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Abstract

In this paper we consider non-autonomous quasilinear elliptic problem

{

−∆pu = λ|x|δf(u) in B1(0)

u = 0 in ∂B1(0),

where f : R → [0,∞) is a nonnegative C1−function with f(0) = 0, f(U) = 0 for some U > 0, and f

is subcritical in 0 and in U with respect to the critical exponent. Assuming some hypotheses at the
zeros and at infinity we study existence and multiplicity of positive radial solutions with respect to
the parameter λ. In addition, we study the bifurcation diagrams with respect to the maximum over
the eventual solutions and the parameter λ > 0.

1 Introduction

This article is devoted to the study of positive radial solutions of the following semilinear elliptic problem

{

−∆u = λ|x|δf(u) in B1(0)

u = 0 in ∂B1(0),
(1)

where | · | denotes the usual norm in R
n, n > 2, δ > −2, B1 is the unit ball, and f is a C1 function such

that f(0) = 0, f(U) = 0 for some U > 0, and it is either linear or super-linear in u for small values.
In the case f(u) = |u|p−1u, where p > 1 equation (1) is traditionally called the Hénon (resp., Hardy or
Lane-Emden) equation for δ > 0 (resp., δ < 0, δ = 0).

Concerning the δ > 0 case, in 1973, M. Hénon [19] introduced the equation (1) in the context of a
concentric shell model used to investigate numerically the stability of spherical steady states of stellar
systems with respect to spherical disturbances. Since then the equation is called in the literature as
Hénon equation. Later, in 1982, W. M. Ni [28] wrote the first rigorous study, where he showed that
the presence of the radial weight |x|δ affects the critical exponent. As a matter of fact, it modifies the

Pohozaev identity and produces the new critical exponent 2(n+δ)
n−2 .

Problems with superlinear nonlinearities which have different behaviors at the origin and at infinity
have been extensively studied. For the Laplacian, see for example [1, 7, 8, 23, 24, 6, 16]. For the
p−Laplacian, see for example [2, 30, 17, 14, 15, 13]. In most of these works, the nonlinearity is strictly
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positive for u > 0; however, the characteristics of the problem are quite different when the nonlinearity
has a positive zero. In the nice work [26], this type of problems is considered for the Laplacian operator
and a nonlinearity f that is independent of x, satisfying f(0) ≥ 0, f(U) = 0, and which is positive and
superlinear for u > U > 0. Using topological degree arguments and under additional technical conditions
which ensure a priori bounds, it is shown that there exist two positive solutions of Problem (1). It is
further shown that one solution lies strictly below U , while the other has a maximum greater than U . This
type of problems was also studied in [27], where again the existence of two positive solutions of Problem
(1) was shown. One solution was obtained as a minimal positive solution, while the other was obtained
as the limit of a gradient flow whose starting point is properly chosen. This strategy allows showing that
certain technical hypotheses given in [26] can be weakened; moreover, a better insight on the behavior
with respect to λ of the minimal solution of [26] can be obtained. In this direction, some progress have
been made, we cite the works [20, 22] for the p−Laplacian case, and [3, 18] for the semilinear case, who
have observed that the behavior near the zeros of the nonlinearity is relevant to construct solutions for
large λ.

Here, by considering a dynamical system approach, we study the existence and multiplicity of radial
solutions in the non-autonomous case and when the nonlinearity f is positive, but it is null in 0 and U .
In addition, we study the asymptotic behavior of the solutions with respect to the parameter λ. As far as
we know, this is the first attempt to obtain multiplicity results in the weighted case, with a nonlinearity
which have a positive zero, compare with [3, 18, 20, 21] and references therein.

Since we just deal with radial solutions we will indeed consider the following singular O.D.E.

(u′(r)rn−1)′ + λf(u)rδ+n−1 = 0 , (2)

where, abusing the notation, we have set u(r) = u(x) for |x| = r, and ′ denotes differentiation with
respect to r. We are interested in classical solutions i.e. in solutions u(r, d) of (2) satisfying the following
initial condition:

u(0, d) = d ≥ 0 u′(0, d) = 0 (3)

together with the border condition u(1, d) = 0. The prototype of non-linearity f we are interested in is

f(u) = uq−1|1− u|a (4)

where q > 2, and either 2 ≤ a < 2∗(δ) = 2(n+δ)
n−2 or q + a < 2∗(δ) = 2(n+δ)

n−2 .
We collect here the main assumptions used in the paper:

A There are σ > 0, U > 0 such that f(U) = 0, and f(u) > 0 for u ∈ (0, U + σ]\ {U}.

B f(u) > 0 for 0 < u < U .

F0 There are 2 ≤ qs < 2∗(δ), ~0 > 0, cs > 0 such that

f ′(u) = (qs − 1)csu
qs−2 + o(uqs−2+~0) , as u → 0. (5)

F1 There are 2 ≤ Qs < 2∗(δ), ~1 > 0, Cs > 0 such that

f ′(U + u) = (Qs − 1)Csu
Qs−2 + o(uQs−2+~1) , as u → 0. (6)

F2 There are 2 < qu < 2∗(δ), ~2 > 0, cu > 0 such that such that

f ′(u) = (qu − 1)cuu
qu−2 + o(uqu−2−~2) , as u → ∞. (7)

As a consequence of our main results we obtain the following.

Theorem 1.1. Assume A,F0, F1, then there is λ∗ > 0 such that (1) admits at least 3 radial positive
solutions for λ > λ∗.

Theorem 1.2. Assume B,F0, F2, then there is λ∗ > 0 such that (1) admits at least 3 radial positive
solution for λ > λ∗, at least 2 radial positive solutions for λ = λ∗, at least 1 radial positive solution for
0 < λ < λ∗.

Theorem 1.3. Assume f satisfies (5) with qs = 2, A,F1. Then there is λ∗ > 0 such that (1) admits
at least 2 radial positive solution for λ > λ∗.

Assume f satisfies (5) with qs = 2, B,F2. Then there is λ∗ > 0 such that (1) admits at least 2 radial
positive solution for λ > λ∗ and at least 1 radial positive solution for 0 < λ < λ∗.
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Remark 1.4. Notice that if f is of type (4) then B is satisfied and consequently A too. Further F0, F1,
and F2 are satisfied respectively if qs = q ∈]2, 2∗(δ)[, Qs = a ∈ [2, 2∗(δ)[, and qu = q + a ∈]2, 2∗(δ)[.

Corollary 1.5. The solutions found by Theorems 1.1 and 1.2 have the following properties. For λ large
(i.e λ > λ∗) we have 3 positive solutions say u(r, di) for i = 1, 2, 3. We have di = di(λ), d1(λ) < d2(λ) <
U < d3(λ) and d1(λ) → 0, d2(λ) → U− as λ → +∞. Further ∂

∂ru(r, di) < 0, for any 0 < r ≤ 1, for
i = 1, 2.

Moreover if we are in the assumption of Theorem 1.1 then d3(λ) → U+ as λ → +∞ and ∂
∂ru(r, di) < 0.

If we are in the assumption of Theorem 1.2 we have d1 → d2 as λ → λ∗, so they become a unique solution
for λ = λ∗, and they do not exist for 0 < λ < λ∗.

Via Theorem 1.3 we just find the solutions u(r, di) for i = 2, 3, where d2(λ) < U < d3(λ), which have
the properties described above.

In fact the whole discussion is generalized to embrace the more general case of p-Laplace equation,
i.e.

div(rℓ∇u|∇u|p−2) + λrℓ+δf(u) = 0 (8)

where n + ℓ > p, δ > −p, and we also need to assume 1 < p ≤ 2 in order to avoid cumbersome
technicalities. Notice that for ℓ = 0 we obtain the ∆p operator. Again we are interested in radial positive
solutions of (8) of the Dirichlet problem in the ball of radius 1. So we in fact consider the following ODE

(u′(r)|u′(r)|p−2rℓ+n−1)′ + λf(u)rδ+ℓ+n−1 = 0 (9)

Using the concept of natural dimension introduced in [31] and performing the change of variables intro-
duced in [31, §2, Remark (i)], see also [13, Appendix B] and in particular Remark B.1, we pass from (9)
to the following

(u′(r)|u′(r)|p−2rN−1)′ + λf(u)rN−1 = 0 (10)

where N = p δ+ℓ+n
δ+p > 1 is not anymore an integer and is called natural dimension. Obviously (10) can

be regarded as the equation for radial solutions of ∆pu+λf(u) = 0, but asking for x to be in R
N (where

however N is not necessarily a natural number). Going back to the equation (10) we simply have a shift
in the values of the critical exponents so that the Sobolev critical exponent p∗, as in the previous section,

is replaced by p∗(δ) := p(n+ℓ+δ)
n+ℓ−p , which reduces to usual one if δ = ℓ = 0.

The prototypical f we are interested in is again (4), where p∗(δ) replaces 2∗(δ), namely we rephrase
F0, F1, F2 as follows.

F0′ There are 2 ≤ qs < p∗(δ), ~0 > 0, cs > 0 such that (5) holds, but (p, qs) 6= (2, 2).

F1′ There are 2 ≤ Qs < p∗(δ), ~1 > 0, Cs > 0 such that (6) holds.

F2′ There are 2 ≤ qu < p∗(δ), with (p, qu) 6= (2, 2), ~2 > 0, cu > 0 such that (7) holds.

Theorem 1.6. Assume 1 < p ≤ 2, F0′, F1′, A, then there is λ∗ > 0 such that the Dirichlet problem in
the ball of radius 1 associated to (8) admits at least 3 radial positive solutions for λ ≥ λ∗.

Theorem 1.7. Assume 1 < p ≤ 2, F0′, F2′, B, then there is λ∗ > 0 such that the Dirichlet problem
in the ball of radius 1 associated to (8) admits at least 3 radial positive solutions for λ > λ∗, at least 2
radial positive solutions for λ = λ∗, at least 1 radial positive solution for 0 < λ < λ∗.

Corollary 1.8. Corollary 1.5 holds in this p-Laplace setting too.

Remark 1.9. Remark 1.4 and Corollary 1.5 holds in this context too with trivial adaption. In particular
if f is of type (4) again we have qs = q, a = Qs and qu = q + a.

The proofs are developed directly in the more general p-Laplace case, apart from the case where
p = qs = 2 which needs a separate discussion.

The outline of the paper goes as follows. In section 2 we introduce Fowler transformation, one of the
main tools used in the proofs. In section 3 we turn to consider (2) assuming λ = 1, and we study the
dependence on d of the first zero R(d) of the solution u(r, d) of (2), (3). In fact we aim to prove that
R(d) is a graph as sketched in figure 2. Then we study the asymptotic properties of the function R(d)
and we look for intersections between such a graph and the level line R = K > 0. Finally we conclude
with a classical scaling argument: the problem of finding intersections between the graph R(d) and the
line R = K for K > 0 large is then shown to be equivalent to finding positive radial solutions of (9) in
the ball of radius 1 for λ large.
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2 Fowler transformation

The main tool of investigation is the Fowler transformation, developed by Fowler in the 30s and extended
to the p-Laplace case by Bidaut-Veron in [4] and independently by Franca in [11]. Let us set

αl =
p

l−p , βl =
(p−1)l
l−p , γl = βl − (N − 1),

xl = u(r)rαl yl = u′(r)|u′(r)|p−2rβl r = et

gl(xl, t) = f(xe−αlt)eαl(l−1)t

(11)

The new variables xl, yl differ from the given ones u, u′ in the presence of weight terms, which will help
us to determine the asymptotic behaviors. Using (11), we pass from (10) to the following system

(

ẋ
ẏ

)

=

(

αl 0
0 γl

)(

x
y

)

+

(

sign(y)|y|1/(p−1)

−gl(x, t)

)

(12)

In the whole paper the dot indicates differentiation with respect to t, and we write xl(t, τ ;Q) =
(xl(t, τ ;Q), yl(t, τ ;Q)) for a trajectory of (12), evaluated at t and departing from Q ∈ R

2 at t = τ .
Such a change of variables turns to be particularly useful when f(u, r) = uq−1: in this case setting

l = q we find gl(xl, t) = xq−1
l so (12) is autonomous. Then we denote by Mu the set

Mu :=

{

Q | lim
t→−∞

‖xl(t, 0,Q)‖e−αlt = c ∈ R

}

From now and on, we assume 1 < p ≤ 2 so that (12) is C1. In fact this assumption may be relaxed
but paying the prize of cumbersome technical difficulties, see e.g. [13].

From standard facts in ODE theory we see that Mu is a 1-dimensional C1 manifold, see e.g. [5, § 13].
The behavior of positive solutions for this equation undergoes to several bifurcation due to the presence

of critical exponents, such as the Sobolev critical exponent p∗ introduced above, and p∗ := p(N−1)
N−p .

If p∗ < l < p∗ the origin is a saddle, so it admits an unstable manifold, Mu, and a stable manifold
M s, i.e. Q ∈ M s iff xl(t, 0,Q) → (0, 0) as t → +∞. If l = p∗ the origin has a central direction but Mu

is anyway the unstable manifold. If p < l < p∗ and q ≥ 2 the origin is an unstable node and Mu is the
strongly unstable manifold, see again [5, §13], and figure 1. Using elementary facts from ODE theory we
find that trajectories of (12) correspond to regular solutions of (2), see e.g. [12].

Remark 2.1. Assume f(u) = cuq−1, c > 0, so that setting l = q we get gq(x, t) ≡ cxq−1; let q > p, q ≥ 2.
Regular solutions u(r) of Eq. (12) correspond to trajectories xl(s) of system (12) departing from points
in Mu and viceversa.

Further, using the invariance for t-translations of (12) and the fact that Mu is the graph of three
trajectories (one corresponding to u(r, d) where d > 0, one corresponding to u(r, d) where d < 0 and the
origin), we get the following known result.

Remark 2.2. Assume gl(x, t) ≡ cxq−1, where q > p, q ≥ 2, c > 0. Fix Q ∈ Mu and let u(r, d(τ)) be
the regular solution of (2) corresponding to xl(t, τ ;Q) of (12). Then d(τ) is continuous, d(τ) → +∞ as
τ → 0 and d(τ) → 0 as τ → −∞.

Proof. LetQ ∈ Mu, τ ∈ R and let u(r, d(0)), u(r, d(τ)) be the solution of (10) corresponding to xl(t, 0,Q)
and xl(t, τ,Q) respectively. Notice that xl(t, 0,Q) = xl(t+ τ, τ,Q) for any t ∈ R, therefore

d(τ) = lim
r→0

u(r, d(τ)) = lim
t→−∞

x(t+ τ, τ,Q)e−αl(t+τ)

= lim
t→−∞

x(t, 0,Q)e−αl(t+τ) = lim
r→0

u(r, d(0))e−αlτ = d(0)e−αlτ .

So the remark follows.

Using the Pohozaev identity it is easy to show that the phase portrait is as depicted in figure 1, see
e.g. [12, Theorem 1], [25] see also [10, 29].

Thus in particular if Q ∈ Mu, there is T (Q) such that yl(T (Q), 0;Q) < 0 = xl(T (Q), 0;Q). Using
Remark 2.1 and 2.2 we get the following well known result.

Remark 2.3. Assume gl(x, t) ≡ cxq−1, where q ≥ 2, c > 0 and p < q < p∗(δ); then all the regular solutions
u(r, d) are crossing solutions, i.e. there is R(d) > 0 such that u(R(d), d) = 0 and u′(R(d), d) < 0. Further
R(d) → 0 as d → +∞ and R(d) → +∞ as d → 0.
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We briefly recall the well known results which enable us to draw picture 1, and to deduce the structure
of (10) when f(u) = uq−1.

We emphasize that when gq(x, t) = cxq−1 and p∗(δ) < q < p∗(δ), then (12) admits a further critical
point in x > 0, say P = (Px, Py) where Px = [γq(αq)

p−1/c]1/(q−p) and Py = −(αlPx)
p−1, which converges

to the origin as l → p∗. When p∗ < l < p∗ trajectories of (12) converging to P as t → −∞ correspond
to singular solution of (10). When l = p∗ singular solution of (10) exist, but correspond to trajectories
of the central manifold of (12). When p < l < p∗ singular solution of (10) again exist and correspond
to trajectories converging to the origin as t → −∞ but not belonging to the strongly unstable manifold
Mu, see e.g. [16, §2] for a proof in the Laplace context. However this fact will not be used in this article.

Remark 2.4. Assume gl(x, t) ≡ cxq−1, where q > p, q ≥ 2, c > 0. We can find R > 0 such that if
‖Q‖ ≥ R then there is T̄ (Q) > 0 such that xl(t, 0,Q) crosses transversally the y negative semi-axis at
t = T̄ (Q). Further T̄ (Q) → 0 as ‖Q‖ → +∞

Proof. The result is a consequence of the superlinearity of gl and it is borrowed from [15]: we sketch the
proof for completeness.

Let us set
xl|xl|

p−2 = ρl cos(θl) y = ρl sin(θl) (13)

From a straightforward computation we see that

θ̇l(t,Q) =(p− n) sin(θl) cos(θl)− (p− 1)| sin(θl)|
p

p−1 | cos(θl)|
p−2
p−1−

− c sign[cos(θ)]| cos(θ)|qρq−p
(14)

Hence θ̇l(t,Q) becomes unbounded as x → +∞ and it is negative if x = 0. So the Remark follows.

Let k > 0; we introduce the following set:

T (k) := {(x, y) | 0 < kx < |y|}, (15)

We emphasize the following facts, which follow easily from some standard phase plane analysis and from
Remark 2.4, see e.g. [16] for a full fledged proof in the Laplace context, or again [12, Theorem 1].

Remark 2.5. Assume gl(x, t) = cxq−1, c > 0, q > 2, p < q ≤ p∗(δ); then the origin is the unique critical
point of the system and it is unstable. Hence all the trajectories rotate clockwise and cross the coordinate
axes indefinitely as t → +∞.

Remark 2.6. Assume gl(x, t) = cxq−1, c > 0, q > 2, and p∗(δ) < q < p∗(δ); then the origin admits a
stable manifold which is a heteroclinic connection between the origin and P . However there is k̄ > 0
such that T (k̄) does not intersect M s and P 6∈ T (k̄).

x

y

0

Mu

χ(t)

ẋ = 0

(a)

x

y

0

Mu

M s

•

ẋ = 0

(b)

Figure 1: Sketch of the phase portrait of the autonomous system (12) when gq(x, t) ≡ x|x|q−2, q > 2,
when p < q ≤ p∗(δ) on the left (a) and when p < q < p∗(δ) on the right (b). The manifold Mu is the
solid (black) curve; in fig. a) the dotted (magenta) line denotes a trajectory χ(t) converging to the origin
as t → −∞ but not staying in the strongly unstable manifold Mu, in fig b) the dashed (blue) line denotes
the stable manifold.
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2.1 Unstable leaves for non-autonomous systems.

In this subsection, following [14], we combine the results of [5, §13], and [23] to construct the unstable
manifolds for (12) when gl depends on t. Assume F0′ and F2′ and set ̟s = ~0/(2αqs), ̟u = ~2/(2αqu).
Let us consider (12) where we have added the extra variable z(t) = e̟ut in order to deal with the following
3-dimensional autonomous system:





ẋ
ẏ
ż



 =





αqu 0 0
0 γqu 0
0 0 ̟u









x
y
z



+





sign(yl)|yl|
1/(p−1)

−gqu(x,
ln(z)
̟u

)

0



 (16)

System (16) is useful to discuss the behavior of trajectories of (12) as t → −∞, and correspondingly
the behavior of (10) for r small (and u large as we will see below). Similarly if we replace z(t) by
ζ(t) = e−̟st we get a system which is is useful to detect the behavior of trajectories of (12) in the future
and correspondingly the behavior of (10) for r large (and u small, see below), i.e.:





ẋ
ẏ

ζ̇



 =





αqu 0 0
0 γqu 0
0 0 −̟s









x
y
ζ



+





sign(yl)|yl|
1/(p−1)

−gqs(x,
ln(ζ)
−̟s

)

0



 (17)

Remark 2.7. It is straightforward to check that (16) is C1 also for z = 0 if f satisfies (7) (in particular
if F2′ holds), while (17) is C1 also for ζ = 0 if f satisfies (5) (in particular if F0′ holds).

Proof. Consider (17) and assume (7); notice that

gqs(x, t) = xqs−1{cs + o([xe−αqs t]~2)} = csx
qs−1 + xqs−1+2̟so(ζ(t)2̟s ) (18)

as ζ(t) → 0, i.e. as t → +∞. Further

∂gqs
∂x

(x, t) = xqs−2{(qs − 1)cs + o([xe−αqs t]~2)} = (qs − 1)csx
qs−1 + xqs−1+2̟so(ζ(t)2̟s)

and it is continuous as ζ → 0. Moreover, from (18), we see that the derivative with respect to ζ of the
second equation in (17) is continuous and converges uniformly to 0 as ζ → 0 when x is in a compact set.
Then it is easy to check that (17) is in fact C1.

Similarly consider (16) and assume (5); notice that

gqu(x, t) = xqu−1{cu + o([xe−αqu t]~0)} = cux
qu−1 + xqu−1−2̟uo(z(t)2̟u)

as z(t) → 0, i.e. as t → −∞. Then, reasoning as above, we see that (16) is C1 too.

From [6, Remark 2.5] we know that all the solutions of (12) may be continued for any t ∈ R. Then
we see that the α-limit set of the trajectories of (16) is contained in the z = 0 plane; moreover such a
plane is invariant and the dynamics reduced to the z = 0 plane coincides with the one of the autonomous
system (12) where gqu(x, t) ≡ gqu(x,−∞). Assume first that qu ∈ [p∗(δ); p

∗(δ)); then the origin of (16)
admits a 2-dimensional unstable manifold Wu

qu

which is transversal to z = 0. Following [15], see also
[23, 24, 16] we see that, for any τ ∈ R, the sets Wu

qu(τ) and Wu
qu(−∞) defined below are C1 immersed

1-dimensional manifolds, i.e. the graph of C1 regular curves.

Wu
qu(τ) =

(

Wu
qu

∩ {z = e̟uτ}
)

, Wu
qu(−∞) =

(

Wu
qu

∩ {z = 0}
)

(19)

Further notice that Wu
qu (τ) can be characterized as follows:

Wu
qu(τ) := {Q | xqu

(t, τ,Q) → (0, 0) as t → −∞} (20)

Moreover it depends continuously on τ . More precisely we have the following see e.g. [24], see also [5,
§13.4].

Remark 2.8. Let either τ0 ∈ R or τ0 = −∞, and assume that Wu
qu (τ0) intersects transversally a segment

L in a point denoted by Q(τ0). Then there is a neighborhood U of τ0 such that Wu
qu(τ) still intersects L

transversally in a point Q(τ) for τ ∈ U ; moreover Q(τ) is as smooth as (16).
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Assume F2′; using standard tools of invariant manifold theory, see e.g. [5, §13.4], we see that if
qu ∈ [p∗(δ); p

∗(δ)), then Wu
qu(τ) can be equivalently characterized as follows:

Wu
qu(τ) := {Q | ‖xqu

(t, τ,Q)‖e−αqu t → c ∈ R as t → −∞} (21)

If p < qu < p∗(δ) the origin has a 3 dimensional unstable manifold (an open set), but we can define a
2-dimensional strongly unstable manifold. Set

Wu
qu

= {(Q, e̟τ ) | ‖xqu
(t, τ,Q)‖e−αqu t → c ∈ R as t → −∞}

then Wu
qu

is an invariant manifold and the manifolds Wu
qu (τ) and Wu

qu(−∞) defined as in (19) or as in
(21) (but not as in (20)) satisfy Remark 2.8, see again [5, §13.4]. In this case we have also trajectories
converging to the origin at a slower exponential rate, corresponding to singular solution of (10); however
this fact will not be used in this article.

It is easy to check that, if Q ∈ Wu
qu(τ), there is d > 0 such that xqu

(t, τ,Q)e−αqu t → (d, 0). Hence
the corresponding solution of (2) is a regular solution, i.e. we have the following.

Remark 2.9. Assume F2′ with qu > p, then Remark 2.1 still holds.

Further, we get the following generalization of the second part of Remark 2.2, see [6, Lemma 2.10] for
a detailed proof.

Remark 2.10. Fix τ ∈ R and consider the manifold Wu
qu(τ), the trajectory xqu

(t, τ ;Q) of (12), where
Q ∈ Wu

qu(τ) and the corresponding solution u(r, d) of (2), so that d(Q) is an invertible function. Follow
Wu

qu(τ) from the origin towards x > 0, then d increases as we go further from the origin, and d(Q) → 0
as Q → (0, 0).

With analogous reasoning if F0′ holds and p∗(δ) < qs < p∗(δ), we see that (17) admits a two
dimensional invariant stable manifold W s

qs

. Further

W s
qs(τ) =

(

W s
qs

∩ {ζ = e−̟sτ}
)

, W s
qs(+∞) =

(

W s
qs

∩ {ζ = 0}
)

(22)

are C1 immersed 1-dimensional manifold depending in a C1 way from τ , and W s
qs(τ) → W s

qs(+∞) as
τ → +∞ in the sense specified in Remark 2.8. Moreover

W s
qs(τ) := {Q | xqs

(t, τ,Q) → (0, 0) as t → +∞},

and W s
qs(+∞) coincide with the stable manifold M s of the autonomous system (12) where gl = csx

qs−1.
From now on, since we are just interested in positive solutions, abusing the notation for Wu

qu(τ) (re-
spectively W s

qs(τ)) we mean just the branch of the manifold leaving from the origin towards x > 0 and
corresponding to solutions u(r) of (10) which are positive for r small (respectively for r large).

Sometimes it will be useful to switch between different values of l in system (12), e.g. to pass from
l = qu to l = qs. It is straightforward to notice that if xqu

(t, τ,Q) and xqs
(t, τ,R) correspond to the

same solution u(r) of (2), then

xqs(t, τ,R) = xqu(t, τ,Q)e(αqs−αqu )t

yqs(t, τ,R) = yqu(t, τ,Q)e
(αqs−αqu )t

p−1

Rx = Qxe
(αqs−αqu )τ , Ry = Qye

(αqs−αqu )τ

p−1

(23)

where we used (11) and the fact that βqs − βqu =
αqs−αqu

p−1 . It follows that the curves of the form

y = kx|x|p−2 remain invariant when we pass from l = qu to l = qs at a fixed τ ∈ R, for any fixed k ∈ R.
In fact the whole portrait is subject either to a dilatation if (αqs − αqu)τ > 0 or to a contraction if
(αqs − αqu)τ < 0.

Let τ ∈ R and denote by

Wu
qs(τ) := {(Rxe

(αqs−αqu )τ , Rye
(βqs−βqu )τ ) | (Rx, Ry) ∈ Wu

qu (τ)}

Observe that Wu
qs(τ) is diffeomorphic to Wu

qu(τ), hence Wu
qs(τ) is 1 dimensional too, and inherits the

transversal smoothness property described in Remark 2.8.
In fact the unstable leaves Wu

qu(τ) may be constructed through the invariant manifold theory for

non-autonomous systems, simply requiring that for any ε > 0 there is δ > 0 such that
∂gqu
∂xl

(xl, t) < ε

for |x| ≤ δ for any t ≤ τ (we stress that such an assumption is satisfied if F2′ holds), cf [5, §13.4]
and in particular Theorems 4.1, 4.3, 4.4. Since the linearization of (12) in the origin has t independent
eigenvalues and eigenvectors, from [5, Theorem 4.2, §13.4] we get the following.
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Remark 2.11. Assume F2′, then for any τ ∈ R the manifold Wu
qu(τ) is tangent in the origin to the y = 0

axis. So, thanks to (23), Wu
qs(τ) is tangent in the origin to the y = 0 axis, too. Similarly, if F0′ holds

then W s
qs(τ) is tangent to the y-negative semi-axis if 1 < p < 2 and to the line y = −(n− 2)x if p = 2.

Lemma 2.12. Assume F0′ and let ũ(r) be a solution of (10) such that ũ(r) > 0 for any r > 0 and
limr→∞ũ(r) = 0. Then the corresponding trajectory x̃qs

(t) of (12) is bounded.

Proof. From F0′ we see that for any ε > 0 there is R̃ > 0 such that

(cs − ε)|ũ(r)|qs−1 < f(ũ(r)) < (cs + ε)|ũ(r)|qs−1

for any r ≥ R̃. Correspondingly we find that

(cs − ε)|x̃qs
(t)|qs−1 < gqs(x̃qs (t), t) < (cs + ε)|x̃qs

(t)|qs−1

for any t ≥ τ̃ = ln(R̃). Let us introduce polar coordinates as in (13). Assume for contradiction that
x̃qs

(t) becomes unbounded as t → +∞. Then repeating the computation in (14) we see that the angular

coordinate θ̃(t) of x̃qs
(t) is such that ˙̃θ(t) is bounded above from a negative constant, i.e. there is K > 0

such that
˙̃
θ(t) ≤ −K for t ≥ τ̃ . Hence x̃qs

(t) has to cross the coordinate axes indefinitely and ũ(r)
changes sign, but this is a contradiction, so x̃qs

(t) is bounded and the Lemma is proved.

3 Proofs.

Let us observe that the flow of (12) on the y axis rotates clockwise for any t ∈ R and the origin is a critical
point. Hence for the corresponding solutions u(r) of (10) we see that all the zeroes are non-degenerate.

Let us introduce the following set

I := {d > 0 | u(r, d) is a crossing solution} (24)

i.e. u(r, d) has a (non-degenerate) zero for a certain r = R(d) > 0 iff d ∈ I. The scheme of the proof
is the following: in the first two subsections we set λ = 1 and we consider (12); first we show that I is
open, R(d) is continuous. In § 3.1 we fix λ = 1, and we consider the setting of Theorem 1.7 and we aim
to draw the graph of R(d) i.e. picture 2b: this is the content of Proposition 3.9. Then in § 3.2 we use the
information of § 3.1 to draw the graph of R(d) with λ = 1 in the setting of of Theorem 1.6, see picture 2a
and Proposition 3.15. Then we adapt the argument to draw the graph of R(d) in the setting of Theorem
1.3. Finally in § 3.3 we perform a scaling argument to obtain the proof of Theorems 1.7 and 1.6.

Let us begin with the following results developed directly on (10).

Remark 3.1. Assume f satisfies A and (5) with 2 ≤ qs < p∗(δ). If d 6∈ I, d ≤ σ, d 6= U , then u(r, d) > 0
for any r > 0 and either limr→∞ u(r, d) = 0 or limr→∞u(r, d) = U .

Proof. First of all observe that u(r, d) is positive and strictly decreasing for r > 0 small enough, see e.g.
[13, Lemma 2.1]. Set

ρd = sup

{

R | u(r, d) > 0,
∂u

∂r
(r, d) < 0, for any 0 < r < R

}

,

and L(d) = limr→ρd
u(r, d).

It is easy to check that if ρd = +∞ then f(L(d)) = 0 so the Remark is proved, so we just need to
discuss the case ρd < ∞.
We claim that if L(d) = 0, L′(d) := limr→ρd

u′(r, d) = 0 then ρd = +∞. In fact let x(t) be the trajectory
of (12) corresponding to u(r), then x(t) → (0, 0) as t → ln(ρd), and the origin is a critical point of (12)
so the claim follows.
Analogously if L(d) = U , L′(d) = limr→ρd

u′(r, d) = 0 then ρd = +∞. In fact let us consider the modified

system (12) where g is obtained via (11) but replacing f by f̃(u) = f(u−U). Let x̃(t) be the trajectory
of the modified system (12) corresponding to u(r, d): it follows that x(t) → (0, 0) as t → ln(ρd), and the
origin is again a critical point so ρd = +∞, and the claim in proved.

So we can assume ρd < ∞, f(L(d)) > 0, and L′(d) = u′(ρd, d) = 0; but from (10) we get

u′′(ρd, d) = −
n− 1

ρd
u′(ρd, d)− f(u(ρd, d))|u

′(ρd, d)|
p−2 < 0 .

This contradicts the fact that u′(r, d) is negative for r < ρd and null for r = ρd, so the Remark is
proved.
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d

R(d)

0

d = U

U + σ

R = R5• ••

R = R4• • •• •

R = R3• • •
R = R2• •

R = R1•

d

R(d)

0 d = M

d = m

R = R1•

R = R2• •

R = R3• • •

R = R4• • •

R = R5• • •

Figure 2: Sketch of the graph of the function R(d) in the setting of Proposition 3.15 on the left, and
in the setting of Proposition 3.9 on the right. In picture a) we have drawn with solid line the part of
the graph constructed using the original problem, and with the dotted line the part constructed using a
modified problem to which Proposition 3.9 could be applied. In both graphs a) and b) we have at least
3 values di, such that R(di) = R when R > R2; further 0 < d1 < d2 < U < d3. Moreover in picture a)
we have d1 → 0+, d2 → U− and d3 → U+ as R → +∞, while in picture b) we have d1 → 0+, d2 → m−

and d3 → M+ as R → +∞.

Using the part of the proof concerning ρd < ∞ we easily get the following.

Remark 3.2. Assume f satisfies B and (5) with 2 ≤ qs < p∗(δ). If there is R ≥ 0 such that u(R) < U
and u′(R) ≤ 0 then either u(r) has a zero for r > R, or u(r) > 0 for any r > 0 and limr→+∞ u(r) = 0. In
particular if u(r) = u(r, d) is a regular solution and d < U , then either d ∈ I or u(r, d) > 0 for any r > 0
and limr→+∞ u(r, d) = 0.

Remark 3.3. Assume f satisfies B and (5) with 2 ≤ qs < p∗(δ). Then u(r, d) is decreasing as long as it
is positive for any 0 < d < U .

We give a result inspired by [13, Lemma 3.16].

Lemma 3.4. Assume f satisfies (5) with 2 ≤ qs < p∗(δ); then I is open and the function R(d) : I →
(0,+∞) is continuous. Moreover if u(r, d∗) > 0 for any r ≥ 0, and (d∗, d∗+ε) ⊂ I and/or (d∗−ε, d∗) ⊂ I,
then limd→d+

∗

R(d) = +∞ and/or limd→d−

∗

R(d) = +∞.

Proof. First of all we prove that I is open. LetD ∈ I we show that there is ν > 0 such that (D−ν,D+ν) ⊂
I. Fix τ ∈ R and consider the trajectories xqs

(t, τ,Q(D)) and xqs
(t, τ,Q(d)) of (12) corresponding

respectively to u(r,D) and u(r, d), where |D − d| < ν. From Remarks 2.9 and 2.10 we see that for
any σ > 0 we can find ν(σ) > 0 such that ‖Q(D) − Q(d)‖ < σ. Observe that the flow of (12) on the
y negative semi-axis is transversal. Therefore we can find T slightly larger than ln(R(D)) such that
xqs(T, τ,Q(D)) < 0. Using continuous dependence on initial data we see that we can find σ > 0 small
enough so that xqs(T, τ,Q(d)) < 0. Consequently we see that u(r, d) is a crossing solution if ν > 0 is small
enough and its first zero R(d) satisfies R(d) < eT . Using a continuity argument and the transversality of
the flow of (12) on the y negative semi-axis, it is easy to see that R(d) → R(D) as d → D.

Assume now that d∗ 6∈ I, but (d∗ − ε, d∗) ⊂ I as above, so that xqs(t, τ,Q(d∗)) > 0 for any t ∈ R.
For any T̄ > τ we can find σ > 0 such that xqs

(t, τ,Q) lies in x > 0 for any τ ≤ t ≤ T̄ , whenever
‖Q − Q(d∗)‖ < σ. Consequently we can find ν ∈ (0, ε) such that u(d, r) is positive and decreasing for
any eτ ≤ r ≤ eT̄ , whenever 0 < d∗ − d < ν. Further, since u(r, d) is a regular solution we can assume
that there is ρ = ρ(d) small enough so that u(r, d) is positive for 0 ≤ r ≤ ρ(d) (see e.g. [13, Lemma 2.1]).
Hence if we choose τ < ln(ρ) we see that u(r, d) is positive for 0 ≤ r ≤ eT̄ . From the arbitrariness of T̄
we easily conclude that R(d) → +∞ as d → d∗.

3.1 Theorem 1.7: the graph of R(d) for λ = 1 fixed.

Lemma 3.5. Assume F2′; then there is M > 0 large such that [M,+∞) ⊂ I and R(d) → 0 as d → +∞.

Proof. The proof is based on the comparison between the original non-autonomous system (12) and the
autonomous system obtained at τ = −∞, i.e. by setting gqu(x, t) ≡ cux

qu−1. Let u(r, d), xqu
(t, τ,Q),
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Wu
qu(τ) denote a regular solution of (10), the corresponding trajectory of (12) and the unstable mani-

fold of the original non-autonomous system, and let ū(r, d̄), x̄qu
(t, τ, Q̄), Wu

qu(−∞) be the ones of the
autonomous system where gqu(x, t) ≡ cux

qu−1.
Follow Wu

qu (−∞) from the origin towards x > 0: it intersects the ẋ = 0 isocline in R̄ = (R̄x, R̄y),

where R̄y < 0 < R̄x and then the y-negative semi-axis transversally in Q̄ = (0, Q̄y), Q̄y < 0, see figure 1.
From Remark 2.8 it follows that there is K > 0 such that for any τ < −K the manifold Wu

qu(τ) intersects

the y-negative semi-axis transversally in Q(τ) = (0, Qy(τ)), where Qy(τ) < 0 approaches Q̄y as τ → −∞.
Using a continuity argument we see that

sup{‖xqu
(t, τ ;Q(τ)) − x̄qu

(t, τ, Q̄)‖ | t ≤ τ} → 0 as τ → −∞.

Hence there is τ̄ = τ̄(τ) < τ such that ẋqu(τ̄ (τ), τ ;Q(τ)) = 0 and xqu(τ̄ , τ ;Q(τ)) > R̄x/2, for τ < −K

(possibly choosing a larger K). Thus we can choose K large enough so that u(eτ̄ , d) > R̄x

2 e−αquτ = C > 0
is large enough so that f(u) > 0 for u ≥ C. Then, using the fact that u′(eτ̄ , d) < 0 and arguing as in the
proof of Remark convergence, we see that u′(r, d) < 0 for any 0 < r ≤ eτ̄ .

Therefore u(r, d(τ)) is positive and decreasing for 0 ≤ r < R(d(τ)) = eτ , it becomes null with negative
slope for r = eτ and

d(τ) = u(0, d(τ)) > u(eτ̄ , d(τ)) = R̄x/2e
−αquτ .

Hence d(τ) → +∞ as τ → −∞ and we easily conclude.

Lemma 3.6. Assume F0′, F2′ with 2 < qs ≤ p∗(δ) and B. Let u(r) be such that there is R̃ > 0 at
which u(R̃) < U and ∂u

∂r (R̃) ≤ 0. Then u(r) has a non-degenerate zero at some R > R̃.

Proof. From Remark 3.2 we see that either u(r) → 0 as r → +∞ or it is a crossing solution and we are
done. Assume the former; then from Lemma 2.12 we see that the trajectory xs

qs

(t) corresponding to u(r)
is bounded; then from Remark 2.5 and a standard continuity argument we find that xs

qs

(t) crosses the
coordinate axes indefinitely so the Lemma is proved.

We recall that (17) admits a critical point Ps = (P s
x , P

s
y , 0) such that P s

x > 0 iff p∗(δ) < qs < p∗(δ),

where P s
x = [γqs(αqs)

p−1/cs]
1/(qs−p) and P s

y = −(αlP
s
x)

p−1. In this case there is a unique trajectory, say
(xs

qs

(t), ζ(t)), which converges to Ps as t → +∞. Let T (k) := {(x, y) | |y| < kx}. Using Remark 2.6 and
a standard continuity argument, we obtain the following.

Lemma 3.7. Assume F0′, p∗(δ) < qs < p∗(δ). Then we can find τ0 > 0 and k0 > 0 such that T (k0)
does not intersect W s

ls
(τ) for any τ ≥ τ0, and xs

qs

(t) 6∈ T (c0) for any t ≥ τ0.

Now we are ready to prove the following.

Lemma 3.8. Assume B, F0′, F2′; then there is D > 0 such that (0, D) ⊂ I and R(d) → +∞ as d → 0.

Proof. From Remark 3.2 we know that, if 0 < d < U then either d ∈ I or u(r, d) → 0 as r → +∞.
Assume first p∗(δ) < qs < p∗(δ). Let τ > τ0 where τ0 is defined in Lemma 3.7; choose ρ > 0 small

enough so that Wu
qs(τ) intersects the line x = ρ for any τ ≥ τ0. Follow Wu

qs(τ) from the origin towards
x > 0 and denote by Wu

qs(τ, ρ) the branch of Wu
qs(τ) between the origin and the first interesection with

x = ρ. Since Wu
qs(τ) is tangent to the x axis in the origin, possibly choosing a smaller ρ > 0, we can

assume that Wu
qs(τ, ρ) is a graph on the x axis and Wu

qs(τ, ρ) ⊂ T (k0). Further we can find D ∈ (0, U)
such that, if xqs

(t, τ,Q) corresponds to a solution u(r, d) of (10) then Q ∈ Wu
qs(τ, ρ), for any 0 < d < D:

this is an easy consequence of Remarks 2.2 and 2.8. Assume for contradiction that there is 0 < d < D
such that d 6∈ I and let xqs

(t, τ,Q(d)) be the corresponding trajectory of (12). Then u(r, d) → 0 as
r → +∞, so, from Lemma 2.12, xqs

(t, τ,Q(d)) is bounded: hence either xqs
(t, τ,Q(d)) converges to the

origin or it coincides with xs
qs

(t) and converges to to (P s
x , P

s
y ) as t → +∞. In the former case we have

Q(d) ∈ W s
qs(τ), in the latter Q(d) = xs

qs

(τ) but this contradicts Lemma 3.7. So d ∈ I and there is
T (Q(d)) > τ such that xqs

(t, τ,Q(d)) intersects transversally the y negative semi-axis at t = T (Q(d)).
Since we can choose τ arbitrarily large the Lemma is proved by observing that R(d) = exp[T (Q(d))] >

eτ .
Assume now 2 ≤ qs ≤ p∗(δ) (but (p, qs) 6= (2, 2)). In this case from Lemma 3.6 we see directly

that u(r, d) is a crossing solution for any 0 < d < U . Notice that the origin is again a saddle, so we can
construct Wu

qs(τ, ρ) and it is still tangent to the x axis in the origin (for any τ). Hence repeating the last
lines of the previous case we easily see that R(d) → +∞ as d → 0.

We emphasize that if (p, qs) = (2, 2) the argument fails because we cannot apply anymore Fowler
transformation which indeed requires l = qs > p.
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Notice that in Lemma 3.8 assumption F2′ is needed just to construct the unstable manifold.
Now, putting together Lemmas 3.4, 3.5, 3.8 and the fact that U 6∈ I if B holds, we get the following

result, which is summarized in figure 2b.

Proposition 3.9. Consider (10) where λ = 1. Assume F2′, F0′ and B, then I is open. Further there
is M ≥ U such that (0, U) ∪ (M,+∞) ⊂ I, but U,M 6∈ I. Let R(d) be the first zero of u(r, d), then R(d)
is continuous in I, limd→+∞ R(d) = 0, while limd→0+ R(d) = limd→U− R(d) = limd→M+ R(d) = +∞.

Now we turn to consider the case where (5) holds but p = qs = 2: some changes are needed. First of
all notice that we cannot set l = qs in (11) so we cannot construct system (17). On the other hand if F2
holds we can set l = qu > 2 to construct the unstable manifolds Wu

qu (−∞) and Wu
qu(τ), and Remarks

2.8, 2.9, 2.10 hold with no changes. However, since the linearization of (12) in the origin does not have
constant eigenvalues and eigenvectors, we can just say that Wu

qu (−∞) is tangent to the x axis in the
origin, but the tangent to Wu

qu(τ) may (and usually will) change with τ . Hence Remark 2.11 does not
hold in this context.

Further notice that Remark 3.1 and Lemma 3.4 hold (with no changes in the proof). However we
have to replace Lemma 3.6 by the following.

Lemma 3.10. Assume F0, F2 with p = qs = 2, δ > −2 and B; then we get the same conclusions as in
Lemma 3.6. In particular (0, U) ⊂ I.

Proof. This result follows from some standard result in oscillation theory, see, e.g., [9, Theorem 3.1.4];
however we give a full fledged proof for completeness.

Again from Remark 3.2 we see that either u(r) → 0 as r → +∞ or it is a crossing solution and
we are done, so we assume the former. Hence for any ε > 0 we can find R̃1 > R̃ such that u(r) < ε
and (n − 1)/r < ε if r ≥ R̃1. Then we can choose ε > 0 small enough and R̃1 large enough so that
cs
2 u(r) < f(u(r)) < 2csu(r) for r ≥ R̃1. Let us consider the equations

u′′ + εu′ + cs
2 u = 0

u′′ + 2csu = 0
(25)

and denote respectively by u(r) and u(r) the solutions of the former and the latter equation in (25) such
that u(R̃1) = u(R̃1) = u(R̃1) and u′(R̃1) = u′(R̃1) = u′(R̃1). Notice that there are R > R > R̃1 such
that u(r) and u(r) are positive and decreasing respectively for R̃1 ≤ r < R, and for R̃1 ≤ r < R and they
become null with nonnegative slope at r = R and at r = R.

We claim that there is R ∈ (R,R) such that u(r) is positive and decreasing for R̃1 < r < R and
u(R) = 0 > u′(R), so that the Lemma is proved. To prove the claim consider the phase plane u, u′ and
draw the curves

Γ := {(u(r), u′(r)) | R̃1 ≤ r ≤ R}, Γ := {(u(r), u′(r)) | R̃1 ≤ r ≤ R},

and denote by E the compact set enclosed by Γ, Γ and the line u = 0. Notice that the flow of (2) on
Γ∪ Γ points towards the interior of E for any r ≥ R̃1. So there is R ∈ (R,R) such that (u(r), u′(r)) ∈ E
for any R̃1 ≤ r ≤ R and it crosses transversally the line u = 0 for r = R, and the claim is proved.

Remark 3.11. We emphasize that in the assumption of Lemma 3.10 we lose control of R(d) as d → 0+.
In fact it might be shown that R(d) → R(0) := λ1/cs > 0 as d → 0+ where λ1 is the first eigenvalue of
the Laplacian in the ball of radius 1. We do not give a proof of the result which is beyond the purpose
of this paper, however see [26].

Now we are ready to state the counterpart of Proposition 3.9 for the case p = qs = 2, see 3.

Proposition 3.12. Consider (10) where λ = 1. Assume F0 and B, and that f satisfies (5) with
p = q = 2. Then I is open and there is M ≥ U such that (0, U) ∪ (M,+∞) ⊂ I, but U,M 6∈ I. Further
R(d) is continuous in I, and limd→U− R(d) = limd→M+ R(d) = +∞.

3.2 Theorem 1.6: the graph of R(d) for λ = 1 fixed.

In this subsection we assume the hypotheses of Theorem 1.6.
Let us introduce now some auxiliary functions which will allow us to construct the unstable manifold.

Set

fm(u) =







f(u) if 0 ≤ u ≤ U + 1
φ(u) if U + σ ≤ u ≤ U + σ + 1

f(U+σ+1)
(U+σ+1)qu−1 u

qu−1 if u ≥ U + σ + 1
, (26)
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and fh(u) = fm(u− U); here φ(u) is a positive function such that fm(u) is C1 and 2 < qu < p∗(δ).
We introduce the following notation: we denote by gml (x, t) and by ghl (x, t) the functions gl of (11)

where f is replaced by fm and fh respectively. Similarly we refer to system (12) where gl is replaced by gml
and ghl as to (12m) and (12h). Observe that both fm(u) and fh(u) satisfy F2′ so, for any τ ∈ R, (12m)
and (12h) admit an unstable manifold denoted by Wu,m

qu (τ) and by Wu,h
qu (τ) respectively. Analogously

we denote with a “m ” and “ h ” all the quantities of (12m) and (12h) respectively to distinguish them
from the ones of (12). We use the same notation for um(r, d), uh(r, d) and u(r, d). Notice in particular
that uh(r, d) = um(r, d+ U).

Lemma 3.13. Assume F1′ and A. Then there is ε > 0, 0 < ε < σ, such that for any U < d < U + ε
there is R1(d) > 0 such that u(R1(d), d) = U and ∂u

∂r (R1(d), d) < 0.

Proof. The Lemma is equivalent to say that uh(r, d) is a crossing solution for 0 < d < ε. But this follows
simply observing that fh satisfies F0′, F2′ and applying Lemma 3.8, if (p,Qs) 6= (2, 2) and applying
Lemma 3.10 if p = Qs = 2.

Lemma 3.14. Assume F0′, F1′ and A. Then there is ε > 0, 0 < ε < σ, such that u(r, d) is a crossing
solution for any U < d ≤ U + ε, and it is decreasing as long as it is positive.

Proof. Observe that u(r, U) ≡ um(r, U) ≡ U for any r ≥ 0. Let τ0 > 0 be the constant defined in Lemma
3.7; it follows that Q̄ := (Ueαqsτ0 , 0) ∈ Wu,m

qs (τ0) and xm
qs

(t, τ0, Q̄) = (Ueαqs t, 0) ∈ Wu,m
qs (t) for any

t ∈ R. Notice that Q̄ ∈ T (c0) and xm
qs

(t, τ0, Q̄) ∈ T (c0) for any t ∈ R, where T (c0) is defined in Lemma

3.7. Since Wu,m
qs (τ0) is a connected manifold there is a small connected branch of Wu,m

qs (τ0) containing Q̄

which is contained in T (c0), say wu,m(τ0) ⊂ T (c0). Let x
s
qs

(t) be the unique trajectory of (12) converging
to the critical point P s = (P s

x , P
s
y ) as t → +∞. From Lemma 3.7 we see that W s,m

qs (τ0) does not intersect

T (c0) and xs
qs

(τ0) 6∈ T (c0) too. Hence if Q ∈ wu,m(τ0) then xm
qs

(t, τ0, Q̄) cannot converge neither to the
origin nor to P s as t → +∞. Therefore, using also Lemma 2.12, we see that the corresponding solutions
um(r, d) of (10m) do not converge to 0. Hence, possibly choosing a smaller ε > 0, we can assume that
um(r, d) does not converge to 0 for any U < d < U + ε.

Further, reasoning as in the proof of Remark 3.1, it is easy to check that um(r, d) is decreasing as
long as it is positive. Hence from Lemma 3.13 and Remark 3.1 we see that, for any U < d < U + ε,
there is R(d) > 0 such that um(r, d) is positive and decreasing for 0 ≤ r < R(d) and becomes null with
non-negative slope at r = R(d). Further um(r, d) is actually smaller than U + σ for any 0 ≤ r ≤ R(d); so
it solves the original equation (2), and we have um(r, d) ≡ u(r, d) for 0 ≤ r ≤ R(d).

From Lemma 3.14 we see that in the setting of Theorem 1.6 we can still apply Lemma 3.8. So using
also Remark 3.4 we get the following.

Proposition 3.15. Consider (10) where λ = 1 Assume F0′, F1′ and B, then I is open and there is
ε > 0 such that (0, U + ε]\ U ⊂ I. Further limd→U+ R(d) = limd→U− R(d) = limd→0R(d) = +∞.

Similarly if p = qs = 2, combining Lemma 3.14, Lemma 3.8 we get a result analogous to Proposition
3.12.

Proposition 3.16. Consider (10) where λ = 1. Assume f satisfies (5) with p = qs = 2, F1′ and B, then
I is open and there is ε > 0 such that (0, U + ε]\ U ⊂ I. Further limd→U+ R(d) = limd→U− R(d) = +∞.

Remark 3.17. In the assumption of Proposition 3.15 u(r, d) is decreasing as long as it is positive for any
0 < d < U + ε, d 6= U .

Proof. The proof for 0 < d < U follows from Remark 3.3, the case U < d < U + ε follows from the
argument of the proof of Lemma 3.14.

3.3 Scaling argument

From Propositions 3.9 and 3.15 we immediately get the following.

Corollary 3.18. Either in the assumptions of Proposition 3.9 or in the assumptions of Proposition 3.15
there is K0 > 0 such that the equation in d R(d) = K, has at least 3 solutions, say d1 < d2 < d3, for any
K ≥ K0. Further d2 < U < d3 and as K → +∞ we have d1 → 0 and d2 → U−, d3 → M+ (notice that
M = U if A holds).
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d

R(d)

0

d = U

U + σ

R = R3• •

R = R2• •

d

R(d)

0

d = m

d = M

R = R3• •

R = R2• •

R = R1•

Figure 3: Sketch of the graph of the function R(d) in the setting of Proposition 3.12 on the left, and in
the setting of Proposition 3.16 on the right. We have drawn with solid lines the part of the graph which
has been constructed through the Propositions and with dotted lines the part of the graph constructed
through modified problem (for d large in fig. a)) or which are just conjectured (for d small in both fig.
a) and b)). In both graphs a) and b) we have at least 2 values di, such that R(di) = R when R > R2;
further 0 < d2 < U < d3. Moreover in picture a) we have d2 → U− and d3 → U+ as R → +∞, while in
picture b) we have d2 → m− and d3 → M+ as R → +∞.

Now the proof of Theorems 1.7, 1.6 easily follows from a standard scaling argument.

Proof of Theorem 1.7 and Theorem 1.6. Assume that we are in the hypotheses either of Theorem 1.7 or
of Theorem 1.6. Then the following Dirichlet problem

(w′|w′|p−2)rn−1)′ + f(w) = 0 ,
w(0, d) = d > 0 , w(1, d) = 0 , w(r) > 0 , for 0 < r < R

(27)

admits at least 3 solutions for any R ≥ K0.
Now we turn to consider the original equation (10) where λ 6= 1. Set u(r) = w(rλa), a = 1

p−1 > 0,

ρ = Rλ−a, ρ∗(λ) = K0λ
−a. If w(r) satisfies (27) then u(r) satisfies the following:

(u′|u′|p−2)rn−1)′ + λf(u) = 0 ,
u(0, d) = d > 0 , u(ρ, d) = 0 , u(r) > 0 , for 0 < r < ρ

(28)

Set λ∗

0 = K
1/a
0 , then the Dirichlet problem (10) in the ball of radius 1 admits at least 3 positive solutions

for λ ≥ λ∗

0. So the proof of Theorem 1.6 is concluded.
Now restrict to Theorem 1.7, so that Proposition 3.9 holds. Then denote by m∗ = min{R(d) | 0 <

d < U}, and set λ∗ = [m∗]1/a, then we easily see that (28) admits at least 3 solutions for λ > λ∗ at least 2
solutions for λ = λ∗, and at least 1 solution for 0 < λ < λ∗, so the proof of Theorem 1.7 is concluded.

With the same scaling argument from Propositions 3.12, 3.16 we obtain Theorem 1.3.
We conclude by noticing that Corollaries 1.5 and 1.8 follows from Corollary 3.18, Remarks 3.3 and

3.17.
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[4] M.F. Bidaut-Véron, Local and global behavior of solutions of quasilinear equations of Emden-
Fowler type, Arch. Rational Mech. Anal., 107 (1989), 293-324.



14

[5] E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, 1955.

[6] F. Dalbono, M. Franca, Nodal solutions for supercritical Laplace equations Commun in Math.
Phys. 347 (2016), 875-901. http://dx.doi.org/10.1007/s00220-015-2546-y

[7] D.G. De Figueiredo, J.P. Gossez, P. Ubilla, Local superlinearity and sublinearity for indefinite
semilinear elliptic problems, J. Funct. Anal. 199, (2) (2003) 452-467.

[8] D.G. de Figueiredo, P.-L. Lions, R.D. Nussbaum, A priori estimates and existence of positive
solutions of semilinear elliptic equations, J. Math. Pures Appl. (9) 61, (1) (1982) 41-63.
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[18] J. Garćıa-Melián, L. Iturriaga, Multiplicity of solutions for some semilinear problems involving
nonlinearities with zeros, Israel J. Math. 210 (2015) 233-344.
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