
6.83.9

Polygon Simplification for the
Efficient Approximate Analytics of
Georeferenced Big Data

Isam Mashhour Al Jawarneh, Luca Foschini and Paolo Bellavista

Article

https://doi.org/10.3390/s23198178

https://www.mdpi.com/journal/sensors
https://www.scopus.com/sourceid/130124
https://www.ncbi.nlm.nih.gov/pubmed/?term=1424-8220
https://www.mdpi.com/journal/sensors/stats
https://www.mdpi.com
https://doi.org/10.3390/s23198178

Citation: Al Jawarneh, I.M.; Foschini,

L.; Bellavista, P. Polygon

Simplification for the Efficient

Approximate Analytics of

Georeferenced Big Data. Sensors 2023,

23, 8178. https://doi.org/10.3390/

s23198178

Academic Editor: Jose Manuel

Molina López

Received: 13 August 2023

Revised: 24 September 2023

Accepted: 27 September 2023

Published: 29 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Polygon Simplification for the Efficient Approximate Analytics
of Georeferenced Big Data

Isam Mashhour Al Jawarneh 1 , Luca Foschini 2 and Paolo Bellavista 2,*

1 Department of Computer Science, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;

ijawarneh@sharjah.ac.ae
2 Dipartimento di Informatica—Scienza e Ingegneria, University of Bologna, Viale Risorgimento 2,

40136 Bologna, Italy; luca.foschini@unibo.it

* Correspondence: paolo.bellavista@unibo.it

Abstract: The unprecedented availability of sensor networks and GPS-enabled devices has caused the

accumulation of voluminous georeferenced data streams. These data streams offer an opportunity to

derive valuable insights and facilitate decision making for urban planning. However, processing and

managing such data is challenging, given the size and multidimensionality of these data. Therefore,

there is a growing interest in spatial approximate query processing depending on stratified-like

sampling methods. However, in these solutions, as the number of strata increases, response time

grows, thus counteracting the benefits of sampling. In this paper, we originally show the design and

realization of a novel online geospatial approximate processing solution called GeoRAP. GeoRAP

employs a front-stage filter based on the Ramer–Douglas–Peucker line simplification algorithm to

reduce the size of study area coverage; thereafter, it employs a spatial stratified-like sampling method

that minimizes the number of strata, thus increasing throughput and minimizing response time,

while keeping the accuracy loss in check. Our method is applicable for various online and batch

geospatial processing workloads, including complex geo-statistics, aggregation queries, and the

generation of region-based aggregate geo-maps such as choropleth maps and heatmaps. We have

extensively tested the performance of our prototyped solution with real-world big spatial data, and

this paper shows that GeoRAP can outperform state-of-the-art baselines by an order of magnitude in

terms of throughput while statistically obtaining results with good accuracy.

Keywords: approximate query processing; Spark Streaming; stratified sampling; spatial sampling;

Douglas–Peucker; line simplification; geospatial generalization; mobility data; low-cost air quality

sensors data; pollution data

1. Introduction

The unprecedented overdependence on the ubiquitous Internet of Things (IoT) in
all aspects of our lives has caused the accumulation of massive amounts of multidimen-
sional and heterogeneous data that are mostly georeferenced [1–4]. To extract insightful
knowledge from such an abundance of data, the fast-track adoption of a breed of big data
processing frameworks such as Apache Spark has occurred.

In particular, with most data from IoT arriving in streams, unprecedented efforts in the
relevant literature have focused on designing and supporting the promotion of a constella-
tion of tools known as data stream processing systems (SPSs) [5]. Those systems typically
search for a good trade-off between two indispensable QoS requirements specified in
service-level agreements (SLAs): low latency and high accuracy. As those requirements are
normally contradicting, where improving one of them leads naturally to the deterioration
of the other, a constellation of different SPSs, characterized by different trade-offs and based
on approximate computation, has recently emerged [3,4,6,7]. Approximate computing is
driven by the fact that users are typically satisfied with approximate results and willing to

Sensors 2023, 23, 8178. https://doi.org/10.3390/s23198178 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23198178
https://doi.org/10.3390/s23198178
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4796-2181
https://orcid.org/0000-0001-9062-3647
https://orcid.org/0000-0003-0992-7948
https://doi.org/10.3390/s23198178
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23198178?type=check_update&version=2

Sensors 2023, 23, 8178 2 of 28

give up tiny error-bounded losses in accuracy in exchange for a lower latency [4,6]. There
are numerous methods applied in approximate computing. However, they are mostly
based on either selecting subsets of the arriving data streams or discarding (also known as
shedding) extra data loads that may otherwise introduce additional latencies. Sampling is,
by and large, one of the most widely adopted methods for such purposes [3].

Embracing randomness has been the defining factor for most sampling methods that
have been designed in the relevant literature so far. This, in part, is attributed to the fact
that application scenarios were increasingly known to generate data that exhibited normal
distributions [3]. However, things have changed dramatically with the emergence of smart
environments (e.g., smart cities) and big data scenarios. Currently, those scenarios are
generating big data characterized by high skewness and thus are non-uniformly distributed.
In short, this means that the dependence on random-based sampling methods is not going
to perform well when it comes to approximating geo-statistics (e.g., the average speed of a
vehicle moving in a specific trajectory in a city).

Online sampling that is aware of the geographical characteristics of big data has been
demonstrated to be computationally expensive and could cause SPSs to halt at high spikes
in data arrival rates [6]. This problem is exacerbated by the fact that well-performing
spatial sampling algorithms have to be based on advanced data structures as opposed to
simple random sampling. In fact, they are mostly based on stratification, which divides
the data into groups corresponding to the real geometrical areas where they have been
collected in order to be able to draw roughly equal amounts of data objects from each
area independently.

In this paper, we propose a new method called Geospatial Reduced Approximate
Processing (GeoRAP). It is a novel geospatial online sampling solution that can efficiently
generate highly representative spatial samples within the premises of stringent time-based
QoS constraints (i.e., high response time and lower latency). GeoRAP employs a geometric
line simplification (i.e., generalization) algorithm to simplify the polylines of the covering
polygons (i.e., the border lines of the administrative divisions from where the geospatial
vector data are usually withdrawn). Our solution adopts the Douglas–Peucker (hereafter
DP for short) algorithm (also known as Ramer–Douglas–Peucker) [8]. We first pass the
geometrical administrative divisions (often in shapefile and GeoJSON formats) to a frontline
filter that applies a line simplification algorithm to simplify the border lines (typically
by minimizing the number of vertices of polygons); then, we pass the resulting new
covering polygons to a geohash encoder that generates the list of geohashes covering each
polygon. Geohash encoding is a dimensionality reduction approach that transforms the 2-D
parametrized long/latitude points into a corresponding string-based representation that
represents a Minimum Bounding Rectangle covering the original point. Thereafter, upon
receiving a stream within each time window interval, our method selects a fair amount of
the arriving geospatial tuples from each polygon independently. The crux of GeoRAP is
that it minimizes the size of strata for each polygon (each geohash is a stratum in this case).
This is a direct consequence of simplifying the borderlines, thus minimizing the number
of vertices.

Various vector line generalization algorithms are discussed in the literature and di-
vided into five categories, as in [9]. Examples include the Reumann–Witkam routine [10],
the sleeve-fitting polyline simplification algorithm [11], the Lang simplification algo-
rithm [12], the Douglas–Peucker algorithm [8], and an algorithm by Visvalingam and
Whyatt [13]. The difference between the global routines (e.g., DP) and the other categories
is that the former takes the entire line into consideration while processing, whereas other
categories take segments of the entire line gradually from a start point to an end point of
the original line. DP is the preferred algorithm in the state-of-the-art, for it is the most
accurate in preserving the shape of the original line, as discussed in [9]. It is for this reason
that we adopt the DP algorithm as part of our GeoRAP system in this paper.

In short, we believe that this paper can provide the readers with the following valuable
and original contributions. We designed a novel online geospatial sampling solution to

Sensors 2023, 23, 8178 3 of 28

facilitate on-the-fly geo-statistics (e.g., estimating the average speed of all vehicles moving
during a time range in a metropolitan city). We designed, implemented, and validated
a sampling method based on an industry-standard SPS, i.e., Spark Streaming [5]. Our
implemented prototype shows that it is capable of lowering the latency while keeping the
accuracy loss in check and within acceptable thresholds. To the best of our knowledge, no
other implemented system solution from the literature achieves these goals.

The remainder of the paper is structured as follows. We first discuss relevant studies
from the recent state-of-the-art in Section 2. In Section 3, we introduce appropriate theoreti-
cal concepts related to our work and provide the readers with the needed background. We
then describe the primary design and implementation choices we made in our develop-
ment and implementation work in Section 4. In what follows, we discuss our experimental
validation work and the associated performance results in Section 5. Conclusive remarks
and recommendations about future research frontiers end the paper in Section 6.

2. Literature Review

2.1. Spatial Approximate Query Processing

Unprecedently, massive amounts of big, geotagged data streams are hitting database
management systems (DBMSs) continuously, with fluctuations in such a way that in peak
hours, data size typically overwhelms those systems and far exceeds their computational
capacity [3,6,7]. Seeking to derive insights from such data [6], DBMSs need to manage and
store such data efficiently. In such cases where size is overwhelming, systems resort to
either elasticity or adaptivity [14]. In the former, systems overprovision or deprovision
resources depending on the fluctuation in data arrival rates, whereas in the latter, systems
resort to applying approximate query processing (AQP). The disadvantage of elasticity is
that it keeps the online DBMS busy with configurations while those resources can be better
allocated to data stream processing instead.

The typical form of adaptivity is represented by AQP. This entails reducing the size of
the arriving data in such a way that enables the system to operate gracefully in response to
the fluctuations in data arrival rates. The most adopted method for AQP in the literature is
sampling, which works by selecting a representative subset of the arrived data in a way that
guarantees bounded error numbers in exchange for significant gains in processing times
and reduced latencies. AQP is highly sought after in the state-of-the-art simply because
the tiny loss in accuracy in exchange for a significant gain in speedup is desirable and
acceptable by decision makers in smart city scenarios [4].

Authors in [7] proposed an AQP system for online data stream processing. Their
system is composed of three main components: data learning, dynamic sampling strategy,
and error control. Their sampling strategy is based on stratification and binary-trees
division. They split arriving data streams into tree-based nodes (nodes are analogous to
partitions in data distributed parallel processing terms). The other component is a loop-
feedback-based error controller to compute the sample sizes adaptively for subsequent
processing cycles. The shortcoming of this framework includes the fact the stratification
methodology is expensive as it is tree-based. Also, the system is unaware of spatial
characteristics and is not reliable for spatial online data processing.

In the same vein, SnappyData [15] has been designed to operate over Apache Spark [16]
and incorporates AQP for data stream processing and analytics. It features data structure
modules that balance latency and accuracy QoS SLA targets. However, it is not optimized
for spatial AQP and data analytics. It does not host a spatial-aware sampler.

Authors in [17] have designed Taster, which encapsulates a few components, including
a collector that employs synopses reduction techniques as front stages to select a subset
of data. In addition, it hosts a tuner and cost planner, which is responsible for producing
on-the-fly approximate running plans. Plans are then run against a synopsis (e.g., samples
or sketches) that either persists in a data warehouse or is poured from an online data stream.
Plans should be able to meet the accuracy/latency targets from an SLA. Those plans
are passed to a tuner, which is then responsible for selecting the plan that optimizes the

Sensors 2023, 23, 8178 4 of 28

performance. The system then utilizes the selected plan to capture the synopsis (persisted
in disk or from online data streams). The system then computes approximate results from
those synopses to answer a query posed by the user. This system, however, is not designed
with spatial data processing in mind; it also regularly stores synopsis in disks, which adds
extra overhead.

Stock versions of those AQP systems do not include over-the-counter support for
geospatial data processing, which leaves handling those logistics to the presentation layer,
thus overwhelming the shoulders of front-end developers and distracting their focus
orientation away from the main task of developing dependable spatial data stream analytics.
This is so because geospatial data are parametrized and represented in the form of pairs of
coordinates (typically longitudes and latitudes). Having said that, spatial data lose their
characteristics while moving and floating around in a network, and bringing them back to
their multidimensional shape is a computationally expensive task that normally involves
costly spatial join processing [18,19]. In conclusion, for a data stream processing system
to be able to work with big geospatial data at scale with QoS guarantees, it must feature
by-design products that incorporate support for geospatial data processing and be aware
of other spatial characteristics intrinsically. It also should support interactive and proactive
mechanisms to respond to sudden spikes in data arrival rates in such a manner that
guarantees, to a good extent, the stability of the system. It should be well-noted, however,
that online spatial sampling is challenging basically because of the multidimensionality
of data. Stock versions of state-of-the-art data stream processing engines do not currently
offer spatial awareness and AQP with QoS guarantees together [3,6,19,20].

Within the same consortium, ApproxHadoop [21] features a two-level sampling mech-
anism atop Apache Hadoop, which drops tuples to reduce data size in order to reduce
I/O overhead. Nevertheless, it relies on an offline profiling method for reconfiguring the
latency/accuracy estimates and, therefore, is hardly applied for data streaming workloads.

Other big data systems employ sampling for spatial data partitioning in the Cloud.
For example, Simba [22] and SpatialHadoop [23]. However, they do not work for dynamic
spatial data stream processing scenarios, where data arrival rates fluctuate periodically.

Only a few systems in the recent state-of-the-art offer such capabilities. Perhaps most
important is a system we designed in a previous work, which we termed ApproxSSPS [4].
It basically hosts two state-of-the-art spatial-aware online sampling methods (SAOS [6] and
ex-SAOS [3]) that we have designed previously for selecting representative spatial samples
on the fly with QoS guarantees. It also features a controller that senses interactively the
fluctuation in data rates and responds by selecting the percentages of the samples to be
withdrawn from the online stream. However, the system employs sampling on the original
polygons representing the study area, which could reduce the efficiency in cases of very
big data streams.

Also, EXPLORA [24] has been designed to support AQP and geo-visualization of
spatiotemporal data at scale with QoS guarantees. It hosts a sampling method that selects
online representative samples of arriving data, which aims to speed up processing while
keeping accuracy in check. However, it does not host a latency-aware controller that pulses
the fluctuation in data arrival rates and reacts proactively.

Also, spatial-aware approximate query processing (SAQP) is employed for integrating
calibrated granular heterogeneous spatially tagged pollution and mobility data for joint
analytics at scale with QoS guarantees, as in [25]. Authors have designed EMDI (Environ-
mental Mobility Data Integrator) for integrating mobility data with environmental data,
e.g., pollution, climatological, and meteorological data, for complex unified analytics with
QoS guarantees. It features a sampler that samples data from both worlds for unified
AQP analytics.

However, those systems do not take advantage of the line simplification algorithms.
As stipulated in Tobler’s first law of geography, objects that are closer in real geometries
are more related. Taking advantage of this fact has been widely proven in the litera-
ture [3,4,6,26,27]. Having said so, most analytics do not consider spatial objects floating

Sensors 2023, 23, 8178 5 of 28

on the outskirts of cities, and most analytics are focused inside cities and livable areas.
Furthermore, line simplification algorithms are indispensable for efficient, timely analytics
of big georeferenced data with QoS guarantees, such as reducing latency while keeping
accuracy in check.

2.2. Line Generalization Algorithms

Vector line generalization algorithms can be divided into several categories, as dis-
cussed in [9]. Those are independent point algorithms (such as the nth point routine and
the routine of random selection of points), local processing routines (such as the routine of
distance between points and the perpendicular distance routine), unconstrained extended
local processing (such as the Reumann–Witkam routine [10] and the sleeve-fitting polyline
simplification algorithm [11]), constrained extended local processing (such as the Opheim
simplification algorithm and Lang simplification algorithm [12]), and global routines (such
as Douglas–Peucker algorithm [8] and an algorithm by Visvalingam and Whyatt [13]). For
example, the independent point algorithms work by grouping points on a line into indepen-
dent sets of consecutive points and then retaining random points. Local processing routines
depend on the idea of eliminating points within a radial or perpendicular distance that is
less than a user-supplied threshold (tolerance bandwidth) while retaining points within
a distance greater than that of the tolerance threshold. From the family of unconstrained
extended local processing, the Reumann–Witkam routine [10] works by first passing a
strip (rectangular) that shifts stepwise through all segments of an original line, where the
start and end points within the strip are retained while in-between points are eliminated.
The sleeve-fitting polyline simplification algorithm works in a way similar to that of the
Reumann–Witkam routine, where the strip is known as a sleeve that is passed through
the original segments of the original line. The Opheim simplification algorithm from the
category of constrained extended local processing algorithms works in a way that is similar
to that of unconstrained extended local processing routines, in addition to minimum and
maximum additional constraints applied within a search region (similar to strips and
sleeves), where points within the minimum tolerance or within the search region bounded
by the maximum tolerance are removed, while the other points of the original line are
retained. Lang simplification algorithm works in a similar way as compared to the Opheim
simplification algorithm utilizing search regions, in addition to a distance of intermediate
points to a segment connecting start and end points in the region, which should not exceed
a user-supplied tolerance for in-between points to be retained. A comprehensive review
of those methods and algorithms is beyond the scope of this paper. In this paper, instead,
we concentrate on methods that apply those algorithms for various vector geospatial data
processing workloads.

Global routines, e.g., DP, take the entire line into consideration while processing,
contrary to what appears in the other four categories, which consider segments of the
entire line stepwise from the start point to the end point. Visvalingam–Whyatt from this
category works on the basis of eliminating the original point with the minimum effective
area (triangular area formed by any point and its direct in-between neighboring points).
The DP algorithm performs favorably for tiny weeding (minor simplification), while
the Visvalingam–Whyatt algorithm wins for eliminating entire shapes (e.g., caricatural
generalization) [9].

Extensive experiments conducted by [9] show that the Douglas–Peucker algorithm
produces the most accurate generalization in terms of measures such as mean distance
and mean dissimilarity (which means it has the best performance in the language of shape
distortion). For this reason, we adopt the DP algorithm as part of our GeoRAP system in
this paper. The Douglas–Peucker algorithm is discussed in detail in Section 3.4.

2.3. Applications of Line Simplification in Approximate Geospatial Analysis

Line generalization has been widely adopted in several aspects related to complex
geospatial analysis, including trajectory compression. For example, a recent work by [28]

Sensors 2023, 23, 8178 6 of 28

proposed to parallelize several trajectory compression algorithms atop Apache Spark,
including an algorithm that is based on Douglas–Peucker. So, it has been applied to trajecto-
ries formed from GPS points so that trajectories are lines formed by connecting points, and
then parts of those lines are cut, and their corresponding points are discarded accordingly.
The process does not involve reducing a polygon; thus, no spatial join is involved.

In the same vein, ref. [29] have designed a novel geospatial-aware big data analytics
framework that features trajectory compression using DP algorithm line simplification
as an integral part of its operation. The same applies to a work by [30], where authors
proposed an Enhanced Douglas–Peucker (EDP) algorithm which applies a group of en-
hanced spatial–temporal constraints (ESTC) while simplifying trajectory data, aiming
basically to preserve few spatial–temporal features while applying the line simplification
for compressing trajectories.

Within the same consortium, ref. [31] designed a novel method to unleash hotspot
routes in mobility data by employing massive taxi trajectory data. To reduce the burden
on storage and processing resources, they employed the DP algorithm as a quick-and-
approximate filter in the front stage of their system to reduce the number of trajectory
points accepted for clustering downstream in their system.

Also, variations of the plain application of the DP algorithm are available. For example,
ref. [32] proposed a velocity-preserving trajectory DP-based simplification algorithm, which
divides the source trajectory into sub-trajectories based on their average velocity such
that the velocity in every sub-trajectory differs largely from the others. This way, each
sub-trajectory is assigned a different threshold based on those figures; thereafter, each
sub-trajectory is simplified using the plain DP algorithm independently, then all simplified
sub-trajectories will be merged into a single simplified trajectory.

In addition, ref. [33] designed an adaptive DP-based algorithm with automatic thresh-
olding for AIS-based vessel trajectory compression. Also, another DP-based algorithm
has been designed by [34] for compressing automatic identification system (AIS) ocean
massive datasets. Also, in oceanography, refs. [35–37] designed a DP-based algorithm for
the compression of AIS ocean ship data.

Another line of applications of line simplification algorithms for scale-aware geospa-
tial data analytics includes big georeferenced data visualization. In this direction, ref. [38]
applied a DP-based algorithm for reducing the georeferenced data to be visualized at scale
with QoS guarantees. Authors in [39] propose a novel algorithm that they term locally
adaptive line simplification (LOCALIS) for GPU-based geographic polyline data visual-
ization at scale with quality guarantees. Similar work appears in [40], where a method for
Level-of-Details (LoD) visualization for polygonal data was designed, which incorporates a
polygon simplification method that is based on the DP algorithm. Ref. [41] applies the DP
algorithm for generating trajectory data for thematic heatmaps at the city scale for tourist
activity analysis. Similarly, authors in [42] have designed an approach for the efficient
generation of heatmaps using methods based on the DP algorithm. Also, ref. [43] designed
RectMap by combining DP-based simplification with a gridding algorithm to generate
simplified versions of plain reference maps.

The picture that emerges from the recent state-of-the-art is the following: systems
are mostly run on beefed-up servers and not deployed in parallel. Also, they are not
applied with stratified-like spatial sampling, and they are mostly applied for simplifying
polylines, not polygons. Simplifying polygons has a great impact on the processing and
qualified analytics of big geospatial data streams for several reasons, including the fact
that georeferenced sensor data are parametrized and typically need to be joined with
polygons for insightful analytics, which adds extra I/O and computational overheads.
Also, sending those polygons to the Edge node in Edge–Cloud deployments that are
designed for spatial data analytics means adding extra layers of network overhead that
slow down the performance overall. Also, federated learning is a line of machine learning
(ML) that parallelizes ML algorithms so that they run on Edge devices near the data, so

Sensors 2023, 23, 8178 7 of 28

being able to join the spatial data quickly on those devices with polygons data can provide
significant speedups.

3. Theoretical Background

3.1. Spatial Sampling in Dynamic Scenarios

Most smart city analytics involve queries that seek a correlation between georeferenced
entities based on their geographical proximity. For example, a query could ask for “taxi
pickup density for each neighborhood in NYC across time”. The density itself is what
concerns the analyst, not the exact number of pickups in every neighborhood. That
said, a sample from each neighborhood that reveals the differences in densities between
all neighborhoods is typically acceptable [3]. Since huge amounts of multidimensional
georeferenced data arrive from IoT devices, cases where data stream processing engines
are not able to cope with the data arrival rate and fluctuation are not unheard of [4]. For
those peak periods, analysts normally are willing to give up tiny losses in the accuracy
of trade for significant gains in time-based QoS goals such as response time [6]. By far,
spatial sampling remains one of the most attractive solutions for reducing the amount
of data streams to be analyzed by SPSs downstream. This is attributable to the fact that
geo-statistics that are based on approximation of the results with rigorous error bounds are
acceptable and sufficient for smart city analytics [3,4,6].

3.2. Representative On-the-Fly Geospatial Sampling

In the literature, there are two main approaches that deal with the fluctuation in the
arrival rates of big data streams. Stream processing systems depend on either the dynamic
assignment of extra computing resources (also known as overprovisioning resources) or
data reduction approaches (e.g., sampling and sketches), thus applying approximate query
processing (AQP) paradigms and trading off tiny accuracy losses for a significant gain in
response times [6]. Both solutions are attractive for coping with changes in data arrival
characteristics. However, the former is less desirable as it tends to waste resources whenever
the arrival rate slows down, which could mean the underutilization of scarce computing
resources that could otherwise be utilized elsewhere. The latter is typically based on simple
random sampling (SRS) [44]. Tobler’s first law of geography dictates that everything is
related to everything else; however, things that are close are more related than things that
are far apart [45]. Since in geospatial analytics, we are mostly concerned with unveiling
correlation facts regarding the near geospatial things (i.e., geospatial entities), a sampling
design that considers the geospatial distribution of spatial entities in real geometries is,
therefore, more desirable, even if for no other reason but to generate approximate results
for geo-statistics with statistically plausible rigorous error bounds. With that in mind, it is,
thus, desirable and attractive to be able to select geospatial representative samples from the
arriving data streams. By representativeness, we mean that the minuscule selected from
the arriving data leads to very accurate approximate results for most of the geo-stats with
rigorous error bounds that are below defined thresholds. This kind of sampling design is
typically known as geospatial representative sampling [3,6].

3.3. Problem Formulation

In this section, we provide a few formal definitions in an order that works as a proxy
to help comprehend the mechanism by which the main constituting components of our
novel system, GeoRAP, operate.

Definition 1 (Geospatial data). A spatial dataset consists of several georeferenced data tuples on
the form (x, y, [values]), where x and y are geo-coordinates (either geographic or projected coordinate
system), such that D = [(x1, y1,values1), (x2, y2, values2),, (xn, yn, valuesn), |D| = n

Sensors 2023, 23, 8178 8 of 28

is the number of tuples in the dataset. Geospatial data can be encoded with a geographic encoding
(such as geohash), thus generating the following list:

D = [(x1, y1,values1, geo1), (x2, y2, values2, geo2),, (xn, yn, valuesn, geon), |D| = n

Definition 2 (Geospatial data distribution). The embedding space containing a geospatial
dataset is overlayed with a grid of regularly shaped (equal or non-equal sized) tiles (rectangles, for
example, geohash covering). Geo-coordinates and probability distributions of tiles combined form a

histogram p = [p1, p2,, pn], where the sum of all probabilities equals 1,
n

∑
i=1

pi = 1.

Definition 3. (Reduced) geo-cover. A geohash cover is the list of all geohash values that cover
the polygons of a polygon file representing the study area and equals cover = [g1, g2,, gn].
Reduced geohash cover is a geohash cover that overlays the polygon file generated by Douglas. If
‘number of PTR’ = m, then reduced geohash cover, reducedCover = {g1, g2,, gm}, such that
reducedCover ⊂ cover, and m ≤ n.

Definition 4. Geospatial sample. Suppose we have a geospatial data population on the form
P = {p1, p2,, pmn}, a geospatial sample is a subset of a population geospatial data such
that S ⊂ P = {p1, p2,, pm}, where m is the size of the sample such that m ≤ n. A
geospatial sample selected based on the reduced geohash cover as per Definition 3 is as follows;
Sreduced ⊂ P = {p1, p2,, pk}, such that k ≤ m ≤ n.

Definition 5. RDP-based geospatial Top-N query. Given a geohash encoded dataset such as the
one defined in Definition 1 and a reduced covering geohash such as the one defined in Definition
3, based on a sample drawn based on the reduced geohash cover from Definition 4, a Top-N query

is defined as it follows, result = FirstN

(

sort

(

m
⋃

i=1
[polygoni, counti]

))

, where m is the number

of polygons, N is the number of Top-N polygons specified in the Top-N query, FirstNis the top N
entries after sorting.

3.4. Geometric Generalization

Geometric generalization simplifies map content for the preservation of readability
and comprehensibility, thus creating downscaled maps. One of the most adopted methods
is the simplification of polylines, which results in a reduction of the geospatial points with
no change of coordinates.

In cartography design, map generalization is the process of deriving small-scale
maps from large-scale counterparts by applying well-defined changes that are performed
either manually by a cartographer or through computer algorithms. The basic function of
generalization is to abstract geospatial data that are represented with high levels of detail
into a lower level of detail representation that can seamlessly be rendered on maps. Maps
are considered well-generalized if they succeed in emphasizing the most relevant elements
of a map while representing the real world recognizably well.

There are several cartographic methods that can be employed to modify the amount
of geospatial data on maps, including selection, simplification, smoothing, merging, aggre-
gation, and typification. Simplification is the process of removing vertices from lines and
polygonal area boundaries [46]. Additionally, line simplification algorithms are normally
categorized into two groups: filtering and other algorithms. While filtering algorithms re-
tain part of the original vertices in boundaries and lines, other algorithms (e.g., smoothing)
fit a set of new points over the original points.

In that sense, line simplification typically removes fewer contributing vertices (un-
wanted details), thus minimizing large-scale detailed geospatial data in order to render it
on constrained screens and reduced scales. Various approaches have been proposed, where,
despite discrepancies, they mainly involve searching vertices of lines, discarding those
that have little contribution to the general shape of the line. The Ramer–Douglas–Peucker

Sensors 2023, 23, 8178 9 of 28

algorithm is, by far, the most common approach for line simplification that we have found
in the literature [8].

The Douglas–Peucker (also known as Ramer–Douglas–Peucker, RDP hereafter for
short) algorithm [8] is a geometric line generalization filtering algorithm that operates by
reducing the number of vertices of polygons representing a geographical study area. An
overarching trait is that it preserves the polygonal shape characteristics within certain limits.
It achieves statistically plausible results for natural geometries (e.g., forests, boroughs).
Figure 1 shows the graph of GeoJSON of the Chinese city of Shenzhen before and after
applying line simplification using the RDP algorithm. It is well-noted that the shape is
not significantly distorted. However, the number of vertices is reduced significantly. A
configurable parameter in the algorithm is the “percentage of removable points to retain”
(we refer to this as “number of PTR” hereafter for brevity), a number that takes a value
between 0 and 100, dictating how aggressively to simplify the geospatial polygons. So, a
value that is equal to 1% is a very aggressive simplification, saving a huge amount of hard
disk space. The product of the algorithm is a list of simplified lines that remain within a
specified distance of the original line. It is known to be effective in thinning dense vertices
of polygons; however, it could form spikes at high simplification levels.

Figure 1. Applying Ramer–Douglas–Peucker line simplification algorithm to the administrative

polygons representing Shenzhen city in China by using number of points to retain, which is equal to

roughly 2%, which means we retain 2 percent of the total number of points from the original lines

that are constituting the borders and the administrative separating lines of the polygons. (a) before

applying the RDP algorithm; (b) after applying the RDP algorithm. For (b), the edges of the outskirt

lines and the separating lines are sharper than those in (a).

Figure 2 shows an example application of the Ramer–Douglas–Peucker line simplifica-
tion algorithm to the administrative polygons representing NYC in the USA.

Figure 3 shows the mechanism by which the RDP algorithm operates. Given a polyline
L and a threshold value alpha, the goal is to construct the line between the start (termed
anchor) and end points (termed floater) of L. The algorithm starts by finding the point in
the polyline (an intervening point) that is the furthest from the line segment. If the distance
between that point and the line segment is greater than the threshold, then the point is
significant; the algorithm then constructs a line segment between the start point and the
significant point and another line segment between the significant point and the end point.
The same procedure is then recursively repeated for both line segments until the threshold
criteria are satisfied. For any test, if no significant point is found, the algorithm simply
removes all the points between the start and end parts of each line segment, as this segment
is considered adequate for the simplified representation of the line.

Sensors 2023, 23, 8178 10 of 28

Figure 2. Applying Ramer–Douglas–Peucker line simplification algorithm to the administrative

polygons representing NYC city in USA by using number of points to retain, which is equal to roughly

1%, which means we retain 1 percent of the total number of points from the original lines that are

constituting the borders and the administrative separating lines of the polygons. This simplification

is considered aggressive and may result in elimination of few polygons, as shown in (c). (a) shows

original NYC polygon map, while (b) shows reduced NYC polygon map with RDP algorithm applied

at number of PTR that is equal to 1%; in (c), we show the original NYC polygons map overlayed with

reduced NYC polygons map with Ramer–Douglas–Peucker (RDP) applied with number of PTR that

is equal to 1%.

Figure 3. Applying Ramer–Douglas–Peucker line simplification algorithm (a) Original line and line

segment. (b) First step, simplification of the DP algorithm. (c) Second step, simplification of the

DP algorithm.

A more recent line generalization algorithm is known as Visvalingam–Whyatt [13].
It works by iteratively removing the so-called “least important point from a polyline”. It

Sensors 2023, 23, 8178 11 of 28

measures the importance of points by employing a metric that is based on the geometry of
a triangle that is formed by every non-end-point vertex and two neighboring vertices. In
other terms, the Visvalingam algorithm employs the so-called “effective area” metric points
forming smaller-area triangles, which are then removed first. This results in removing
smaller-angle vertices. In other words, it employs characteristics of triangles within polygon
representations to decide the vertices to remove.

The importance of line simplification stems from the fact that in smart city dynamic
application scenarios, we require interactive visualization of fast-arriving georeferenced
data streams, where line simplification reduces display times. This is our intention because
the data we are sampling is going to be used for interactive geo-visualization.

For example, in region-based aggregate geo-maps such as choropleth thematic map-
ping, line simplification can be employed to diminish administrative boundaries from the
polygons representing a city while emphasizing foreground information in the geospatial
distribution (e.g., count of vehicles in each district of a city).

4. Representative Geo-Sampling for Dynamic Application Scenarios: An Overview of
the GeoRAP Solution

In this section, we showcase the design and implementation of our novel system,
Geospatial Reduced Approximate Processing (GeoRAP for short), for efficient processing
of big georeferenced data at scale, with QoS guarantees. We start by explaining a case
scenario from smart cities that motivates the need for our system, in addition to discussing
a plain baseline with which we compare our novel system.

4.1. Case Scenario and Baseline Systems

Urban planning plays an integral role in improving the quality of life of city inhabitants
from various perspectives. Decision makers normally require high-level views of factors
that are typically in interplay in shaping the dynamicity of metropolitan cities. For example,
they require the geo-visualization of georeferenced big amounts of heterogeneous data
streams in real-time so that they monitor the progression of various phenomena, such as the
trends at which densities of vehicle’s mobility in specific points of interest within the city
across time are changing. Those views normally take the form of real-time heatmaps and
interactive dashboards. However, since the geotagged arriving data streams in such smart
city scenarios are normally huge and overwhelming, cases where geo-map generation
takes a few minutes or even hours are not unheard of [3]. This stands as a clear prohibitive
obstacle in the way of timely decision making. Furthermore, display devices are normally
resource-constrained and, thus, are unable to draw pixels in correct ways that reveal the real
geometrical facts (e.g., the density of moving vehicles). Consider a realistic example where a
municipality administration is requesting the generation of interactive on-the-fly heatmaps
(or similarly density maps) that show the dynamicity of moving geospatial entities (e.g.,
people, bikes, cars, e-scooters, etc.) within the city to reveal the correlations between those
densities and traffic jams across time. At specific times across a weekday, those moving
objects are normally clumped into a few patches (e.g., school areas, city center, etc.), which
potentially will result in cluttered geo-maps. Stated another way, even if the SPS could
ingest all the arriving data, it should not do so as those cannot be drawn simultaneously
on maps because of the map space constraints. A natural solution in this case scenario
would be the ability to choose a well-representative, well-spread-out geospatial sample that
fairly selects roughly the same amount of spatial moving objects from each administrative
division (i.e., district, borough) in the city independently, which is known to preserve
spatial characteristics (e.g., density distribution), thus yielding more accurate approximate
geo-maps with rigorous error bounds [3,4,6].

Our methods are not directly comparable with those of the recent state-of-the-art
that are discussed in Section 2. To the best of our knowledge, we have not found any
system from the recent literature that provides system features that could be comparable
to those introduced in our system, GeoRAP. Having said that, our baseline is based on

Sensors 2023, 23, 8178 12 of 28

a plain implementation of the algorithms without the application of line simplification
algorithms. Specifically, to provide the rationale for the introduction of our new system in
this paper, we are highlighting a conventional baseline system for selecting geospatially
representative samples in smart cities. Specifically, we are comparing the new system
GeoRAP for representative geospatial reduced online sampling with a plain stratified-
based sampling baseline [6]. The baseline is a fast-memory online spatial sampling method
that is intrinsically embedded with Spark Structured Streaming and synergistically supports
its capabilities for the applications of approximate analytics of huge amounts of geotagged
big data streams.

The baseline, in its essence, is a stratification-based method. In the plain imple-
mentation of the method, the same percentage of points for each geohash during each
time interval (known as batch interval in online stream processing parlance) is selected.
Geohashes can be heuristically thought of as grid squares resulting from the division of
flattened planar geometry (the survey area). The plain method simply works by first
calculating the covering geohashes for each administrative part of a city (normally known
as neighborhoods), thereafter selecting the same percentage from each group points having
the same geohash arriving during a batch interval, which means that we approximately
choose a fair number of points from each neighborhood.

However, referring to Tobler’s first law of geography [45], geospatial analysts and data
scientists are more interested in city areas where most geospatial objects are clumped into
few patches (e.g., school areas), thus causing problems to the SPS while they try to ingest
the huge amounts of naturally correlated geo-data at rush hours. City bordering areas
are normally significantly less congested thanks to the highways and autoroutes. Since
there is less data arriving from those areas as compared to within-city areas, it makes sense
to simplify the city map on bordering areas, removing some vertices from the maps. A
spatial stratified-like sampling design operates by selecting roughly the same percentages
of geo-entities from each city administrative division. However, because of the natural
design of stratified spatial sampling that is based on geohash as a stratification method,
depending on the precision of the geohash, the number of stratum (i.e., strata) can grow
significantly, causing unnecessary bottlenecks. This is mainly avoidable if we consider that
we can discard geohashes resulting from bordering areas of a city. This is exactly the main
essence by which our novel method, GeoRAP, in this paper operates.

4.2. GeoRAP Design and Operation

We have designed GeoRAP so that it operates in two modes. The first mode is a
batch (i.e., static) mode, where we have a disk-resident georeferenced big dataset, while the
second mode is a dynamic one, where we have data that indefinitely pour downstream in
a pipeline workflow toward an ingestion layer that ingests the data and feeds them to our
system regularly on a timely basis. The high-level architecture of our GeoRAP system is
shown in the context diagram of Figure 4.

The starting point of operation occurs at the front stage, where GeoRAP hosts a
borderline simplifier (currently supporting RDP algorithm) component. This component
receives a polygon file (in the form of GeoJson or shapefile) representing the administrative
polygons (i.e., regions, districts, neighborhoods, boroughs, etc.) of the study area (e.g.,
city). It then applies the RDP algorithm to simplify the polygons, thus removing parts
of the bordering vertices from the original polygons, as shown in Figures 1 and 2. A
configurable parameter for this component is what is known as the number of points to
retain (‘number of PTR’ throughout the rest of the paper), which dictates the percentage of
the number of points to keep after discarding the other vertices from the boundaries. This
parameter is currently expert-guided and provided to the system as part of the geospatial
query. The outcome of this component is a reduced polygon file with a smaller number of
boundary vertices.

Sensors 2023, 23, 8178 13 of 28

Figure 4. GeoRAP architecture.

We then pass this new vector geospatial polygons file to a geohash encoder component,
which then generates a list of geohashes completely covering the study area (e.g., city),
as shown in Figure 5, with Figure 5a showing the covering geohash at precision 6 for the
original polygon file of NYC in the USA, while Figure 5b shows the covering geohash for
the reduced polygon file that was subjected to the front-stage RDP-based filter previously.

Figure 5. Geohash cover at precision 6, generated to the reduced polygon for the administrative

polygons representing NYC in USA, which has been subjected to RDP algorithm with “number of

PTR” that equals 1%. (a) geohash cover of the original polygons; (b) geohash cover for the reduced

polygons subjected to RDP with PTR 1%.

This geohash list (the reduced covering geohash) acts as a quick-and-dirty sieve as
follows. For each geospatial point that our system receives from the georeferenced data
stream, we generate the corresponding geohash value using a geohash encoder. Our system
then applies a front-stage filter subcomponent, which filters and discards points that do
not have a matching geohash value in the covering geohash list that our system generated
previously. Those are the points that typically fall on the borders and vertices of the original
covering geo. The online (dynamic) mode of operation works pretty much in a similar
way, considering that we consider a micro-batch processing model, where data streams are

Sensors 2023, 23, 8178 14 of 28

aggregated into small packets known as micro-batches before being sent to the processing
component. In this sense, the system proceeds in the same way as described for the batch
mode, applying the same mechanism to each micro-batch independently. Either way, the
remaining points are fed to an online/batch stratified-like spatial sampler along the workflow
pipeline of our GeoRAP system for further processing.

In more detail, the geohash cover list size is reduced from 1730 to roughly 1471 in
the case shown in Figure 5, a reduction that roughly equals 14.9%. The output of this
component is a list of geohash values covering the reduced polygons file. This acts as
a dictionary to define the stratum of the strata that covers the city area. In this case,
each geohash value is a stratum, and all geohash values covering the city are strata. We
then pass this cover as a dictionary to our geohash-based stratified-like geospatial sampler
component. Our sampler works as follows. It groups geospatial tuples in the database
(e.g., vehicle mobility data) by their geohash values, and then it selects from each geohash
group the same percentage of tuples (e.g., 0.2). In other terms, it selects a percentage of
points that corresponds to the sampling fraction from each geohash (equivalent to stratum)
independently. It is a stratified-like sampling design that is known to yield better results in
terms of accuracy-based QoS constraints. The remaining points are then fed to a geospatial
approximator downstream in the processing pipeline so that they participate in generating a
response to the continuous geospatial query request stepwise. The approximator currently
supports two widely spread geospatial queries, which are Top-N and single geo-statistics
(such as ‘mean’ and ‘count’). Algorithm 1 shows the mechanism by which GeoRAP operates.

Algorithm 1: GeoRAP Workflow

/* geohashSize: geohash size, lsa: line simplification algorithm*/

Input: geo-stream, SpatialQuery (SQ), samplingRate, polygons, geohashSize, lsa

//lsa: Ramer-Douglas-Peucker

simplifiedPolygons = lineSimplification(polygons, lsa)

geoCover← computeGeoCover (simplifiedPolygons, geohashSize)

strata = stratify (geoCover)

Foreach query window time interval do

repSample = ∅//tuples sampled in current time window

Foreach stratum in strata do

stratumSample = sample (stratum, samplingRate)

repSample.add(stratumSample)

End

//Calculate and feed incremental result every time window

stepwiseOutput← execute (SQ, repSample)

return stepwiseOutput w/rigorous error bounds (i.e., standard error, distance, correlation

coefficient, EMD)

End

4.3. Spatial Queries Supported

Since we have two modes of operation (batch and online/dynamic), we support the
same sets of geospatial queries for both modes. In more detail, GeoRAP currently supports
batch processing of two core spatial analytics types. Those are single queries such as
‘count’ and ‘mean’ and aggregation queries such as Top-N. It also supports two kinds of
Spatial Continuous Queries (SCQ) over fast-arriving geospatial big data streams. Those are
geo-statistical queries and ensembles (Top-N). Both types of queries require online stateful
aggregations, which are computationally expensive. By applying line generalization as
a frontline filtering stage intrinsically within the layers of GeoRAP, we aim at achieving
plausible gains in time-based QoS goals (i.e., lowering response time and latency) while
keeping accuracy loss in check and within plausible statistical figures. A geo-statistical
query may request “finding the average speed of taxi trips in each administrative area of a

Sensors 2023, 23, 8178 15 of 28

city across time”. On the other hand, ensembles include Top-N queries that may request
“finding zones with most taxi mobility densities across time”.

An integral part of GeoRAP depends on applying a representative sampling method
that is based on the theory of stratification [10]. Hence, we first compute the estimated av-

erage of the study target variable using
-
YGeoRAP =

^
tGeoRAP/N =∑

K
k=1

(

Nk/ N)
-
yk , where

^
tGeoRAP = ∑

J
j=1 tj = ∑

J
j=1 Nj

-
yj is the estimated total using the sample.

4.4. Error Bounds Calculation

Since we have two modes of operation where we support the same sets of queries,
our plan for evaluation encloses two modes: online and batch. Having said that, in this
section, we discuss the two sets of tools that we employ to test the various functionalities
of GeoRAP in both modes of operation, batch and online.

4.4.1. Batch Mode Error Bounds Calculation

For Top-N queries, a kind of stateful aggregation, we rely on a retrofitted and adapted
version of the Spearman Correlation Coefficient (SCC) [47] to measure the system’s accuracy-
based performance. We use this information-theory tool to measure the accuracy in terms
of the system’s ability to retain the aggregation’s original ranking. SCC is a measure of
statistical dependency between the ranking of two variables. We have retrofitted it as
follows: we take the ranking that results from each method (our GeoRAP method against
the baseline), then we serve those to the plain Spearman’s rho, and we apply (1).

ρrg= cov(rankGeoRAP, rankbaseline) / (σrankGeoRAP
.σrankbaseline

)

(1)

where ρrg is the Spearman’s correlation coefficient applied for ranking statistics,
cov(rankGeoRAP, rankbaseline) is the covariance of the rank variables, σrankGeoRAP

and
σrankbaseline

are the standard deviations of the rank variables for GeoRAP and baseline,
respectively.

We also use a distance measurement, specifically Jensen–Shannon divergence (JSD),
to measure the distances between the probability distributions of the new method and
the baseline. We apply JSD to measure the accuracy of the system for single geo-statistics
queries such as “count”. Given two distributions, P and Q, the JSD is defined as in (2).

JSD
(

P
∣

∣

∣

∣Q
)

=
1

2
KLD

(

P
∣

∣

∣

∣R
)

+
1

2
KLD(Q||R). (2)

where KLD is the Kullback–Leibler divergence, and R = 1
2 (P + Q) is the mixture distribu-

tion of P and Q.

4.4.2. Online Mode Error Bounds Calculation

Online approximate query processing is naturally tied to a degree of uncertainty,
which needs to be accurately quantified to validate the efficiency of the newly introduced

system. Having said that, we apply SE(yGeoRAP) =
√

V̂(yGeoRAP) to calculate the standard

error introduced by applying GeoRAP. We use the same measure for the baseline systems to
compare. SE(yGeoRAP) is the standard error that results from estimating the target variable

by depending on the sample instead of the population.
^
v
(

-
yGeoRAP

)

is the estimated

variance of the estimated average.

4.5. Some Primary Implementation Insights

We have designed and developed two different prototypes for our proposed GeoRAP
solution. The first prototype operates in batch mode, where all input data are persisted
in disk drives. The second prototype considers a setting where the mobility data are

Sensors 2023, 23, 8178 16 of 28

poured as data streams and ingested by ingestion systems such as Apache Kafka. We have
implemented the first prototype in Python, specifically Geopandas and geospatial support
libraries in Python, while we implemented the streaming counterpart over Spark Structured
Streaming [5] by exploiting the Spark modular architecture. In fact, by considering the
second prototype, GeoRAP operates as a geospatial shape-aware quick-and-approximate
filter as a front stage ahead of the underlying structured stream processing engine of Spark.
It takes advantage of the micro-batch processing model of the underlying codebase by
performing sampling micro-batch-wise. In other words, we sample fair amounts from each
stratum (geohash in this case) every micro-batch interval. Figure 6 depicts the mechanism
by which we intrinsically incorporated GeoRAP within Spark Structured Streaming.

Figure 6. GeoRAP implementation using Apache Spark Structured Streaming. Numbers 1 to 6 show

the sequence of system operation in online mode above Apache Spark.

5. Experimental Evaluation Work and Performance Results

5.1. Deployment Settings and Benchmarking

Dataset. For benchmarking and testing the performance of our GeoRAP system
functionality, we have employed three georeferenced mobility big datasets, which are
publicly available for maximum result reproducibility.

The first dataset is a publicly available Uber pickup dataset from the city of San
Francisco in the USA. It is the anonymized GPS coordinates (longitudes/latitudes) of Uber
trips forming circa one million and 85k tuples. The second dataset comes from New York
City taxicab trip datasets (https://www1.nyc.gov/site/tlc/about/tlc-trip-recorddata.page,
accessed on 10 January 2023), consisting of around 1,400,000 tuples, representing data
taxi rides for the first month of 2016. We selected the green taxi trip records, which
included fields such as GPS locations and itinerary distances. The third dataset consists
of 1,155,654 tuples, representing Electric Taxi GPS mobility trips for a day in the Chinese
city of Shenzhen [48]. The target variable in these data is ‘speed’. We aim to calculate the
average speed.

The first two datasets (NYC taxicab and San Francesco Uber data) are used to test the
functionalities of GeoRAP in batch mode, while the third dataset (Shenzhen electric taxi) is
employed to test the potential of GeoRAP to run on distributed computing environments
(online mode of operation).

We also employ our method on a unique geotagged air quality dataset collected
using low-cost air-quality sensors, consisting of circa 634k records, capturing granular

https://www1.nyc.gov/site/tlc/about/tlc-trip-recorddata.page

Sensors 2023, 23, 8178 17 of 28

air pollution levels such as PM10 and PM2.5, in addition to other greenhouse gases and
vehicle’s harmful combustion engines emissions [49].

Deployment, experimental settings, and operating environment. Since we have two
prototypes, we have two deployments. We deployed the first batch mode prototype on a
VM that runs on Google Collaboratory with 13 GB RAM and 2 vCPU (2 Intel(R) Xeon(R)
CPU @ 2.20 GHz). For the online/dynamic prototype, we deployed Microsoft Azure HDIn-
sight Cluster hosting Apache Spark version 2.2.1. It consists of 6 nodes (2 Head + 4 Worker)
with 24 cores (Head (2 × D12 v2) nodes and Worker (4 × D13 v2) nodes). Each head node
operates on four cores with 28 GB RAM and 200 GB Local SSD memory, and quantities are
double those figures for worker nodes.

Parameter Configurations. We herein provide the algorithm parameters. We depend
on varying the geohash precision in addition to the sampling rate. We vary geohashes
between 5 and 6 and rates between 20% and 80% (with 20% step in-between). Also, we
vary the percentage of vertices points in the original polygons to retain (‘number of PTR’
hereafter for short). We choose aggressive 1%, moderate 4%, and smooth 80% PTR.

5.2. Performance Testing and Results Discussion

We depend on varying parameters. Those are sampling rate and geohash precision for
the baseline method, whereas, in addition, for the new method GeoRAP, we rely on varying
a configurable parameter known as the ‘number of PTR’, which is a number between 0 and
100 that dictates how aggressively to simplify the geospatial polygons. Based on that, we
vary the ‘number of PTR’ between 1% (permissive), 4% (moderate), and 80% (stringent).
We have two testing configurations, one for the batch mode of operation and the other one
for the online mode.

5.2.1. Top-N Queries (Batch Mode)

We specifically tested the performance of our prototype against the baseline in terms
of time-based and accuracy-based QoS constraints.

We have tested the performance of the following query on two datasets: the Uber
San Francesco dataset in addition to the NYC taxicab pickup dataset. The query is “what
are the Top-N regions in the city (be that San Francesco or NYC) in terms of taxi pickups
(or Uber)”. We vary the sampling fraction as discussed previously and the “number of
PTR” in addition to the geohash precision, and then we calculate the Spearman Correlation
Coefficient (SCC) for both datasets for the new method of sampling against the baseline
(without line simplification). For San Francesco Uber data, we obtain results shown in
Figure 7a for geohash precision 6 and “PTR” 1%, while Figure 7b shows the SCC values we
obtain for geohash precision 5.

Figure 7. Correlation coefficient (Spearman Correlation Coefficient, SCC) GeoRAP against plain

baseline (San Francesco Uber pickup dataset). (a) at geohash precision 6 and PTR 1%; (b) at geohash

precision 5 and PTR 1%.

We have noticed that for both configurations (geohash 6 and geohash 5), we obtain
statistically significant results for SCC for the GeoRAP against the naïve baseline, with a

Sensors 2023, 23, 8178 18 of 28

reduction of the accuracy in SCC for the geohash precision 5 that equals roughly 0.550%,
on average, which is statistically insignificant. Figures are similar for geohash precision 6
as we have obtained roughly a 0.554% reduction of the accuracy using SCC. This reveals
the fact that the selection of geohash precision has only a very tiny discernible effect on
the Top-N loss in the accuracy, where the lower the geohash precision, the more Top-N
accuracy we obtain.

We now discuss the results for the NYC data. Figure 8 shows the results of Top-N
accuracy using Spearman Correlation Coefficient (SCC) with a ‘number of PTR’ that equals
1% and geohash precision 6 in Figure 8a and geohash precision 5 in Figure 8b. We obtain a
reduction in the accuracy that equals roughly 1% for geohash 6 against 1.9% for geohash
5. In this case, the effect of geohash precision on the reduction in the accuracy is more
significant than that of the San Francesco data, where granular geohash precision (6 is
granular, while 5 is coarser) means more Top-N accuracy.

Figure 8. Correlation coefficient (Spearman Correlation Coefficient, SCC) GeoRAP against plain

baseline, NYC taxicab dataset. (a) at geohash precision 6 and PTR 1%; (b) at geohash precision 5 and

PTR 1%.

We have also tested our system with low-cost air quality data coming from NYC. This
proves the applicability of our system in various contexts of smart cities where massive
amounts of sensor data are captured on a granular scale.

For geospatial Top-N queries, we obtain the results shown in Figure 9. Specifically,
Top-N accuracy using Spearman Correlation Coefficient (SCC) with ‘number of PTR’ that
equals 4% and geohash precision 6 in Figure 9a, and ‘number of PTR’ that equals 80% in
Figure 9b. We obtain a reduction in the accuracy that equals roughly 1.08% for geohash 6
and PTR 4%, against 0.04% for PTR 80%. In this case, the effect of PTR on the reduction in
the accuracy is clear, where higher PTR means more Top-N accuracy.

Figure 9. Correlation coefficient (Spearman Correlation Coefficient, SCC) GeoRAP against plain

baseline, NYC low-cost sensors air quality dataset. (a) at geohash precision 6 and PTR 4%; (b) at

geohash precision 6 and PTR 80%.

Sensors 2023, 23, 8178 19 of 28

5.2.2. Geo-Stats (Count Queries)—Batch Mode

We have specifically tested the performance of GeoRAP for geo-stats single queries
using the following query: “what are the counts of taxi (or Uber) pickups in each region in
the city (be that San Francesco or NYC)”.

For this kind of query, we have tested the performance of both systems, the novel
GeoRAP and the baseline, using a distance measurement, specifically Jensen–Shannon (JS).

For San Francesco data, we again vary the geohash precision, sampling fraction, and
PTR, and we obtain the results shown in Figure 10.

Figure 10. Jensen–Shannon (JS) divergence GeoRAP against plain baseline, San Francesco Uber data.

(a) at geohash precision 6 and PTR 1%; (b) at geohash precision 6 and PTR 4%.

For geohash precision 6 and the number of PTR 1%, the average reduction in accuracy
for GeoRAP against the baseline is roughly 17.8%. It was noticed that the reduction in
accuracy decreased as we increased the sampling rate to reach roughly 15.6% at a sampling
rate that equals 80%. The discernible trend is similar for the same geohash precision at 6,
with a greater number of points to retain PTR (4%), as shown in Figure 10b, where we obtain
less reduction in accuracy as we increase the sampling rate. However, the performance is
better as we obtain an average of 16.2% reduction in accuracy as compared to the 1% PTR
counterpart. This conforms to the natural fact that accuracy improves as we increase the
number of PTR. This is so because by increasing the number of PTR, we have more data
that resemble the source data; thus, we obtain more accurate results.

We obtained similar trends for NYC data, as shown in Figure 11. However, for
these data, we obtain a higher reduction in accuracy for the number of PTR 1%, which
equals roughly 21.4% for geohash precision 6, decreasing linearly from around 24.9% at a
sampling rate of 20 percent to circa 15% at the highest sampling rate of the experiments
at 80 percent. For PTR 4% and geohash precision 6, we obtain better accuracy results,
as shown in Figure 11b. We obtained a reduction in accuracy that is, on average, 18%,
ranging from 22% to 13%. This implies that the system is amenable to a straightforward
increase in the sampling rates, meaning that more data results in better accuracy, which is
statistically desirable.

Results are even better with a permissive number of PTR (specifically 80% PTR), where
we obtain an average reduction in accuracy at roughly 11.3%, which reaches its best at a
sampling rate of 80%, where the reduction in accuracy decreases to roughly 8.3%, as shown
in Figure 12. The situation is even better for the NYC dataset as we obtain a reduction in
accuracy that is roughly 0.36%, on average, ranging from 0.9 at a sampling rate of 0.2 to
roughly 0.07 at a permissive sampling rate of 0.8. This means that the higher the sampling
rate, the less reduction we obtain in accuracy (desirable).

Sensors 2023, 23, 8178 20 of 28

Figure 11. Jensen–Shannon (JS) divergence GeoRAP against plain baseline, NYC data. (a) at geohash

precision 6 and PTR 1%; (b) at geohash precision 6 and PTR 4%.

Figure 12. Jensen–Shannon (JS) divergence GeoRAP against plain baseline at geohash precision 6

and permissive PTR 80%. (a) San Francesco Uber dataset; (b) NYC taxi pickup datasets.

We measured the JS divergence value on a moderate number of PTR (equals 4%) and
a high number of PTR (80%) to statistically shape the relationship between the change
in the number of PTR and the JS divergence value as an accuracy measurement. Results
obtained conform with the fact that the more the PTR, the better the performance, and the
greater the sampling rate for any PTR value, the better the performance in terms of single
geo-statistical queries such as ‘count’.

We have also measured the file size in kilobytes for GeoRAP versus the baseline, as
shown in Figure 13. As noticed, the file size decreases as we decrease the number of PTR to
reach roughly 105 kilobytes (KB) at a number of PTR that equals 1%.

Figure 13. File size GeoRAP against plain baseline at geohash precision 6 and various PTR values,

San Francesco data.

Sensors 2023, 23, 8178 21 of 28

Also, there is a reduction in the number of geohash distinct values covering the
remaining embedding area (which is desirable) to reach its lowest, which equals 711 at a
PTR that equals 1%. This is significant for performing the kind of spatial join queries that
rely on the filter-and-refine approach. It is worth mentioning that the original number of
geohash distinct values is 725. Despite being a roughly small difference, it significantly
contributes to lowering the running time of Top-N and count queries, as shown in Figure 14.

Figure 14. End–end running time GeoRAP against plain baseline at geohash precision 6 and PTR 1%,

San Francesco data.

Figure 14 also shows the remaining tuples after reduction, which is very tiny and
explains the insignificant loss in the accuracy discussed previously. On the other hand, we
obtain a reduction in the running time at an average of roughly 13.5, while the reduction in
the corresponding number of tuples is roughly 2.2, on average, which is insignificant as a
trade-off for the significant reduction in the running time. This has an impact on the overall
performance of the system for very big geospatial data approximate query processing.

We have also tested our system with low-cost AQ data coming from NYC. This proves
the applicability of our system in various contexts of smart cities where massive amounts
of sensor data are captured on a granular scale.

For geo-stats, we obtain the results shown in Figure 15. Similar to what we have
obtained for sensor mobility data, we obtain a reduction in accuracy on par with 2.029% for
a PTR equal to 4 percent. For the PTR that is equal to 80 percent, we obtain a reduction in JS
accuracy that is roughly equal to 0.3325. Results obtained from low-cost air quality sensors
corroborate the findings from the mobility sensors data in the sense that they assure the
validity of our GeoRAP system in providing accurate results with plausible and statistically
significant error margins.

Figure 15. Jensen–Shannon (JS) divergence GeoRAP against plain baseline, NYC low-cost air quality

data. (a) at geohash precision 6 and PTR 4%; (b) at geohash precision 6 and PTR 80%.

Sensors 2023, 23, 8178 22 of 28

5.2.3. Testing Performance of Dynamic Operation Mode

To capture the potentiality of our GeoRAP system as a modular architectural frame-
work that can be ported to distributed computing environments, we tested our system
in a distributed environment and measured the performance based on the following geo-
statistical continuous spatial query: “find the average speed of a Shenzhen taxicab itinerary
trip for one day”.

We vary geohash precisions from 5 to 6 and the sampling rate from 20% to 80% (with
a step of 20%). Figure 16 shows the comparison between the plain stratified-like baseline
and the new GeoRAP method in the language of accuracy for the estimator of the average
value of a target variable (taxi speed in this case).

Figure 16. Estimation errors by GeoRAP vs. baseline counterparts.

We notice from Figure 16 that the new method GeoRAP either slightly outperforms or
performs on par with the stratified-like baseline. This perfectly meets our target, which
is to reduce the response time (i.e., obtaining higher throughput) but at the same time
either minimize the error bounds or keep them untouched as compared to the state-of-the-
art baseline.

The standard error (SE) increases with a smaller “number of PTR”. So, at 2% “number
of points to retain”, we obtain an increase in the standard error that is equal to roughly
4.25%, on average, as compared with the ‘number of PTR’ 5%. This is expected as the
percent of 2% is a very aggressive simplification, saving a huge amount of hard disk
space, but at the same time increases the standard error slightly. However, this tiny
increase in the SE is still statistically acceptable as the algorithm at this point is still on par
with the baselines of stratified-like sampling without simplification at geohash precision
6 and stratified-like sampling at the same geohash precision with the coarser level of
stratification at the neighborhood level, while outperforming stratified-like sampling with
no simplification at geohash precision 5 by a plausible magnitude. In more detail, the data
that have been discarded mostly belong to the borders, so they naturally constitute outliers
and do not contribute to the target of estimating the average ‘speed’ in heavily trafficked
areas of the city. This explains the reason behind obtaining better accuracy (in terms of
lowering the SE) by the new method GeoRAP, whereby configuring the “number of PTR”
to 5%, we obtain, roughly on average, a 6.1% decrease in the SE by applying GeoRAP
instead of the baseline at geohash precision 6.

We also tested our system GeoRAP in distributed systems with NYC taxicab sensor
mobility data, and we obtained the results shown in Figure 17. The target variable is
the ‘trip distance’, where we seek an answer to a continuous spatial query such as the
following: “what is the average trip distance travelled by taxis in NYC in 2016 for each
neighbourhood”. This time, we varied the PTR between stringent 4% and permissive 80%.
For the PTR 4%, we obtain a reduction in SE that is roughly equal to 0.86%; for PTR 80%,
we obtain a reduction in SE that is equal to circa 2.45%, a difference in reduction that is

Sensors 2023, 23, 8178 23 of 28

roughly equal to 1.6%, on average. Those numbers agree with the corroboration that we
concluded based on the Shenzhen electric taxi dataset.

Figure 17. Estimation errors by GeoRAP vs. baseline counterparts, NYC taxicab sensor mobility data.

We have also tested our system in cluster computing mode using NYC low-cost air
quality sensor data. We obtained the results shown in Figure 18. The target variable is the
‘particulate matters 2.5, PM2.5′, where we seek an answer to a continuous spatial query
such as the following: “what is the average PM2.5 value in each region of NYC city in
2021”. This time, we varied the PTR between stringent 4% and permissive 80%. For the
PTR 4%, we obtain a reduction in SE that is roughly equal to 1.76%; for PTR 80%, we
obtain a reduction in SE that is equal to circa 2.817%, a difference in reduction that equals
roughly 1.07%, on average. Again, those numbers agree with the corroboration that we
concluded based on the Shenzhen electric taxi dataset and NYC taxi datasets, as shown
in Figures 16 and 17, respectively.

To quantify the gain in the time-based QoS goals, we calculate the throughput as
the median (i.e., 50th percentile) of running the same experiments over the same query
ten times. Figure 19 shows that GeoRAP outperforms the baseline by roughly 2.6 higher
throughput on average. This is attributable to the fact that approximate geo-statistic
estimators over geospatial data streams that depend on the theory of stratification involve
stateful aggregation, which results in a need to manage state keys stepwise as the system
receives data online. Since we are applying a line generalization algorithm at the front stage,
we have reduced the number of covering geohash keys, which consequently reduces the
number of keys that need to be managed. At 2% “number of PTR”, we reduce the number
of keys to manage by roughly 2%. We have noticed that the number of points that fall
within the brackets of the discarded geohashes is equal to one point only. This means that
we obtain a significant reduction in the number of keys to manage while not compromising
the original dataset. This also amplifies the corroboration that only a few points reside on
the borders that have been discarded by the simplification algorithm. Those points are
considered outliers and do not contribute to the calculation of the geo-statistics.

Figure 18. Estimation errors by GeoRAP vs. baseline counterparts, NYC air quality sensor data.

Sensors 2023, 23, 8178 24 of 28

Figure 19. Throughput of GeoRAP against baselines.

5.2.4. Testing the Ability to Generate Region-Based Aggregate Geo-Maps

We have tested the ability of GeoRAP to generate region-based aggregate geo-maps,
specifically choropleth maps. Those are maps generated in a thematic approach where the
study region is divided into administrative divisions (e.g., districts or boroughs in a city),
then each division is assigned a specific color selected from a color-coding scheme in such
a way that reflects the density of geospatial objects in each division, and typically more
dense regions are assigned darker colors.

Figure 20a shows a choropleth map generated from the source original data based
on the original geohash covering before applying the RDP algorithm, while Figure 20b
shows the choropleth map for the same city with the same source data but with the RDP
algorithm applied to the polygon representing the city with a number of PTR that equals
1%. It is obvious that both figures are identical in revealing the density of taxi pickups in
NYC for the same period.

Figure 20. Choropleth map for taxi pickup data NYC USA, GeoRAP against plain baseline at geohash

precision 6 and permissive PTR 1%. (a) original polygons; (b) reduced polygons applying RDP

algorithm. For both figures, the darker the color the higher the density in terms of number of spatial

objects within a polygon.

It is obvious that both choropleth maps reveal the same density distribution of taxi
pickups in NYC. We use visualizations to reveal patterns, which helps us in making
decisions regarding city planning; thus, it is unnecessary for the borders to be accurate
for the region-based aggregate geo-maps type of visualization. Although the geo-map in

Sensors 2023, 23, 8178 25 of 28

Figure 20b is an approximation, it is sufficient for decision making and urban planning. For
example, unleashing the points-of-interest (POIs) that are highly dense to decide so as to
show whether those areas are highly affected by higher levels of unhealthy pollutants such
as particulate matter (PM10 or PM2) as a consequence of the high circulation of vehicles
and the substances delivered by their combustion engines.

6. Conclusive Remarks

In this paper, we show our design and implementation of a novel system that we
term GeoRAP for efficient approximate query processing of disk-resident and fast-arriving
georeferenced big data streams. Our solution is based on a filter-sample approach where
we first pass the parameters to a front-stage filter to reduce the number of points to accept
downstream with a cheap line simplification algorithm (specifically the Douglas–Peuker
algorithm). Thereafter, an efficient spatial online sampling method is applied to select a
highly representative sample from the remaining points and serve the sample to an online
geospatial approximator that computes the query answer (stepwise incrementally for the
online mode of operation). GeoRAP has a notable impact on dynamic smart city scenarios
that require performing analytics on fast-arriving georeferenced data streams [27,50]. We
have compared GeoRAP with a plain counterpart that does not feature polygon simpli-
fication in the front stage to reduce the allowed input data. We have tested our system
with various sensor georeferenced data streams coming from mobility GPS sensors and
low-cost air quality sensors. We specifically tested the system performance on geospatial
aggregate (e.g., Top-N) and geo-stats (e.g., ‘average’, ‘count’) queries. We obtained signif-
icant speedups and throughput while also reducing the polygon file sizes and keeping
the accuracy performance under control. In more detail, our results corroborate the fact
that increasing our configurable variable ‘number of PTR’ improves accuracy. In other
terms, more ‘PTR’ means better performance, and more sampling rate for any PTR value
means better performance in terms of single geo-statistical queries such as ‘count’ and
also geospatial aggregation such as Top-N. Those accuracy figures are obtainable while
being able to significantly reduce the polygon file size, thus lowering the load on the
network traffic and providing significant speedups. We conclude that polygon and line
simplification are indispensable for processing, managing, and analyzing huge amounts of
sensor’s georeferenced big data with QoS guarantees. This corroborates Tobler’s first law
of geography, which dictates that nearby spatial objects are more related than those that are
far apart. This means that more than often, in smart environment applications, we consider
analyzing data cluttered within city boundaries more often than we do for those on the
outskirts and near the administrative boundaries. Having said that, simplifying polygons
has a direct impact on time-based QoS goals, such as lowering latency while keeping
quality-based QoS goals in check, such as obtaining a higher accuracy of estimates, because
ultimately, the DP algorithm forces an AQP instead of deterministic counterparts. Having
said that, we advocate applying the DP algorithm for polygon and line simplification while
working on analyzing and managing highly skewed and massive amounts of georeferenced
sensor data streams such as mobility data and low-cost air quality data.

As a future research frontier, we consider incorporating GeoRAP with a spatial join
processor so as to enhance the performance of joining georeferenced data streams with
enrichment disk-resident geographical tables, such as in [19]. We also consider designing
and implementing a modified version of GeoRAP so that it performs geospatial sampling
over georeferenced time-series data (also known as space–time series) [26].

Also, one of the known limitations of DP is that it is a batch algorithm that needs
data to persist in disks to operate [28]. A future direction is to design an adaptive online
version of the DP algorithm, which can be adaptively modified upon receiving more tuples
upstream. Also, we need an online method to profile stream data and account for the
fact that we do not discard edges of the polygons abruptly; instead, we depend on well-
established statistics, for example, performing online density-based clustering to check
the distribution of data before clipping any corresponding edge from the polygons. Our

Sensors 2023, 23, 8178 26 of 28

architecture is modular, and various line simplification algorithms are easily pluggable. In
a future work, we intend to compare the performance of our system by employing other
line simplification algorithms.

Author Contributions: Conceptualization, I.M.A.J.; methodology, I.M.A.J.; software, I.M.A.J.; valida-

tion, I.M.A.J. and P.B.; formal analysis, I.M.A.J. and L.F.; investigation, I.M.A.J. and P.B.; resources,

I.M.A.J.; data curation, I.M.A.J.; writing—original draft preparation, I.M.A.J.; writing—review and

editing, I.M.A.J., L.F. and P.B.; visualization, I.M.A.J. and L.F.; supervision, I.M.A.J., L.F. and P.B.;

project administration, I.M.A.J., L.F. and P.B.; funding acquisition, P.B. All authors have read and

agreed to the published version of the manuscript.

Funding: This research was supported in part by the OntoTrans project and has received partial

funding from the European Union’s Horizon 2020 research and innovation program under Grant

Agreement No 862136.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. NYC taxicabs

dataset can be found at https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page, accessed

on 10 January 2023. Uber San Francesco dataset is available publicly online and can be found at

https://raw.githubusercontent.com/dima42/uber-gps-analysis/master/gpsdata/all.tsv, accessed

on 10 January 2023.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design

of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or

in the decision to publish the results.

References

1. Jiang, D. The construction of smart city information system based on the Internet of Things and cloud computing. Comput.

Commun. 2020, 150, 158–166. [CrossRef]

2. Chen, G.; Zou, W.; Jing, W.; Wei, W.; Scherer, R. Improving the Efficiency of the EMS-Based Smart City: A Novel Distributed

Framework for Spatial Data. IEEE Trans. Ind. Inform. 2022, 19, 594–604. [CrossRef]

3. Al Jawarneh, I.M.; Bellavista, P.; Corradi, A.; Foschini, L.; Montanari, R. Spatially Representative Online Big Data Sampling

for Smart Cities. In Proceedings of the 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of

Communication Links and Networks (CAMAD), Pisa, Italy, 14–16 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6.

4. Al Jawarneh, I.M.; Bellavista, P.; Corradi, A.; Foschini, L.; Montanari, R. QoS-Aware Approximate Query Processing for Smart

Cities Spatial Data Streams. Sensors 2021, 21, 4160. [CrossRef] [PubMed]

5. Armbrust, M.; Das, T.; Torres, J.; Yavuz, B.; Zhu, S.; Xin, R.; Ghodsi, A.; Stoica, I.; Zaharia, M. Structured Streaming: A Declarative

API for Real-Time Applications in Apache Spark. In Proceedings of the 2018 International Conference on Management of Data,

Houston, TX, USA, 10–15 June 2018.

6. Al Jawarneh, I.M.; Bellavista, P.; Foschini, L.; Montanari, R. Spatial-Aware Approximate Big Data Stream Processing. In

Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; IEEE:

Piscataway, NJ, USA, 2019; pp. 1–6.

7. Wei, X.; Liu, Y.; Wang, X.; Gao, S.; Chen, L. Online adaptive approximate stream processing with customized error control. IEEE

Access 2019, 7, 25123–25137. [CrossRef]

8. Douglas, D.H.; Peucker, T.K. Algorithms for the reduction of the number of points required to represent a digitized line or its

caricature. Cartogr. Int. J. Geogr. Inf. Geovis. 1973, 10, 112–122. [CrossRef]

9. Shi, W.; Cheung, C. Performance evaluation of line simplification algorithms for vector generalization. Cartogr. J. 2006, 43, 27–44.

[CrossRef]

10. Reumann, K.; Witkam, A. Optimizing Curve Segmentation in Computer Graphics; International Computing Symposium: Amsterdam,

The Netherlands, 1974.

11. Zhao, Z.; Saalfeld, A. Linear-time sleeve-fitting polyline simplification algorithms. Proc. AutoCarto 1997, 13, 214–223.

12. Lang, T. Rules for the robot draughtsmen. Geogr. Mag. 1969, 42, 50–51.

13. Visvalingam, M.; Whyatt, J.D. Line generalization by repeated elimination of points. In Landmarks in Mapping; Routledge:

Oxfordshire, UK, 2017; pp. 144–155.

14. Herbst, N.R.; Kounev, S.; Reussner, R. Elasticity in cloud computing: What it is, and what it is not. In Proceedings of the 10th

International Conference on Autonomic Computing (ICAC 13), San Jose, CA, USA, 26–28 June 2013; pp. 23–27.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://raw.githubusercontent.com/dima42/uber-gps-analysis/master/gpsdata/all.tsv
https://doi.org/10.1016/j.comcom.2019.10.035
https://doi.org/10.1109/TII.2022.3194056
https://doi.org/10.3390/s21124160
https://www.ncbi.nlm.nih.gov/pubmed/34204451
https://doi.org/10.1109/ACCESS.2019.2899825
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.1179/000870406X93490

Sensors 2023, 23, 8178 27 of 28

15. Ramnarayan, J.; Mozafari, B.; Wale, S.; Menon, S.; Kumar, N.; Bhanawat, H.; Chakraborty, S.; Mahajan, Y.; Mishra, R.; Bachhav,

K. Snappydata: A hybrid transactional analytical store built on spark. In Proceedings of the 2016 International Conference on

Management of Data, San Francisco, CA, USA, 26 June–1 July 2016; pp. 2153–2156.

16. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin, M.J.; et al.

Apache spark: A unified engine for big data processing. Commun. ACM 2016, 59, 56–65. [CrossRef]

17. Olma, M.; Papapetrou, O.; Appuswamy, R.; Ailamaki, A. Taster: Self-tuning, elastic and online approximate query processing. In

Proceedings of the 2019 IEEE 35th International Conference on Data Engineering (ICDE), Macao, China, 8–11 April 2019; IEEE:

Piscataway, NJ, USA, 2019; pp. 482–493.

18. Al Jawarneh, I.M.; Bellavista, P.; Casimiro, F.; Corradi, A.; Foschini, L. Cost-effective strategies for provisioning NoSQL storage

services in support for industry 4.0. In Proceedings of the 2018 IEEE Symposium on Computers and Communications (ISCC),

Natal, Brazil, 25–28 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 01227–01232.

19. Al Jawarneh, I.M.; Bellavista, P.; Corradi, A.; Foschini, L.; Montanari, R. Efficient QoS-Aware Spatial Join Processing for Scalable

NoSQL Storage Frameworks. IEEE Trans. Netw. Serv. Manag. 2020, 18, 2437–2449. [CrossRef]

20. Al Jawarneh, I.M.; Bellavista, P.; Corradi, A.; Foschini, L.; Montanari, R. Big Spatial Data Management for the Internet of Things:

A Survey. J. Netw. Syst. Manag. 2020, 28, 990–1035. [CrossRef]

21. Goiri, I.; Bianchini, R.; Nagarakatte, S.; Nguyen, T.D. Approxhadoop: Bringing approximations to mapreduce frameworks. In

Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating

Systems, Istanbul, Turkey, 14–18 March 2015; pp. 383–397.

22. Xie, D.; Li, F.; Yao, B.; Li, G.; Zhou, L.; Guo, M. Simba: Efficient in-memory spatial analytics. In Proceedings of the 2016

International Conference on Management of Data, San Francisco, CA, USA, 26 June–1 July 2016; pp. 1071–1085.

23. Eldawy, A.; Mokbel, M.F. Spatialhadoop: A mapreduce framework for spatial data. In Proceedings of the 2015 IEEE 31st

International Conference on Data Engineering, Seoul, Republic of Korea, 13–17 April 2015; IEEE: Piscataway, NJ, USA, 2015; pp.

1352–1363.

24. Ordonez-Ante, L.; Van Seghbroeck, G.; Wauters, T.; Volckaert, B.; De Turck, F. EXPLORA: Interactive Querying of Multidimen-

sional Data in the Context of Smart Cities. Sensors 2020, 20, 2737. [CrossRef] [PubMed]

25. Al Jawarneh, I.M.; Foschini, L.; Bellavista, P. Efficient Integration of Heterogeneous Mobility-Pollution Big Data for Joint Analytics

at Scale with QoS Guarantees. Future Internet 2023, 15, 263. [CrossRef]

26. Al Jawarneh, I.M.; Bellavista, P.; Corradi, A.; Foschini, L.; Montanari, R. Efficient Geospatial Analytics on Time Series Big Data. In

Proceedings of the ICC 2022-IEEE International Conference on Communications, Seoul, Republic of Korea, 16–20 May 2022; IEEE:

Piscataway, NJ, USA, 2022; pp. 3002–3008.

27. Al Jawarneh, I.M.; Bellavista, P.; Corradi, A.; Foschini, L.; Montanari, R. Efficiently Integrating Mobility and Environment Data

for Climate Change Analytics. In Proceedings of the 2021 IEEE 26th International Workshop on Computer Aided Modeling and

Design of Communication Links and Networks (CAMAD), Porto, Portugal, 25–27 October 2021; IEEE: Piscataway, NJ, USA, 2021;

pp. 1–5.

28. Xiong, W.; Wang, X.; Li, H. Efficient Large-Scale GPS Trajectory Compression on Spark: A Pipeline-Based Approach. Electronics

2023, 12, 3569. [CrossRef]

29. Gao, S.; Li, M.; Rao, J.; Mai, G.; Prestby, T.; Marks, J.; Hu, Y. Automatic urban road network extraction from massive GPS

trajectories of taxis. In Handbook of Big Geospatial Data; Springer: Berlin/Heidelberg, Germany, 2021; pp. 261–283.

30. Qian, H.; Lu, Y. Simplifying GPS Trajectory Data with Enhanced Spatial-Temporal Constraints. ISPRS Int. J. Geo-Inf. 2017, 6, 329.

[CrossRef]

31. Zheng, L.; Feng, Q.; Liu, W.; Zhao, X. Discovering trip hot routes using large scale taxi trajectory data. In Advanced Data Mining

and Applications, Proceedings of the 12th International Conference, ADMA 2016, Gold Coast, QLD, Australia, 12–15 December 2016;

Springer: Berlin/Heidelberg, Germany, 2016; pp. 534–546.

32. Lin, C.-Y.; Hung, C.-C.; Lei, P.-R. A velocity-preserving trajectory simplification approach. In Proceedings of the 2016 Conference

on Technologies and Applications of Artificial Intelligence (TAAI), Hsinchu, Taiwan, 25–27 November 2016; IEEE: Piscataway, NJ,

USA, 2016; pp. 58–65.

33. Liu, J.; Li, H.; Yang, Z.; Wu, K.; Liu, Y.; Liu, R.W. Adaptive douglas-peucker algorithm with automatic thresholding for AIS-based

vessel trajectory compression. IEEE Access 2019, 7, 150677–150692. [CrossRef]

34. Zhou, Z.; Zhang, Y.; Yuan, X.; Wang, H. Compressing AIS Trajectory Data Based on the Multi-Objective Peak Douglas–Peucker

Algorithm. IEEE Access 2023, 11, 6802–6821. [CrossRef]

35. Tang, C.; Wang, H.; Zhao, J.; Tang, Y.; Yan, H.; Xiao, Y. A method for compressing AIS trajectory data based on the adaptive-

threshold Douglas-Peucker algorithm. Ocean Eng. 2021, 232, 109041. [CrossRef]

36. Lee, W.; Cho, S.-W. AIS Trajectories Simplification Algorithm Considering Topographic Information. Sensors 2022, 22, 7036.

[CrossRef]

37. Zhao, L.; Shi, G. A method for simplifying ship trajectory based on improved Douglas–Peucker algorithm. Ocean Eng. 2018, 166,

37–46. [CrossRef]

38. Ma, S.; Zhang, S. Map vector tile construction for arable land spatial connectivity analysis based on the Hadoop cloud platform.

Front. Earth Sci. 2023, 11, 1234732. [CrossRef]

https://doi.org/10.1145/2934664
https://doi.org/10.1109/TNSM.2020.3034150
https://doi.org/10.1007/s10922-020-09549-6
https://doi.org/10.3390/s20092737
https://www.ncbi.nlm.nih.gov/pubmed/32403335
https://doi.org/10.3390/fi15080263
https://doi.org/10.3390/electronics12173569
https://doi.org/10.3390/ijgi6110329
https://doi.org/10.1109/ACCESS.2019.2947111
https://doi.org/10.1109/ACCESS.2023.3234121
https://doi.org/10.1016/j.oceaneng.2021.109041
https://doi.org/10.3390/s22187036
https://doi.org/10.1016/j.oceaneng.2018.08.005
https://doi.org/10.3389/feart.2023.1234732

Sensors 2023, 23, 8178 28 of 28

39. Amiraghdam, A.; Diehl, A.; Pajarola, R. LOCALIS: Locally-adaptive Line Simplification for GPU-based Geographic Vector Data

Visualization. In Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2020; Volume 39, pp. 443–453.

40. Wu, M.; Chen, T.; Zhang, K.; Jing, Z.; Han, Y.; Chen, M.; Wang, H.; Lv, G. An Efficient Visualization Method for Polygonal Data

with Dynamic Simplification. ISPRS Int. J. Geo-Inf. 2018, 7, 138. [CrossRef]

41. Sasaki, I.; Arikawa, M.; Lu, M.; Sato, R. Thematic Geo-Density Heatmapping for Walking Tourism Analytics using Semi-Ready

GPS Trajectories. In Proceedings of the 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan, 17–20 December

2022; IEEE: Piscataway, NJ, USA, 2022; pp. 4944–4951.

42. Sasaki, I.; Arikawa, M.; Lu, M.; Sato, R. Mobile Collaborative Heatmapping to Infer Self-Guided Walking Tourists’ Preferences for

Geomedia. ISPRS Int. J. Geo-Inf. 2023, 12, 283. [CrossRef]

43. Sun, G.; Zhai, S.; Li, S.; Liang, R. RectMap: A Boundary-Reserved Map Deformation Approach for Visualizing Geographical Map.

Chin. J. Electron. 2018, 27, 927–933. [CrossRef]

44. Lohr, S.L. Sampling: Design and Analysis; Nelson Education: Toronto, ON, Canada, 2009.

45. Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46 (Suppl. 1), 234–240.

[CrossRef]

46. Visvalingam, M.; Whyatt, J.D. The Douglas-Peucker algorithm for line simplification: Re-evaluation through visualization. In

Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 1990; Volume 9, pp. 213–225.

47. Lehman, A.; O’Rourke, N.; Hatcher, L.; Stepanski, E. JMP for Basic Univariate and Multivariate Statistics: Methods for Researchers and

Social Scientists; Sas Institute: Minato, Japan, 2013.

48. Wang, G.; Chen, X.; Zhang, F.; Wang, Y.; Zhang, D. Experience: Understanding long-term evolving patterns of shared electric

vehicle networks. In Proceedings of the 25th Annual International Conference on Mobile Computing and Networking, Los Cabos,

Mexico, 21–25 October 2019; pp. 1–12.

49. Wang, A.; Machida, Y.; de Souza, P.; Mora, S.; Duhl, T.; Hudda, N.; Durant, J.L.; Duarte, F.; Ratti, C. Leveraging machine learning

algorithms to advance low-cost air sensor calibration in stationary and mobile settings. Atmos. Environ. 2023, 301, 119692.

[CrossRef]

50. Aljawarneh, I.M.; Bellavista, P.; De Rolt, C.R.; Foschini, L. Dynamic Identification of Participatory Mobile Health Communities.

In Cloud Infrastructures, Services, and IoT Systems for Smart Cities; Springer: Berlin/Heidelberg, Germany, 2017; pp. 208–217.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/ijgi7040138
https://doi.org/10.3390/ijgi12070283
https://doi.org/10.1049/cje.2017.12.003
https://doi.org/10.2307/143141
https://doi.org/10.1016/j.atmosenv.2023.119692

	Introduction
	Literature Review
	Spatial Approximate Query Processing
	Line Generalization Algorithms
	Applications of Line Simplification in Approximate Geospatial Analysis

	Theoretical Background
	Spatial Sampling in Dynamic Scenarios
	Representative On-the-Fly Geospatial Sampling
	Problem Formulation
	Geometric Generalization

	Representative Geo-Sampling for Dynamic Application Scenarios: An Overview of the GeoRAP Solution
	Case Scenario and Baseline Systems
	GeoRAP Design and Operation
	Spatial Queries Supported
	Error Bounds Calculation
	Batch Mode Error Bounds Calculation
	Online Mode Error Bounds Calculation

	Some Primary Implementation Insights

	Experimental Evaluation Work and Performance Results
	Deployment Settings and Benchmarking
	Performance Testing and Results Discussion
	Top-N Queries (Batch Mode)
	Geo-Stats (Count Queries)—Batch Mode
	Testing Performance of Dynamic Operation Mode
	Testing the Ability to Generate Region-Based Aggregate Geo-Maps

	Conclusive Remarks
	References

