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Unsupervised Learning of Local Equivariant
Descriptors for Point Clouds

Marlon Marcon, Riccardo Spezialetti, Samuele Salti, Luciano Silva and Luigi Di Stefano,

Abstract—Correspondences between 3D keypoints generated by matching local descriptors are a key step in 3D computer vision
and graphic applications. Learned descriptors are rapidly evolving and outperforming the classical handcrafted approaches in the field.
Yet, to learn effective representations they require supervision through labeled data, which are cumbersome and time-consuming to
obtain. Unsupervised alternatives exist, but they lag in performance. Moreover, invariance to viewpoint changes is attained either by
relying on data augmentation, which is prone to degrading upon generalization on unseen datasets, or by learning from handcrafted
representations of the input which are already rotation invariant but whose effectiveness at training time may significantly affect the
learned descriptor. We show how learning an equivariant 3D local descriptor instead of an invariant one can overcome both issues. LEAD
(Local EquivAriant Descriptor) combines Spherical CNNs to learn an equivariant representation together with plane-folding decoders
to learn without supervision. Through extensive experiments on standard surface registration datasets, we show how our proposal
outperforms existing unsupervised methods by a large margin and achieves competitive results against the supervised approaches,
especially in the practically very relevant scenario of transfer learning.

Index Terms—Deep learning on point clouds, local features, equivariant, unsupervised, feature learning, registration.

1 INTRODUCTION

Matching 3D local features is a well-established approach to
find correspondences between shapes which help addressing 3D
Computer Vision tasks like surface registration, shape classifica-
tion and retrieval, object recognition, and more. Effective pipelines
leveraging the feature-matching paradigm hinge upon compact
representations of the local geometry referred to as descriptors.
Descriptors must be designed to be either invariant or robust to
the nuisances encountered in 3D Computer Vision scenarios, such
as viewpoint changes, sensor noise, point density variations, oc-
clusions and clutter. Delineating handcrafted functions to extract
robust and distinctive features from 3D data has a long history
in Computer Vision [1], [2], [3], [4], [5], [6]. Yet, due to the
challenging requirements mentioned above, designing an effective
local descriptor turns out a pretty complex endeavour. Indeed, as
highlighted in the most recent evaluation in the field [7], it is
still unclear which surface attributes are most conducive to good
representations, any choice leading to diverse limits and merits
across the considered datasets.

More recently, in the wake of the striking results achieved
by data-driven models in countless 2D vision tasks, surface de-
scription started to be addressed through deep neural networks.
In the migration process from handcrafted to deep descriptors, a
peculiar challenge concerning the unstructured nature of the main
3D data representations, such as, in particular, point clouds, has
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emerged. Indeed, deep learning for 2D vision owes a good deal
of its success to convnets deploying strong priors suited to data
structured as tensors. Thus, scholars have been experimenting with
a variety of input structures ranging from voxel grids [8], [9] to
high-dimensional embeddings [10] akin to traditional handcrafted
descriptors [2], [3]. We argue that feeding deep neural networks
with carefully engineered input representations may hinder their
ability to learn from data those best suited to solve the problem
at hand, as learning rather than designing features has been one
key reason behind the deep learning success. For instance, as
vouched by the experiments in [7], the Point Pair Features [11]
utilized by PPFNet [12] and PPF-FoldNet [13] may not be the
best representation when data are acquired by a spectrum of
diverse sensing modalities. Such a choice, thus, would limit the
performance of PPF-FoldNet on those datasets where the chosen
input representation is sub-optimal. Likewise, the CGF features
proposed in [10] rely on the handcrafted descriptor presented in
[3], which renders the former inherently less amenable to settings
where the latter cannot capture the key shape traits effectively.

Most learned 3D descriptors are trained in a supervised frame-
work [9], [10], [14], [15]. Training data usually comes in the form
of partial scans of a 3D scene or object whose aligning trans-
formations are provided by human annotators. Such ground-truth
transformations can be used to define corresponding keypoints
across overlapping views according to some proximity threshold
or similar criteria. Corresponding keypoints form the positive
examples to train the descriptors, while a representative subset
of the negative examples is usually mined with some heuristic
rules from the large set of pairs of non-corresponding points
[16], [17]. Beside the time-consuming and cumbersome process
to annotate the training data, all these hand-crafted decisions, and,
in particular, the effectiveness of the negative mining strategy,
play an important role in the resulting performance of the learned
descriptors [9].

Finally, invariance to viewpoint changes is paramount to 3D



descriptors. Yet, some learned approaches are not design to be
robust or invariant to such changes and exhibit a performance
drop when trained and tested on different 3D rotations [8], [12],
[18]. The remain learned descriptors, instead, achieve rotation in-
variance by expressing the 3D coordinates of the points belonging
to the input patch w.r.t. a coordinate system centered at the feature
point and defined according to a local reference frame (LRF)
[9], [10] or a reference axis (RA) [13], i.e. the same strategy
followed also by hand crafted methods [5]. For instance, CGF
[10] and 3DSmoothNet [9] rely on the LRFs proposed by [5] and
[6], respectively. However, these are, again, handcrafted choices
that may cause noisy supervision to be injected into the training
process due to the imperfect repeatability of the actual algorithm
deployed to compute the LRF. As a matter of fact, and similarly to
descriptors, the literature on LRFs vouches for the lack of a gold
standard approach, with different algorithms behaving differently
across datasets [19]. With the advent of new 3D convolution
operators [20], [21], some of the most recent approaches in the
field [14], [15] employ fully-convolutional architectures [22] to
densely learn descriptors across the input cloud in one forward
pass. Robustness to rotations in these methods is achieved by
augmenting the training data by a random set of rotations, though,
as pointed out previously, this approach may fail to generalize to
rotations unseen at training time, in particular when training and
testing happen on different datasets [15].

To overcome the limitations of existing approaches, in this
paper we propose a novel unsupervised framework to learn a
rotation-equivariant local surface descriptor directly from the raw
input data. To do so, we combine Spherical CNNs [18], [23], a
recently introduced deep learning machinery which extends the
correlation operator to signals living in S? and SO(3), i.e. the
space of 3D rotations defined formally in section 3, together with
plane-folding operators [24], [25]. In our training architecture, a
spherical encoder [23] learns to compress the geometric traits of
the input 3D patch into a low-dimensional latent space while a
folding decoder [24] warps a 2D grid to reconstruct the input
patch. As usually done in unsupervised learning through encoder-
decoder architectures, at inference time the decoder is discarded
and the low-dimensional representation computed by the encoder
provides the patch descriptor. Due to its unsupervised nature, our
learning framework does not require ground-truth annotations or
the choice of a non-corresponding pairs mining strategy [9], [14],
[15] to supervise the network.

Encoder-decoder architectures have already been used to learn
3D descriptors [13]. Yet, while the encoder-decoder architecture
proposed in [13] compresses and reconstructs pose-invariant Point
Pair Features [11], ours does so for raw 3D coordinates under
arbitrary poses. As it will be shown in section 5, pose information
is needed to correctly reconstruct a patch of 3D points by a plane
folding decoder under an arbitrary pose. To encode pose into the
latent space, we rely on the unique rotation-equivariance property
of Spherical CNNs. In fact, a spherical encoder consists of layers
which compute feature maps defined on SO(3) that are equivariant
with respect to a 3D rotation of the raw input data. Thus, we do
not need to rely on any handcrafted choice to either express the
input 3D patch in a canonical pose or remap it into a pose-invariant
representation, Rather, we learn a rotation-equivariant bottleneck
from the raw training data. Then, to pursue pose-invariant descrip-
tor matching at test time, the equivariant representation provided
by our spherical encoder can be canonicalized by applying a 3D
rotation provided by an external LRF algorithm.
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We prove the effectiveness of our approach through an exten-
sive experimental evaluation carried out on the main benchmark
datasets used in the field, which deal with pairwise surface
registration in both indoor (3DMatch [&]) and outdoor (ETH [26])
environments. Despite the different nature of the surfaces present
in the data as well as the diverse type of sensors used to capture
them, in both datasets our method correctly aligns most of the
scans and provides the new state-of-the-art results among local
3D descriptors based on unsupervised learning.

We can summarize our contributions as follows:

e We propose the first rotation-equivariant local descriptor
which operates on point clouds and can be learned without
any supervision from raw data. Purposely, we realize
the first spherical auto-encoder for point clouds, i.e. a
neural network architecture featuring a Spherical CNN
that computes a rotation-equivariant bottleneck used to
steer a plane folding decoder.

e To pursue our design, we carry out a thorough ablation
study on the hyperparameters of its main architectural
components, namely the filters used to perform correlation
operations within the Spherical Encoder.

e Our optimal design yields state-of-the-art performance
among local 3D descriptors based on unsupervised learn-
ing. In particular, our descriptor excels in generalization to
unseen scenarios, a key feature to address many practical
point clouds registration applications.

2 RELATED WORKS

In this section, we review the literature concerning 3D local
descriptors. We start with a brief discussion on hand-crafted
methods and then move on to more modern data-driven proposals.
For the sake of completeness, we also mention recent approaches
to apply deep learning on raw point cloud coordinates.

Handcrafted 3D Local Descriptors. Scholars have designed
several hand-crafted functions to abstract the salient structural in-
formation of a 3D keypoint’s neighborhood into a low-dimensional
representation. To this end, some chosen attributes are typically
quantised and summarized into histograms. The main proposals
differ for the employed geometric or topological attributes [7].
Methods such as Spin Images [1], Unique Shape Context (USC)
[3] and RoPs [4] deploy the distribution of point coordinates
while others, like FPFH [2] and SHOT [5] leverage on geometric
properties of the surface such as normals and curvatures. To handle
viewpoint variations and attain invariance to rotation, the above
mentioned descriptors rely on either a Local Reference Frame
(LRF) or a reference axis (RA).

Learned 3D Local Descriptors. Deep learning is currently
the most successful approach to analyze almost any kind of 2D
visual data. This success has drawn attention toward learning
deep local descriptors for 3D data [8], [10], [12], [13], [27].
The typical supervised workflow for descriptor learning entails the
adoption of a Siamese architecture [28] alongside a loss [29], [30]
amenable to pull similar features together, i.e. descriptors for the
same 3D point acquired under different viewpoints, while pushing
dissimilar ones apart. To manage the unstructured nature of point
clouds, a 3D keypoint’s neighbourhood is converted into a suit-
able structured representation. Purposely, while 3DMatch [8] and
3DSmoothNet [9] rely on TSDF [31] and smoothed density value
voxel grids, respectively, CGF [10] adopts an high-dimensional
representation that closely resembles the USC descriptor [3].



A multi-view approach can also be adopted: in [32] Li et al.
integrate a differentiable renderer into a 2D neural network so
to optimize a multi-view representation in order to learn a local
feature descriptor. Unsupervised approaches, instead, propose to
employ the latent codeword of an encoder-decoder architecture as
a 3D feature descriptor. PPF-FoldNet [13] and 3D-PointCapsNet
[33] learn to reconstruct the 4 dimensional Point Pair Feature [11],
[34] of a local patch by a FoldingNet [25] decoder. While we use
the same encoder-decoder formulation to perform unsupervised
learning, we do not rely on a pre-defined and pose-invariant input
representation as discussed in the introduction.

Other recent proposals employ fully convolutional networks
[22] and data augmentation to learn a rotation-invariant 3D local
descriptor from point clouds by a supervised approach. The first
work in this direction concerns the Fully Convolutional Geometric
Features (FCGF) proposed in [14], that deploy sparse convolution
[21] to manage the unorganized structure of point clouds and
densely extract a compact local embedding. Similarly, D3Feat
[15] leverages KPConv [20] to perform convolutions on raw 3D
coordinates and predicts both a detection score and a feature
descriptor at each 3D location in the input cloud. These methods
are highly efficient due to the ability to extract dense features in
just one forward pass. Yet, they generalize poorly to novel data
dealing with scene and geometries exhibiting different traits wrt
those observed at training time, as we will show in section 6. This
weakness in transfer learning is particularly critical for descriptors
learned by supervised approaches because it limits applicability to
datasets for which ground truth information is available, which, in
turn, is unlikely the case in many practical settings.

Eventually, we point out that this manuscript consolidates and
extends the preliminary results presented in [27].

Deep Learning on point clouds. Processing point clouds
through deep neural networks is challenging due to the lack of a
grid-like structure. Early works in the field of Shape Classification
proposed to represent 3D objects as a collection of 2D views [35],
[36] or quantize point coordinates into 3D voxel grids [17], [37].
Alternatively, more scalable indexing structures, such as k-d trees
[38] and octrees [39], were deployed to efficiently manage the
sparsity of non-empty voxels. Differently, Qi et al., with PointNet
[40] and PointNet++ [41], introduced a cutting-edge deep learning
framework based on a Multi-Layer Perceptron (MLP) and a
symmetry function which allows for directly consuming point
clouds. To achieve invariance to rigid transformations, PointNet
employs a transformation network [42] to predict an affine motion
that canonicalizes the 3D point coordinates. Howeever, PointNet
fails to generalize to unseen rotations, as demonstrated in [ 18], and
the learned local descriptors built upon a PointNet backbone, i.e.
PPFNet [12], are not rotation invariant. Recently, a few interesting
works have attempted to define point convolution operators [20],
[43], [44], [45], [46], [47], [48]. However, these methods mainly
operate on 3D coordinates extracted from synthetic and watertight
meshes. As such, there is no evidence in literature on whether
they may effectively withstand the typical nuisances, e.g. noise,
occlusions, missing regions and point density variations, that affect
point clouds sensed in real-world scenarios.

3 SPHERICAL CNNs

As described in [23], the basic intuition behind Spherical CNNs
deals with lifting the notion of the classical planar correlation
deployed in standard CNNs: the value of a feature map at = € Z2
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is computed as an inner product between an input signal and a
learned filter shifted by x. In Spherical CNNs, feature maps live in
SO(3) and the value of a feature map at R € SO(3) is computed
as the inner product between an input signal and a learned filter
rotated by R. As a result, the major difference between standard
CNNs and Spherical CNNs concerns the nature of the receptive
field associated with a feature map. While in the former both the
input image and the feature maps live in Z2, in the latter a feature
map is a signal defined on SO(3). Hence the value of a SO(3)
feature map at a certain location represents the filter response for a
specific rotation, not for a region in the input signal (a surface area
within a point cloud in our settings). In the following, we report
the key definitions and properties related to Spherical CNNs.

The Unit Sphere. S? can be defined as the set of points z € R3
such that ||z|| = 1. S? is a two-dimensional manifold, param-
eterized by the spherical coordinates o € [0, 27] (azimuth) and
B € [0, 7] (inclination).

Spherical Signals. A spherical signal is a continuous K -valued
function defined on S?, f : S? — R¥, K being the number of
channels.

Rotations. A rotation in three dimensions lives in a three-
dimensional manifold called Special Orthogonal Group, usually
denoted as SO(3). According to [23], a suitable parameterization
of SO(3) is given by the ZYZ-Euler angles, o € [0,27],5 €
[0,7] and v € [0,27], Rotations can be expressed by 3 X 3
matrices that preserve distance (i.e. | Rz|| = ||z||) and orientation
(det(R) = +1). If we represent the points in S? as 3D unit
vectors x, the matrix-vector product Rz rotates x by R.
Rotations of Spherical Signals. The definition of the spherical
correlation operation requires to define the rotation of a filter,
which is itself a spherical signal. Thus, [23] introduces the Lg
operator, that takes a spherical signal f and produces a rotated
function L f by composing f with the rotation R~

[Lrfl(z) = f(R™'2) (D

Spherical Correlation. Given a K -valued spherical signal f and
afilter 4, i.e. f,% : S? — R, and denoting the inner product on
the vector space of spherical signals as (1), f) [23], the spherical
correlation between them can be defined as:

K
Wx IR = (Lt ) = [ S B fela)de. @
k=1

This operation will be referred to hereinafter as S? correlation. As
Equation 2 can be computed for any R € SO(3), the output of a
spherical correlation is a signal living in SO(3). To further process
such a signal in a Spherical CNN one has to define a correlation
operation for SO(3) signals, which, in turn, requires introduction
of a rotation operator.

Rotation of SO(3) Signals. Similarly to Equation 1, given a K-
valued SO(3) signal h : SO(3) — R¥, and R, Q € SO(3), the
L g, operator rotates h by R:

[Lrh)(Q) = h(R™'Q). 3)

with R~ denoting the composition of rotations.

Rotation Group Correlation. Akin to Equation 2, the correlation
between a K-valued SO(3) signal, h, and filter, v, i.e. h, ¢ :
SO(3) — RX, can be defined as the inner product between the
signal and the rotated filter:

K
ko % B(R) = (L, f) = / SO U (RQM(Q)dQ. (4

SO(3) k1
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Fig. 1: Network Architecture and Training Workflow. The local patch around the given feature point is first converted into a discrete
Spherical Signal. The triplet associated with the Spherical signal reports the number of bins along the azimuth («), inclination (3) and
radial (d) coordinates. The Spherical signal is processed through a Spherical Encoder to obtain a rotation-equivariant patch descriptor.
The triplets associated with the encoder layers denote the input bandwidth, output bandwidth and number of channels, respectively. The
Plane Folding Decoder is an MLP that reconstructs the input patch by deforming a 2D grid according to the computed descriptor. The
pairs associated with the decoder layers denote the number of input and output units, respectively.

The integration measure d() is the invariant measure on
SO(3), which may be expressed in ZYZ-Euler angles as
dasin(B)dBdy/(87?). This operation will be referred to here-
inafter as SO(3) correlation.

Equivariance. Both S? (Equation 2) and SO(3) correlation
(Equation 4) are equivariant w.r.t. a 3D rotation, i.e. if the input
(either a Spherical or SO(3) signal, respectively) is rotated by
Q € SO(3), the output undergoes the same rotation. Formally,

given g(+), ¥(-), Q, R € SO(3):
[ % [Logl](R) = [Lo[v x g]l(R). 5)

Signal Flow. In Spherical CNNs, the input signal, e.g. an image
or, as it is the case of our settings, a point cloud, is first trans-
formed into a k-valued spherical signal. Then, the first network
layer (52 layer) computes feature maps by spherical correlations
(Equation 2). As the computed feature maps are SO(3) signals,
the successive layers (SO(3) layers) compute deeper feature
maps by SO(3) correlations (Equation 4). Due to equivariance
(Equation 5), if the input spherical signal rotates by @ € SO(3)
so do the outputs of all the network layers, i.e. the feature maps
computed by the first S layer as well as by the successive SO(3)
layers.

Computation of S? and SO(3) correlations. Correlations and
convolutions for Euclidean signals can be efficiently computed
by the Fast Fourier Transform. For signals living on S? and
SO(3) one can leverage on the Generalized Fourier Transform
(GFT), which is defined according to the representation theory of
groups [49], [50]. The GFT can be seen as a linear projection of
a function onto a set of orthogonal basis functions. For S2? and
SO(3) signals the basis functions are the Spherical Harmonics
and the Wigner D-functions, respectively [23]. In Spherical CNNs
the SO(3) correlation (Equation 4) is implemented by the SO(3)
Fourier Transform, known as SOFT, which, in turn, is computed
via the discrete formulation referred to as DSOFT [51]. This
entails sampling functions through a finite grid defined on a
chosen parametrization of SO(3). Thus, as proposed in [23],

the ZYZ-Euler angles, «, 8 and -y, are discretized into a grid of
2B x 2B x 2B bins, with B referred to as bandwidth. Along
the same line of reasoning, the S? correlation (Equation 2) is
computed via a discrete GFT, with the sampling grid required to
discretize functions defined on the spherical coordinates, azimuth
() and inclination () that parametrize the unit sphere .S 2. Further
information on the computation of discrete GFTs can be found in
[52], [53].

4 PROPOSED LEARNING FRAMEWORK

As anticipated in section 1, we propose to learn unsupervisedly a
local surface descriptor via an encoder-decoder architecture which,
peculiarly, deploys a Spherical Encoder, i.e. an encoder realized
through a Spherical CNN, in order to learn a rotation-equivariant
bottleneck. We start with providing an overview of our network
architecture and training workflow with the aid of Figure 1.

As required by Spherical CNNs, the input 3D patch around
the given feature point is converted into a discrete spherical signal
which is then fed into a spherical encoder consisting of multiple
layers. The first layer (brighter blue in Figure 1) computes S2
correlations while the following ones are SO(3) layers (darker
blue in Figure 1). As upon a 3D rotation of the input patch
the spherical signal undergoes the same 3D rotation, due to the
equivariance property of the feature maps calculated in a Spherical
CNN it follows that the low-dimensional representation computed
by the encoder is equivariant w.r.t. a 3D rotation of the input patch.
At training time, an ensemble of random points forming a 2D
grid is concatenated to the equivariant representation computed by
the encoder so to form the input to the decoding section of the
network (depicted in red in Figure 1)). This is realized as a plane
folding decoder [24], that is a Multi-Layer Perceptron (MLP) that
warps the 2D grid according to the information encoded into the
bottleneck in order to reconstruct the input 3D patch. The Chamfer
distance between the input and reconstructed patches provides the
loss function to train the whole network.



As customary in unsupervised learning through encoder-
decoder networks, the decoder is dismissed at inference time,
the low-dimensional representation computed by the encoder pro-
viding our rotation-equivariant patch descriptor. To pursue pose-
invariant descriptor matching, this equivariant representation is
canonicalized by applying a 3D rotation computed by an external
LRF algorithm.

In the following subsections, we provide more details on the
network architecture as well as the computation performed at both
training and inference time.

4.1 From Point Clouds to Spherical Signals

As discussed in section 3, the spherical correlation operator is
defined for signals living on the unit sphere and, thus, to process
a 3D patch by a Spherical CNN, the geometry around a feature
point has to be converted into a spherical signal. The approach
adopted in [18], [23] consists in projecting a 3D mesh onto an
enclosing discretized sphere using a raycasting scheme. However,
in our settings the input data are provided as a cloud of points in a
patch around the keypoint we wish to describe, not as a watertight
mesh. Similarly to [54], thus, we first express the 3D Euclidean co-
ordinates of the points in the given patch according to a spherical
coordinate system and then construct a quantized grid in this new
coordinate system. Accordingly, a cell in the grid is identified by
three quantized spherical coordinates («a/[i], B[j], d[k]) € S* x D,
where ai], 5[j] and d[k] represent the quantized azimuth, incli-
nation and radial distance, respectively. The K -valued spherical
signal, f : S — R is then built by encoding for each pair of
azimuth and inclination bins («i], []) the density of points for
all bins («[i], B[4],d[k]),k = 1,..., K laying along a radius of
the quantized sphere. As proposed in [54], the density is estimated
robustly with respect to quantization effects and, to consider the
non-uniform spacing in the spherical space, cells near the south or
north pole are wider in spherical coordinates. This process is ap-
plied to the neighbourhood of every keypoint p of the surface we
choose to describe: before being quantized in the spherical signal,
the Euclidean coordinates of the points in the neighbourhood p;
are expressed in a reference frame centered on the keypoint p to
achieve translation invariance, i.e. the coordinates to be quantized
are the translation-invariant coordinates p; = p; — p. Finally, we
wish to point out that the above described procedure is equivariant
w.r.t. a 3D rotation of the input up to quantization noise. Indeed,
if we extend the definition of the rotation operator Ly to point
clouds, it follows immediately that if the input point cloud rotates
by R, then the spherical signal rotates accordingly. Formally,

f(Lrz) = f(R™'z) = [Lpf](x) (6)

where

Lrpzr =R 'z )

is the rotation operator for point clouds.

4.2 Network Architecture

The procedure described in subsection 4.1 converts a set of 3D
points around a given keypoint into a K -valued signal defined on
S2. Thus, we need an S? correlation layer as the first layer of
our Spherical Encoder. Unlike the standard definition of Spherical
convolution [55], which outputs a signal on the sphere S2, we
rely on Equation 2, which outputs a signal defined on SO(3).
In fact, the use of a conventional convolution definition would
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have limited the network expressive capacity due to the symmetry
along the Z-axis of the learned filters [23]. To process the resulting
SO(3) feature map, we stack an ensemble of SO(3) correlation
layers, where the last one outputs the final equivariant feature
descriptor. The encoder should learn to compress the salient shape
information within the local neighborhood of the given keypoint,
P, into a compact representation so as to produce a robust
and distinctive descriptor. According to a popular unsupervised
learning procedure, we accomplish this by employing a decoder
capable of reconstructing the input neighbourhood starting from
the compressed representation computed by the encoder. The key
tool to realize learning via input-output reconstruction with point
clouds is given by the plane folding operator proposed in [24] and
[25]. Following [24], our decoder is an MLP that tries to deform
points in R? into surface points in R? according to the computed
descriptor. Let A be a set of points sampled in the unit square
[O7 1]2. Given a feature representation d for a 3D surface, we
concatenate the descriptor d with the sampled point coordinates
(as,ay) € A and then forward the concatenated vectors through
the fully-connected layers of the MLP, as shown in Figure 1.

4.3 Loss

Our loss minimizes the dissimilarity between the input and re-
constructed patches, both given as sets of 3D points. Purposely,
we rely on the Chamfer distance, that can assess the dissimilarity
between two sets of points. Let S be the set of 3D points belonging
to the input neighborhood and S* the set of points generated by
the decoder, the Chamfer distance can be formulated as follows:

* 1 : *
L(S,8%) = 3] §:xngg [[x = x*[|2+
xeS
1 ®
o min ||x* — x||2.
o 2

This symmetric formulation drives both the distance from S to S*
as well as that from S to S* to be small. The term miny ¢ g+ [|x—
x*||2 enforces that each 3D point x in the input patch has a nearby
matching 3D point x* in the reconstructed one, whereas the term
minyeg |[|[x* — x||2 constrains each point in the reconstructed
patch x* to lay close to a point x in the input one. In other words,
neither any portion of the input patch should be missing in the
reconstructed one nor the decoder should hallucinate regions not
present in the input.

4.4 Hyperparameters

As shown in Figure 1, the input patch is converted into a Spherical
signal discretized with bandwidth B = 24 (ie. 48 = 2 - 24
bins) along the azimuth and inclination coordinates, while we use
K = 4 bins along the radial dimension. Hence, the encoder is
fed with a 4-valued Spherical signal. Our spherical CNN consists
of an initial S? layer and four SO(3) layers. As discussed in
section 3, in Spherical CNNs correlation operations are computed
by the Generalized Fourier Transform, which requires signals to
be discretized according to a bandwidth parameter, B. For the
first S2 layer the input and output bandwidths are B = 24 (as
discussed above) and B = 16, respectively. Then, in each of the
four SO(3) layers, the input bandwidth is given by the output
bandwidth of the previous layer. As shown in Figure 1, we reduce
the signal bandwidth along the cascade of the four SO(3) layers,



the output bandwidths being B = 12, B = 8, B = 6 and,
in the the final layer, B = 4. All the correlation layers but the
last one have 40 feature maps (i.e. channels), while the last layer
features a single channel, i.e. our equivariant descriptor living in
SO(3). As the output of the last layer is a SO(3) feature map
with bandwidth B = 4, our descriptor consists of (2 - 4)% =
512 entries. In each layer, we apply BatchNorm step and ReLU
non-linearities. In subsection 6.3 we present the model selection
study that lead us to define the Spherical CNN design detailed in
this sub-section. As for the plane folding decoder, it consists of
four fully-connected layers, with number of input and output units
reported in Figure 1. We use BatchNorm and ReLU in the first
three layers, whilst we adopt tanh non-linearities in the output
layer. We trained the whole network with mini-batches of size
100 using ADAM [56] and a fixed learning rate of 0.001.

4.5 Test-Time Invariant Feature Descriptor

At test-time, descriptor matching has to be pursued invariantly
w.r.t. 3D rotations of the input clouds. As already pointed out,
unlike state-of-the-art methods that rotate input patches to bring
them into a canonical orientation, we apply the canonicalizing
rotations to descriptors, i.e. SO(3) feature maps computed from
unoriented input patches. Signals in SO(3) can be rotated by
remodulating the Wigner D-functions employed in their Gener-
alized Fourier Transform. A thorough treatment of the topic and
the mathematical details of this procedure can be found in [57].
Please, note that the dimensionality of the final descriptor stays
unchanged upon such a rotation. In a preliminary version of this
work [27] we investigated on two approaches to determine the
canonicalizing rotation. One tries to exploit the special properties
of Spherical CNNs to determine such a rotation by finding a
feature point, i.e. a repeatably detectable bin, within an SO(3)
feature map computed by the Spherical Encoder. The other relies
on deploying an off-the-shelf LRF estimation algorithm. In this
extended manuscript we focus on the latter approach as it provides
neatly superior results [27]. In particular, following the same setup
as in [27], we experiment with the LRF algorithm proposed in
[58], that we dub FLARE according to its publicly available PCL
[59] implementation.

5 EQUIVARIANCE IS WHAT You NEED

The main contribution of our work consists in proposing the first
rotation-equivariant learned descriptor for 3D keypoints. We argue
that this design choice yields several advantages, as validated by
the experiments reported in section 6. Thanks to the equivariance
property, we do not need to feed the network with rotation-
invariant representations at training time, as done in previous work
[9], [10], [13], and we can delay the canonicalization step to test
time, thereby achieving important benefits. First, in contrast to
existing proposals, not having to choose a specific LRF at training
time allows us to train the network from raw rather than pre-
processed input data. This better adheres to the likes of end-to-end
representation learning, a key success factor of the deep learning
paradigm. Secondly, by avoiding to canonicalize the training data
with a chosen algorithm we avoid injecting into the training
process the unavoidable mistakes the chosen algorithm shall make.
Indeed, it is well-known that LRF algorithms are far from perfect
and may behave differently on data acquired by different 3D
sensors as well as when dealing with different nuisances [19].
As a matter of fact, the domain shift issue is particularly critical
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when learning from 3D data because of the heterogeneous ac-
quisition techniques and sensing principles. Therefore, not being
tied to a specific LRF at training time enables us to choose the
most appropriate approach to obtain a canonical representation at
test time without having to retrain the network. This flexibility
endows our proposal with excellent generalization capabilities,
as demonstrated in the transfer learning experiments reported in
subsection 6.6. The reader may notice that within our framework
whom may perform test-time canolicalization either in the descrip-
tor space (our choice) or in the input space, obtaining equivalent
results up to quantization effects. In fact, as our descriptors are
SO(3) signals, they can be brought into a canonical orientation
by a 3D rotation operation (Equation 3).

In the following subsections, we provide more details re-
garding our choices on the design of the LEAD architecture. In
subsection 5.1 we demonstrate how an equivariant encoder can be
more effective than an invariant one when trained with unoriented
data. In subsection 5.2, we explore the reconstruction attainable
by plane folding decoders in the same scenario.

5.1 Equivariant encoder

In this subsection we wish to point out how equivariance is
not only distinct but, indeed, key to the effectiveness of our
method. As motivated so far, we aim at learning a 3D descriptor
unsupervisedly, i.e., by an encoder-decoder architecture, from raw
and unoriented training data. Thus, an interesting study concerns
exploring whether a standard encoder architecture, such as, for
instance, the popular PointNet architecture that consumes raw
3D coordinates, could be deployed in our framework in place
of the Spherical encoder. Due to the requirement of relying on
unoriented training data, with such an alternative design one may
pursue learning a rotation-invariant descriptor only by augmenting
the input data at training time by random 3D rotations. Thus,
we replace the Spherical encoder in the architecture illustrated
in Figure 1 with a standard PointNet and aim at learning a
rotation invariant embedding without applying a canonical ori-
entation to the input data, that is having the network learn such
invariance by observing randomly rotated versions of the same
neighborhood at training time. To verify whether the learned
descriptor has achieved invariance to rotation we measure the
distance between descriptors computed at the same keypoint under
different 3D rotations. Figure 2 compares a PointNet encoder,
trained on the 3DMatch dataset (presented in subsection 6.1) and a
Spherical encoder with randomly initialized weights. In fact, due
to equivariance being a built-in property of Spherical CNNs, it
is not necessary to train the Spherical encoder to perform this
study. We rotate a neighborhood around a random axis by an
increasing angle, whose value is reported along the horizontal
axis in Figure 2. For every rotation, we forward the rotated neigh-
borhood through a PointNet and Spherical encoder: the former
would compute an invariant descriptor, the latter an equivariant
bottleneck to be later oriented by a rotation. Hence, afterwards
computation, we rotate the output of the Spherical encoder by
the inverse of the applied rotation (simulating availability of a
perfect LRF algorithm). For both encoders we plot the distance
between the descriptor obtained from the rotated and the un-
rotated neighborhood. Figure 2 shows that PointNet cannot learn
an invariant descriptor in our unsupervised learning framework,
while the equivariant representation provided by a Spherical CNN
can achieve almost perfect invariance when properly rotated.
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Fig. 2: Comparison between a PointNet and Spherical encoder
when learning without supervision from unoriented data.

5.2 Plane folding decoder

Why, thus, the PointNet encoder fails in yielding an invariant
representation in our framework? The reason is that for plane
folding decoders, like AtlasNet or FoldingNet, to be able to re-
construct arbitrarily rotated input patches, 3D rotation information
must be encoded into the bottleneck. Indeed, should the encoder
produce an invariant bottleneck, the decoder would be given
no information to determine under which 3D rotation it should
reconstruct the input so to minimize the loss. Thus, to fulfill
the learning objective, the PointNet encoder entangles rotation
information into the bottleneck, which, therefore, as vouched by
Figure 2, is not rotation-invariant. Yet, unlike our equivariant
descriptor living in SO(3), one cannot apply a canonicalizing 3D
rotation to the PointNet bottleneck, namely the output of an MLP,
so to turn it into an invariant descriptor.

We found it worth investigating also on how would learning
proceed in our framework should we constrain the encoder bottle-
neck to be rotation-invariant. Spherical CNNs have been success-
fully exploited [18], [23], [54] to learn an invariant global shape
embedding for 3D Object Classification under random rotations.
To this end, a max-pooling layer is inserted between the chain
of §2-SO(3) correlation layers and the last fully-connected layer
performing classification, so as to select the strongest response in
each feature map regardless of the rotation under which the object
may appear. Indeed, recalling the analogy between standard and
Spherical CNNs, as in the former global max pooling provides
translation invariance, in the latter it does so for 3D rotations.
Hence, we slightly modify our Spherical encoder to obtain an
invariant feature descriptor by removing the last SO(3) correlation
layer, which yields the equivariant descriptor, and adding a max
pooling layer followed by a fully connected layer to expand the
codeword dimensionality to 512. In Figure 3, we compare the
reconstructions yielded by our framework when the decoder is fed
with either the equivariant or invariant bottleneck computed by
the Spherical encoder. Clearly, the AtlasNet [24] decoder cannot
converge to sensible reconstructions when no information about
the input rotation is incorporated into the latent space, i.e. when
the bottleneck is rotation invariant. Indeed, in this experimental
setting, the decoder is asked to output different reconstructions,
i.e. the rotated versions of a given input neighbourhood, based
on the same invariant representation. The last column of Figure 3
highlights how, in order to try to fulfill this one-to-many learning
objective, the decoder can only average out across all inputs,

i.e. it can output reconstructions that try to match in as much
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as possible all the possible rotations of the input, resulting in
cloud of points that do not resemble the input patches. This
is clearly an underfitting regime for our unsupervised learning
framework, which prevents learning distinctive representations of
the input patches. Thus, for all the reasons discussed above, to
learn via input-output reconstruction from unoriented point clouds
one needs an equivariant representation.

o D 3
A Tas
- o
.F
Input Equivariant Invariant

Fig. 3: Comparison between the reconstructions obtained when
using the Spherical CNN encoder to learn an equivariant versus
an invariant bottleneck. Results after 10K training iterations.

6 EXPERIMENTAL STUDY

According to the established experiment design in the field of
local 3D descriptors, in this section we consider pairwise surface
registration scenarios dealing with indoor and outdoor datasets
for which accurate ground-truth transformations between views
are available. We present an initial set of experiments aimed
at validating our design choices (Sec. 6.3). Then, we carry out
a comparative performance evaluation by considering LEAD as
well as the most prominent proposals concerning handcrafted and
learned descriptors.

6.1 Datasets

As for indoor data, we use the 3DMatch benchmark [8], which
is the de-facto standard for evaluation of learned 3D descriptors,
alongside its Rotated version proposed to assess upon invariance
to 3D rotation of learned methods in [13]. As for outdoor data, we
rely on the ETH dataset [26], which has been recently deployed in
[9] to evaluate how well learned descriptors trained on 3DMatch
can generalize to different sensing modalities and environments.
Both datasets are organized into a collection of scenes, where
a scene consists in a set of 2.5D scans, each depicting a small
fraction of the whole environment and therefore referred to as
fragment.

3DMatch includes 62 scenes taken from the publicly available
Analysis-by-Synthesis [60], 7-Scenes [61], SUN3D [62], RGB-
D Scenes v.2 [63] and Halberand Funkhouser [64] datasets.
According to the standard protocol adopted to evaluate learned
descriptors, we train and validate on 54 scenes, leaving the
remaining 8 scenes for testing. The point clouds available for
training and testing are obtained by fusing 50 consecutive depth
frames sensed with an RGB-D sensor [13]. The Rotated 3DMatch
benchmark is generated by randomly rotating the fragments of the
test split in order to sample the space of 3D rotations [13].



The ETH dataset [26] is a challenging outdoor dataset fea-
turing 8 sequences of sparse and dense vegetation (e.g., trees
and bushes) acquired by a laser scanner under seasonal changes.
Similarly to [9], we consider only 4 scenes, namely: Gazebo-
Summer, Gazebo-Winter, Wood-Autumn and Wood-Summer. We
realize the setup proposed in [13]: each fragment is downsampled
by a voxel grid filter with a leaf of 2 cm and surface normals are
estimated using a 17-point neighborhood [65].

Regarding the radius of the supporting patches to compute
descriptors, akin to [13] and [9] we use 0.3 m with 3DMatch
and 1.0 m with ETH, so as to handle the different scales of the
represented geometries.

6.2 Methodology

We follow the standard evaluation protocol adopted in previous
works [9], [13], [15], [32]. For each scene, we consider all the
fragment pairs which exhibit at least 30% overlap and describe the
5000 uniformly sampled keypoints per fragment made available
by the authors of [8] (3DMatch) and [9] (ETH). Correspondences
for each pair of fragments are established by finding reciprocal
nearest neighbours in the descriptor space [8]. Once correspon-
dences are found, we compute metrics, such as Recall, Relative
Rotation Error and Relative Translation Error, aimed at evaluating
the effectiveness of a descriptor when deployed as a component
within a robust pairwise registration pipeline.

The Recall is defined as the percentage of fragment pairs for
which the registration transformation is likely to be estimated
correctly by a robust pipeline [13]. According to this metric, a
pair of fragments can be registered correctly if the percentage
of correctly matched keypoints is higher than an inlier ratio
threshold, 72, customarily set to 5%. A match between two
keypoints is considered correct if, upon application of the ground-
truth transformation between the fragments, their distance is less
than a threshold 74, e.g. 10 cm.

For those pairs of fragments which can be correctly registered
according to the above definition of Recall, the Relative Rotation
Error (RRE) and Relative Translation Error (RTE) measure the
accuracy of the 6 DOF registration transformation estimated by
a standard RANSAC-based pipeline given the set of matches
provided by the descriptor. Hence, given the estimated (R, T") and
ground-truth (R*,T™) rotation and translation, the RRE and RTE
are calculated as follows:
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RRE = arccos (W}M)

2

RTE = |T —T*|; (10)

Moreover, by considering only the keypoints detected in the
overlap area, we compute the average percentage of correct cor-
respondences per fragment pair, which is a task-agnostic perfor-
mance figure directly related to the effectiveness of the descriptor
matching process.

As for the comparison w.r.t. other methods, we consider
the popular handcrafted descriptors: FPFH [2], Spin Images [!],
SHOT [5] and USC [3]. Besides, we compare LEAD against
the current state-of-the-art in learned 3D feature descriptors. In
particular, we consider 3DMatch [8], CGF [10], PPFNet [12],
3DSmoothNet [9], FCGF [14], D3Feat [15] and Li et al. [32] as
supervised methods, while PPFFoldNet [13], 3DPointCaps [33]
and the preliminary formulation of our method [27], referred to
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here as Ours ICCV, as unsupervised methods. For handcrafted
descriptors, we used the implementations available in the PCL
library [66]. As regards learned descriptors, we report the results
provided by the authors in their respective papers for the 3DMatch
(Table 3) and 3DMatch rotated (Table 4) benchmarks, while on
ETH (Table 7) we use the publicly available code provided by
the authors where the results are not reported in their papers. As
for D3Feat, which may jointly learn a 3D keypoint detector and
descriptor, to establish a fair comparison w.r.t. the other methods
we only evaluate descriptors on the sets of randomly sampled
keypoints defined in the 3DMatch and ETH benchmarks.

6.3 Model Selection

As described in [23], an important choice in the design of a
Spherical CNN deals with the type of filters used to perform corre-
lations. In particular, one may rely on two types of spherical grids,
referred to as near identity and equatorial grids. The former defines
spatially localized filters initialized at the north pole and rotated
over the sphere via the action of S2/SO(3) correlations, the
latter ring-shaped kernels localized around the equator. Besides,
other key hyper-parameters of Spherical CNNs concern the input
bandwidth and number of channels (i.e., filters) in each SO(3)
layer as well as the number of layers. In our preliminary work [27]
we defined and tested a Spherical CNN architecture (denoted as
A in Table 1) based on equatorial filters and 3 SO(3) layers, with
(input bandwidth, number of channels) equal to (24,40), (24,40)
and (4,1), respectively. We present here an experimental study
aimed at selecting the optimal configuration of the key hyper-
parameters of our Spherical CNN so as to improve both accuracy
and speed compared to our previous design.

As detailed in Table 1, we consider 14 architectures, including
our previous proposal (A), by varying the type of spherical grid,
number of SO(3) layers, input bandwidth and number of channels
per layer. Each of these Spherical CNN architectures is used
as encoder to train our encoder-decoder network (Figure 1) on
the 3DMatch dataset. Then, all the 14 learned descriptors are
evaluated on the test split of 3DMatch by considering a reduced
number of keypoints, i.e. 500 instead of 5000. To select the
optimal architecture, we compute both the average Recall across
the test scenes as well the computation time required for a forward
pass of the encoder on a mini-batch of 25 samples. As we are
interested in a comparative analysis relative to our previous design
[27], we consider as time unit the computation time yielded by the
architecture denoted as A in Table 1.

The last two columns in Table 1 report the two performance
metrics. We can notice a clear trend: the key parameter to obtain
significant speed-ups is the bandwidth used to discretize the rota-
tion manifold, as shown by the clear gap between architectures A
to E, which uses the same bandwidth used in [27], and the others,
which decrease it while moving deeper into the network. With the
new bandwidth scheme, near-identity filters achieve higher recall,
as vouched for instance by architecture I versus H or N versus M.
Yet, as shown in the Table, none of the considered architectures
can optimize both metrics. Hence, in Figure 4 we report the Pareto
analysis concerning our model selection experiment. Accordingly,
focusing on the data laying on the Pareto frontier, we select the
architecture refereed to as N as our preferred trade-off between
accuracy and speed. Indeed, only architectures N and D can yield
a higher Recall than our previous design A, but while D is slower
than A, N turns out much faster. Therefore, in the experiments
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Fig. 4: Scatter plot of the model selection experiment. The light
gray area highlights the Pareto frontier.

discussed hereinafter we will use the Spherical Encoder denoted
as N in Table 1. Indeed, as anticipated in subsection 4.4, this is the
Spherical Encoder architecture depicted in Figure 1.

TABLE 1: Model selection experiment on the 3DMatch bench-
mark (500 keypoints): considered architectures and associated
performance metrics. All architectures have the same number of
channels (reported in the fifth column) in all but the last layer,
which consists in a single channel. Best values of Recall and
normalized time are shown in bold.

Grid SO(3) Input

Network Eq. NI layers BW Channels Recall Time
A [27] v 3 [24, 24, 4] 40 0.924 1.000
B v 3 [24, 24, 4] 40 0.922 1.025

C v 3 [24, 24, 24] 40 0.922 1.238

D v 3 [24, 24, 24] 40 0.929 1.253

E v 2 [24, 24] 40 0919 1.025

F v 3 [12, 8, 6] 40 0.922 0.636

G v 3 [16, 12, 8] 60 0.899 0.679

H v 3 [16, 12, 8] 40 0915 0.632

1 v 3 [16, 12, 8] 40 0.924 0.634

J v 3 [16, 12, 8] 30 0.902 0.611

K v 3 [16, 12, 8] 20 0916 0.587

L v 2 [16, 8] 40 0.920 0.604

M v 4 [16, 12, 8, 6] 40 0.908 0.637

N (LEAD) v 4 [16, 12, 8, 6] 40 0.929 0.632

6.4 Equivariance vs. Invariance

As pointed out in section 1 and discussed in section 5, a dis-
tinctive choice underpinning our proposal concerns learning from
unoriented as opposed to canonicalized 3D patches. To validate
this choice, in our architecture (Figure 1) we now consider as
encoder the same three layers PointNet as in section 5 and
train the whole network on 3DMatch by feeding it with patches
rotated according to the canonical orientation computed by an LRF
algorithm. Thereby, the PointNet encoder can learn a rotation-
invariant descriptor, though, according to our intuition, the learn-
ing process may turn out sub-optimal due to the non-ideality of the
chosen canonicalization algorithm. To compare fairly the invariant
descriptor and LEAD, at training time we fed the PointNet encoder
with patches canonicalized by the same algorithm (FLARE [58])
we rely upon to rotate our equivariant descriptor at test time
(subsection 4.5).

Table 2 reports the average Recall yielded by LEAD and the
invariant descriptor across the test scenes of the 3DMatch and
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3DMatch Rotated datasets. These results show that LEAD can
provide substantially better performance, the margin being almost
10% on both datasets, and validate our intuition on the benefits
attainable by learning end-to-end an equivariant descriptor from
unoriented data in order to avoid injecting noise into the learning
process in the attempt of pursuing invariance at training time.

TABLE 2: Learning a rotation equivariant vs. rotation-invariant
descriptor: average Recall on 3DMatch and 3DMatch Rotated.

Equivariant (LEAD)  Invariant
3DMatch 0.9584 0.8680
3DMatch Rotated 0.9601 0.8741

6.5 Evaluation on the 3DMatch Benchmark dataset

Table 3 reports the Recall measurements dealing with the compar-
ative evaluation on the 3DMatch benchmark. Firstly, these results
confirm the findings of the model selection experiment (subsec-
tion 6.3) due to LEAD turning out more accurate than our previous
proposal [27] also in the standard evaluation set-up defined for
3DMatch, i.e. testing with the given 5000 keypoints. Our proposal
outperforms all previous unsupervised proposals, LEAD yielding
remarkably higher accuracy than both PointCaps3D [33] and PPF-
FoldNet [13]. As the authors of [33] provide their results, and
those yielded by PPFFoldnet alike, by testing on 2000 keypoints,
we run LEAD also in this setting (first three rows in Table 06):
our descriptor outperforms both PointCaps3D and PPFFoldnet by
a large margin, i.e. ~ 16% and 27%, respectively. The large gap
(=~ 24%) between LEAD and PPFFoldnet is confirmed by the
measurements dealing with the standard 3DMatch setting (5000
keypoints) reported in other rows. Finally, with an average Recall
of 95.84% LEAD outperforms also most of the recent supervised
approaches, i.e. FCGF [14], D3Feat [15] and 3DSmoothNet [9],
and it offers the runner-up performance of all tested methods
on the standard benchmark for this field, surpassed only by the
current state of the art supervised 3D descriptors proposed very
recently by Li et al. [32]. It is also interesting to note how
classical handcrafted descriptors, leaded by SHOT [5] and USC
[3], can yield competitive results compared to descriptors learned
unsupervisedly, like PointCaps3D and PPFFoldnet, as well as
earlier proposals based on supervised learning such as 3DMatch,
CGF and PPFNet.

In Figure 5, we plot the average Recall as a function of the
inlier ratio threshold (72) used to establish whether a fragment
pair may be aligned [13]. Thus, as we move towards the right of
the horizontal axis the registration task set forth by the experiment
gets more challenging as any given descriptor has to deliver more
correct correspondences for a pair of fragments to be considered as
aligned. Figure 5 shows that LEAD compares favourably w.r.t. all
previous methods across the whole range of inlier ratio thresholds,
again with the exception of Li et al. [32]. It is also worth
highlighting how the performance gain provided by LEAD w.r.t.
3DSmoothNet [9], FCGF [14] and D3Feat [15] gets larger as the
registration task gets more challenging. In particular, at the highest
inlier ratio, which requires matching correctly at least 20% of the
extracted keypoints, LEAD can yield a Recall about 4% higher
than D3Feat, 8% higher than 3DSmoothNet and 12 % higher than
FCGF [14].

In Table 4 we report the results dealing with the rotated
3DMatch benchmark [13]. As expected, while earlier learned



TABLE 3: Results on the 3DMatch benchmark. Test data are from SUN3D [

Best result on each column highlighted in bold.
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], except for Kitchen data which is from 7-scenes [61].

#points | learned | unsupervised | Kitchen Homel Home?2 Hotell Hotel2 Hotel3  Study MIT Lab  Average
PPFFoldNet 2K v v 0.7352 0.7564 0.6250  0.6593  0.6058  0.8889  0.5753 0.5974 0.6804
PointCaps3D 2K v v 0.8518 0.8333 0.7740  0.7699  0.7308  0.9444  0.7397 0.6494 0.7867
LEAD 2K v v 0.9822 0.9679 0.9087 0.9956  0.9519  0.9815 0.9281 0.8961 0.9515
FPFH 5K 0.7391 0.7885 0.6442 08142  0.7115  0.8889  0.7432 0.7013 0.7539
SHOT 5K 0.8893 0.8974 0.8221 09336  0.8750  0.8889  0.8630 0.8312 0.8751
SI 5K 0.6561 0.7564 0.6731 0.6770  0.6346  0.7407  0.4692 0.4545 0.6327
UsC 5K 0.9308 0.9103 0.7788 0.9204  0.8462  0.8889  0.8664 0.8052 0.8684
CGF 5K v 0.4605 0.6154 0.5625 0.4469  0.3846  0.5926  0.4075 0.3506 0.4776
3DMatch 5K v 0.5810 0.7244 0.6154 05442  0.4808 0.6111 0.5171 0.5065 0.5726
PPFNet 5K v 0.8972 0.5577 0.5913 0.5796  0.5769  0.6111  0.5342 0.6364 0.6231
3DSmoothNet 5K v 0.9700 0.9550 0.8940 09650 09330 09820  0.9450 0.9350 0.9474
FCGF 5K v 0.9860 0.9620 09330  0.9780  0.9420  0.9820  0.9350 0.8960 0.9518
D3Feat 5K v 0.9802 0.9808 0.9038 09779  0.9231 0.9815  0.9589 0.9221 0.9535
Liet al. SK v 0.9940 0.9872 0.9470  0.9960 1.0000 1.0000  0.9550 0.9221 0.9750
PPFFoldNet 5K v v 0.7866 0.7628 0.6154  0.6814  0.7115  0.9444  0.6199 0.6234 0.7182
Ours ICCV 5K v v 0.9802 0.9615 0.8942 09823 09519 09815 09144 0.8701 0.9420
LEAD SK v v 0.9901 0.9808 0.9135 0.9960  0.9808  0.9815  0.9418 0.8831 0.9584

TABLE 4: Results on the rotated 3DMatch benchmark. Test data are from SUN3D [

[61]. Best result on each column highlighted in bold.

], except for Kitchen data which is from 7-scenes

#points | learned | unsupervised | Kitchen Homel Home?2 Hotell Hotel2 Hotel 3 Study  MIT Lab  Average
PointCaps3D 2K v v 0.8498 0.8525 0.7692  0.8141  0.7596  0.9259  0.7602 0.7272 0.8073
PPFFoldNet 2K v v 0.7352 0.7692 0.6202  0.6637  0.6058 09259 0.5616 0.6104 0.6865
LEAD 2K v v 0.9862 0.9744 0.8942 09956 09615 09815 0.9315 0.8571 0.9478
FPFH 5K 0.7451 0.7949 0.6587 0.8142  0.7212  0.9259  0.7260 0.7530 0.7674
SHOT 5K 0.8794 0.8910 0.8317 0.9425  0.8654 09074  0.8493 0.8312 0.8747
SI 5K 0.6502 0.7628 0.6635 0.6903  0.6635  0.7222  0.4692 0.4935 0.6394
USC 5K 0.9170 0.9103 0.7548 0.9292  0.8558  0.9074  0.8836 0.8571 0.8769
CGF 5K v 0.4466 0.6667 0.5288 0.4425 04423  0.6296  0.4178 0.4156 0.4987
3DMatch 5K v 0.0040 0.0128 0.0337 0.0044  0.0000  0.0096  0.0000 0.0260 0.0113
PPFNet 5K v 0.0020 0.0000 0.0144  0.0044  0.0000  0.0000  0.0000 0.0000 0.0026
3DSmoothNet 5K v 0.9720 0.9620 09090 09650 09230  0.9815  0.9452 0.9351 0.9491
FCGF 5K v 0.9783 0.9744 0.9183 09735 09712 09815  0.9452 0.8831 0.9532
D3Feat 5K v 0.9684 0.9744 0.8846 09735 09327 09815  0.9486 0.9610 0.9531
Liet al. SK v 0.9921 0.9679 0.9375  0.9956 0.9904  0.9815  0.9486 0.9351 0.9686
PPFFoldNet 5K v v 0.7885 0.7821 0.6442  0.6770  0.6923  0.9630  0.6267 0.6753 0.7311
Ours ICCV 5K v v 0.9763 0.9679 0.8894 09779 09615 09815 09110 0.8442 0.9387
LEAD 5K v v 0.9921 0.9744 0.8990  0.9956 0.9712  0.9815  0.9452 0.9221 0.9601
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Fig. 5: Average Recall while varying the inlier ratio ratio thresh-
old. The measurements dealing with learned descriptors are either
available in the original papers or were kindly provided to us
by the authors. The results for handcrafted descriptors have been
computed by the implementations available in PCL [66].

descriptors (3DMatch, PPFnet) not geared to handle pose varia-
tions exhibit a dramatic performance drop, all rotation-invariant
methods yield results quite similar to those shown in Table 3. Our
equivariant descriptor oriented at test time by FLARE [58] can
now provide performance very close to Li et al., the difference in
average Recall turning out less than 1%

In Table 5 we report the RRE (degrees) and RTE (meters)
as defined in subsection 6.2. As errors are computed only on
the fragment pairs actually registered by a method, we consider
only those methods that succeed in registering at least 80% of
all the fragment pairs according to the Recall figures shown in
Table 3. This avoids over-rewarding methods that tend to register
mostly the “easy” (i.e. featuring a large overlap) pairs. The results
in Table 5 show that Li et al. is the most accurate method
while still being able to register the highest number of pairs.
Yet, LEAD, in spite of its unsupervised nature, outperforms in
terms of both accuracy and number of registered pairs all other
learned descriptors which rely on supervision. It is also worth
noticing that SHOT and the previous formulation of our proposal
can deliver better accuracy than LEAD, though based on smaller
sets of registered pairs.

As pointed out in subsection 6.2, a more direct assessment
of the effectiveness of the descriptor matching process may be
achieved by measuring the percentage of correct correspondences



TABLE 5: Registration errors (RRE in degrees, RTE in meters) for methods yielding at least 80% Recall on 3DMatch. The average

number of registered pairs is also reported in the last column. Best results are highlighted in bold.

11

Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study MIT Lab Average

RRE RTE | RRE RTE | RRE RTE | RRE RTE | RRE RTE | RRE RTE | RRE RTE | RRE RTE | RRE RTE Pairs
SHOT 224 006 | 522 0.17 | 505 0.18 | 2.10 0.07 | 398 0.12 | 422 0.08| 465 0.15]2.64 0.10]3.76 0.12 182
Uusc 382 0.09 201 0.07 ]| 587 0.17 474 013|859 025 352 0.06 | 650 022|508 0.10 502 0.14 178
3DSmoothNet | 243  0.06 | 5.46 0.18 | 3.06 0.12 | 1.67 0.06 | 297 0.12 | 6.65 0.08 | 5.44 0.17 | 6.13 025 | 423 0.13 194
FCGF 223 007|260 0.11| 694 0.15]224 007|384 0.08| 721 0.14| 671 025|491 021 | 459 0.14 194
D3Feat 273 0.10 | 564 0.18 | 10.68 0.31 | 2.61 0.09 | 335 0.12 1679 026 | 7.75 025|985 030|743 020 195
Li et al. 213 0.06 | 1.80 0.07 | 278 0.14 | 1.77 0.07 | 431 0.12 | 498 0.08 | 3.27 0.12 | 320 0.12 | 3.03 0.10 198
Ours ICCV 285 0.08 | 248 0.09 | 3.77 0.13 [ 2.03 007|288 0.09| 694 0.10|3.62 0.13 239 0.09 | 337 010 190
LEAD 287 0.08 | 445 0.14 | 450 0.16 | 2.04 0.07 | 452 0.14 | 5.17 0.09 | 464 0.17 | 3.02 0.10 | 3.90 0.12 196

per fragment pair, reported in Table 6. The Table does not include
PPFNet, PPFFoldNet and PointCaps3D as these figures are not
provided in the papers and the code is not publicly available. These
results show how Li et al. can provide a significantly larger num-
ber of good correspondences per fragment pair. However, LEAD
and D3Feat turn out basically on-par as second-best methods,
outperforming all other methods by a large margin.

TABLE 6: Percentage of correctly matched keypoints per fragment
pair on 3DMatch. Best result in each column are highlighted in
bold.

Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study MIT Lab Average

FPFH 0.1663  0.2370 0.2192 0.1604 0.1524 0.1983 0.1068 0.1348 0.1719
SHOT 0.2549 0.3272 0.2981 0.2643 0.2184 0.2549 0.1935 0.2309 0.2553
SI 0.1016 0.1207 0.1379 0.0903 0.0762 0.0930 0.0445 0.0562 0.0900
usc 0.3330  0.4043 0.3655 0.3429 0.2546 0.3051 0.2494 0.2638 0.3148
CGF 0.1125 0.1418 0.1482 0.0840 0.0993 0.1627 0.0549 0.0667 0.1088
3DMatch 0.0881 0.1192 0.1227 0.0661 0.0668 0.0777 0.0601 0.0645 0.0831
3DSmoothNet 0.3279 0.4286 0.3822 0.3503 0.3350 0.4226 0.3000 0.3361 0.3603
FCGF 02593 0.3011 0.2942 0.2919 0.2915 0.3169 0.2417 0.3171  0.2892
D3Feat 0.3436  0.4608 0.4296 0.3915 0.3823 0.4599 0.3555 0.4160 0.4049
Lietal 0.4265 0.4963 0.4817 0.5104 0.4781 0.5268 0.3703 0.3864 0.4596
Ours ICCV ~ 0.3374 0.4111 0.4010 0.3706 0.3303 0.3617 0.2767 0.3027  0.3489
LEAD 0.4229 0.4695 0.4576 0.4510 0.3940 0.4115 0.3220 0.3367 0.4081

6.6 Evaluation on the ETH dataset

Here we evaluate descriptors in an outdoor scenario and focus on
the ability to generalize to new environments, which we argue to
be key for learned 3D descriptors. Indeed, in practical settings, one
would wish to train on a certain, possibly large, data corpus and get
a model that could be effectively deployed on a variety of novel
target datasets. In particular, it is so when addressing pairwise
registration, i.e. the reference task to evaluate 3D descriptors, by
models learned through supervision: should the ground-truth poses
between views needed to train the descriptor be available in the
target dataset, there would be no need to perform any pairwise
registration on that dataset.

Hence, in this subsection we evaluate learned 3D descriptors
by a transfer learning experiment: we get the models trained on
3DMatch and test them on the ETH dataset. Akin to Table 6
we do not consider PPFNet, PFFFoldNet and PointCaps3D due
lack of reported data and unavailability of code. For the sake of
completeness, we report also the results provided by handcrafted
descriptors. The Recall figures yielded by the considered methods
are collected in Table 7. When applied to unseen data lacking
any ground-truth poses, the setting most likely to be faced in a
real registration application, LEAD delivers by far the best per-
formance, i.e. 97.5% average recall, surpassing all other methods
by vast margins. We deem it worth pointing out, in particular,
how the margin is as high as 17.6% compared to Li et al., the
method which provides the best performance on 3DMatch, and

about 18.5% w.r.t. 3DSmoothNet. On the other hand, the other two
learned descriptors showing excellent performance on 3DMatch,
namely FCGF and D3Feat, cannot generalize effectively to the
new environments set forth by ETH dataset. Interestingly, these
methods try to learn their invariance to rotations via data aug-
mentation at training time, which further validates our intuition
on the limitations of such an approach compared to theoretical
equivariance of the descriptor.

TABLE 7: Recall on the ETH dataset. Best result in each column
shown in bold.

Gazebo Wood
Method Summer Winter Summer Autumn Average
FPFH 0.3860 0.1420 0.1480  0.2080  0.2210
SHOT 0.7450 0.4530 0.6320 0.6170 0.6118
SI 0.6957 0.3979 0.5520 0.5043  0.5375
UscC 0.7065 0.2872 0.6160 0.6348 0.5611
CGF 0.3750 0.1380 0.1920 0.1040  0.2023
3DMatch 0.2280 0.0830 0.2240 0.1390 0.1685
3DSmoothNet 09130 0.8410 0.7280 0.6780  0.7900
FCGF 0.2554 0.1661 0.2348  0.3040 0.2410
D3Feat 0.4570 0.2390 0.1300 0.2240  0.2620
Li et al. 0.8530 0.7200 0.8400 0.7830  0.7990
Ours ICCV 0.6739 0.4844 0.5920 0.5304 0.5702
LEAD 0.9239 09862 0.9913 1.0000 0.9753

Similarly to subsection 6.5, in Table 8 we report the percentage
of matched keypoints per fragment pair, while in Table 9 the
RRE (degrees) and RTE (meters) for methods that can register
at least 70% of the fragment pairs according to the Recall figures
in Table 7.

TABLE 8: Percentage of correctly matched keypoints per fragment
pair on the ETH dataset. Best result in each column highlighted in
bold.

Gazebo Wood

Method Summer Winter Summer Autumn Average
FPFH 0.0453 0.0235 0.0212 0.0254 0.0289
SHOT 0.1170 0.0781 0.0824 0.0980 0.0939
SI 0.1000 0.0621 0.0772 0.0917 0.0828

uscC 0.1907 0.0602 0.1509 0.1543 0.1391

CGF 0.0511 0.0250 0.0212 0.0241 0.0304
3DMatch 0.0308 0.0115 0.0206 0.0317 0.0236
3DSmoothNet 0.1795 0.1267 0.0959 0.1147 0.1292
FCGF 0.0451 0.0252 0.0405 0.0320 0.0357
D3Feat 0.0664 0.0384 0.0234 0.0281 0.0391

Lietal. 0.1452 0.1040 0.1023 0.1281 0.1199
Ours ICCV  0.1041 0.0753 0.0692 0.0825 0.0828
LEAD 0.1654 0.1380 0.1360 0.1558 0.1488
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Fig. 6: Registration results on the 3DMatch Benchmark after RANSAC.

TABLE 9: Registration errors (RRE,RTE) for methods yielding at
least 70% Recall on ETH. The average number of registered pairs
is also reported in the last column. Best results highlighted in bold.

Gazebo Wood Average

Method Summer Winter Summer | Autumn 8
RRE RTE| RRE RTE|RRE RTE|RRE RTE|RRE RTE Pairs
3DSmoothNet| 1.52 0.07[30.82 0.86] 1.38 0.38[1.06 0.20| 8.70 0.38 145
Lieral. 20.49 0.50(43.12 1.19/0.88 0.05|1.06 0.09|16.39 0.46 140
LEAD 1.29 0.05(35.00 0.99|0.74 0.10|0.90 0.08| 9.48 0.31 174

TABLE 10: Point cloud density experiment on 3DMatch. We test
LEAD trained on uniformly sampled clouds at 2 ¢cm on denser (0.5
and 1.0 ¢m) and sparser (3.0 and 4.0 c¢m) versions of the test set.

Sampling leaf radius (cm)  Average Recall — Recall decay
0.5 0.9547 0.0037
1.0 0.9499 0.0085
2.0 0.9584 -
3.0 0.9421 0.0163
4.0 0.9398 0.0186

Table 8 vouches again for the superiority of LEAD w.r.t.
the other two learned descriptors that can withstand the domain
change set forth by the transfer learning experiment, namely Li et
al. and 3DSmoothNet. As for registration accuracy (Table 9), we
argue that LEAD compares favourably to the above methods since
it yields the lowest average translation error and almost the same
rotation error (+0.78 degrees) as 3DSmoothNet in spite of a much
larger number or registered pairs.

6.7 Robustness to cloud density variations

This section explores LEAD’s robustness against cloud density
variations. In particular, we test the network trained on the
3DMatch training set uniformly sampled with 2cm radius, i.e. the
same network trained for the previous experiments, on different
versions of the test set, comprising either denser (0.5 and lem
radius) or sparser clouds (3 and 4cm radius). In Table 10 we
report the results, which shows the robustness of LEAD to this
nuisance.

6.8 Computation time

We measure the run time of our algorithm on a system equipped
with an 17 3.2 GHz CPU, an RTX 2080Ti GPU and 64 GB of

RAM. On this hardware platform, the average keypoint descrip-
tion time is 5.30 ms, of which the radius search to collect the
neighbours in the patch takes 0.09 ms, the creation of the Spherical
signal 1.35 ms and the inference time on GPU 3.87 ms. This time
is comparable to the figures reported in literature for 3DMatch
[8] and 3DSmoothNet [9], that is 5.0 and 4.6 ms respectively.
Conversely, much shorter description times have been reported for
other proposals like PPF-FoldNet [13] (0.794ms), PointCaps3D
[33] (1.208 ms) and FCGF [14] (0.009 ms). We believe that this
paper has demonstrated solidly the superior effectiveness attain-
able by LEAD compared to the above-mentioned more efficient
methods. In particular, despite the very remarkable speed, FCGF
seems to struggle to generalize when used in transfer learning
scenarios, a quite desirable trait in practical scenarios.

6.9 Qualitative results

To visually assess upon the quality of the pairwise registrations
yielded by the considered methods, in this section we show some
qualitative results dealing with the 3DMatch (Figure 6) and ETH
(Figure 7) datasets. Here we compare LEAD to two descriptors
learned supervisedly, i.e. 3DMatch [8], as a baseline method,
and 3DSmoothNet [9], a more recent approach that can deliver
excellent performance on both datasets. Figure 6 and Figure 7
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Fig. 7: Registration results on the ETH Benchmark after RANSAC.

highlight how LEAD produces very correct alignments that, in
general, look more similar to the given ground-truths, especially
in transfer learning settings (Figure 7).

7 CONCLUSIONS

We have presented LEAD, an effective methodology to learn a
local 3D descriptor from raw point cloud data without supervision.
Differently from the classical path taken to learn descriptors, we
seek invariance to viewpoint changes only at test time, and learn
instead a rotation equivariant representation at training time, by
leveraging Spherical CNNs. Learning an equivariant descriptor
frees ourselves from the need to choose a specific invariant
input representation or to resort to data augmentation, as done
in previous work to achieve invariance to viewpoint changes.
Moreover, LEAD can be conveniently learned in an unsupervised
framework. We empirically validated how our innovative design
decision results in a very effective descriptor, which outperforms
by a large margin all unsupervised proposals and most of the
supervised approaches, all of which deployed one of the other
two alternatives to achieve viewpoint invariance. We also provide
a thorough study on the impact of different design decisions for
the spherical encoder, discovering an architecture that is faster and
more effective than the one used in the preliminary version of our
work [27].

The ideas and results presented in this paper let us believe
that it would be worth investigating how Spherical CNNs may be
deployed to build a complete feature matching pipeline without
relying on an external LRF. Indeed, our concurrent work shows
how Spherical CNNs can be effectively deployed also to learn to
rotate raw point clouds so to achieve viewpoint invariance [67].

Hence, the capability of operating on the SO(3) domain could
be interestingly leveraged to develop a data-driven solution to
jointly learn a canonical orientation alongside a local 3D feature
descriptor. As a further extension, it will be worth to investigate
how to deploy a recent improvement in the space of Spherical
CNNE, referred to as Icosahedral CNNs [68], to speed-up LEAD
by reducing the computation time of spherical correlations.
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