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ON A PARTICULAR SPIRAL SIMILARITY

DANIELE RITELLI and ALDO SCIMONE and GIULIA SPALETTA

Abstract. One of the most well–known geometric transformations, con-
stituting an important problem solving tool, is the so–called spiral similarity
of a geometric figure. It allows the transformation, by means of a spiral
movement around a point, of a figure F into another similar figure F′ , that
is generated by a rotation and a simultaneous expansion of F .
Together with the rotation, the inverse transformation of spiral similarity
produces, instead, a contraction of the original figure. Aim of this work
is precisely the study of properties of this inverse transformation and its
links with polygonal spirals. Here, this transformation is achieved through
an entirely new construction, that can be aided and eased by means of
computer algebra and graphics tools.

1. Introduction

Inverse spiral similarity is a geometric transformation, that allows trans-
forming a regular figure into a similar one, rotated around a center and
by a certain angle, and contracted by a ratio k , compared to the origina-
tor [3, 2, 5].
In this work, this transformation is achieved through a new construction,
whose properties are investigated, focusing, in particular, to links with
polygonal spirals. Starting from the case of triangles, the application to
polygons with more than three sides is studied, together with more general
case of planar developments of geometric solids. The similarity demonstra-
tions are illustrated step by step and by many figures; their construction can
be lightened within software and computer algebra environments equipped
with interactive graphics [4].
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Figure 1. Construction of the inverse spiral similarity transfor-
mation

2. The case of triangles

Let us start from the case of triangles since, for them, the construction we
present always produces triangles similar to the originator, whether it is
scalene or isosceles or equilateral or right–angled. In the case of polygons
with more than three sides, our construction yields polygons similar to the
initial one only if this is regular, as shown in § 5.

Consider triangle ABC in Figure 1, with sides AB < BC < AC , and let
D ,E , F be the points that divide AB ,BC ,AC , respectively, according to
the ratio:

(1) k =
m

n
, with (m,n) = 1 , m < n .

In other words:

(2)
AD

AB
=

BE

BC
=

CF

AC
= k .

Circles C1 , C2 , C3 are then traced, respectively passing through the triplets
of points:

A ,C ,D ∈ C1 ; A ,B ,E ∈ C2 ; B ,C , F ∈ C3 ;
so that each pair of circles intersects at two points:

C1 ∩ C2 = {A ,B′} ; C1 ∩ C3 = {C ,A′} ; C2 ∩ C3 = {B ,C ′} .
Look at triangle A′B′C ′ : it is rotated by an angle θ with respect to ABC ,
to which is similar with similarity ratio k given in (1); that is, the construc-
tion just described, and illustrated in Figure 1, implements an inverse spiral
similarity of triangle ABC .

Demonstration of the similiarity of ABC and A′B′C ′ is now provided and
graphed in Figure 2.
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Figure 2. Demonstration of similiarity between triangles
ABC ,A′B′C ′

Trace line r through B and such that r∥s , where s is the line through
A′ , B′ . Along r , determine segment A∗B congruent to AB . From A∗ ,
draw the parallel A∗G to BB′ to obtain parallelogram A∗BB′G . From
A′ , conduct the parallel A′A′∗ to BB′ so that A′B′ = A′∗B . At this
point, along AB , consider segment BH congruent to A′∗B : it is possible
to prove that BH = AD . In fact:

(3) AB = AD +DB = AH +HB =⇒ AD −BH = AH −DB .

By Thales’ Theorem, the right–most relation in (3) also holds between ab-
scissas and ordinates of A ,H ,D ,B ; referring triangle ABC to a Carte-
sian coordinate system and denoting A(xa , ya) , H(xh , yh) , D(xd , yd) ,
B(xb , yb) , it is:

(xd − xa)− (xb − xh) = 0 = (xh − xa)− (xb − xd) ,

and analogously for the corresponding ordinates. This means that (3) im-
plies equalities AD = BH and AH = DB . We have thus obtained the
chain of equalities:

AD = BH = A′∗B = A′B′ ,

which, since AD = k AB by (2) and by construction and with k as in (1),
implies:

A′B′ = k AB .

With analogous reasoning, it can be proved that B′C ′ = k BC , A′C ′ =
k AC . Hence, triangle A′B′C ′ is similar to triangle ABC .

All identities involved in the triangles similarity demonstration are gathered
in (4)–(5), where k is given by (1), and they can be seen in Figure 1.

(4)
AD

AB
=

A′B′

AB
= k ,

BE

BC
=

B′C ′

BC
= k ,

CF

AC
=

A′C ′

AC
= k ,

(5) A′B′ = AD , B′C ′ = BE , A′C ′ = CF .
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Figure 3. Succession of triangles, all similar to ABC

If P ,P ′ and A ,A′ respectively are perimeters and areas of triangles ABC
and A′B′C ′ , relations (4) imply:

P ′

P
= k ,

A′

A
= k .

Figure 3 shows how, proceeding in the same way that led from ABC to
A′B′C ′ , from the latter a new triangle A′′B′′C ′′ can be constructed, and so
on, obtaining a sequence of similar triangles.

Once the similarity between the two triangles has been ascertained, it is
necessary to determine the transformation center, that is the point O , in
the plane of the figures, corresponding to which there is equality of the
rotation angles leading A into A′ , B into B′ , C into C ′ . To this aim,
Lemma 2.1 is employed [1, 6].

Lemma 2.1. Let ABC , A′B′C ′ be triangles corresponding to each other
through a spiral similarity. Let P be the intersection of lines AA′ and BB′ ,
as shown in Figure 4. The two circles through A ,B , P , and A′ , B′ , P ,

Figure 4. Determining the center of spiral similarity
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Figure 5. Cyclic quadrilaterals (left); complete determination
of spiral similarity center (right)

respectively, also meet at O ̸= P . Then, O is the center of the spiral
similarity taking AB into A′B′ . □

Lemma 2.1 is demonstrated here, for completeness, and illustrated in Fig-
ure 5 (left).
Let P be the intersection of lines AA′ and BB′ , consider the two circles
through A ,B , P , and A′ , B′ , P , and let O ̸= P be their intersection.
Quadrilaterals AOBP and A′OB′P are cyclic, i.e. each of them is inscribed
in a circle. Thus, the following angles relations hold:

ÔBP = π − ÔAP , P̂A′O = π − P̂B′O ,

implying:

ÔBB′ = π − ÔAP , ÂA′O = π − P̂B′O .

It follows that triangles OAA′ and OBB′ are similar, as they further verify

ÂOA′ = B̂OB′ , and O is their similarity center, since ÂOB = Â′OB′ .

In other words, AB is transformed into A′B′ through the clockwise ÂOB
angle rotation. The same construction can be used for the other two pairs
of corresponding sides of ABC , A′B′C ′ , as shown in Figure 5 (right); thus
O is the spiral similarity center for the two triangles (qed).

The transformation obtained is an homothety: referring to Figures 1 and 6
(left) as original and final configurations, if ABC is rotated around B so
that AB∥A′B′ , and if analogous rotations are applied to each triangle in the
sequence of triangles similar to ABC , then the three lines joining triangles
correspondent vertices intersect at point O , which is the center of direct
homothety; since, by Thales’ Theorem:

OB : OB′ = A′B′ : A′′B′′ = k ,

the homothety is a contraction reducing the various triangles by k < 1
in (1).

Another demonstration is as follows. Consider Figures 1 and 6 (center) as
initial and final configurations: triangle A′B′C ′ is translated so that points
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Figure 6. Direct homothety of triangles: three methods of ver-
ification

A′ and B coincide, and rotated so that A′C ′||AC . If analogous operations
are performed on each triangle in the sequence of triangles similar to ABC ,
then an homothety is obtained, with ratio k as in (1) and centered at point
O .

A further way of considering this homothety is shown in Figure 6 (right):
the latter is obtained, starting from Figure 1, by applying to A′B′C ′ a
translation whose effect is to make points A′ and A coincide, and to make
A′C ′ and AC overlap. In this case, after performing analogous operations
on each triangle in the sequence of triangles similar to ABC , the various
homothetic triangles are enclosed one inside the other.

2.1. Spiral similarity of particular triangles. Special cases of this tri-
angles transformation can be treated as the acute–angled triangle general
case. Figure 7 illustrates how the various triangles get rotated and reduced
according to an inverse similitude having coefficient k given in (1).

In particular, as displayed in Figure 8 (left) for k = 1/2 , if the above
transformation is performed on an equilateral triangle, then a sequence of
equilateral intouch triangles emerges, and the spiral similarity center coin-
cides with the initial triangle barycenter; the simple proof is not provided

Figure 7. Spiral similarity for an isosceles, an equilateral and a
right triangle
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Figure 8. Cases of equilateral (left) and isosceles (right) trian-
gles with k = 1/2

here. If the transformation is performed on a non–equilateral triangle, then
a sequence of inscribed triangles is no longer be obtained. Figure 8 (right)
shows it when the initial triangle is isosceles, and again with k = 1/2 .

2.2. Links between triangles, rotation angle and k–ratio. We exam-
ine, here, some dependencies that exist between the angle θ of rotation, the
original and transformed triangles and the similarity k−ratio. In particular,
we show that θ depends on the given triangle but not on k ; moreover, ob-
serving that 0 < k < 1 by definition (1), we analyse the limit of the image
triangle as k tends to 1.

Angle θ depends on the triangle considered. This is shown in Figure 9,
where left and right images illustrate, respectively, the transformation A′B′C ′

of an acute or obtuse triangle ABC . In both cases, the rotation is centered
at point O and the similarity ratio is k = A′B′/AB = 3/4 . The rotation

Figure 9. The rotation angle depends on the triangle consid-
ered. The similarity ratio is k = A′B′/AB = 3/4 in both
acute/obtuse triangles (left/right).
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Figure 10. For a given triangle, the rotation angle does not
depend on the k-ratio. ABC is transformed into A′B′C ′ via a
similarity of ratio k1 = A′B′/AB = 2/3 and angle θ ; a second
similarity takes ABC into A′′B′′C ′′ via angle ϕ and ratio k2 =
A′′B′′/AB = 1/2 . It can be proved that θ = ϕ .

angle differs in the two cases considered: it is θ = 55.11o in the acute
triangle transformation, while θ = 25.42o in the obtuse triangle similarity.

Angle θ does not depend on the k-ratio. To see this, let us apply two trans-
formations, with different k-ratios, to the same triangle ABC . In Figure 10,
ABC is transformed into A′B′C ′ via a similarity that is centered at point
O and that has angle θ and ratio k1 , while a second similarity, centered in
O′ , takes ABC into A′′B′′C ′′ via an angle ϕ and ratio k2 , where:

k1 =
A′B′

AB
=

AR

AB
=

2

3
, k2 =

A′′B′′

AB
=

AM

AB
=

1

2
.

It is possibile to prove the identity θ = ϕ , from which it follows that the
rotation angle is independent of the similarity ratio. The proof relies on
analytical geometry and is rather long, therefore we do not include it here.

To analyse the limit of the image triangle as k tends to 1 , consider for
a given triangle its transformations according to similarity ratios k ⪅ 1 .
With reference to Figure 11, we can consider, for example, the acute triangle
ABC and its transformations obtained with ratios:

kn =
2n − 1

2n
.

Then, kn −→ 1− for n −→ ∞ , and we obtain a sequence of triangles en-
closed one inside the other, and with centers of rotation O,O′, O′′, . . . , On , . . . ,
corresponding to each of the prescribed ratio kn . These rotation centers
translate in such a way that the angle θ of rotation of the different trans-
formations remains unchanged. Furthermore, since the various transformed
triangles are homothetic, they have parallel corresponding sides. In other
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Figure 11. Study of the limit of the image triangle, for a given
ABC , as k −→ 1

words, all image triangles (with kn −→ 1−) tend to a triangle congruent
to the original one rotated by the angle θ .

3. Spiral similarity of two consecutive segments

Construction of the spiral similarity of a triangle, according to a propor-
tionality factor k , also allows obtaining the spiral similarity of a pair of
consecutive segments.

Consider AB and BC in Figure 12; they are consecutive segments with:

AB

AD
=

BC

BE
= k .

Figure 12. Spiral similarity of two consecutive segments
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Figure 13. Physical interpretation associated to our spiral sim-
ilarity construction

Spiral similarity of triangle ABC is constructed via the auxiliary segment
AC , with:

AC

FC
= k .

Then, segments A′B′ and B′C ′ are the transforms of AB and BC .

3.1. An heuristic application. As seen in the previous section, our con-
struction of the spiral similarity allows to tranform a segment by regarding
it as a triangle side. Taking this idea further, we can consider a vector whose
modulus is given by the length of the tranformed segment. In a sequence
of transformed segments, the corresponding vectors turn out to be tangent
to the spiral considered (see Figure 13), thus they may be thought of as
velocities.
This suggests that a physical interpretation may be associated to our spiral
similarity. Figure 13 (left) illustrates the effect of applying a spiral similarity
of ratio k = m/n and angle θ to vectors v1 ,v2 ,v3 , . . . , and so on: the
modulus of each vk becomes m/n of the modulus of the previous vector
vk−1 , after reaching a rotation of θ .
In other words, vectors v1 ,v2 ,v3 , . . . , can be interpreted as related to a
particle of mass m, which follows a spiral trajectory, as shown in Figure 13
(right), and whose speed gradually decreases, until when, at each θ rotation,
its modulus becomes m/n of that of the initial velocity. Hence, it is a
decelerated motion of an elementary particle, which could be what happens
in a bubble chamber.

4. Polygonal spirals

Consider again the sequence of triangles ABC , A′B′C ′ , A′′B′′C ′′ , and so
on, generated by spiral similarity. Join all points A ,A′ , A′′ , etcetera; then,
join points B ,B′ , B′′ , . . . ; finally, join points C ,C ′ , C ′′ , etc. In this way,
as visualized in Figure 14, three inverse and similar polygonal spirals are
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Figure 14. Polygonal spirals

obtained, in which the various sides verify (with respect to each other) the
ratio k , and follow each other with all congruent angles.
In fact, it is sufficient to observe that the various homothetic triangles are
all rotated, with respect to each other, by the same angle, so that vertex
A′ is arranged, with respect to A , in the same way in which vertex A′′ is
arranged with respect to A′ ; thus, AA′ and A′A′′ are always homothetic
with respect to spiral similarity; analogous considerations apply to each
triangle in the sequence of triangles similar to ABC .

Spirals consist of segments whose lengths are in geometric progression of the
ratio k ; hence, they are logarithmic polygonal spirals, and the length of each
of them is:

∞∑
i=1

ki a ;

a is the length of the first segment of a chosen polygonal spiral, and k is
as in (1).

In this way, polygonal spirals of infinite length are obtained, since k < 1
implies that successive segments forming each spiral tend to zero.

Given any of these spirals, its pole is the point (in the plane) with respect
to which each segment (of the spiral) is subtended by an angle congruent to
the one formed by each side (in the spiral) with the previous side extension;
refer to Figure 14.

In other words, each logarithmic polygonal spiral, with first segment of
length a , rotation angle θ , and reduction factor k , converges to the vertex
opposite to the first a–length segment (on which a triangle is constructed),
so that the angle opposite to this segment is θ , and so that the other two
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Figure 15. Spiral of barycenters

triangle sides, of lenght b , c , respectively, are in the relation prescribed by
k , i.e. c/b = k , with k = m/n as defined in (1); refer again to Figure 14.

Now, by Carnot’s Theorem:

(6) a2 = b2 + c2 + 2 b c cos(θ) .

Since a , θ are known, equalities (6) and c = b k = bm/n allow to deter-
mine b , c :
(7)

b = n K , c = m K , K =
a√

m2 + n2 + 2mn cos(θ)
.

For k = m/n = 1/2 :

b = 2 K , c = K , K =
a√

5 + 4 cos(θ)
.

This allows to construct the spiral pole (refer, once more, to Figure 14),
which is in common to the other two spirals, due to the above–mentioned
reasons. Furthermore, if the spiral similarity center is constructed as in
Figure 5 (right), it is possible to verify that it coincides with the pole of the
various polygonal spirals.

Before leaving this section, let us make an interesting observation using
Figure 15. Consider barycenters G1 , G2 , G3 , etc., of the various trian-
gles T1 , T2 , T3 , . . . , that correspond to each other in the spiral similarity:
barycenters Gk are vertices of a polygonal spiral, whose sides verify, with
respect to each other, ratio k of the spiral similarity between triangles. Tk .
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Figure 16. Cases of square (left) and scalene (right) quadrilat-
erals

Figure 17. Cases of regular (left) and irregular (right) pen-
tagons

5. The case of polygons with more than three sides

If the same construction described for triangles is applied to a polygon with
more than three side, then a k–ratio inverse similarity is obtained only if
the starting polygon is regular. Figures 16 and 17 illustrates the cases of
regular/irregular quadrilaterals and pentagons. Moreover, applied to a poly-
gon with t sides, the presented construction creates t− 2 polygons, among
which one (only) turns out to be similar to the originator; the remaining t−3
generated polygons are still similar to each other, but no longer according
to ratio k .
In other words, starting from a triangle ( t = 3) , each iteration provides a
single triangle similar to the initial one; application to a square ( t = 4)
yields two squares, one of which is similar to the original by spiral similarity
of ratio k ; from a pentagon ( t = 5) three pentagons are created, with one
k–ratio spirally similar to the originator; and so on. In Figure 18, only
square A′B′C ′D′ corresponds by k–ratio spiral similarity to the original



On a particular spiral similarity 67

Figure 18. Cases of square (left) and of regular pentagon (right)

square ABCD ; and analogously, only pentagon A′B′C ′D′E′ corresponds
to the initial pentagon ABCDE .

6. The three–dimensional case

Results of the transformation of planar figures by spiral similarity can be
interpreted in three–dimensional space. Let us see it employing, as an ex-
ample, triangle ABC of Figure 1, thought of as base of a right–angled
tetrahedron or prism. Assume the case of a tetrahedron ABCD with tri-
angular base ABC , as in Figure 19, and define:

k =
AB

AM
=

BC

BM ′ =
AC

CM ′′

to be the ratio according to which sides of ABC (belonging to plane α)
are divided.

Figure 19. Transformation of the tetrahedron
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Figure 20. Dihedral (left) and spiral similarity of its two trian-
gles (right)

Now, consider the planar development (or planar net) of ABCD on the
α–plane, and let A′B′C ′ be the transformation of base ABC by k–ratio
spiral similarity. Applying the same spiral similarity to all other faces of
the development of ABCD , and recomposing the solid, the transformed
tetrahedron A′B′C ′D′ is obtained; compared to the initial tetrahedron,
A′B′C ′D′ is contracted by k .

As a general illustrative example, we perform the spiral similarity transfor-
mation of a simple solid figure: Figure 20 (left) displays a dihedral formed
by two triangles, ABC and ACD , belonging to two different planes α and
β , in three–dimensional space.
Let A′B′C ′ and A′′C ′′D′′ be k–ratio transformations of triangles ABC ,
ACD , respectively. Now, determine line r through C ′ and parallel to side
C ′′D′′ , and line s through A′ and parallel to side A′′D′′ : these two lines
meet at D′ , as shown in Figure 20 (right). We have thus obtained the
transformed A′B′C ′D′ planar development of ABCD by spiral similarity,
from which the corresponding spatial figure can be recovered.
In other words, the construction we have presented can be applied to planar
developments of geometric solids. As a further example, Figure 21 depicts
the spiral similarity, of ratio k = 3/2 , of the planar development C′ of a
cube C .

Figure 21. Spiral similarity of the planar development of a cube
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7. Conclusion

Spiral similarity derives its name by its two components, the first of which is
a rotation, defined by a center and an angle, that causes a spiral movement
of the figure to which it is applied. In the direct transformation, rotation is
composed with a dilation by a constant ratio k ; in inverse spiral similarity,
rotation is followed by a k–ratio contraction. In both cases, the rotated
transformed figure is k–similar to the originator.
The inventor of spiral similarity seems to be unknown, in the history oh
mathematics; its first documentation can be found in [3]. Nowadays, this
transformation is commonly used in solving problems of Euclidean geometry,
in particular during mathematical competitions. In general, it is a useful
geometric tool that deserves to be investigated, which is what we meant to
do in this work.
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