1 Correspondence

2	<i>In vitro</i> activity of cefiderocol in combination with new β-lactam/β-lactamase inhibitor
3	combinations (βL-βLICs) against multidrug resistant KPC-producing <i>Klebsiella</i>
4	pneumoniae
5	Paolo GAIBANI ^{1*} , Tiziana LAZZAROTTO ^{1,2} , PierLuigi VIALE ^{2,3} , and Simone AMBRETTI ^{1,2}
6	¹ Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
7	² University of Bologna
8	³ Division of Infectious Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
9	
10	Keywords: antimicrobial combinations / β L- β LICs / extreme drug resistance (XDR) / synergism
11	/ KPC.
12	
13	New β -lactam/ β -lactamase inhibitor combinations (β L- β LICs) have been recently developed for
14	the treatment of difficult-to-treat (DTR) infections caused by multi-drug-resistant (MDR)
15	microorganisms. ¹ Although the new β L- β LICs represent a promising effective option for
16	treatment of DTR infections due to carbapenemase-producing Enterobacterales (CPE), the
17	emergence of strains resistant to these molecules poses further considerations in their clinical use
18	[1]. Recently, a novel siderophore cephalosporin, cefiderocol (CFD), has been developed for
19	treatment of challenging DTR infections due to MDR pathogens. Although CFD exerts potent in
20	vitro activity against most MDR Gram-negative microorganisms, recent studies reported the
21	increase of CFD-resistant strains thus limiting its clinical impact [2,3]. In this context,
22	combination antimicrobial treatments have been proposed to overcome the emergence of DTR
23	pathogens [4].
24	Aim of this study was to evaluate the in vitro activity of CFD in association with
25	ceftazidime/avibactam (CAZ-AVI), meropenem/vaborbactam (MER/VAB), and/or

Formatted: Font: Not Italic

26 imipenem/relebactam (IMI-REL) and fosfomycin (FOS) against a collection of MDR KPC-

27 producing K. pneumoniae (KPC-Kp) clinical isolates.

28 Phenotypic and genotypic characteristics of KPC-Kp strains included in this study are shown in 29 Table 1 and 2. Strains were grouped accordingly to the antimicrobial susceptibility patterns to 30 new *βL-βLICs* and CFD (Group 1; CAZ-AVI, MER/VAB, IMI-REL and CFD -resistant; Group 31 2; CAZ-AVI and CFD -resistant; Group 3; CFD -resistant; Group 4; susceptible to new β LβLICs and CFD). In vitro synergy testing was evaluated by calculating the FIC index (FICI 32 33 <=0.5, synergy; 0.5< FICI <=4, indifferent; FICI >4, antagonist) as previously described [5]. 34 Overall, in vitro synergistic activity was observed for 28 out of 80 (35%) combinations tested 35 against CFD-resistant KPC-Kp and for 13 out of 40 (32.5%) against CFD-susceptible strains (Figure 1). In particular, CFD in combination with CAZ-AVI, MER-VAB, IMI-REL or FOS 36 37 showed a synergy rate respectively of 45%, 35%, 45% and 15% against CFD-resistant strains 38 and 60%, 40%, 30% and 0% against CFD-susceptible KPC-Kp. Importantly, CFD reduced the 39 MICs of CAZ-AVI, MER-VAB, IMI-REL and FOS respectively of 4, 12, 3.2 and 3.5 -folds 40 against CFD-resistant strains and of 3.4, 15.6, 2.65 and 2 -fold against CFD-susceptible KPC-Kp (Figure 2). 41

42 Examination of the synergy results based on phenotypic traits showed that CFD in combination 43 with CAZ-AVI exhibited high synergistic activity (FICI <=0.5) against both KPC-Kp susceptible to CFD and β L- β LICs or KPC-Kp -resistant to CFD and novel β L- β LICs (Figure 3). 44 45 Also, CFD in combination with MER-VAB showed higher synergistic values against KPC-Kp 46 resistant to CFD and at least one β L- β LICs. Interestingly, CFD in combination with IMI-REL 47 exhibited higher FICI than other combinations against KPC-Kp susceptible to β L- β LICs and re-48 sistant to CFD. Interestingly, CFD restored the IMI-REL activity against 8/9 (88.8%) Kp strains 49 co-producing mutated KPC and OXA-181 that are resistant to CFD and all \betaLiCs.

- 50 In conclusion, our findings demonstrated that CFD in combination with novel β L- β LICs showed
- 51 synergistic activity [FICI <0.5] against all KPC-Kp isolates, including CFD –susceptible and –

resistant strains. Although CFD exhibited synergistic activity differentially depending on the phenotypic traits of KPC-Kp strains, here we demonstrated that CFD reduced the MICs for IMI-REL below the resistance breakpoints against 29 out of 30 (96.6%) KPC-Kp strains. Further study are necessary to evaluate the clinical impact of this combination and establish the efficacy of this regimen in the treatment of infections due to KPC-Kp producers.

57

58 Acknowledgements

59 This work was supported by Italian Ministry of Health (Ricerca Finalizzata, Giovani Ricercatori, 60 GR-2018-12367572). The authors contributions was P.G. conceptualized, wrote, and edited the 61 article, and prepared the figures. T.L., S.A. and PL.V. supervised the study and edited the article. 62

63 References

- Gaibani P, Giani T, Bovo F, Lonbardo D, Amadesi S., *et al.* Resistance to
 Ceftazidime/Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam in Gram Negative MDR Bacilli: Molecular Mechanisms and Susceptibility Testing. Antibiotics
 2022; 11: 628.
- Karakonstantis S, Rousaki M, Kritsotakis EI. Cefiderocol: Systematic Review of
 Mechanisms of Resistance, Heteroresistance and *In Vivo* Emergence of Resistance.
 Antibiotics 2022;11(6):723.
- Gaibani P, Amadesi S, Lazzarotto T, Ambretti S. Genome characterization of a *Klebsiella pneumoniae* co-producing OXA-181 and KPC-121 resistant to ceftazidime/avibactam,
 meropenem/vaborbactam, imipenem/relebactam and cefiderocol isolated from a
 critically-ill patient. J Glob Antimicrob Resist 2021; In press
- Bavaro DF, Belati A, Diella L, Stufano M., Romanelli F. Cefiderocol-Based
 Combination Therapy for "Difficult-to-Treat" Gram-Negative Severe Infections: Real Life Case Series and Future Perspectives. Antibiotics 2021; 10: 652.

78	5.	Gaibani, P.; Crovara-Pesce, C.; Lazzarotto, T.; Pea, F.; Ambretti, S. Evaluation of	
79		synergistic activity of fosfomycin in combination with novel β -lactams/ β -lactamase	
80		inhibitor combinations (βL-βLICs) against KPC-producing <u>Klebsiella</u> pneumoniae	- Formatted: Font: Italic
81		clinical isolates. Int J Antimicrob Agents 2022; 60, 106671.	
82			
83			
84			
85			
86			
87			
88			
89			
90			
91			
92			
93			
94			
95			
96			
97			
98			
99			
100			
101			
102			
103			

104 Titles and legends to figures

1	Δ	5
1	υ	э

106	Figure 1. Fractional inhibitory concentration index (FICI) of cefiderocol in combination with (a)		
107	ceftazidime/avibactam (CAZ-AVI), (b) meropenem/vaborbactam (MER-VAB), (c)		
108	imipenem/relebactam (IMI-REL), (d) fosfomycin (FOS) against cefiderocol -resistant (CFD-R)		
109	and -susceptible (CFD-S) KPC-producing K. pneumoniae strains. Dotted lines represent the cut-		
110	off for synergism.		
111			
112	Figure 2. MICs distribution of CFD in combination with CAZ-AVI against CFD -susceptible (A)		
113	and -resistant (B) strains, with MEM-VAB (C: CFD -susceptible D: CFD-resistant), with IMI-		

114 REL (E: CFD -susceptible F: CFD-resistant), with FOS (G: CFD -susceptible H: CFD-resistant.

115 Dotted lines represent the clinical breakpoints.

116

117 Figure 3. FICIs distribution of CFD in combination with CAZ-AVI (A), MER-VAB (B), IMI-

118 REL (C) and FOS (D) against KPC-producing K. pneumoniae strains grouped on the basis of

119 resistance patterns to CFD and BL-BLICs. Dotted lines represent the <u>cut-off for</u> synergism.