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PRECISELY MONOTONE SETS IN STEP-2 RANK-3
CARNOT ALGEBRAS

DANIELE MORBIDELLI AND SEVERINE RIGOT

ABSTRACT. A subset of a Carnot group is said to be precisely monotone if the restriction
of its characteristic function to each integral curve of every left-invariant horizontal vector
field is monotone. Equivalently, a precisely monotone set is a h-convex set with h-convex
complement. Such sets have been introduced and classified in the Heisenberg setting by
Cheeger and Kleiner in the 2010’s. In the present paper, we study precisely monotone
sets in the wider setting of step-2 Carnot groups, equivalently step-2 Carnot algebras. In
addition to general properties, we prove a classification in terms of sublevel sets of h-affine
functions in step-2 rank-3 Carnot algebras that can be seen as a generalization of the one
obtained by Cheeger and Kleiner in the Heisenberg setting. There is however a significant
difference here as it is known that, unlike the Heisenberg setting, there are sublevel sets
of h-affine functions on the free step-2 rank-3 Carnot algebra that are not half-spaces.

1. INTRODUCTION

Monotone sets have been first introduced by Cheeger and Kleiner in [6] where the proof
of the non biLipschitz embeddability of the first Heisenberg group into L' is reduced to the
classification of its monotone subsets, see also [7]. Later on, this classification together with
related notions of monotonicity /non-monotonicity appeared in a crucial way in several works
related to geometric measure theory issues in the Heisenberg setting, see for instance [17],

8], [18], [23].

In the perspective of a further analysis along these lines of research in more general
settings, we study here precisely monotone sets in more general Carnot groups, see for
instance [2I], Section 2.1] and the references therein for an introduction to Carnot groups.
Besides their relevance in the aforementioned questions, let us stress that monotone sets
have also their own interest. They can for instance be proved to be local minimizers for the
intrinsic perimeter, see [23, Proposition 3.9] and Proposition Let us also mention that
sets with constant horizontal normal, widely studied in connection with the theory of sets
with locally finite intrinsic perimeter, are examples of monotone sets, see the pioneering

works [10], [I1], and [1], [13], [4].

A subset E of a Carnot group is said to be precisely monotone if the restriction of its
characteristic function to each integral curve of every left-invariant horizontal vector field
is monotone when seen as a function from R to R. In other words, the image of any such
curve intersects both F and its complement E° in a connected set, equivalently, both E and
E€ are h-convex, see for instance [20], [3], [5], [16], for more details about h-convex sets.
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Despite the simplicity of their definition, precisely monotone sets turn out to be rather
difficult to describe.

On the one hand, a classification of precisely monotone sets is known so far only in some
particular settings. Namely, it has been proved in [6] that if F is a non empty precisely
monotone strict subset of the first Heisenberg group H then there is an open half-space
C such that C ¢ E C C. This classification has been generalized to higher dimensional
Heisenberg groups in [I7] and to Carnot groups of Métiver’s type and the direct product
H x R in [16]. These are, at least to our knowledge, the only cases where a classification
for precisely monotone sets has been established. On the other hand, there are plenty
of examples of Carnot groups, such as the free one of step-2 and rank-3, where such a
classification in terms of half-spaces is known to be false, as we will explain below.

Going back to arbitrary Carnot groups, we say that a real-valued function is horizontally
monotone, h-monotone in short, if it is monotone along all integral curves of left-invariant
horizontal vector fields when seen as a function from R to R. It follows from the very
definitions that sublevel sets of h-monotone functions are precisely monotone. It is then
natural to ask whether a classification of precisely monotone sets can be given in terms
of sublevel sets of h-monotone functions. Note that the one obtained in [6, 17, [16] fits
such a classification as an open half-space can always be written as a sublevel set of some
affine function and since affine functions on step-2 Carnot groups are h-affine and hence
h-monotone.

In the present paper we consider step-2 Carnot groups, identified with step-2 Carnot
algebras, see Section [2] for our convention about the natural identification between step-2
Carnot groups and algebras. We first prove general properties of precisely monotone subsets
of arbiratry step-2 Carnot algebras. They strongly rely on Cheeger-Kleiner’s classification
in the Heisenberg case together with the fact that integral curves of left-invariant horizontal
vector fields in step-2 Carnot algebras are 1-dimensional affine subspaces, called horizontal
lines. We next classify measurable precisely monotone subsets of step-2 rank-3 Carnot
algebras in terms of sublevel sets of h-affine functions, see Theorems [[LT] and We recall
that if g is a step-2 Carnot algebra, a function ¢ : g — R is said to be horizontally affine,
h-affine in short, if its restriction to every horizontal line is affine (see [12]). Obviously h-
affine functions are h-monotone. Therefore Theorems [L.T] and give a positive answer to
the question of the classification of measurable precisely monotone sets in terms of sublevel
sets of h-monotone functions in the step-2 rank-3 cases that actually involves a a priori
smaller class of functions. We stress that the free step-2 rank-3 case is an example of a
Carnot algebra where there are h-affine functions that are not affine (see (IL.2) and [12] for a
complete description of such examples) whose sublevel sets are not half-spaces and where a
classification of precisely monotone sets in terms of half-spaces can therefore not hold. This
creates in particular significant differences compared to the settings considered in [6] 17, [16].

In the free step-2 rank-3 Carnot algebra fa 3 = AIR3@ A?R3 equipped with the Lie bracket
for which the only non trivial relations are given by [0, 7] := § A 7 for 6,7 € A'R? and the
induced group law given by (0 + w) - (1 +¢) =0+ 7 +w+ ( + [0,7] for 6,7 € A'R3,
w,¢ € AZR? (see Section ), the classification reads as follows.
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Theorem 1.1. Let E C fo 3 be precisely monotone and measurable. Then either E = ),
E =23, or there is a non constant h-affine function ¢ : 23 — R such that

(1.1) Int(E) ={z € fa3: ¢(x) <0} and E={x€fa3: ¢(z) <0} .

More explicitly, we prove that given a non empty measurable precisely monotone strict
subset E of f2 3 and given v € ASR3\{0} there is (10, 71,12, 73) € A’R3x ATR3 x A2R3 x A3R3
with (ng,n1,m2) # (0,0,0) such that () holds true with ¢ given by

(1.2) PO+ wv=n3+mAN0+n ANw+npf Aw

for # € A'R3, w € A’R3. Such a quadratic function can easily be seen to be h-affine. In
addition, let us mention that we will also get from our arguments that Int(E) = {z € fo 3 :
¢(x) < 0} and Int(E°) = {x € fa3 : ¢(x) > 0} are the two connected components of

(8E)C = {x S f273 : (25($) 75 0}

Next, writing a step-2 rank-3 Carnot algebra as a quotient of f, 3 and using the fact that
h-affine functions on a proper quotient of fp 3 are affine (see [12]) we shall deduce from
Theorem [I.1] the following classification in nonfree step-2 rank-3 Carnot algebras.

Theorem 1.2. Let g be a step-2 rank-3 Carnot algebra and assume that g is not isomorphic
to fa,3. Let E C g be precisely monotone and measurable. Then either E = (), E = g, or
there is an open half-space C such that C C E C C.

Note that a step-2 rank-3 Carnot algebra g that is not isomorphic to f2 3 is either isomor-
phic to H x R or to fo3/i where i is an ideal in fo 3 generated by an element in A2R3\ {0}.
If g is isomorphic to H x R, we recover the classification proved in [16]. If g is isomorphic
to f2,3/1 with i an ideal in f 3 generated by an element in A2R3\ {0} then we need to make
use of Theorem [I.T] to get the classification given by Theorem [I.2] as it can indeed not be
deduced from the previously known cases studied in [0} [I7) 16].

Before we give a sketch of the proof of Theorem [[.T] and discuss possible generalizations
to step-2 Carnot algebras of higher rank, let us say a few words about the step-3 or higher
setting. It should be noticed that integral curves of left-invariant horizontal vector fields in
step-3 or higher Carnot algebras are not necessarily 1-dimensional affine subspaces. Among
other things, this is expected to create significant differences compared to the step-2 setting.
Examples given in [4], see the discussion in [2], suggest that there may be step-3 Carnot
algebras where one cannot classify precisely monotone sets in terms of sublevel sets of
h-affine functions (note however that in [2] only locally integrable h-affine functions are
considered). To our knowledge, the question of a classification in terms of sublevel sets of
h-monotone functions in step-3 or higher remains however open, and we shall not pursue in
this direction here.

Going back to the free step-2 rank-3 framework, let us now explain, without entering the
technical details, the main ideas behind the proof of Theorem [[.Il It will be articulated
into two main steps. First, we will prove that (II]) holds true locally near noncharacter-
ictic points of the boundary, see (23] for the definition of noncharacteristic points and
Proposition B] for a precise statement. The argument is based on a local representation
proved in [16] of the boundary OF of a precisely monotone set F as an intrinsic graph in the
sense of [9] near non characteristic points. Making use of Cheeger-Kleiner’s classification in
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suitable Heisenberg subalgebras of 33, we show through a careful analysis that this local
representation can be written as a level set of some h-affine function. In a second step,
we use monotonicity more globally to upgrade the local representation into a global one,
showing that OF is the zero level set of some function ¢ : f2 3 — R of the form (I.2). Both
inclusions ¢~1(0) C OF and OF C ¢~1(0) are nontrivial and require a careful analysis.

Concerning a possible generalization of our strategy to free step-2 Carnot algebras of
higher rank, although some of our arguments extend to this more general framework, it is
however not entirely clear to us whether the whole strategy does. To give an idea of some
of the issues in higher rank, let us mention that in the free step-2 rank-n Carnot algebra
the horizontal space at some given point is a n-dimensional affine subspace, whereas the
dimension of the whole space is n(n 4 1)/2 and hence increases quadratically with respect
to n. As a consequence, lying on some horizontal line for a pair of points (this obviously
plays a key role for our purposes) becomes a more and more rare circumstance as the rank
increases. We however plan to devote future works to step-2 higher rank cases. We also
refer to Remark for the relationship between precisely monotone and monotone sets.

The rest of this paper is organized as follows. In Section Bl we prove several properties of
precisely monotone subsets of step-2 Carnot algebras. In Sections [ to Bl we focus on the
free step-2 rank-3 case. As already explained we first prove in Section Bl a local description
of the boundary of a precisely monotone subset of f» 3 near noncharacteristic points. In
Section (] we upgrade this local statement into a global one and we conclude the proof of
Theorem [Tl Properties of level and sublevel sets of h-affine functions on fz 3 that may
have their own interest and play a major role in Sections Bl and ] are proved in Section Bl
The final Section [6lis devoted to the proof of Theorem that will be obtained as a rather
easy consequence of Theorem [[.1]

Acknowledgements. The authors are grateful to E. Le Donne for several useful discussions.

2. PRECISELY MONOTONE SETS IN STEP-2 CARNOT ALGEBRAS

In this section we establish several properties of precisely monotone subsets of step-2
Carnot algebras. Most of these properties will be used in the next sections to study precisely
monotone subsets of the free step-2 rank-3 Carnot algebra.

We recall that a Lie algebra g — always assumed to be real and finite dimensional in this
paper — is said to be nilpotent of step 2 if the derived algebra go := [g,g] is non trivial,
i.e., g2 # {0}, and central, i.e., [g,g2] = {0}. Here, given U,V C g, we denote by [U, V] the
linear subspace of g generated by elements of the form [u, v] with u € U and v € V. A step-2
Carnot algebra g is a Lie algebra nilpotent of step 2 that is equipped with a stratification,
namely, g = g1 ® g2 where g; is a linear subspace of g that is in direct sum with go. Note
that [g1,91] = g2. The rank of g is defined as rankg := dimg;. Such a Lie algebra is
naturally endowed with the group law given by z -y := x4+ y+ [z,y] for z,y € g that makes
it a step-2 Carnot group. It is actually well known that any step-2 Carnot group can be
realized in this way. We shall therefore view a step-2 Carnot algebra both as a Lie algebra
and group.

We fix from now on in this section a step-2 Carnot algebra g = g1 @ go. Given a scalar
t € R and an element = € g, we set x' := tz. We say that a set £ C g is a horizontal line
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if there are z € g and y € g1 \ {0} such that £ = {z -y' € g : t € R}. Note that since
x-y' =z +t(y + [z,y]), horizontal lines are 1-dimensional affine subspaces of g.

Definition 2.1. A set E C g is said to be precisely monotone if every horizontal line
intersects both E and E° in a connected set.

Remark 2.2. Monotone sets are defined in the same way as precisely monotone sets except
that the condition given in Definition 2] is required to hold true only for almost every
horizontal line ¢, and up to a null set within ¢. For simplicity, we restrict ourselves in the
present paper to precisely monotone sets, whose study should be sufficient to give the key
ideas towards a classification of monotone sets (see for instance [0, Sect.4-5]).

Note that FE is precisely monotone if and only if E° is precisely monotone. Note also that
if F is precisely monotone and x € g then z - F is precisely monotone. We first recall some
known facts.

Proposition 2.3 ([0, Proposition 4.6][16, Proposition 3.3]). Let E C g be precisely mono-
tone. If v € OF andy € g1\{0} are such that x-y € Int(E) then {z-y' € g: ¢t > 0} C Int(E)
and {x -y' € g:t <0} C Int(E®). The same statement holds true with the role of E and
E° exchanged.

Lemma 2.4 ([0, Lemma 4.8][16, Lemma 3.4]). Let E C g be precisely monotone. If ¢ is a
horizontal line such that £ NOE contains more than one point then { C OF.

We say that a Lie algebra is a Heisenberg algebra if it is a step-2 rank-2 Carnot algebra.

Theorem 2.5 ([0, Theorem 4.3]). Let b be a Heisenberg algebra and E C h be precisely
monotone. Then either E = 0, E =1, or there is an open half-space C' such that C C E C
C. In particular OF is either empty or a 2-dimensional affine subspace of b.

We define the horizontal space at a point = € g as Hor, := x - g;. In other words, Hor,
is the union of all horizontal lines in g containing x. Note that Hor, can also easily be seen
to be an affine subspace of g of dimension equal to rankg. In the next lemma we prove
that the precise monotonicity of a set E induces a structure of affine subspace on Hor, NOF
when ¢ € JF. In the lemma below and in the rest of this paper, given A C B C g, we
denote by Intp(A) and dpA the relative interior and boundary in B of a subset A of B
with respect to the induced topology.

Lemma 2.6. Let E C g be precisely monotone and x € OF. Then Hor, NOE is an affine
subspace of Hor,.

Proof. Taking Lemma [2.4] into account, we need to prove that if ¢; and ¢5 are horizontal
lines, ¢1 # {2, such that {1 Ul C OF and x € £1 N {5 then the affine subspace generated by
£1 U/ is contained in JF. Using a left-translation, we can assume with no loss of generality
that = 0, {; = {y! € g: t € R} for some linearly independent y; € g1 \ {0} for i = 1,2,
and we shall prove that

(2.1) 1@l COFE .
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If [y1, y2] = 0 then every point in ¢1 @ ¢ = ¢; - {5 lies on a horizontal line that intersects
both ¢; \ {0} and ¢5 \ {0}. Namely,

0ty = Ut
1£0

where £; ;= yt - {(y1-y2)* € g: s € R} and 0y = vt {(yr" - y2)® € g: s € R}. For every
t # 0 we have yi € £,n6;N(£1\{0}), y3* € LN (€x\{0}), and b € £, (¢2\{0}). Therefore,
both ¢; and ¢; intersect OF in at least two points and (2.1]) follows from Lemma 241

If [y1,y2] # 0, we denote by b := span{yi,y2} @ span{[y1,y2]} the Lie subalgebra of g
generated by y; and ys and we consider the family of horizontal lines

A ::yg-fl ch.
where b € R. We distinguish two cases.

Case 1. If there is b # 0 such that ¢ C OF then the horizontal lines /° = ¢; and ¢°
are parallel with distinct projection in the Heisenberg algebra h in the sense of [6] and
both contained in OE. Then Lemma 2.4] together with [6, Lemma 4.10] applied to the set
G := h N OFE implies that h € OE. Then (Z1]) follows since ¢1 @ ¢y C b.

Case 2. If Case 1 does not hold, since y§ € fo N (* C OF, we get from Proposition 2.3 that
for every b # 0 either

(2.2) & cInt(B)Nh CInty(ENh) and €2 C Int(E) Nh C Inty(E° N H)
or
(2.3) ¢ cnt(E)nh CInty(ENp) and ¢4 C Int(E) Nh C Inty(EC N H)

where % == y5-{yl €g:t >0} and ¢* :=y5-{y} € g: t <0}. It follows that for every
b0

{(By=0ne co(ENY) .
Since 0y(E N h) is a closed subset of b, we get that lo C Oy(E Nh). Since ENbh is a
monotone subset of the Heisenberg algebra b, it follows from Theorem that dy(E Nb)

is a 2-dimensional linear subspace of h that contains /o, i.e., there is (p,q) € R?\ {(0,0)}
such that

(2.4) Oh(ENh) ={sy1 +tya +ulyi,y2) €b: s,t,u € R, ps+qu=0} .

We now verify that pg = 0. We argue by contradiction and assume that p # 0 and ¢ # 0.
Then Z4) implies that 7/ = {sy; + ¢ 'py2 — s¢ " 'ply1,y2] € b : s € R} C 9y(E N k)
which contradicts both (22)) and 23] for b = p/q. Therefore pg = 0. If p = 0, we get
from (24) that Oy(E Nbh) = ¢ & {2 and (ZT)) follows since dy(ENh) C OFE. If ¢ = 0, we
get from (24)) that o @ Rly1,y2] = 0y(E Nh) C hNOE. In particular the horizontal line
0= [y1,y2] - {y5 € g : t € R} is contained in h N IE. It follows that ¢ and ¢; are skew
lines in the sense of [6] that are contained in h N JF. Then Lemma [2.4] together with [6),
Lemma 4.10] applied to the set G := h N OF implies that h C JE. Therefore (2.1 follows
since £1 & o C b. O



PRECISELY MONOTONE SETS IN STEP-2 RANK-3 CARNOT ALGEBRAS 7

Given S C g we set
(2.5) Char(S) := {z € S : Hor, NS = Hor,} and Nonchar(S) := S\ Char(S) .

Note that if S is closed then Char(S) is closed and in such a case Nonchar(S) is therefore
a relatively open subset of S.

In the next proposition, we upgrade Lemma proving that for z € Nonchar(0F) we
have dim(Hor, NOF) = dim Hor, —1.

Proposition 2.7. Let E C g be precisely monotone. Then
Nonchar(OF) = {z € OF : Hory NOE is a codimension-1 affine subspace of Horg} .

Proof. We know from Lemma that for every x € OF the set Hor, NOFE is an affine
subspace of Hor,. To prove the proposition, we shall verify that for every x € 0F we have

dim(Hor, NOFE) > dim Hor, —1 .

We argue by contradiction and assume that there is € OF such that dim(Hor, NOFE) <
dim Hor, —2. Using a left-translation, we can assume with no loss of generality that = 0.
Then let V' denote a linear subspace of Horg that is in direct sum with Horg NOE. We have
dim V' > 2 and it follows from [16, Lemma 3.5] that VN OFE contains a horizontal line which
gives a contradiction and concludes the proof of the proposition. O

We say that a subset of g is measurable to mean that it is u-measurable where p is
some, equivalently any, Haar measure on g when seen as an outer measure. The following
proposition, ensuring in particular existence of noncharacteristic points in the boundary of
non empty measurable precisely monotone strict subsets, will play a key role in the next
sections. It is not clear to us whether the measurability assumption can be removed from
Proposition [Z8] and it is the reason that led us to include it in Theorems [[L1] and

Proposition 2.8. Let E C g be precisely monotone and measurable. Then Int(OF) = ()
and Nonchar(0F) is a relatively dense subset of OF.

Proof. We assume that E ¢ {0, g} since otherwise F = () and there is nothing to prove.
We first verify that Int(OFE) = (). Recall that both E and E° are h-convex. Denoting by u
a Haar mesure on g we get from [20, Lemma 6.4] that there is ¢ > 0 such that

min {u(B(z,r) N ), u(B(a,r) (1 E)} > cu(Bla,r))

for all x € OF and r > 0. Here B(x,r) denotes the open ball with center x and radius r
with respect to some given intrinsic metric (we follow here the terminology used in [20] to
which we refer for the definition such metrics). Since FE is assumed to be py-measurable, we
know that u-a.e. point in g has p-density 1 for either E or E€ and it follows that u(0F) = 0,
which implies in turn that Int(OF) = 0.

To prove that Nonchar(9F) is relatively dense in JF, let U C g be open and such that
UNIE # () and let us prove that U N Nonchar(OF) # (. Using a left-translation we can
assume with no loss of generality that 0 € & N OFE. By [14, Proposition 5.1] there is a
positive integer p such that the map I' : (g1)? — g defined by

F(ylv"'7yp) =Y1-Yp
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is open at 0. Since I' is continuous, there is € > 0 such that Q := {(y1,...,yp) € (g1)" :
lyi|| < efori=1,...,p} C T-YU). Here | - | denotes some norm on g;. Then there is
an open neighborhood U’ of 0 in g such that &’ C I'(2) C U. Since Int(0F) = 0, one can
find (y1,...,yp) € Q such that I'(y1,...,yp) € OF. Since 0 € OFE and I'(y1,...,yp) € OF
can be joined by a continuous curve 7 C I'(£2) obtained as a concatenation of horizontal
segments, we get from Proposition 2.3] that there is x € 7y, and therefore x € U, such that
x € Nonchar(9F), which concludes the proof of the proposition. d

For the sake of completeness, we include below a minimizing property of measurable
precisely monotone sets. We refer to [21, Section 3.5] and the references therein for the
notion of intrinsic perimeter that gives an analogue of the classical perimeter in Fuclidean
spaces.

Proposition 2.9. Let E C g be precisely monotone and measurable. Then E has locally
finite intrinsic perimeter. Furthermore E is a local minimizer for the intrinsic perimeter,
which means that for any open set Q C g such that Per(E,Q) < 400 we have Per(E,Q) <
Per(F, Q) for any measurable set F' C g such that EAF € (.

Proof. The fact that E has locally finite intrinsic perimeter whenever F is precisely mono-
tone and measurable follows from [I9] Theorem 5.6] since precisely monotone sets are h-
convex. Then the fact that a measurable precisely monotone set is a local minimizer for the
intrinsic perimeter follows from the kinematic formula that relates the intrinsic perimeter
to perimeter on horizontal lines, see [15]. We omit the proof that can be done imitating the
proof of [23] Proposition 3.9] that can be verbatim extended to our more general setting,
noting that the convexity assumption on {2 can easily be relaxed. O

We recall now the notion of horizontally affine functions that has been introduced in [12]
and to which we refer for an exhaustive study of such a class of functions.

Definition 2.10. We say that ¢ : g — R is horizontally affine, h-affine in short, if for
every x € g, y € g1, the function t € R — ¢(x - yt) is affine.

Clearly, affine functions on g seen as a vector space are h-affine. However h-affine functions
may not be affine. Several equivalent characterizations of step-2 Carnot algebras where h-
affine functions are affine can be found in [12]. We recall below a consequence of these
characterizations that will be the only result about h-affine functions needed in the present

paper.

Theorem 2.11 ([I2], Theorems 3.2, 1.2, 1.4]). If g is a Heisenberg Carnot algebra or a
step-2 rank-3 Carnot algebra that is not isomorphic to the free step-2 rank-8 Carnot algebra
then h-affine functions on g are affine.

Clearly, sublevel sets of h-affine functions are precisely monotone. As explained in Sec-
tion [I we are interested in the present paper in classifying all precisely monotone subsets
of a given step-2 Carnot algebra using sublevel sets of h-affine functions. Our main result
Theorem [I.] concerns the case of the free step-2 rank-3 Carnot algebra f 3 that can be
realized as follows.
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Given k € {1,2,3} we denote by A*R? the set of alternating k-multilinear forms over R?
and we set A°R3 := R. The free step-2 rank-3 Carnot algebra is given by

fa3 = A'R® @ A’R?
equipped with the Lie bracket for which the only non trivial relations are given by
0,7 :=0AT forf,TeA'R?
and with the induced group law
O+w)-(T+C)=0+7+w+C+OAT for 6,7 € A'R3 w, ¢ € A’R? .

Given v € A3R?\ {0} it can easily be verified from the very definitions that if ¢ : fo3 — R
is given by (L2) for some (19, n1,m2,m3) € A’R3 x A'R3 x A2R3 x A3R3 then ¢ is h-affine.
Although we will not need the following fact in the present paper, let us mention that it
has been proved in [12, Theorem 1.1] that all h-affine functions on f 3 are of this form.

3. LOCAL DESCRIPTION IN THE FREE STEP-2 RANK-3 CARNOT ALGEBRA

Our first step towards the proof of Theorem [Tl is the following local description near
noncharacteristic points.

Proposition 3.1. Let E C fa3 be precisely monotone and x € Nonchar(OF). Then there
is an open neighborhood U, of x and there is a non constant h-affine function ¢, : 23 — R
such that

Uy NInt(E) = {y € Uy : ¢(y) <0}
(3.1) U, NOE =U, NS,

Uy NInt(E°) = {y € Uy : ¢ (y) > 0} .

where Sy :={y € f23 : ¢z (y) = 0}.

This section is devoted to the proof of Proposition 3.1l For notational convenience we
will throughout this section identify fo3 with A'R® x A2R? and write elements in fo3 as
r = (0,w) € A'R3 x A2R3. Given a basis (e1,ez,e3) of ATR?, we set e;; := e; A e; for
1 <i < j < 3so that (ej2,€e13,€e23) is a basis of A2R3. We shall use coordinates in these
bases, writing 6 = 01e1 + faez + 03e3 and w = wize12 +wizers +wazeas with 8;,w;; € R. We
denote by (-,-) the scalar product on A'R? that makes (e, ez, e3) an orthonormal basis and
we set e; := span{es, e3}.

From now on in this section, we let E ¢ {&,f23} denote a precisely monotone subset

of a3 and, using a left-translation, we assume with no loss of generality that « = (0,0) €
Nonchar(0F).

3.1. The boundary as a graph near noncharacteristic points. Since we have (0,0) €
Nonchar(9FE), one can find e; € A'R3\ {0} such that (e;,0) € Int(E). We show in this
section, see Proposition [3.2] that for any choice of such an e; and any choice of ez, e3 € A'R?
so that (eq,ez,e3) is a basis of A'R3, one can write OE as a graph over e x A’R3 near
the origin. More importantly, we also get information about the structure of the graph
function, see ([B.3]), that will play a key role later on.
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Proposition 3.2. Let (e1,ea,e3) be a basis of A'R? such that (e1,0) € Int(E). There is
d > 0 and there are continous functions A; : (=6,0) = R, i = 2,3, B; : (—0,0) — R,
i =1,2,3, and C : (=4,0) — R such that the following holds true. Set W := {(7,() €
e x A’R3 ¢ |1 < 6,0 =2,3,|¢y] < 6,1 <i<j<3}andO:={(se;+7,() €fas: s€E
(—1,1), (1,¢{) € W}. Then

ONIJE = {(f(r,Q)e1 +7,{) €O : (1,() € W}
(3.2) ONInt(E) ={(se1 +7,0) € O: (1,¢) e W, f(1,{) < s < 1}

ONInt(E°) ={(se1 +71,{) €0 : (1,() e W, =1 <s< f(1,{)}
where f: W — (=1,1) is given by

(3.3)  f(7,¢) := A3(Ca3)72 — A2(C23)3 — B1(Cas) — B3(Ca3)Ci2 + B2(Ca3)Ci3
+ C(C23) 7213 — C(C23) 7312 -
Our starting point to prove Proposition is given by [16, Theorem 3.7] from which we
know that near the origin OF is a so-called intrinsic graph. Namely, set ¢; := {(se1,0) €
fo3 : s € R} and £ = {(se1,0) € fa3: s > 0}, £7 = {(se1,0) € fa3 : s < 0}. By [16]
Theorem 3.7] we know that there is € > 0 such that, setting U := {(§,w) € ef x A’R3 :

|602], 03], lwij| < e,1 <i<j<3}and © := U - {4, the following holds true. There is a
continuous function g : U — R such that ¢(0,0) = 0 and

ONIE ={(0,w) (g9(0,w)e1,0) : (f,w) € U}
(3.4) ONInt(E) = (©NJIE) - £
©NInt(E°) = (ONIE) -7 .

We first use Theorem and Proposition 27 to get information about the structure of
the map g together with a set constructed from © N JE that is contained in JF.

Lemma 3.3. There are continuous functions qo, g2, qs : {0 € ei : |6a],103] < €} x (—¢,¢) —
R such that

(3.5) 9(0,w) = qo(0,wa3) + q2(0, waz)wiz + q3(0, waz)wis
for all (§,w) € U and there is a map n : U — ei such that
(3.6) (0,w) - (9(0,w)er,0) - {((n(0,w), &) + (q(0,wa3),& ) )er + & e1 AE) € fas:

£, cel,ENE =0} COE .
for all (0,w) € U, where q(0,wa3) := q2(6,wa3)ea + q3(6,was)es.
Proof. Let (§,w) € U and set z := (6, w) - (9(#,w)er,0). First, note that we know from (3.4))
that « € Nonchar(0F) with z - (e1,0) € OE. By Proposition 27 it follows that Hor, NOE

is a 2-dimensional affine subspace of Hor, that does not contain z - (e1,0), i.e., there is
n(f,w) € e such that

(3.7) Hor, NOE =z - {((n(0,w),&)e1 +£,0) € foz: ECet} .
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Next, set F:= 27 !- E. Let £ € ef \ {0} and let b := span{ey, &} x span{e; A £} denote
the Lie subalgebra of f2 3 generated by e; and £. Then F'Nb is a precisely monotone subset
of the Heisenberg algebra h. Furthermore, we know from (3.4]) that

¢f cInt(F)Nh CInty(FNh) and ¢; CInt(F)Nb C Inty(FNH) .

Therefore F N & {0,h}. By Theorem 25| it follows that dy(F N h) is a 2-dimensional
linear subspace of fj that does not contain ¢; and Inty(F Nh) and Inty(F°Nbh) are the open
half-spaces in h bounded by 0y(F Nh). Since Inty(F Nh) C F and Inty(F°Nh) C F¢, it
follows that 0y(F Nbh) C OF and therefore there are ag ¢, Bsw¢ € R such that

(3.8) - {((agwes+ Bowet)er + s ter NE) €faz: s,t € R} COE .
Then it follows from (B.7) that
(3.9) g wg = (n(0,w),§) .

We have

z- (Boweter,ter NE) = (0,w+tey NE) - ((9(0,w) + Bowet)er,0) .

Since any point in f2 3 can be uniquely written as 2’ -y’ with 2’ € ef x A2R3 and ¢/ € 44, it
follows from (3.4) and (B.8) that for every ¢t € R small enough so that (6,w +te; AE) € U
we have

(3.10) 9(0,w +ter NE) =g(0,w) + Bowet -

This implies that there are functions qq, q2,q3 : {0 € e1 : |62],]03] < €} x (—¢,€) — R such
that (B3] holds true. Since g is continuous, we also get that the functions g, g2, g3 are
continuous. Going back to (B.I0), we get that for all (§,w) € U, all £ € e1, and all t € R
small enough,

9(0,w) + Bowet = qo(0,wa) + q2(8,waz)(wiz + t&2) + q3(6,was)(wiz + t&€3)
= 9(0,w) +(q(0,wa3), £)
where q(6,w23) := q2(0,w23)e2 + q3(0,w23)e3. Therefore
(3.11) Bowe = (a(0,w23), §)
and (B.06) follows from (B.8]) together (3.9]) and (B.11I)). O

Lemma 3.4. There is an open neighborhood V- C U of the origin in ef x A’R? such that
for every (1,¢) € V there is a unique s € (—1,1) such that

(3.12) s=g(r,{ —sTNeqp) .

Namely, denoting by f(7,() € (—1,1) the unique solution of [BI2), we have
_ 9(, ¢)

(313) f(7—7 C) - 1— <q(7_7 C23)7T> :

Proof. The lemma is a straightforward consequence of (8.5 letting V' be a small enough open
neighborhhod of the origin in e; x A2R3 choosen in such a way that for all (7,{) € V we have

(Tvc_ST/\el) € Uforall s € (_17 1)7 1- <Q(7_7 4'23)7 T> 7£ 07 and (1 - <Q(7_7 4'23)7 T>)_1g(7_7 <) €
(—=1,1). Note that such a V does exist by continuity of the functions g and g. O
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Lemma 3.5. There are open neighborhoods U' C U and V' C V. of the origin in ei x A’R3
such that the map T : U" — V' defined by T'(0,w) := (0, w+g(6,w)0Ae1) is a homeomorphism
from U to V! =T(U"). Furthermore we have g = foT on U’.

Proof. We know that the map I' given by I'(§,w) := (6,w + g(8,w)0 A e1) is well-defined
and continuous on U. We let U’ C U be a small enough open neighborhood of the origin
in ef x A?2R3 choosen in such a way that for all (§,w) € U’ we have g(6,w) € (—1,1) and
I'(#,w) € V where V is given by Lemma B4l Let (6,w) € U’ and set (7,() := I'(A,w).
We have ¢g(0,w) € (—1,1) and g(0,w) = g(7,{ — g(0,w)T A e1). Therefore it follows from
Lemma [34] that g(0,w) = f(7,¢). In other words, we have g = foT on U’

To conclude the proof of the lemma, let us verify that T' : U’ — e x A%R3 is injective. Let
(0,w), (0,0") € U be such that I'(§,w) =T'(#’,w’). On the one hand, by definition of ', we
have = 6’ and w + g(0,w)0 ANeg = '+ g(0',0' )0 Aer. On the other hand, since g = foT
on U’, we have g(6,w) = ¢g(#',w’) and all together it follows that (6,w) = (6',w’). Therefore
I': U’ — ef x A’R3 is a continuous and injective map which implies that V' := T'(U’) is an
open neighborhood of the origin in e; x A2R® and T': U’ — V' is a homeomorphism. [

We now use the change of variables provided by Lemma to write OF as a graph, in
the usual sense, over e; x A?R3 in a neighborhood of the origin. We stress that in general
it is not true that an intrinsic graph can be written as a standard graph, see for instance
[3, Section 4.1].

Lemma 3.6. There is an open neighborhood V" C V' of the origin in ei x A*R3 such that
setting Q0 := {(se1 + 7,¢) € fa3: s € (—1,1), (1,¢) € V"}, we have

QNOE = {(f(T,C)el +7,0) e (1,() € V"}
(3.14) QNInt(E) = {(se1 +7,() € Q: (1,) € V", f(1,{) < s <1}

QNInt(E°) = {(sel +7,0)€eN: (1,0) eV’ -1 <s< f(r, C)}
where f : V" — (—1,1) is given by Lemma[3.4} Furthermore, settingm :=nol' ™1 : V" — ef
where n is given by Lemma[3.3, we have
(3.15)  (f(r,Qer +7,0) - {(({m(7,€), &) + (a(7,(23),€)) e1 + & er NE) € faz

§,¢ €er,ENE =0} COE

for all (1,¢) € V", where the function q is given by Lemma [F3.
Proof. Let (7,¢() € V' and set (§,w) := I'"1(r,¢) € U'. By Lemma [B.5 we have (7,() =
(0,w+ g(0,w)d Nep) and f(7,() = g(f,w). Therefore
(3.16) (f(r,Q)er + 7,¢) = (9(O,w)er + 0,w + g(0,w)0 Ner) = (0,w) - (g(0,w)eq,0) .
Then it follows from (3.4 that
(3.17) {(f(T, CQle1 +7,¢) € fa3: (1,¢) € V’} C OF .

Now let V" C V' be a small enough open neighborhood of the origin in e x A2R3 choosen
in such a way that for all (r,{) € V" we have (7,{ — s7 Aey) € U’ for all s € (—1,1).
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Set Q := {(se1 +7,() € fo3: s € (—1,1), (7,{) € V"} and let us verify that the first line
in (B.I4]) holds true. Taking into account ([B.I7) we only need to verify that

(3.18) QNIE C {(f(r,Q)e1 +7,¢) €foz: (1,() e V"} .

Let s € (—1,1), (7,¢) € V", and assume that (se; + 7,() € OE. By choice of V" we have
(se1 +7,() = (1,{ — sT Neyp) - (se1,0) € U - £1. Therefore it follows from (3.4) that there
is (6,w) € U’ such that (se; + 7,¢) = (0,w) - (9(0,w)e1,0). Then it follows from (B.I6)
that (se1 + 7,¢) = (f(7',{")er + 7',¢’) where (7/,(’) := I'(f,w). This implies in turn that
(r,¢) = (7',¢) and s = f(7,¢') = f(7,¢) which proves (3I8). To conclude the proof
of [BI4), note that the first line in (BI4]) together with the continuity of f implies that
either

{(se1 +7,¢) €faz: (1,Q) € V", f(1,() < s <1} C Int(E)
or
{(se1 +7,¢) €faz: (1.¢) € V", f( ,¢) <s <1} CInt(E°) .

If ¢ € A’R3 is such that (0,¢) € V” then I'1(0,¢) = (0,¢) and we know from (3.4) that
for all s > f(0,¢) = ¢g(0,¢) we have (se1,¢) = (0, C) (se1,0) € Int(FE). Therefore we have
{(se14+7,0) €faz: (1,0) € V", f(1,¢) <s <1} CInt(E) .

By similar arguments, we also have

{(361 +7,C) €Efes: (1,0) e V", -1 <s < f(r, C)} C Int(E°) .
Recalling the first line of (3.14]), we finally get that these inclusions are actually equalities
which concludes the proof of (B.14)).

To conclude the proof of the lemma, note that for (7,¢) € V" we have I'"}(r,¢) = (1,w)
where w € A%R3 is such that w3 = (3. Therefore q o T71(7,¢) = q(7,{23) where q is
given by Lemma B3l Letting m(r,¢) := n(I'"(r,¢)), we then get (B.I5) from (B8] and
Lemma [3.5] 0

We shall now use [B.14)) and (3:I5]) to get further information about the structure of the
function f, see Lemma [3.8] We start in the next lemma with a property of the map m.

Lemma 3.7. There is § > 0 and there are maps g, ma, M3 : (—5,8) — et such that

(3.19) m(0, ) = mo(Ca3) + Ma2(C23)C12 + M3(C23)C13
for all ¢ € A’R3 such that (12, |C13], |Cas] < 6.

Proof. We first note that shrinking U if necessary the map n : U — eIl given by Lemma [3.3]
is bounded. Indeed otherwise there is a sequence (6, wy) converging to (0,0) in e x A’R3
and such that (n(0,w), n(0k,wy)) goes to infinity. Then we get from ([B7) that

zy = (O, wk) - (9(Ok, wk)e1,0) - (e1 + &, 0) € OF

where &, := (n(0k, wi), n(0x, wi)) " n(Ok, ws). Since x, — (e1,0) and OF is closed, it follows
that (e1,0) € OF which gives a contradiction. Therefore the map m = n o I'"! is bounded
as well.

Since f is continuous and m is bounded, one can find § > 0 such that for all (£,¢) €
et x A?R3 such that |&a|, |€3] < 6 and [C12], [Ci3], [Cas| < &, we have (£, + f(0,()er AE) € VT
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and £(0,¢) + (m(0,¢),€) € (—1,1). For any such (£,¢) € e x A2R3, we get from (B.15)
that
(f(07 C)eb C) : ((m(ov C)7£>el + 57 0)
= ((f(0,¢) + (m(0,¢),&)) er + &, ¢+ f(0,Q)er AN§) € QN OE
and (3.I4) implies in turn that f(0,¢) + (m(0,¢),&) = f(§, ¢+ £(0,Q)e1 A &), ie.,
Setting &' := 27 18e; for i = 2,3, we get that

3

3
m(0,¢) =Y (m(0,¢),e)es =251 Y (F(€,¢+ £(0,Q)er AE) = £(0,0)) e
=2

i=2
and then (B19) follows from (B.I3]) and (B.5). O
We set
Fo(r,Co3) = (1 — (q(7,C23), 7)) " qo(7, Co3)
Fo(7,Co3) = (1 — {q(7,Ca3), 7)) " as(7, Co3)
Fy(7,Co3) == — (1 — (q(, C23), 7)) " qa(7, C23)

where the functions g, and ¢ are given by Lemma B3] so that ([B.13)) writes as
(3.21) f(7,0) = Fo(7,Ca3) — F3(7,(23)Ci2 + Fa(T,(23) (13 -
Lemma 3.8. Shrinking § if necessary, there are continuous functions A; : (—6,0) — R,
i=2,3, B;:(—4,0) =R, i=1,2,3, and C : (—6,0) — R such that
Fo(7,Co3) = A3(Cas)m2 — A2(C23)73 — B1(C23)
(3.22) Fo(7,C23) = B2(C23) + C(Ca3) 72
F3(7,G23) = B3(C23) + C(C23)73

for all T € et such that 12|, |T3| < & and all (o3 € R such that |(a3] < 6.

Proof. Set F(1,(a3) := —F3(7,(23)ea + F(7,(23)es. Since the function (a3 — F(0,(a3)
is continuous, shrinking § > 0 if necessary, we can assume with no loss of generality that
14 (F(0,¢23),7) # 0 for all T € e such that |7»], 73] < 6 and all (23 € R such that |(a3] < 6.

We first prove that there are maps Dy, Do, D3 : (—6,0) — ell such that for £ = 0, 2, 3,
T € ef such that |72/, |73] < 6 and (23 € R such that |(a3] < 6,

(3.23) Fi(7,C23) = Fi(0, Ca3) + (Dr(C23), 7) — Fi(0, C23) R(T, C23)
where
R(r.Cay) 1= —79(D3(¢23), 7) + 13(D2((23),7)

1+ <F(07 C23)7T>
In other words we first verify that the functions Fj admit a first-order Taylor expansion
with respect to the variable 7. To prove this claim, let (33 € R be fixed such that (23| < 6.
For k = 072737 set Fk(T) = Fk(Ta C23)7 F(T) = F(Ta C23)7 Fk = Fk(07 4.23)7 F = F(07C23)7
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my = mi(C3). On the one hand, we know from (BI9) that for all 7 € e such that
|T2|, |7’3| < ¢ and (y2, (13 € R such that |<12|, |C13| <4,

<m(07 C)7T> = <7/7\7’07T> + <T/7\12,T>C12 + <7/ﬁ377—>€l3 .
where ( := (12€12 + (13613 + (23€23. On the other hand, routine computions give
Fr,C+ F(0,¢)er A7) = £(0,¢) = Fo(r) — Fy (1 — (F(7),7))
+ (—(1 — o F3) Fy(7) — m3F3 Fy(7) + 1?’3) Ci2
+ (—7'21?’2173(7') + (14 73F) Fy(r) — 1?’2) C13 -

Then it follows from ([B3.20) that

—

(3.24) Fo(r) — Fo (1 = (F(7),7)) = (mo, )

and
{—(1 — 1o F3)F3(T) — 13 F3Fa (1) = —F3 + (ma, )
—T2F2F3(T) + (1 + T3F2)F2(T) = F2 + <T/T\13,T>

for all 7 € e{ such that ||, |73] < 6. We then get from the above linear system

 Fy— (g, ) — m3(Fy (Mg, 7) + Fa(imig, 7))

F3(r) = )
Fy(r) = Fy + (ms, ) — 72(@,(@3,7) +1?’2(frig,7>)
? 1+<1/7\,T>

and inserting these expressions in ([3.24) we get

Then (3.23) follows setting Dy := mg — }/;of, Dy :=ms3 — f’gf and D3 := —my — F’glf*—’\
We next prove that there is a function C' : (—d,0) — R such that

(3.25) Do(G23) = C(Ca3)e2  and  D3(C23) = C((23)es

for all (23 € R such that |(23] < §. To prove ([B.25]) let (235 € R be fixed such that |(a3| < 9.
Using the same notational conventions as before, omitting the dependence on (o3, we have

£(0, Caseas) = Fo. By BIJ) we have m(0, Cazeas) = Mo Setting G := (0, (a3), we then get
from ([B.I5) that
(Fbela C23623) : ([S<ﬁ07€> + t(éu §>] €1 + 857 tel A g)
= ([ﬁo + s(mo, &) + t@@] e1 + s, Cazeas + (t + ﬁoé’) e1 A\ 5) € oK
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for all ¢ € e and all s,¢t € R. Then (3.14) implies that for all £ € e; and all s,t € R small
enough
Fo + (g, €) + 1(q,€) = f(sE, Cogeas + (t + Fos)er A €)
= Fo(s€) — F(s6)(t + Fos)&a + Fa(s6)(t + Fos)s
= Fy(s6) + Fos(F(5€), &) + HF(8),€) .

It follows that for all ¢ € e{ and all s € R small enough, (F(s¢),&) = (§,£). In other words,

the function s — (F(s),§) is constant and therefore <1/5’\, &) = (F(s€),¢&) for all s € R small
enough. Since we have from (3.23])

(D3,6)& +A<D2=§>€3 2
L+ s(F,¢)

(F(56),6) = (F, &) + (—(D3, )& + (Da, £)&3)s — (F, €)—

9

we finally get that

—(D3, )& +A<D2,§>§3
L+ s(F,§)

0= <1 — S<F7’E>> (—(D3,€)& + (D2, &)&3) =

for all € € ef which implies (3.23).

To conclude the proof of the lemma, note that ([B.25]) implies that R(7,{23) = 0. Then we
set Aa(Ca3) := —(Do((23), e3), A3(C23) := (Do(C23), €2), B1(Ce3) := —Fp(0,(23), B2(Ca3) :=
F5(0,(23), and Bs((23) := F3(0,23) to get (B:22)). Note that the continuity of the functions
A;, B; and C follows from the continuity of the functions Fj;. O

The proof of Proposition B.2]is now complete. Indeed ([B.2)) follows from (3.14]) and (3.3))
from [B.21) and (B3.22).

3.2. The boundary as a level set of a h-affine function near noncharacteristic
points. To complete the proof of Proposition B.Ilwe choose in this section a basis (eq, €2, e3)
of A'R3 such that (e;,0) € Int(E) for i = 1,2,3. Such a basis does exist. Indeed, recall that
(0,0) € Nonchar(9F). Therefore one can find e; € AR\ {0} such that (e1,0) € Int(E).
One can then choose ez, e3 close enough to e; in such a way that (e;,0) € Int(E) for i = 2,3
and such that e, es, e3 are linearly independent. We then get from Proposition that
near the origin OF can be written as a graph over ef x A’R? as well as a graph over
ey x A’R3 and eg x A2R? and each one of the graph functions has a structure given by (3.3)
as explicitly stated in the next proposition.

Proposition 3.9. There is § > 0 and there are continuous functions Aé- i (—=0,0) = R,
0,j=1,2,3,i#j, Bl : (=6,0) > R, i,j =1,2,3, C": (=6,8) = R, i =1,2,3, such that the
following holds true. SetU := {(7,() € fa3: |7| < 6,1 =1,2,3, |G| < 9,1 <i<j <3}
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For every (1,¢) € U, the following four conditions are equivalent :

(3.26a) (1,¢) € OF

(3.26) 71 — A3(Co3)T2 + Ay(Cas)Ts + Bi(Ca3) + B3(Cas)Ciz — By (Cas)as
C"(C23)T2C13 + C1((23)T3C12 =0,

(3.26¢) T2 — A3 (Cis)7s + A3(Gi3)T + B3 (Gis) + B%(C13)C23 + B3 ((13)Cio
+ C*(G13)m3C12 + C%((i3)T1Cas = 0,

(3.26d) 73 — A3(Cr2)m1 + A (Ci2)2 + B3 (Cr2) — B3 (G2)Cis + BY (Cr2)Cas
+ C%(Cr2)T1Cos — C*(Cr2) 2613 =0 .

Recall that since (0,0) € U N OFE we have
(3.27) B}(0) = B3(0) = B3(0) =0 .

Recall also that (0,0) € Nonchar(0F). Therefore we know from Proposition 2.7 that
Hor g0y NOE = (A'R3*x{0})NOE is a 2-dimensional linear subspace of A'R?x{0}. By choice
of e1, e, e3, we also have (e;,0) & OF for i = 1,2,3. Therefore there are a12,a13 € R\ {0}
and aog < 0 such that

(A'R® x {0}) NOE = {(7,0) € fo,3 : ags™i — a1372 + a1273 = 0} .
We also know from Proposition and (3.27) that
(A'R3 x {0}) NUNOE = {(1,0) €U : 71 — AL(0)7» + AL(0)r3 = O}
={(r,0) €U : 72 — A}(0)73 + A3(0)71 = 0}
= {(1,0) €U : T3 — A3(0)Ty + A3(0)m5 = 0} .

Therefore
AL(0) = —j . Ab0) = —3 ,
(3.28) A2(0) = —3 . A%0) = —j—jj ,
B0 =-2, Ao=-2"

Lemma 3.10. There are ¢ € R and by € R such that for all (33 small enough

Al _ ai2 7
2(623) as3 + c(23
Al _ a3 7
(3.29) 3(C23) o
b1(23
Bl = ——
1(62) as3 + c(23

Proof. We first look at (span{e;} x span{ess}) NU N IE. We know from Proposition
and (B.27) that (span{e;} x span{ess}) NU NIE # 0. Since A3(0)A%(0) # 0, see (B:285),
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we also know from —A3(0)x ([B.26d), A3(0)x (B.26d) and [B:27) that for all (T1e1, (azeas) €

U N IOF the following two equivalent conditions hold true :
—A3(0) [A3(0)71 + BF(0)Cas + C*(0)71(23] =0 ,
A3(0) [~ A3(0)m1 + BP(0)Cas + C*(0)71Ca3] =0 .

Set ¢(r,¢) = —ABO)[AZ(O0)ry + BA0)Cos + C2(0)miCas] and (7, C) = AZ(0)[~AF(O)my +
B3(0)¢a3 + C3(0)71¢23]. These non constant functions ¢, : fo3 — R are h-affine with
#(0,0) = 1(0,0) and we know from the previous argument that {(7,{) € U : ¢(1,¢) =
0} = {(7,¢) e U : Y(1,{) = 0}. Then it follows from Corollary that —A3(0)B%(0) =
A2(0)B3(0) and —A3(0)C2%(0) = AZ(0)C3(0). Taking into account ([B3.28) we get that
—a13B%(0) = a12B3(0) and —a13C2(0) = a12C3(0). Using two consecutive permutations of
the coordinates, we then get the following relations :

(3.30) —a13B7(0) = a12B7(0) =: by ,
(3.31) a12B5(0) = ags B3(0) =: by
(3.32) a3 B3(0) = —a13B5(0) =: b3 ,
(3.33) —a13C%(0) = a12C3(0) = ag3C*(0) =: ¢ .

Next let (23 € R be fixed small enough so that Al(Ca3) # 0 (recall that AL(0) # O,
see ([3.28), and Al is continous) and so that (A'R? x {(aze23}) NU N IE # ), see Propo-

sition Using ([3.26h), A}(Co3)x [B:26d) and [B27), we know that for all 7 € A'R3
such that |7;| < 0 for ¢ = 1,2,3, we have (7, (23e23) € OF if and only if the following two
equivalent conditions hold true :

— A3(Co3)m2 + AS(Cas)s + Bl (Ces) =0,
A3 (Ca3) [(—A3(0) + C*(0)Cas) 1 + A(0)2 + 73 + BF(0) (23] =0 .
This implies that
A3(C23) (—A3(0) + C°(0)a3) =1,
A5(Ca3) AT(0) = —A3(Cas)
A5(C23)BY(0)Ca3 = B (Cas) -

and (3.29)) follows taking into account (B.28]), (B.30) and (B.33]). O
Lemma 3.11. For all (o3 small enough, we have
c
C'(Cas) = ot
(3.34) Bj(Cas) = ﬁi@:}, :
B3(Cos) = ﬁgc@g :

where ¢ is given by Lemma 310, and by, by are given by [B31) and ([B3:32).
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Proof. Let (12,23 € R be fixed small enough so that (span{es,es} x {Ci2e12 + (23e23}) N
UNOE # (), see Proposition 3.9, and so that A3(Ca3) # 0 (recall that A3(0) # 0, see (3.25),

and A} is continuous). Using ([3.260]), —AL((e3)x ([B:26d) and ([B.27), we know that for all
To, T3 € (—0,9) we have (Toe9 + T3e3, (12€12 + (a3e23) € OF if and only if the following two
equivalent conditions hold true :

—A3(Co3) T2 + (A3(Ca3) + C(Ca3)Ca2)Ts + Bi(Cas) + B3(C23)2 =0,
—A3(Ca3) [12 — (AT(0) — C*(0)C12)7s + Bi(0)Cas + B3(0)¢12] =0 .

Considering the coefficients in front of 73, this implies that (A3(Ca3) + CY((23)C12) =
Aé((gg)(A%(O) — 02(0)412) Therefore

C"(¢23)C12 = A3(Ca3) (AT (0) — C*(0)Cr2) — A3(Cas)

and the form of C'((a3) follows from (B28), (3:29) and (3.33). Considering the constant
terms, we get that B{((Ca3) + Ba((23)Ci2 = —AL(C23)(B?(0)(23 + B3(0)¢i2). Therefore

Bj(Ca3) iz = —A3(C23) (BE(0)Cas + B3(0)C12) — Bi(Cas)
and the form of Bi((a3) follows from (329), (3:30) and (3.32).

To get the form of Bi((a3) we argue in a similar way considering (span{es} x {¢ize13 +
Cageas}) NU N OE. Namely, let (13,(23 € R be fixed small enough so that (span{es} x
{¢13e13 + Cozeas}) NU N OE # (), see Proposition 3.9, and so that Ad((a3) # 0 (recall that

AL(0) # 0, see [B.28)), and Al is continuous). Using ([B.26B), A3((a3)x ([B:26d) and (B.27),
we know that for all 73 € (—0,9) we have (13es, (1313 + (23e23) € OF if and only if the
following two equivalent conditions hold true :

A3(Co3)73 + Bi(Ces) — By(Ce3)Ciz = 0,
A} (Co3) [m3 — B3(0)Ci3 + By (0)¢a3] = 0.
This implies that Bf((23) — Bi(C23)¢13 = Ad(Ca3)(—B3(0)¢13 + B3(0)(23). Therefore
B3 (C23)Ci3 = Bi(Cas) + A3(C23) (B3 (0)¢13 — BY(0)¢as)
and the form of Bi((a3) follows from (329), (3:30) and (B.31)). O

To conclude the proof of Proposition 3.1l we set g := ¢ € R = A°R3, 1 := bieg + baeg +
bzes € A'R3, 1 := ajoeis + azes + aszess € A2R3\ {0} and we let ¢ : f2.3 = R be the non
constant h-affine function given by

(3.35) (T Qv i=mAT+mAC+nTAC
where v :=e1 A es A eg. By (8:29) and (B.:34]) we have for (33 small enough
¢(7,¢) = (ags + cCas) (11 — A3(Ca3)72 + A3(Ca3)7s + Bi(Cas) + B (Cas)Cz
— B3(¢23)¢13 — CM(Ca3) 213 + C(Cas) T312).
Therefore, shrinking U if necessary, we get from (3.26a)) and (3.26B]) that
UNOJE ={(r,¢) eU: ¢(r,() =0} .
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Since we have choosen ag3 < 0, we also get from the last two lines in (3.2]) that

UNInt(E) ={(1,{) e U : ¢(1,{) < 0}
UNInt(E°) ={(1,¢{) €U : ¢(1,{) > 0}

which concludes the proof of ([B.]).

4. CLASSIFICATION IN THE FREE STEP-2 RANK-3 CARNOT ALGEBRA

In this section we upgrade the local statement given by Proposition 3.1l into a global one,
that will in turn imply Theorem [I.11

We set
= |J Lie¢)

£ TEARS
ENTH#O
where Lie(§, 7) := span{&, 7} @ span{{ A 7} denotes the Lie subalgebra of fs 3 generated by
& and 7. We start with the following preliminary step.

Lemma 4.1. Let E C fa3 be precisely monotone and x € Nonchar(0F). Let U, be an open
neighborhood of x and ¢ : f23 — R be a non constant h-affine function for which (B.1))
holds true. Then Sy N (z-X) C OF where Sy :={y € fa3 : ¢5(y) = 0}.

Proof. Using a left-translation, we can assume with no loss of generality that z = 0. We
set U := Uy, ¢ := ¢, and S := Sy. Let £&,7 € A'R? be given such that € A7 # 0. Set
bh := Lie(&, 7) and let us prove that SNh C IF.

The restriction ¢y, : h — R of the function ¢ to b is h-affine on the Heisenberg algebra b
and such that ¢|,(0) = 0. Therefore it follows from Theorem E.I1] that ¢y, is a linear form
on b.

If Ker gy = b, we get from B.I) that Y Nh C OE. We fix s # 0 close enough to 0
so that s€ A7 € U and we consider the horizontal lines ¢, := {¢! € h: t € R} C h and
ly:=(s€AT)-{ 7' €bh: t€R} Ch. On the one hand, we have UN¢; C OF for j = 1,2 and
it follows from Lemma [Z4] that /1 U ¢y C OE. On the other hand ¢ and ¢» are skew lines
in b in the sense of [6]. Since they are contained in h N JF, Lemma [Z4] together with [6,
Lemma 4.10] applied to the set G := h N IE implies that h C IE.

If Ker ¢y # b then Ker ¢ is a 2-dimensional linear subspace of . If Ker ¢, = span{¢, 7}
then Ker ¢y is a linear subspace of Horg. We also know that Horg NOFE is a linear subspace of
Horg (see Proposition 7)) that contains U NKer ¢y (see (B.11)). This implies that Ker ¢y, C
Horg NOE and therefore S Nh C OE. If Ker ¢y # span{¢, 7}, there is 6 € span{¢, 7} such
that ¢(0) # 0. Then we get from (3.I]) that for all s > 0 small enough either s6 € Int(E)Nh
and —sf € Int(E°)Nh, or, —sf € Int(E) Nh and sO € Int(E°) Nh. It follows that ENh is a
precisely monotone subset of h that is neither () nor h. Therefore 0y(ENh) is 2-dimensional
linear subspace of h by Theorem We also know from (B.I]) that & N 0y(E Nh) C
UNIENDH =UNKer ¢. This implies that the 2-dimensional linear subspaces Ker ¢, and
Oy (E N'h) coincide and therefore SNh = 0y(ENhHh) C OE. O
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For the rest of this section, we fix a precisely monotone measurable subset E of fs3
such that £ ¢ {0,f23}. By Proposition 2.8 we know that Nonchar(OF) # (. Using
a left-translation, we can assume with no loss of generality 0 € Nonchar(OFE). We set
U :=Uy, ¢ := ¢o, and S := {x € fa3 : ¢(z) = 0}, where Uy is an open neighborhood of
0 and ¢p : f2,3 — R is a non constant h-affine function given by Proposition B.1] so that
0 € Nonchar(S) and

UNInt(E)={yelU: ¢(y) <0}
(4.1) UNIE=UNS
UNInt(E) ={yeclU: ¢(y) >0} .

Since Nonchar(JF) is a relatively open subset of JF, shrinking U if necessary, we also
assume with no loss of generality that

(4.2) U N Char(OF) =0 .
The proof of Theorem [I.1] will proceed in the following steps:

(1) Lemma @2 SN (z-X) C OF for all z € Nonchar(0F) NU, in particular, SNY C OFE.
(2) Lemma 5t S\ X C OF.
(3) Lemma [Tt OF C S.

(4) Lemma L8 Int(E) = {y € fa3: ¢(y) <0} and E = {y € fa3: ¢(y) < 0}.

Lemma 4.2. We have SN (z-X) C OF for all x € Nonchar(OFE) NU. In particular
(4.3) SNY COE .

Proof. If x € Nonchar(0F) NU then U, := U and ¢, := ¢ are an open neighborhood
of z, respectively, a non constant h-affine function, for which (B]) holds true. Therefore
SN(x-%)C OF by Lemma 1] O

We give in Lemma [4.3] below a condition on points in S\ ¥ that ensures that they belong
to OF. To prove that S\ X C OF, see Lemma [L5] we shall next verify thanks to Lemma [4.4]
that this condition holds true on a relatively dense subset of S\ X.

From now on in this section, we identify f 3 with A'R3 x AZR3. We recall for further use
that

(4.4) ¥ = {(H,w) S f273 tO0Nw = 0} .

We also recall that given v € A3R3 \ {0}, there are ng € A’R3, 1 € A'R3, and 1 €
A2R3\ {0} such that the function ¢ showing up in (@) is given by

(4.5) O, wy=mAN0+mAw+nbAw

for all (0,w) € fo.3, see B3H). For j = 1,2 we denote by ¢; : AJR®> — R the linear form
defined as the restriction of ¢ to AJR®. In other words, ¢; : A'R? — R is the non constant
linear form on A'R? given by ¢1(6) := ¢(#,0) and @2 : A2R?® — R is the linear form on
A2R3 given by ¢o(w) := ¢(0,w).

We recall that given w € A2R3 the space of exterior annihilators of w of order 1 is defined

as
Anh(w) == {6 € A'R3: wAE=0} .
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We also recall that if w € A?R3\ {0} then Anh(w) is a 2-dimensional linear subspace of
A'R? and for every ¢ € Anh(w) \ {0} there is 7 € Anh(w) such that w = £ A 7.

Lemma 4.3. Let (0,w) € S\ X. Assume there are {,7 € Anh(w) and p,q € R such that

w=EAT,

(4.6) P& O0Np+ O(T,0 AT)q = —¢2(w) ,

and such that for any € > 0 there are r € R\ {1} and u,v € (—¢,¢) such that
(4.7) —rqu+rpv=1—r,

(4.8) $2(E N O)u+ da(T ANO)v =0 .

Then (8,w) € OF.

The geometric idea underlying Lemma [4.3]is that (£.0), (47) and (48] ensure that there
is a horizontal line containing (,w) and meeting U,enonchar(or)S N (z - X) C JE in two
distinct points.

Proof. Let (,w) € S\ X. Let £,7 € Anh(w) and p,q € R be such that w = £ A7 and (4.0)
holds true. Let € > 0 be fixed small enough so that (0, s{ A@+t7A0) € U for all s,t € (—¢,¢)
and let r € R\ {1}, u,v € (—¢,¢) be such that [@7) and (£8) hold true. Since 6 ¢ Anh(w),
we have p¢ + g7 — 6 € A'R3\ {0} and we consider the horizontal line (R) where

V(t) = (evw) ’ (t(pé +4q7 — 9)7 0)
for t € R. We will verify that (1) € OF and ~(r) € OE. This will imply by Lemma [2.4]
that v(R) C OF and therefore v(0) = (0,w) € OF as wanted.

We have (1) = (p€ + q7,w +pd A& + g0 A7) € Lie(€ + g, 7 — pf) and hence (1) € X.
Since ¢(6',w’) = ¢1(0') + ¢2(w') for all (#,w') € 3, it follows from (@.6) that
¢(v(1)) = 01(pE +q7) + da(w +PI NE+ gO A T)
=p(P1(8) + P2(0 A &) + a(P1(7) + ¢2(0 A 7)) + d2(w)
=pp(§, 0 AE) +qd(T, 0 AT) + da(w) =0,
ie., v(1) € S. Therefore y(1) € SN ¥ and it follows from (@3] that (1) € IE.
To prove that v(r) € OF, we set x := (0,ué A 0 + v7 A 6) and we first verify that
(4.9) y(r)yesSn(z-X).
Since v(0) = (f,w) € S, v(1) € S, and since S is the boundary of a precisely monotone
subset of f2 3, we get from Lemma 24 that v(r) € S. We have 7! - y(r) = (6,w) where
O=01—-r0+r(pé+qr), W=w+p+u)ldAé+ (rqg+v)dAT),

and OANw= (1 —7r—rpv+rqu)d Aw. Therefore it follows from (7)) that 6 A@ = 0, i.e.,
(0,w) € X (see ([{4)). Therefore v(r) € x - 3, which concludes the proof of (€.9]).

We next verify that
(4.10) x € Nonchar(OF) NU .

By (@) we have ¢(z) = ¢(0,ué A0 +vr AO) = upa(E N O) +vda(T ANO) =0, ie, x €8S.
Then (4.10) follows from our choice of € together with (A1) and ([@2]). Using Lemma [A.2]
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we get that SN (z-X) C OF and hence (4.9) implies that v(r) € JE, which concludes the
proof of the lemma. O

Lemma 4.4. We set F1 := {(0,w) € S\ X : ¢(&,0NE) =0 forall{ € Anh(w)}. We
also set Fy = {(f,w) € S\ X : ¢o(w) = 0} if ¢po # 0 and F» = O otherwise. Then
IHtS\E(Fl U FQ) = 0.

Proof. We will prove that Intg\x(F1) = Intg\5(F2) = 0. Since F, is a relatively closed
subset of S\ X, this will imply Intg\x(F1 U F2) = ), as wanted. For j = 1,2 we denote by
¥; : fo.3 — R the h-affine functions given by ¥1(0,w) := ¢(8,0) = ¢1(0) and ¢2(0,w) :=
#(0,w) = ¢2(w). Note for further use that g # ¢.

To prove that Intg\y(F1) = ), we distinguish two cases.

Case 1. If ¢ = 1)1 then F; C (Ker ¢y x (Ker¢; AKer¢q)) \ X. Since ¢1 # 0, we know that
Ker ¢; is a 2-dimensional linear subspace of A'R3. Therefore there are £,7 € A'R? such
that £ A7 # 0 and Ker ¢y x (Ker ¢ A Ker ¢1) = Lie(§,7) C X. This implies that Fy = ()
and therefore Intg\y,(F1) = 0.

Case 2. If ¢ # 11, we consider (0,@) € Fy, an open neighborhood O of (§,@), and we shall
verify that ONS\ (XU F;) # 0. Since X is closed, we can assume with no loss of generality
that O 1Y = (). Then we claim that there is (6,&) € SN O such that ¢;(0,&) # 0. Indeed
otherwise {(0,w) € O : ¢(0,w) = 0} C {(f,w) € O : P1(0,w) = 0} and Corollary
implies ¢ = 11, which gives a contradiction. If (é,d}) ¢ Iy, we are done. If (é,d}) € Fy,
let us consider the linear form Ly : w € A2R3 — ¢(0,& + w). Let £,7 € Anh(&) be such
that @ = £ A 7. Since ¢ Anh(&), we have dim(span{f A £, A 7}) = 2 and therefore
Ker Ly N span{9 AE O A7} # {0}, In other words there is (u,v) € R2\ {(0,0)} such that
Lo(uf A€ +vB A7) =0. For all s € R we have

@+ s(ud AE+v0 AT) = (€ + svb) A (7 — sub)
and therefore ¢(8, (€ + sub) A (7 — sv0)) = sLoy(uf ANE +vO A7) =0, ie.,
(0, (€ + sub) A (7 — svf)) € S .

Let us now consider the linear form Ly : 6 € A'R3 — ¢(0,0A6). By definition of F} we have
L1(€) = 0 for all ¢ € Anh(@). Since L1(f) = ¢1(6,&) # 0, it follows that Ly (€ + s8) # 0
for all { € Anh(®) and all s € R\ {0}. Since (u,v) # (0,0), we get that for all s € R\ {0}

either L1 (€ + suf) # 0 or L1 (7 — svf) # 0, i.e.,
(8, (€ + suf) A (7 — sv)) € Fy .

Then choosing s # 0 small enough, we get that (8, (€ 4 suf) A (7 — svf)) € ON S\ Fy, which
proves that Intg\x(F1) = (), as wanted.
To prove that Intg\x (Fy) = () we only need to consider the case where ¢o # 0, otherwise

the claim is obvious. If ¢o # 0, we consider (f,@) € F, and an open neighborhood O of
(6,w). Since ¥ is closed, we can assume with no loss of generality that O N Y = ). Then
we claim that there is (0,&) € S N O such that ¢o(w) = ¥2(0,w) # 0. Indeed otherwise
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{(0,w) € O: ¢(0,w) =0} C {(,w) € O: Y9(h,w) =0} and Corollary [5.5] implies ¢ = )9,
which gives a contradiction. This shows that Intg\ s (F2) = () and concludes the proof of the
lemma. ]

Lemma 4.5. We have S\ ¥ C OF.

Proof. By Lemma [£.4] and since OF is closed, we only need to prove that S\ (XU F; U Fy) C
OF. We thus consider (6,w) € S\ (XUFUF;) and we claim that Lemma [£.3] can be applied
to (0,w), and therefore (A,w) € OF, as wanted. To prove this claim, we let £ € Anh(w) be
such that ¢(£,0 A€) # 0 and 7 € Anh(w) be such that w = A 7. Since ¢(£,0 A E) # 0, the
set V := {(p,q) € R? : (&0) holds true} is a 1-dimensional affine subspace of R?. We then
distinguish two cases.

Case 1. If ¢2(ENO) = ¢do(T ANO) =0, we let (p,q) € V\{(0,0)}. Then, given £ > 0, one can
choose 7 € R\ {1} close enough to 1 so that there are u,v € (—¢,¢) such that (4.7) holds
true. Since ¢2(§ A0) = pa(7 A0) = 0 (L8] holds true trivially and this concludes the proof
in this first case.

Case 2. If (p2(§ N 0), p2(T AB)) # (0,0) then ¢g # 0. Since (6,w) & Fa, we have ¢o(w) # 0
and therefore the 1-dimensional affine subspace V of R? does not contain the origin. On the
other side, the 1-dimensional affine subspace W := {(p, q) € R? : ¢2(EAO)p+pa(TAO)g =0}
of R? contains the origin. Therefore V \ W # () and we let (p,q) € V \ W. We set
§ = ¢p2(ENO)p+do(T AB)q. Then, given r € R\ {0, 1}, there is a unique solution (u,v) € R?
to (A7) and (48] given by

u=—1—-7)(0r)" po(rA0) and v =(1—7)(6r) " ga(EN).

It follows that given € > 0, one can choose r € R\ {1} close enough to 1 so that the
solution (u,v) € R? to (@1) and (&) belongs to (—¢,¢)?, which concludes the proof of the
lemma. O

Putting together (£3]) and Lemma we get S C OF. Using left-translations, we also
get the following corollary.

Corollary 4.6. Let © € Nonchar(OF). Then there is a non constant h-affine function
¢z : f2.3 = R such that x € Nonchar(S;) and S, C OF where Sy :={y € fa3 : ¢2(y) = 0}.

Lemma 4.7. We have OE C S.

Proof. We know from (4.3]) and Lemmal[L5lthat S C OE. We also know from Proposition 2.8]
that Nonchar(OF) is a relatively dense subset of 0F. Since S is closed, it is therefore
sufficient to prove that Nonchar(0F) C S. We argue by contradiction and assume that
Nonchar(0E) \ S # 0. We fix v € A3R3 \ {0} and we let ny € A’R3, n; € A'R3, and
no € A2R3\ {0} be such that ¢ is given by (@3I]).

We first claim that one can find x = (6, w) € Nonchar(0F)\S in such a way that n;+n6 #
0 whenever 1y # 0. Indeed, if 2’ € Nonchar(9F) \ S, we know from Proposition 27] that
Hor,s NOFE is a codimension-1 affine subspace of Hor,/. We also know that Nonchar(9F)\ S
is an open subset of JF. Therefore, if 19 # 0, one can find x = (6, w) close enough to z’
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such that x € Nonchar(9F) \ S and n; + n9f # 0, as wanted. We then let ¢ : fo.3 = R be
given by Corollary applied to z so that ¢ is a non constant h-affine function, S := {y €
fa3: ¢(y) =0} C OF, and = € Nonchar(S) \ S.

We next claim that one can find € Nonchar(S) \ S in such a way that Horz NS # 0.
Indeed, since S is the boundary of a precisely monotone subset of 3 3, we know that there
is a 2-dimensional linear subspace V' of Horg such that z -V C S. We then let  denote an
open neighborhood of the origin in V such that - Q C Nonchar(S)\ S. Given &, 7 € A'R3,
we have (0,w) - (£,0) - (7,0) € S if and only if

¢ ((0,w) - (£0) - (1,0) v ={mAb+m Aw+mn0 Aw+ [n2+m A +mow] AL}
+{772—1-771/\9+770w—|—[7714—7700]/\5}(*)/\7-:0

To prove the claim, we shall now verify that one can find £ € 2 such that {---}) # 0 in
A’R?. Indeed, if ng = 0 then {--- }y =n2+m A0 +n1 A Since 7y # 0 and dimV = 2,
given any 11 € A'R3, one can find ¢ € Q such that {--- by # 0. If instead 7o # 0, by choice
of x = (,w), we have 1, + nof # 0. Therefore, using once again the fact that dimV = 2,
one can also find in such a case { € €2 such that {---}() # 0. Next, for such a choice of
¢, the function 7 € A'R3 — ¢ ((0,w) - (£,0) - (7,0)) is surjective. Therefore one can find
7 € A'R3 such that ¢ ((0,w) - (&£,0) - (7,0)) = 0. Then, setting 7 := (6, w) - (£,0), we have
Z € Nonchar(S) \ S and Z - (7,0) € Horz NS which concludes the proof of the claim.

We now claim that Horz N Nonchar(S) \ S # §. First, note that Horz N Char(S) = 0.
Indeed, since y € Hor; if and only if # € Hory, if there is y € Horz N Char(S) then
z € Hor, C S, which gives a contradiction. Next, assume there is 7 € A'R3 such that
Z-(7,0) € Nonchar(S)N S. Since 7 € Horz. (- 0) \S, the horizontal line £, := {z - (t7,0) : t €
R} intersects the smooth 5-dimensional submanifold Nonchar(S) transversally at z - (7,0),
see Lemma 5.7l It follows that for all 7/ € A'R? close enough to 7, the horizontal line
l = {x - (t7',0) : ¢t € R} intersects Nonchar(S) transversally at some point close to
Z - (1,0) and hence £,» N Nonchar(S) # 0. Since # € Nonchar(S), one can moreover choose
such a 7/ so that £, NS = {z}. Since T ¢ S, for such a choice of 7/, we then have
¢, N Nonchar(S) N S = (. All together it follows that for such a choice of 7/, we have
0 # ¢, N Nonchar(S) \ S € Horz which concludes the proof of the claim.

We thus have proved that there are 7 € Nonchar(S)\ S and 7 € A'R? such that Z- (7, 0) €
Nonchar(S) \ S. Then it follows from Lemma 5.7 that the horizontal line ¢, := {z - (¢7,0) :

t € R} intersects transversally the smooth 5-dimensional submanifolds Nonchar(S) and
Nonchar(S) at respectively  and T - (7,0). Therefore there is an open neighborhood Oz
of Z such that for every y € 55 =0z N Nonchar(g) the following hold true. First, the
horizontal line ¢ := {y - (¢7,0) : ¢t € R} intersects Nonchar(S) transversally at y and hence
the set T :={y- (t7,0) : y € So te R} has non empty interior. Second, the horizontal line
¢¥ intersects Nonchar(S) transversally at some point close to Z - (7,0). Since SU S C OE,
it then follows from Lemma [24] that 7' C JFE. This implies in turn that Int(OF) # () which

contradicts Proposition 2.8 and concludes the proof of the lemma. O
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Lemma 4.8. We have Int(E) = {y € fa3: ¢(y) <0} and E = {y € fa3: ¢(y) < 0}.

Proof. We know from (4.3, Lemma and Lemma (A7 that S = 0E. By (@1]) we have
Int(E) NC~ # 0 and Int(E°) NCT # 0 where C™ := {y € fa3: ¢(y) <0} and C* :={y €
fo.3 + #(y) > 0} . We also know from Proposition 5.1] that C~ and CT are the connected
components of S¢ = (OF)¢ = Int(E)UInt(E°). Then the conclusion follows from elementary
topological considerations. O

5. SUBLEVEL AND LEVEL SETS OF H-AFFINE FUNCTIONS ON fg 3

We prove in this section properties of sublevel and level sets of h-affine functions on fs 3
that have been used in the Sections Bl and [4] and may have their own interest. Throughout
this section we identify fo 3 with A'R3 x A2R3, and A’R3 with R via s € R+ sv € A3R3
where v € A3R? \ {0} is fixed. With these identifications, we recall that we are interested
in functions ¢ : fo 3 — R such that there is (19, 71,72,73) € A'R? x A'TR? x A?R? x A%R?
such that

(5.1) P, w)=m3+mA0+mAw+nbAw

for all (6,w) € fa3. As already mentioned in Section [2, such functions can easily be seen
to be h-affine. Let us recall for the sake of completeness that it has been proved in [12]
Theorem 1.1] that all h-affine functions on fy 3 are of this form. We will not need this
nontrivial result here, except for the use of the terminology ”h-affine function” that will
denote a function ¢ : fa 3 — R of the form (5.II) throughout this section.

Proposition 5.1. Let ¢ : f23 — R be a non constant h-affine function. Then ¢ is surjective
and for every ¢ € R the sets {z € fa3: ¢(z) < ¢} and {x € fa3: ¢(x) > ¢} are the connected
components of {x € fa3: ¢(x) # c}.

Proof. Let (n9,m1,m2,m3) € A’R3 x AIR3 x A2R3 x A3R3 with (n9,11,12) # (0,0,0) be such
that ¢ is given by (G.I). If 79 = 0 then ¢ is a non constant affine function on f; 3 seen as a
vector space and the statement is obvious. We thus assume that 79 # 0 in the rest of this
proof. For (0,w) € f23, we have

(Mo +m)A(w+mng m) =mA0+mAw+mnbAw+ng mAn .

Since the map (8,w) € fa.3 — (10 041, w+770_1 72) € f2,3 is a homeomorphism, we thus only
need to consider the case where ¢(f,w) = 8 Aw. In such a case ¢ is a quadratic form with
signature (0,3,3) on fz,3 seen as a vector space and hence is in particular surjective. Let
¢ € R be given. Since ¢ is surjective, the sets {x € fa3: ¢(x) < c} and {z € fa3: ¢(z) > ¢}
are non empty. Let us verify that {(6,w) € fa3: ¢(x) < ¢} is arcwise connected, the proof
for the set {z € f23 : ¢(x) > ¢} being similar. Since ¢ is a quadratic form with signature
(0,3,3), this is equivalent to proving that F := {(u,v) € R? x R? : |[v||? — |lu|® < ¢} is
arcwise connected where ||-|| denotes a Euclidean norm on R3. It can easily be seen that any
two points (@, ), (u,v) € F can be connected by a concatenation of three continuous paths
contained in F', namely, the segment from (@,7) to (@,0), any continuous path connecting
(@,0) and (@,0) inside the arcwise connected subset {(u,0) € R? x R? : —||u||?> < ¢} of F,
and the segment from (u,0) to (@,v). To conclude the proof of the proposition, note that
it follows from the surjectivity and continuity of ¢ that the set {x € fa3: ¢(z) # c} is not
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connected. Therefore the sets {x € fa3 : ¢(z) < ¢} and {z € fo3 : ¢(x) > ¢} are the two
connected components of {z € fa3: ¢(x) # c}, as claimed. O

Lemma 5.2. Let ¢ : fo3 — R be a non constant h-affine function, x € f23, and O be an
open neighborhhood of x. Then there is an open neighborhood O' C O of x such that the
non empty sets {y € O': ¢(y) < ¢(x)} and {y € O : ¢(y) > ¢(x)} are connected.

Proof. Arguing as in the proof of Proposition [5.1] we only need to consider the case where
$(0,w) = 0 ANw. If ¢(z) # 0, the claim follows from the fact that the set {(f,w) €
fo3 : 0 Aw = ¢(z)} is a smooth 5-dimensional submanifold of fo3. Similarly, the set
{(0,w) € fa3: 6 Aw =0} \{(0,0)} is a smooth 5-dimensional submanifold of f2 3 and we
thus only need to consider the case where x = 0. Arguing as in the proof of Proposition [5.1],
we are lead to show that the set {(u,v) € B(0,e) x B(0,¢) : ||v|| < |lu||} is arcwise connected
for all £ > 0 where B(0,¢) denotes a Euclidean open ball in R? centered at the origin with
radius e. This can be done in the same way than in the proof of Proposition Bl taking care
that the intermediate path from (%, 0) to (@, 0) remains contained in (B(0,£)\{0})x{0}. O

Proposition 5.3. Let ¢,7 : fa3 — R be h-affine functions with ¢ non constant. Assume
that there is x € fo 3 such that ¢(z) = (x) and there is an open neighborhood O of x such
that

{y€O: ¢(y) <o)} C{ycO: P(y) <v(x)} .
Then there is A > 0 such that ¢ = A\¢.

Proof. Considering the h-affine functions y — ¢(z - y) — ¢(z) and y — ¥(x - y) — Y(x), we
can assume with no loss of generality that x = 0 and ¢(0) = ¢(0) = 0. We set

Ey:={y€foz: ¢(y) <0} and Ey:={y€foz: (y) <0}.
By assumption there is an open neighborhood O of 0 such that
(5.2) E¢QOCE¢QO.
We first verify that ¢ # 0. To prove this claim, we argue by contradiction and assume

that ¢ = 0. Then E; N O = O and (5.2) implies that 1(y) < 0 for all y € O. Since 1 # 0,
there is (ag, o, ) € (AR3 x ATR3 x A2R3)\ {(0,0,0)} such that

YO, w) =as N0 +a1 ANw+ apb Aw.

The fact that ¢ < 0in ON(A'R3 x {0}) implies that ap = 0. Similarly, the fact that ¢ < 0
in O N ({0} x A’R3) implies that a; = 0. Finally it can easily be seen that if apf A w < 0
for all (0,w) € O then ag = 0. Therefore (g, a1, a2) = (0,0, 0) which gives a contradiction.

Since ¢ # 0, there is (9, 71,72) € (A’R3 x ATR3 x A2R3)\ {(0,0,0)} such that
PO, w)=mAO0+m Aw—+nb Aw.
Before we prove the proposition, we begin with some preliminary facts.
(FACT 1) (a1, 02) # (0,0) = (n1,m2) # (0,0) .
By contradiction, assume that (aq,a2) # (0,0) and (n1,72) = (0,0). Then (5.2]) reads as
E;nO={0,w) € O: nbAw <0}
C{O,w)eO: ax N0+ a1 Aw+agb Aw <0} .
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In particular there is a neighborhood U of the origin in A'R3 so that (0,0 A &) € E;N O
for all 8,& € U. Therefore the previous inclusion implies that as A0+ a3 AGAE <0 for all
0,£ € U. Taking £ = 0, it follows that as A8 < 0 for all # € U which implies that ay = 0.
Then we get that oy AOAE < 0 for all 0,& € U which implies in turn that a; = 0. Therefore
(a1, 2) = (0,0) which gives a contradiction and concludes the proof of [FACT 1]

(FACT 2)
(a1,a9) # (0,0) and (n1,7m2) # (0,0) = there is A > 0 such that (aq, @) = A1, 12) .

Let (#,w) € fa,3 be such that no A0 + 11 Aw < 0. For ¢t > 0 small enough, (t6,tw) € O and
p(th,tw) =t A0 +m Aw) +t2m00 Aw < 0, Le., (t0,tw) € EgN O. Then (E.2) implies
that (t0,tw) € Ey, ie., t(aa A0+ a1 Aw) +t2apd Aw < 0 for all ¢ > 0 small enough. This
implies in turn that as A 0 + a3 Aw < 0. Therefore

{(O,w) €fa3: mANO+m Aw <0} C{(f,w) Efaz: ag N+ Aw <0} .

Since (n1,m2) # (0,0) and (a1, a2) # (0,0), this is an inclusion between half-spaces in fs 3
seen as a vector space with the origin as a common point in their boundary. It implies in
turn that there is A > 0 such that (a1, a2) = A(m1,72) and concludes the proof of [FACT 2l

(FACT3) ag=0=mn=0.

By contradiction, assume that oy = 0, and hence (aq,a2) # (0,0), and 79 # 0. Since
(a1, 2) # (0,0), we know from[FACT Tland[FACT 2lthat there is A > 0 such that (a1, a2) =
A(n1,1m2). Then (5.2)) reads as

{O,w) €O AN+ Aw+nbd Aw <0} C{(f,w) €O :mANO+n Aw <0},

By Lemma[5.4], to be proved below, there is (6,w) € O such that na A0+mn; Aw+npf Aw =0
and Mg Aw < 0. Thus naA@+mn Aw > 0 which contradicts the inclusion above and concludes

the proof of [FACT 3l

(FACT 4) (o1, 2) # (0,0) and o =0= a9 =0 .

By contradiction, assume that (aq,as) # (0,0), 7o = 0, and ag # 0. On the one hand,
using [FACT 1] and [FACT 2| (5.2)) reads as

{O,w)e O :asNf+a1 ANw <0} C{lw) €O :aa N+ a1 Aw+ apf Aw < 0}.

On the other hand, by Lemma [54] there is (,w) € O such that ag A0 + a3 Aw = 0 and
apf A w > 0 which contradicts the inclusion above and concludes the proof of [FACT 41

(FACT 5) (a1, 2) = (0,0) = (n1,72) = (0,0) .
By contradiction, assume that (o, as) = (0,0) and (n1,72) # (0,0). Then (5.2]) reads as
{O,w) €O :mANO+m Aw+mnb Aw <0} C{(f,w) €O :af Aw <0},

where o # 0. By Lemma [5.4] there is (6,w) € O such that no A0 +m Aw+n9f Aw =0
and apf A w > 0 which contradicts the inclusion above and concludes the proof of FACT 5l
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We now turn to the proof of Proposition 5.3l We divide it into three cases.

Case 1. We first consider the case where (a1, a2) # (0,0) and ap = 0. Then we know

from [FACT 1] and [FACT 2| that there is A > 0 such that (a1, a2) = A(n1,72). We also know
from [FACT 3] that ng = 0. Therefore (ag, a1, as) = A(ng,n1,12) as wanted.

Case 2. We next consider the case where (a1, a2) # (0,0) and ap # 0. Then we once again
know from [FACT 1] and [FACT 2] that there is A > 0 such that (a1, a2) = A(m1,7m2). We
also know from [FACT 4] that 1y # 0. Therefore there is p # 0 such that ap = ung. Setting
s:= pu/A, the assumption (5.2)) reads as

(5.3) {(Bw)eO:MmAI+m Aw+n60Aw<0}

C{O,w) €O :mAO+m Aw+snb Aw <0}
with (n1,12) # 0, sng # 0, and, to conclude the proof of Proposition 5.3 in the present case,
we shall verify that s = 1. By Lemma [5.4] there is (6,w) € O such that 7o A0 +m Aw +
nof ANw =0 and § Aw > 0. Then (5.3) implies that (s — 1)ny < 0. Similarly, once again
by Lemma [5.4] there is (#’,w’) such that no A0 +m Aw' + o6’ Aw' =0 and ' A’ <0,
and (5.3]) implies now the opposite inequality (s — 1)y > 0. Therefore s = 1 as wanted.

Case 3. We finally consider the case where (a1, a2) = (0,0). Then we know from
that (n1,72) = (0,0) and (5.2]) reads as

(5.4) {B,w) €O : pbdAw<0} C{O,w)eO: aybd ANw <0}

with ag # 0 and 1y # 0. Considering (0, w) € O such that nyf Aw < 0 we get that ngagy > 0,

i.e., there is A > 0 such that ay = Ang. Therefore (ag,a1,a2) = A(ng,n1,m2) and this
concludes the proof of the proposition. O

Lemma 5.4. Set X1 := {(f,w) € fa3: 0 Aw >0} and 7 := {(f,w) € fo3: 6 Aw < 0}.
Let O C a3 be an open neighborhood of the origin. Let (no,m,n2) € A’R? x ATR3? x AZR?
with (m,m2) # (0,0). Then

(5.5) YSTN{O,w) €O :mAl+mAw+nldAw=0}#0T,
(5.6) YT {0,w) eO:mAd+mAw+nld ANw=0} #2 .

Proof. We first prove the lemma when 79 = 0. Set V := {(0,w) € fa3 : 2 A0 +m Aw = 0}.
Then V is a 5-dimensional linear subspace of f2 3. The quadratic form (0, w) — 6 A w on
fo,3 seen as a vector space has signature (0, 3,3). Therefore there are 3-dimensional linear
subspaces W and W™ of fa 3 such that § Aw > 0 for all (f,w) € W and § Aw < 0 for all
(0,w) € W~. Since dimV =5, we have Wt NV # () and W~ NV # ) which proves (5.5
and (5.6) when ny = 0.
Assume that 79 # 0 and let us prove (5.5]), the proof of (5.6]) being similar. Set ¢(6,w) :=

N NO+m Aw-+n00 Aw. By the previous argument, there is (6,@) € O such that mAG+n NG =
0 and # A@ > 0. Assume that 779 > 0. Then choose (9 w) € O close enough to (0,) such
that —1of AD < ma AO +m A@ < 0. On the one hand, we have QS(H @) > 0. On the
other hand, for ¢ > 0 small enough, we have <;S(t9, tw) = t(n2 A 0+m A W) + 2100 A G < 0.
Therefore there is £ € (0,1) such that ¢(£0,40) = 0. Since (#6,{w) € ©T this concludes the
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proof of (5.5) when ng > 0. If 9 < 0, we choose (#*,w*) € O close enough to (f,) such
that 0 <2 A 0" +1m Aw* < —mpf* A w* and we argue in a similar way. O

Combining Proposition [(.3] with topological arguments, we get the following corollary
where sublevel sets are replaced by level sets.

Corollary 5.5. Let ¢,7 : fa.3 — R be h-affine functions with ¢ non constant. Assume that
there is x € fa 3 such that ¢(x) = (z) and there is an open neighborhood O of x such that

(5.7) {yecO: oly) = o)} C{y € O: Py) = v(2)} .
Then there is A € R\ {0} such that v = \¢.

Proof. Arguing as in the beginning of the proof of Proposition 5.3l we can assume with no
loss of generality that z = 0 and ¢(z) = ¢(z) = 0. Since 9 : fa 3 — R is a non constant
h-affine function, shrinking O if necessary, one can assume that {y € O : ¥(y) < 0}
is connected, see Lemma One can also easily verify that {y € O : ¥(y) = 0} C
{y € O: ¥(y) <0}. Then it follows from Lemma 5.6, to be proved below, that either
{yeO: () <0t c{ycO:d(y) <0tor{ycO: Yy <0t C{yecO: ¢y =0}
Arguing as in the beginning of the proof of Proposition 5.3l one can also verify that the
fact that ¢ is non constant together with (5.7)) implies that ¢ is non constant as well.
Then, changing ¢ into —¢ if necessary, one can apply Proposition 53] to get the required
conclusion. O

Given a space X, a subset O of X, and ¢ : X — R, we set
Og::{yEO:gb(y):O},
Oy ={y€0: ¢(y) <0} and (’);r::{ye(’):gb(y)>0}.

Lemma 5.6. Let X be a topological space, O C X be open, and ¢, : X — R. Assume

that ¢ is continuous. Assume also that (92) C (92) C (91; and (91; is connected. Then either
- 0 — 0 — 0 + 0

(’)w U0O, cO, U0, or(’)w U, C(’)¢ U Oy.

Proof. Since O, N Og =0, we have O, = (0, NOL) L (O, N (9;) Since O, is connected
and ¢ is continuous, it follows that either

- _ - - - _ + +
Ow—0¢ﬂO¢CO¢ or Ow—0¢ﬂO¢CO¢.
Since (92} C (9—1; N O, we also get that either
0, CcO,NOCO;U0} or O)cOlnNOCcOfuOY
which concludes the proof of the lemma. O

We conclude this section with the proof of rather easy properties of the set of non-
characterictic points of level sets of h-affine functions that has been used in the proof of
Lemma [£.71
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Lemma 5.7. Let ¢ : fa3 — R be a non constant h-affine function, ¢ € R, and set S := {x €
fo3 @ ¢(x) = c¢}. Then Nonchar(S) is a smooth 5-dimensional submanifold of f23 and for
all x € Nonchar(S) we have T, S N Hor, = S NHor, where T,.S denotes the tangent space
to S at x seen as an affine subspace of f2 3 through x.

Proof. Assume with no loss of generality that ¢ = 0. Let (1o,71,72,73) € A’R3 x A'R3 x
A2R3 x A3R3 with (1o, n1,m2) # (0,0,0) be such that ¢ is given by (5.1). The function ¢ is
smooth and for all (0, w) € f2 3 we have

(5.8) dipu)9(0' W) = (n2 +now) A"+ (n1 +nob) A" .

If no = 0, we have (n1,12) # (0,0), therefore dg ¢ # 0 for all (,w) € f2,3. It follows that S
is a smooth 5-dimensional submanifold of f 3 (it is actually a codimension-1 affine subspace
of f2,3) and so is the relatively open subset Nonchar(S) of S. If 7o # 0 then dg )¢ # 0

for all (0,w) € fa3 \ {(=mg  m, —1g 'n2)}. Therefore S\ {(—ng 'n1, —ng 'n2)} is a smooth
5-dimensional submanifold of fo 3. Note incidentally that (—ny Yo, —1y 17]2) € S if and only
if 73 = 15 ' A ma. Let us now verify the inclusion Nonchar(S) € S\ {(—ny 'n1, —np 'n2) }-
Let (6,w) € Nonchar(S). Then there is 7 € A'R3 such that ¢((,w) - (7,0)) = (n2+m1 A0+
now) AT # 0. Therefore ng 411 A0 +now # 0 which implies that (6,w) # (—ng 'n1, —ng *12),
as wanted. It follows that Nonchar(S) is a relatively open subset of S\ {(—ng 'n1, =15 'm2)}
and hence is a smooth 5-dimensional submanifold of f 3. To conclude the proof of the
lemma, let = (f,w) € Nonchar(S). It follows from (5.8) that for 7 € A'R?, one has
oz - (1,0) = ¢z + (1,0 A 7)) = dpp(7,0 A 7). Therefore = - (7,0) € S if and only if
z-(1,0) =2+ (1,0 A7) € T,,S, i.e., T, SN Hor, = S NHory. O

6. CLASSIFICATION IN NONFREE STEP-2 RANK-3 CARNOT ALGEBRAS

This section is devoted to the proof of Theorem We recall that a Carnot morphism
m: f — g between step-2 Carnot algebras f = f; @ f2 and g = g1 & go is a homomorphism of
graded Lie algebras, which means that 7 is a linear map such that 7 ([x, y]|) = [7(z), 7 (y)] for
allz,y € fand 7 (f;) C g; fori = 1,2. Note that a Carnot morphism is both a homomorphism
of graded Lie algebras and a group homomorphism. It can easily be seen that the preimage
of a precisely monotone set under a Carnot morphism is precisely monotone. We give in
the next lemma the rather elementary proof of this property, for the reader’s convenience.

Lemma 6.1. Let f and g be step-2 Carnot algebras and w : f — g be a Carnot morphism.
Let E C g be precisely monotone. Then n~1(E) C { is precisely monotone.

Proof. Let E C g be precisely monotone and ¢ C f be a horizontal line. Then 7 (¢) is either
a singleton or a horizontal line in g. If 7(¢) is a singleton then either /N7~ (E) = () or
(N~ (E) = £ and in both cases £ intersects both 7~!(E) and its complement in a connected
set. If w(¢) is a horizontal line in g then the restriction of 7 to ¢ is a homeomorphism from ¢
to m(¢). Since 7 (¥) intersects both E and E° in a connected set, it follows that ¢ intersects
both 7=1(E) and its complement in a connected set, which concludes the proof of the
lemma. U
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To prove Theorem let g be a step-2 rank-3 Carnot algebra that is not isomorphic to
fo.3 and let E C g be precisely monotone and measurable with E ¢ {0, g}. Let 7 : fa3 — g
be a surjective Carnot morphism. Recall that the universal property of the free step-2
rank-3 Carnot algebra ensures the existence of such a surjective Carnot morphism, see
for instance [22, p.45], and Ker is a non trivial linear subspace of A2R? since g is not
isomorphic to f2 3. By Lemma[6.]]and since 7 is continuous, 77 1(E) is a precisely monotone
and measurable subset of fo3 with 7= 1(E) & {0,f23}. By Theorem [T} there is a non
constant h-affine function ¢ : fo 3 — R such that Int(7=}(E)) = {z € fa3 : ¢(z) < 0},
7Y E) = {2 € fag : #(z) < 0}, and O H(E) = {z € fa3 : &(z) = 0}. Since 7 is
linear and surjective, 7 is continuous and open. Therefore Int(7~(E)) = 7~ !(Int ),
7 YE) =7 Y(E), or~Y(E) = 771 (0F), and it follows that

Int(E) = F({x S f273 : ¢($) < O})
(6.1) E=7({z €f23: ¢(z) <0})
OF = F({x S f273 : (b(a;) = O})

In particular, we have 7({z € fa3: ¢(x) < 0}) N7w({z € fo3 : ¢(z) = 0}) = 0. We shall
now verify that this implies that ¢ factors through fo 3/ Kerm, i.e., ¢(6 +w+ () = ¢p(6 + w)
for all @ € A'R?, w € A’R3, ¢ € Kerw. Indeed otherwise there are § € A'R3, w € A%R3,
¢ € Kerm € A’R? such that ¢(6 + w + () # ¢(0 + w). Then it follows from (L2) that
the function ¢ € R +— ¢(0,w + t() is a degree-1 polynomial and therefore is surjective. In
particular, one can find s,t € R such that ¢(6 + w + s¢) < 0 and ¢(6 + w + t{) = 0, which
implies that 7(f + w) € 71({z € fo3 : ¢(x) < 0}) N7w({z € f23 : ¢(x) = 0}) and gives a
contradiction.

Since ¢ factors through fo 3/ Ker 7, there is ¢ : g — R such that ¢ = ¢ o m and it follows
from (G.I)) that

Int(E)={r€g: Y(z) <0} CECE={zecg: ¢(x) <0}

Furthermore, since ¢ = ¥ o7 and ¢ is h-affine, then ¢ : g — R is h-affine (see [12]
Lemma 2.3]). By Theorem 2.11] we get that v is affine, and v is non constant since ¢ is,
which concludes the proof of Theorem
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