, and associate spruce mortality 

in the southeastern Alps. Environ. Entomol. 2009, 38, 307–316. 
34. Regione Autonoma Friuli Venezia Giulia, Arpa, FVG. Available online: https://www.meteo.fvg.it/pubblicazioni/meteo-

fvg//2018/meteo.fvg_2018-5_it.pdf (accessed on 7 July 2022). 
35. Chirici, G.; Giannetti, F.; Travaglini, D.; Nocentini, S.; Francini, S.; D’Amico, G.; Calvo, E.; Fasolini, D.; Broll, M.; Maistrelli, F.; 

et al. Stima dei danni della tempesta “Vaia” alle foreste in Italia. Forest@ 2019, 16, 3–9. 
36. Motta, R.; Ascoli, D.; Corona, P.; Marchetti, M.; Vacchiano, G. Selvicoltura e schianti da vento. Il caso della “tempesta Vaia”. 

Forest@ 2018, 15, 94–98. 
37. European Space Agency. Sentinel-2 Level-2A Algorithm Theoretical Basis Document; European Space Agency: Paris, France, 2020. 



Remote Sens. 2022, 14, 6105 31 of 32 
 

 

38. European Space Agency. Sentinel-2 User Handbook; European Space Agency: Paris, France, 2015. 
39. Regione Autonoma Friuli Venezia Giulia, Ersa, Bausinve 2020. Available online: http://www.ersa.fvg.it/ex-

port/sites/ersa/aziende/in-formazione/notiziario/allegati/2021/Inserto-Bausive-2020.pdf  (accessed on 7 July 2022). 
40. Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/ (accessed on 7 July 2022). 
41. Regione Autonoma Friuli Venezia Giulia, Ersa, Bausinve 2019. Available online: http://ersa.regione.fvg.it/ex-

port/sites/ersa/aziende/in-formazione/notiziario/allegati/2020/1/BAUSINVE_2019.pdf  (accessed on 7 July 2022). 
42. Institut für Forstentomologie, Forstpathologie und Forstschutz. Monitoring und Risikoanalyse. Phenips Online Monitoring. Avail-

able online: https://ifff-server.boku.ac.at/wordpress/index.php/language/de/startseite/phenips-online/ (accessed on 7 July 2022). 
43. Regione Autonoma Friuli Venezia Giulia, Irdat. Available online: http://irdat.regione.fvg.it/WebGIS/ (accessed on 7 July 2022). 
44. NASA, Earthdata Search. Available online: https://search.earthdata.nasa.gov/search (accessed on 7 July 2022). 
45. Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 7 July 2022). 
46. Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. 

Environ. 1996, 58, 257–266. 
47. Wang, L.; Qu, J.J. NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite 

remote sensing. Geophys. Res. Lett. 2007, 34, L20405, 1-5. https://doi.org/10.1029/2007GL031021. 
48. Zbigniew, B.; Ziolkowski, D.; Bartold, M.; Orlowska, K.; Ochtyra, A. Monitoring forest biodiversity and the impact of climate 

on forest environment using high-resolution satellite images. Eur. J. Remote Sens. 2018, 51, 166–181. 
49. Chen, G.; Meentemeyer, R.K. Remote Sensing of Forest Damage by Diseases and Insects. In Remote Sensing for Sustainability; 

Weng, Q., Ed.; CRC Press: Boca Raton, FL, USA; 2016; pp. 145–157. 
50. Evangelides, C.; Nobajas, A. Red-Edge Normalised Difference Vegetation Index (NDVI705) from Sentinel-2 imagery to assess 

post-fire regeneration. Remote Sens. Appl. Soc. Environ. 2020, 17, 100283. 
51. Cundill, S.L.; Van der Werff, H.M.; Van der Meijde, M. Adjusting Spectral Indices for Spectral Response Function Differences 

of Very High Spatial Resolution Sensors Simulated from Field Spectra. Sensors 2015, 15, 6221–6240. 
52. Index Database. A database for remote sensing indices. Available online: www.indexdatabase.de (accessed on 07 July 2020). 
53. Clark Labs, Clark University, TerrSet Manual. Available online: https://clarklabs.org/wp-content/uploads/2016/10/Terrset-

Manual.pdf (accessed on 07 July 2020). 
54. Aldwaik, S.Z.; Pontius, R.G. Jr. Intensity analysis to unify measurements of size and stationarity of land changes by interval, 

category and transition. Landsc. Urban Plan. 2012, 106, 103–114. 
55. Olden, J.D.; Joy, M.K.; Death, R.G. An accurate comparison of methods for quantifying variable importance in artificial neural 

networks using simulated data. Ecol. Model. 2004, 178, 389–397. 
56. Ochtyra, A. Forest Disturbances in Polish Tatra Mountains for 1985–2016 in Relation to Topography, Stand Features, and Pro-

tection Zone. Forests 2020, 11, 579. 
57. Carter, G.A.; Knapp, A.K. Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll 

concentration. Am. J. Bot. 2001, 88, 677–684. 
58. Abdollahnejad, A.; Panagiotidis, D.; Surový, P.; Modlinger, R. Investigating the Correlation between Multisource Remote Sens-

ing Data for Predicting Potential Spread of Ips typographus L. Spots in Healthy Trees. Remote Sens. 2021, 13, 4953. 
59. Lausch, A.; Heurich, M.; Dordalla, D.; Dobner, H.J.; Gwillym-Margianto, S.; Salbach, C. Forecasting potential bark beetle out-

breaks based on spruce forest vitality using hyperspectral remote-sensing techniques at different scales. For. Ecol. Manag. 2013, 
308, 76–89. 

60. Lausch, A.; Erasmi, S.; King, D.J.; Magdon, P.; Heurich, M. Understanding forest health with remote sensing—Part I—A review 
of spectral traits, processes and remote-sensing characteristics. Remote Sens. 2016, 8, 1029. 

61. Gomez, D.F.; Ritger, H.M.W.; Pearce, C.; Eickwort, J.; Hulcr, J. Ability of Remote Sensing Systems to Detect Bark Beetle Spots 
in the Southeastern US. Forests 2020, 11, 1167. 

62. Faccoli, M.; Finozzi, V.; Andriolo, A.; Bernardinelli, I.; Salvadori, C.; Deganutti, L.; Battisti, A. Il bostrico tipografo sulle Alpi orientali. 
Evoluzione, gestione e prospettive future dopo Vaia. Sherwood For. Alberi Oggi 2022, 257, 23–26. 

63. Meddens, A.J.H.; Hicke, J.A.; Vierling, L.A.; Hudak, A.T. Evaluating methods to detect bark beetle-caused tree mortality using 
single-date and multi-date Landsat imagery. Remote Sens. Environ. 2013, 132, 49–58. 

64. Migas-Mazur, R.; Kycko, M.; Zwijacz-Kozica, T.; Zagajewski, B. Assessment of Sentinel-2 Images, Support Vector Machines and 
Change Detection Algorithms for Bark Beetle Outbreaks Mapping in the Tatra Mountains. Remote Sens. 2021, 13, 3314. 

65. Hais, M.; Wild, J.; Berec, L.; Bruna, J.; Kennedy, R.; Braaten, J.; Broz, Z. Landsat imagery spectral-trajectories—Important varia-
bles for spatially predicting the risks of bark beetle disturbance. Remote Sens. 2016, 8, 687. 

66. Hais, M.; Kucera, T. Surface temperature change of spruce forest as a result of bark beetle attack: Remote sensing and GIS 
approach. Eur. J. For. Res. 2008, 127, 327–337. 

67. Nardi, D.; Jactel, H.; Pagot, E.; Samalens, J.C.; Marini, L. Drought and stand susceptibility to attacks by the European spruce 
bark beetle: A remote sensing approach. Agric. For. Entomol. 2022, 1–11. https://doi.org/10.1111/afe.12536. 

68. Knowles, J.F.; Molotoch, N.P. Bark Beetle Impacts on Remotely Sensed Evapotranspiration in the Colorado Rocky Mountains; Colorado 
Water Institute: Collins, CO, USA, 2019. 

  



Remote Sens. 2022, 14, 6105 32 of 32 
 

 

69. Institut für Forstentomologie, Forstpathologie und Forstschutz. Monitoring und Risikoanalyse. Phenips-TDEF—Der Einfluss 
von Trockenperioden auf das Befallsrisiko durch Buchdrucker. Available online: PHENIPS-TDEF | https://ifff-
server.boku.ac.at/wordpress/index.php/home/phenips-tdef/ (accessed on 7 July 2022). 

70. Mezei, P.; Potterf, M.; Skvarenina, J.; Rasmussen, J.G.; Jakus, R. Potential Solar Radiation as a Driver for Bark Beetle Infestation 
on a Landscape Scale. Forests 2019, 10, 604. 


	1. Introduction
	2. Materials and Methods
	2.1. Study Area
	The Vaia Storm

	2.2. Data
	2.3. Methods
	2.3.1. Single Bands and Vegetation Indices
	2.3.2. Supervised Classification of Multi-Temporal Imagery
	2.3.3. Post-Classification Forest-Cover Change Detection


	3. Results
	3.1. Single Bands and Vegetation Indices Reflectance Values
	3.2. Supervised Classification
	3.2.1. Spectral Signatures
	3.2.2. Maps of Damage

	3.3. Post-Classification Change Detection

	4. Discussion
	5. Conclusions
	Appendix A
	References

