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 
Abstract—Multisector machines reveal a high 

fault-tolerant capability, since failure events can be 
isolated by de-energizing the faulty sector while the 
healthy ones contribute in delivering the required power. 
This paper is focused on the thermal analysis of 
multisector three-phase machines in healthy and faulty 
operations. Firstly, a 3D lumped parameter thermal 
network (LPTN) of a single sector is developed and 
fine-tuned against experimental data, through a genetic 
algorithm for identifying the uncertain parameters. 
According to the operating conditions, the varying housing 
surface temperature affects the heat exchanged to the 
ambient. Hence, an analytical formula is proposed to adjust 
the natural convection coefficient value depending on the 
operating condition. Then, the 3D-LPTN, modeling the 
whole machine, is built aiming at investigating the thermal 
behavior during faulty conditions. Finally, the complete 
3D-LPTN is employed for predicting the machine thermal 
performance under several faulty conditions. Furthermore, 
the current overload experienced by the healthy sector (in 
order to keep the same torque level as during the pre-fault 
operation) is determined, in accordance with the magnet 
wire thermal class. The effectiveness of the 3D-LPTN in 
predicting the temperature is experimentally 
demonstrated. 
 

Index Terms—Lumped parameter thermal network, 
multiphase machine, fault-tolerant machine, multisector 
machine. 
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I. INTRODUCTION 

UE to the intrinsic features such as fault tolerance, low 
torque ripple, and power splitting, multiphase machines 

are attracting a lot of research attention [1]-[3]. These 
advantages make multiphase drives an interesting solution for 
high power systems, such as ship propellers, turbo compressors, 
hybrid aircrafts and wind generators [4]-[7]. In the last decade, 
the research on multiphase machines has been focused on the 
electromagnetic aspects, including the machine design, 
modeling, and control [2]-[9]. Multisector machines are a 
particular typology of multi three-phase machines, where each 
three-phase winding is placed in a different area of the stator, 
namely its sector [10], [11]. It results that each three-phase 
winding is galvanically insulated and less magnetic coupled 
with the others. Therefore, if each winding is powered by an 
independent converter the multisector machines feature an 
enhanced fault-tolerance capability. Although the thermal 
analysis on multiphase machines has been addressed in the 
existing literature [12]-[14], it is still difficult to find technical 
papers reporting the thermal behavior of multisector machines 
under faulted conditions. 

Since the thermal limit of electrical machines directly affects 
their power density, efficiency and reliability, the thermal 
analysis of electrical machines has become an increasingly 
important research topic in the past decades [15]. Due to the 
advantage of being fast to compute, the lumped parameter 
thermal network (LPTN) is one of the most popular methods 
used for thermal analysis of all types of electrical machines [16]. 
In [17], an LTPN is built to calculate the transient temperature 
of induction machines with a totally enclosed fan cooled (TEFC) 
design. For fractional-slot concentrated winding (FSCW) 
permanent magnet (PM) machines employed in traction 
applications, the thermal benefits due to the proposed back-iron 
extension are assessed by using an LPTN in [18]. The authors 
of [19] derive an LPTN for the stator winding with a good 
accuracy and a low computation cost. A 3D-LPTN which 
requires a relatively low computational effort is introduced for 
the thermal analysis of a low-speed high-trust actuator in [20]. 

However, the LPTN approach features some demerits as well. 
The most significant problem is that it is impossible to 
accurately determine some critical parameters of the LPTN, e.g. 
the equivalent thermal conductivity of winding, the interference 
gap between stator and housing, the heat transfer coefficient 
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due to convection, etc. Some distinguished works on the 
determination of these critical parameters have been reported in 
[21]-[26]. The equivalent thermal conductivity of electrical 
winding is estimated in [22]-[24]. In [25], [26], some empirical 
formulae are derived to assess the convective heat transfer in 
electrical machines. 

Although the LPTN can be established based on these 
empirical values, it still contains significant uncertainties, 
which may cause errors between simulations and experimental 
tests. To reduce the level of uncertainty in the estimation of the 
LPTN parameters, some calibration methods have been 
developed. By using a particle swarm optimization routine, the 
thermal conductivity of stator winding in an AC machine is 
calibrated based on the experimental data from thermal tests 
performed on a stator-winding motorette in [27]. With the help 
of Matlab SIMSCAPE and Simulink Design Optimization, the 
critical convection coefficients in a water-cooled electrical 
machine are tuned on the basis of the tests on a stator sector in 
[28]. Nevertheless, the use of motorettes is less appropriate for 
multisector machines, since it does not provide a complete 
picture of the actual thermal behavior. 

The modularity featured by multisector machines allows to 
isolate the faulty sector by opening it (i.e. the faulty sector is de 
energized), in case a failure occurs either within the winding 
sector or the power converter feeding it. To compensate the 
output torque shortage arising from the sector opening (i.e. 
asymmetric-sector operation), the current flowing through the 
remaining sectors must be increased. However, such post fault 
strategy leads to overload operation of the healthy sectors, 
which might result in winding over heating. This peculiar 
working condition requires a detailed thermal analysis of the 
whole multisector machine in order to avoid the shortening of 
the insulation lifetime. To predict the thermal stress on the 
insulation, the thermal behavior is investigated by means of a 
fine-tuned 3D-LPTN, which is able to account for different 
asymmetric-sector operations of the multisector machine at 
hand. Apart from temperature prediction, the purposely built 
3D-LPTN is employed for determining the maximum 
allowable current in the healthy sectors with respect to the 
magnet wire thermal class. The temperature prediction 
provided by the 3D-LPTN is experimentally validated. 

II. MACHINE TOPOLOGY 

The multisector machine under study is a 21-slot 6-pole 
(21s/6p) surface permanent magnet (SPM) motor, as shown in 
Fig. 1, where the power converters feeding each three-phase 
winding set are also reported. Its main parameters are listed in 
Table I, while the key characteristic of the PM material as 
function of the temperature are given in Table II. A detailed 
investigation on this machine topology was presented in [29]. 

The machine is divided into 3 independent sectors and each 
sector is equipped with a three-phase winding (marked as 
A1-B1-C1 or A2-B2-C2 or A3-B3-C3), which is supplied by its 
independent power source. The choice of a triple three-phase 
surfaced mounted PMs machine is supported by the need of 
increasing both reliability and availability of the whole electric 

drive. However, different topologies of electrical machines, e.g. 
the dual stator winding induction machines (DSWIM) [30], [31] 
and the brushless synchronous generators [32], might also 
feature a multisector configuration. 

 

 
Fig. 1.  Cross-sectional view of the triple three-phase sectored machine. 

 
During the section division, the whole machine should be 

averagely and symmetrically divided. Therefore, the greatest 
common divisor between the stator slots number and the rotor 
poles number is considered for the investigated machine. 

 
𝑁௦௘௖ ൌ 𝐺. 𝐶. 𝐷. ሼ𝑁௦, 2𝑝ሽ                      ሺ1ሻ 

 
where Ns is the number of stator slot, p is the pole-pair number 
and Nsec is the number of the sectors. In PMs machines, the 
parameter p represents half of the PMs number, while for the 
machines with salient rotors the parameter p can be determined 
according to the fundamental working field harmonic, which 
can be pointed by the field modulation theory [33], [34]. 

In the multisector 21s/6p SPM machine, the adjacent sectors 
are separated with each other by an empty slot that might also 
be thermally exploited to improve the thermal management of 
the multisector machine. Nonetheless, this possibility will not 
be addressed in the present paper. Further, the presence of the 
empty slots makes the magnetic mutual coupling between 
windings belonging to different sectors negligible compared to 
the one between phases of the same sector.  

 
Table I  

Key Parameters of the Triple Three-Phase Sectored Machine 

Parameter Value Parameter Value 
Rated power 1.2 kW DC voltage 72 V 

Stator outer radius 47.5 mm Slot number 21 
Stator inner radius 24.74 mm Pole number 6 

Air gap length 0.95 mm Rated speed 3000r/min
Stator Yoke thickness 6.5 mm Rated current  7 A (RMS)

Stator tooth width 5.7 mm PM material NdFeB 
Turn number per phase 22 Silicon steel sheet M250-35A
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Table II  

Characteristic of the PM Material 

Temperature Remanence Coercivity 
20 oC 1.24 T -958KA/m 
60 oC 1.20 T -930KA/m 
100 oC 1.16 T -895KA/m 
140 oC 1.11 T -856KA/m 
180 oC 1.05 T -805KA/m 

 

 
Fig. 2.  FEA-calculated phase back-EMF waveforms of the multisector 
three-phase machine at 3000 r/min. 

 
Fig. 3.  FEA-calculated torque-current curves of the proposed machine. 
 

By using the 2D-finite element analysis (FEA) method, the 
phase back-EMFs are obtained as illustrated in Fig. 2. Due to 
symmetry reasons and figure clarity, only the back-EMFs 
induced in one sector at rated speed are provided in the figure. 
In addition, Fig.3 shows the torque-current characteristic of the 
proposed machine, which is the reference of phase current 
during postfault operations. The control strategy of the 
designed triple-sector three-phase machine has been discussed 
in [29]. The following parts will be focused on the thermal 
model approach. 

III. SINGLE SECTOR THERMAL MODELLING 

In this section, a 3D-LPTN representing only a single sector 
of the presented machine is developed to predict the cooling 
performances under various operating conditions. A genetic 
algorithm is applied to the 3D-LPTN, whose purpose is to 
reduce the prediction error caused by the random selection of 
the critical parameters. Further, the natural convection heat 
transfer coefficients for different operating conditions are 
predicted based on the fine-tuned 3D-LPTN and analytical 
formulae. The LPTN predicted thermal performances are 
evaluated using experimental data under healthy conditions. 

A. The LPTN Method 

The LPTN has been proved as an effective tool for thermal 
analysis of electrical machines [35]. For each node in the LPTN, 
a heat transfer equation can be expressed by: 

𝑃௜ െ ෍ሺ𝜃௜ െ 𝜃௝ሻ𝑔௜௝

௝ஷ௜

ൌ 𝐶௜
𝑑𝜃௜

𝑑𝑡
                      ሺ2ሻ 

where Pi is the heat generated in ith node, θi and θj are the 
temperatures of the ith and jth nodes respectively, Ci is the 
thermal capacitance in ith node and gij is the thermal 
conductance between the ith and jth nodes. 

For a thermal steady-state case, the temperature variation 
against time is zero and the above heat transfer equation (2) can 
be simplified in a matrix format as follows: 
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If the thermal transient behaviors of the machine cooling are 
considered, (2) can be expressed and solved in a matrix format 
as follows: 

⎣
⎢
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From (3) and (4), the accurate machine loss, the accurate 
thermal conductance matrix, and the accurate thermal capacity 
are essential conditions for accurate temperature prediction.  

The loss of permanent-magnet machines includes the core 
loss, the eddy current loss, the copper loss, the mechanical loss, 
and the stray loss. By using FEA and analytical methods, the 
core loss, the eddy current loss, and the copper loss can be 
calculated if the accurate operation temperature is set. However, 
these losses are sensitive to the temperature, which means a 
strong coupling exists between the loss and temperature. The 
iterative calculation is necessary to predict the temperature of 
electrical machines. The accurate thermal conductance matrix 
is the foundation for achieving a correct convergence. 
Furthermore, the determination of the mechanical loss and the 
stray loss relies on the experimental measurements.  

The thermal conductance matrix is made up of three types of 
conductance, including conduction, convection, and radiation. 
It is worth mentioning that the radiation heat transfer is omitted 
in the 3D-LPTN, since its contribution is low for the case study 
under investigation. The thermal conductance can be calculated 
according to the geometrical information and corresponding 
thermal coefficient which are insensitive to the temperature 
except the natural convection coefficient. 

The thermal capacities only affect the transient temperature 
prediction. They can be calculated according to the mass and 
the specific heat capacity which can be accurately assigned 
based on the datasheets of the corresponding materials.  

From the above analysis, the machine losses are strongly 
coupled with the temperature in thermal analysis while the 
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thermal conductance matrix is not. Furthermore, the accurate 
thermal conductance matrix is the foundation for a correct 
calibration of the machine loss. Hence, the thermal 
conductance matrix should be firstly fine-tuned by conducting 
a single thermal test. Then the fine-tuned thermal matrix can be 
used to adjust the loss model, which can help the motor 
designer to find the correct direction to improve the thermal 
behavior of the machine.  

B. Layout of the 3D-LPTN 

Observing the thermal conductance matrix of the thermal 
network, it is found that the thermal network can be studied by 
means of graph theory using a weighted graph, where each 
thermal conductance (gij in Fig. 4(a) or Gij in Fig. 4(b)) is the 
weight of the corresponding line in the graph, and the thermal 
conductance matrix is the adjacent matrix of this graph. Based 
on the graph theory, the information carried by the thermal 
conductance matrix can be divided into two parts which are the 
layout information, and the thermal conductance information.  

 
Fig. 4.  Example of graph theory: (a) Weighted graph for a 5-kW 18s/6p 
SPM machine, (b) Weighted graph for a 10-kW 18s/6p SPM machine 
and (c) Un-weighted graph. 

Figs. 4 (a) and (b) show two typical weighted graphs that 
might be used for modelling the thermal networks of two 
electrical machines, which are characterized by the same 
slot/pole combination (i.e. topology), but different rated power 
(i.e. geometry), e.g. a 5-kW 18s/6p SPM machine and a 10-kW 
18s/6p SPM machine respectively. It is possible to note that the 
two graphs feature the same layout, since the corresponding 
machines share an identical topology, while their parameter 
values differ due to the distinct geometry. The common layout 
allows to ‘translate’ these two weighted graphs into a generic 
un-weighted graph, as depicted in Fig. 4 (c).  

Hence, the un-weighted graph carries the information 
regarding the machine topology, which has general validity, 
while the weight of the connection between nodes is univocally 
defined by the machine geometry and power rating, resulting in 
a weighted graph. Therefore, the research on thermal 
conductance matrix can be divided into two parts, which are the 
LPTN layout, and the determination of thermal conductance. 
The LPTN layout is an un-weighted graph, which is easy to 

accurately determined according to the machine topology. The 
machines with the same topology feature the same LPTN 
layout. 

Considering the 21s/6p triple three-phase sectored SPM 
machine introduced in Section II, the 3D-LPTN corresponding 
to half single sector (i.e. 1/6 of the whole machine) is developed 
in terms of un-weighted thermal network. In Fig. 5, the 2D view 
of the implemented 3D-LPTN is illustrated, where red and blue 
lines represent the heat transfer due to conduction and 
convection respectively. For completeness, the development of 
the 3 slots LPTN along the third dimension is shown in Fig. 6 
and three slices along the axial direction of the machine (z 
direction) are modelled.  

 
Fig. 5.  2D view of the un-weighted thermal network modelling half single 
sector of the 21s/6p SPM machine. 

 
Fig. 6.  Development in the z-direction of the un-weighted thermal 
network: (a) stator/rotor modelling and (b) winding modelling 

C. Fine-Tuning of the Critical Parameters 

After determining the layout of the 3D-LPTN of the 21s/6p 
SPM machine, the corresponding thermal conductance should 
be determined to get a complete thermal conductance matrix. In 
this step, some critical parameters are challenging to be 
assigned and will affect the accuracy of the LPTN predicted 
results [36]. These critical parameters are as follows. 

 

 
Fig. 7.  Four types of critical thermal resistances. (a) Thermal resistance 
of winding. (b) Thermal resistance between winding and stator 
lamination. (c) Thermal resistance between winding and inner air. (d) 
Thermal resistance between housing and stator. 
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The first critical parameter is the equivalent transversal 

thermal conductivity of the winding. In electrical machines, the 
winding consists of at least four types of materials including the 
copper, the enamel of the wire, the insulation varnish, and 
potentially some air. Hence, the equivalent transversal thermal 
conductivity of the winding must be determined in order to 
calculate the thermal resistance of the winding in the LTPN 
model as shown in Fig. 7(a). However, to the best of the 
authors' knowledge, there is not in the existing literature an 
accurate model to predict the equivalent conductivity of the 
four-phase materials yet. The determination of the equivalent 
thermal conductivity of the winding still relies heavily on 
experimental data and experience. It should be noted that the 
“manufacturing goodness” has significant influence on the 
equivalent thermal conductivity of the winding [23]. However, 
it is impossible to theoretically assess the “manufacturing 
goodness.” 

The second critical parameter is the equivalent thermal 
conductivity and the equivalent thickness of the slot liner. The 
slot liner is located between the stator lamination and the 
winding. Hence, the thermal resistance of the slot liner should 
be considered when calculating the thermal resistance between 
the stator lamination and the winding, as shown in Fig. 7 (b). 
However, it is impossible to accurately predict the interface 
gaps among the slot liner, the stator lamination, and the 
winding. The thermal conductivity of the slot liner is not easy to 
determine as well. Hence, the equivalent thickness and the 
equivalent thermal conductivity are introduced to represent the 
influence of these parameters in the thermal model.  

The convection heat transfer coefficient is another critical 
parameter. The convection heat transfer is an important 
phenomenon in electrical machines. For instance, the 
convection thermal resistance should be taken into account 
when calculate the thermal resistance between the winding and 
the inner air as shown in Fig. 7 (c). However, the corresponding 
convection heat transfer coefficient is hard to determine. 

In addition, the interface gap exists between the machine 
housing and the stator as shown in Fig. 7(d). Since this gap is 
significantly affected by the manufacturing procedure, it is 
quite difficult to accurately determine it in the LPTN model.  

Moreover, the length of ending winding also has an 
important influence on the thermal analysis. This parameter is 
determined by the manufacturing, the machine dimension, and 
the wire specifications. 

 

 
Fig. 8.  Flowchart of the fine-tuning procedure. 

In order to conduct an accurate thermal analysis, all of these 
parameters should be fine-tuned. The following part shows a 
detailed fine-tuning process, which is based on a genetic 
algorithm and consists of three steps, as highlighted in Fig. 8. 

Step 1: The critical parameters are identified and their initial 
value is set to be within suitable ranges as suggested by the 
available literature [22]-[27]. Once this stage is completed, the 
LPTN is preliminary weighted with the first generation of 
critical parameters.  

For the 21s/6p triple three-phase sectored SPM machine, the 
selected critical parameters include the equivalent transversal 
thermal conductivity of the winding, equivalent thermal 
conductivity of slot liner, equivalent thickness of slot liner, 
equivalent interface gap between stator and housing, natural 
convection heat transfer coefficient of machine housing surface, 
heat transfer coefficient of air inside machine and average end 
winding length. In Table III, these critical parameter values 
tuned by the genetic algorithm are listed and it is worth to note 
that they are within the ranges expected from the existing 
literatures. 

Table III  
Critical Parameters Values 

Uncertain Parameter 
Empirical 

Value 
Final LPTN 

Value 
Equivalent transversal thermal 

conductivity of winding 
0.1~0.5 
W/m/K 

0.29 W/m/K 

Equivalent thermal conductivity of slot 
liner 

0.03~0.2 
W/m/K 

0.18 W/m/K 

Equivalent thickness of slot liner 0.25~0.5 mm 0.26 mm 
Interface gap between stator and housing 0.01~0.1 mm 0.026 mm 

Surface natural convection coefficient 2~15 W/m2/K 8.9 W/m2/K 
Heat transfer coefficient of air inside 

machine 
2~15 W/m2/K 8.1 W/m2/K 

End winding length coefficient 1.3~1.6 1.33 

 

 
Fig. 9.  Equipment employed during the test campaign. (a) Prototyped 
machine stator. (b) Thermocouple and data logger. 

 
Step 2: Using the equipment shown in Fig. 9, thermal tests 

are conducted using the actual machine to obtain the 
temperature distributions until steady-state is reached. The 
collected temperature profiles are then used as benchmark to 
validate the genetic algorithm optimized LPTN-predicted 
values. 

A DC current is injected into the static 21s/6p SPM machine 
to simplify the machine losses to the copper loss only. Since the 
tested machine is cooled by the natural air convection, the 
injected current density is set to limited to 5A/mm2 maximum. 
The tested machine is located within a large enclosure 
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environment to ensure no force air flow around the machine of 
natural convection condition. The rotor is not rotating and no 
forced air flow within the machine end region. Two endcaps 
cover the front and rear of the tested machine. 

Step 3: Starting from LPTN which uses the first generation 
of critical parameters selected from the available literature, the 
genetic algorithm produces a new population of critical 
parameters through crossover and mutation [37]. In particular, 
the future generations of critical parameters are generated to 
minimize the mismatches between predicted temperatures and 
experimental data, according to a function E defined by (5). 

 

𝐸 ൌ ෍|𝑇௜ െ 𝑇௜
∗|                                      ሺ5ሻ 

 
where Ti

* is the measured temperature of ith node, while Ti is the 
LPTN-estimated temperature of ith node. The tournament-based 
selection method is applied to select the 3D-LPTN with the 
lowest E, which represents the fine-tuned 3D-LPTN. The 
genetic algorithm calculates 32 generations and the population 
size of each generation is made of 1024 individuals. Fig. 10 
reports both the average and lowest values of the function E for 
each generation. For the 32nd generation, the average value is 
less than 7 oC, whilst 6 oC is the lowest value. 

 
Fig. 10.  Trend of the function E (5) at each critical parameter set 
generation: average (red line) and lowest (green line) values. 

 
Table IV  

Comparison between Measured and LPTN-Predicted Steady-State 
Temperatures 

Location Measured Value Final LPTN Value
Stator yoke 1 91.7 oC 91.6 oC 
Stator yoke 2 92.9 oC 91.8 oC 
Empty slot 92.8 oC 92.1 oC 

Slot I 93.1 oC 94.9 oC 
Slot II 96.2 oC 95.4 oC 
Slot III 95.1 oC 95.3 oC 

Internal air 90 oC 90 oC 
End winding 98.2 oC 99.5 oC 

 
A comparison between measured and LPTN predicted 

temperatures is given in Table IV, for a thermal steady 
condition, where the temperatures in 8 nodes are evaluated. 
According to Table IV results, the end winding is confirmed to 
be the machine hot spot by both LPTN and experimental data. 
A good agreement is achieved between LPTN predicted values 
and measured temperatures, and this proves the effectiveness of 
the LPTN fine tuning procedure through genetic algorithm. It is 

worth to mention that the predicted slot temperatures refer to 
the slot central node, while “Slot I” is the nearest to the empty 
slot.  

The transient thermal behaviors of the machine can also be 
predicted using the fine-tuned 3D-LPTN developed for this 
machine. Direct comparisons of the temperature rising profiles 
at several locations of the machine, predicted by the LPTN 
against the experimental measured temperature data at the 
corresponding positions are shown in Figs 11-13. As can be 
seen from the results, the predicted temperature rising followed 
the machine temperature changes very well. The LPTN 
fine-tuning procedure can be considered successfully 
completed and provided the best parameters for the LPTN. 
Hence, exploiting the sector geometrical symmetry, the single 
sector LPTN is obtained (i.e. 1/3 of the whole machine), as 
illustrated in Fig. 14 where only the 2D view is provided, since 
the LPTN extension does not affect the slice number in the axial 
direction. 

 
Fig. 11.  Stator yoke temperature profiles with 5 A/mm2 current density: 
LPTN predicted (dashed lines) and measured (continuous lines). 

 
Fig. 12.  Slots temperature profiles with 5 A/mm2 current density: LPTN 
predicted (dashed lines) and measured (continuous lines). 

 
Fig. 13.  Temperature profiles with 5 A/mm2 current density for end 
winding, empty slot and internal air. 
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Fig. 14.  2D view of the un-weighted thermal network modelling a single 
sector of the 21s/6p SPM machine. 

D. Correction of the Surface Natural Convection Heat 
Transfer Coefficient 

As the machine is cooled by natural convection, the surface 
natural convection heat transfer coefficient hnc plays an 
important role in the accuracy of the LPTN. In general, the 
surface natural convection heat transfer coefficient hnc can be 
calculated by the following dimensionless numbers [38]. 

 
𝑁𝑢 ൌ 𝐶௢ଵℎ௡௖                                       ሺ6ሻ 

 

𝑁𝑢 ൌ 𝐶௢ଶ𝑅𝑎
ଵ
ସ                                        ሺ7ሻ 

 

𝑅𝑎 ൌ 𝐶௢ଷሺ𝑇௦ െ 𝑇௔௠ሻ                            ሺ8ሻ 

 
where Nu is the Nusselt number, Ra is the Rayleigh number, Ts 
is the surface temperature, Tam is the ambient temperature, and 
Co1, Co2, and Co3 are three coefficients determined by the 
environment and housing geometry. In case of a machine 
working in the same environment, Co1, Co2, and Co3 are three 
constant values if the temperature dependences of air properties 
are ignored which is reasonable as the temperature variation 
around of the machine is not significant for various operating 
conditions. 

By combining and rearranging equations (6)-(8), it is found 
that hnc is affected by the surface temperature of the machine 
housing. Assuming two generic load conditions marked with A 
and B, the corresponding temperatures on the housing surface 
can be identified as Ts and Ts

* respectively. These surface 
temperatures lead to two values of surface natural convection 
heat transfer coefficient, i.e. hnc and hnc

*, and their ratio is 
expressed by (9), whose validity is restricted by the assumption 
of constant environment. 

 
ℎ௡௖

ℎ௡௖
∗ ൌ ሺ

𝑇௦ െ 𝑇௔௠

𝑇௦
∗ െ 𝑇௔௠

ሻ
ଵ
ସ                            ሺ9ሻ 

 
Through the fine-tuning procedure introduced in Part B, the 

surface natural convection coefficient has been accurately 
determined based on an experimental test, where the three 
sectors are simultaneously fed with 5 A/mm2. Under this test 
condition, the housing surface temperature is equal to 89.8 oC, 
whereas 8.9 W/m2/K is the obtained natural convection 
coefficient. On this basis, the surface natural convection heat 

transfer coefficient for different operating conditions can be 
predicted by using the iteration shown in Fig. 15. 

 
Fig. 15.  The iteration for predicting the surface natural convection heat 
transfer coefficient. 

 
Further, the natural surface convection heat transfer 

coefficient of the 3D-LPTN can be experimentally assessed 
based on (10). 

ℎ௡௖ ൌ
𝑝௟௢௦௦

𝐴௦ሺ𝑇௦ െ 𝑇௔௠ሻ
                             ሺ10ሻ 

 
where ploss is the measured loss, Ts is the measured temperature 
of machine housing, Tam is the ambient temperature, and As is 
the surface area of the machine housing which is calculated by 
means of the 3D-LPTN. 

Considering several operating conditions, the surface natural 
convection coefficient of the presented machine is predicted 
and measured. The obtained results are summarized in Fig. 16, 
where the impact of the temperature of the machine housing on 
the natural convection coefficient is evident. Good agreements 
are achieved between the prediction and measurement. 

Therefore, the 3D-LPTN modelling the machine is updated 
by including (9), which allows to account for the phenomena 
highlighted in Fig. 16. Hence, the complete fine-tuned 
3D-LPTN has been derived for investigating the machine 
thermal performance during asymmetric operation of the 
machine sectors. 

 
Fig. 16.  Natural convection coefficient versus temperature difference 
between the machine housing and the environment. 
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IV. WHOLE MACHINE THERMAL MODELLING 

The single-sector fine-tuned LPTN determined in the 
previous section can be further extended in order to model the 
whole multisector machine, to predict the thermal 
performances under various faulty conditions, where the 
machine is under unbalanced loads of the 3 sectors. This 
operation can be avoided for the case when three sectors work 
under symmetric load conditions (i.e. the three three-phase 
windings are supplied with identical current values), since the 
expected thermal behavior is the same for all sectors and the 
thermal analysis can be performed on a single sector (faster and 
simplest choice). Conversely, when the three sectors are fed 
with different current values (i.e. asymmetric load conditions), 
the LPTN developed for the whole machine can be applied, 
despite the higher computational timing is required for solving 
it.  

The latter mentioned case mirrors the operating conditions 
occurring during a power sharing operation of the multi 
three-phase machine [39], [40], and when in response to a 
power converter or winding failure, the faulty sector is de 
energized. During post-fault operations, the heat source 
distribution becomes asymmetric and boundary conditions of 
the whole machine LPTN model will be different, as shown in 
Fig. 17.  

 

 
Fig. 17.  Copper loss distribution under different operating conditions. (a) 
Healthy operation. (b) Single failure operation. (c) Double failure 
operation. 
 

A 536-node 3D-LPTN for the whole machine is developed 
based on the previous 95-node LPTN for the half sector of 
machine in order to simulate the whole machine under faulty 
conditions. The same methodologies and critical parameters 
determined by the half-sector LPTN are applied to the whole 
machine model, with the only exception of the surface natural 
convection coefficient which can be calculated by using the 
iteration shown in Fig. 15. Hence, the achievement of the 
completed weighted 3D-LPTN is quite straightforward and it 
does not demand a second round of fine tuning, which would be 
significantly more time consuming due to the elevated number 
of thermal nodes.  

V. THERMAL PERFORMANCE DURING FAULTY 

OPERATIONS 

As previously mentioned, multisector machines feature a 
high fault-tolerant capability and any failure taking place on the 
power lane (either on the sector winding or feeding power 

electronic) can be isolated by de-energizing the faulty winding. 
The detailed discussion is as follows. 

When the failure occurs at the converter level, de-energizing 
the faulty converter can effectively prevent the failure 
propagation.  

When the failure occurs at the motor level, the connection 
between the faulty sector winding and its power converter is 
open by using the de-energizing approach, which prevents the 
failure propagation to the converter level. If the short-circuit 
fault occurs, although the faulty sector winding is not anymore 
supplied by the power converter, short-circuit currents circulate 
within the faulty winding, due to the back-emf induced by the 
PM. This risk is mitigated by the fault-tolerant design of the 
machine, i.e. in case of winding short-circuit the currents are 
limited by the machine impedance. Further, in this case the 
proposed LPTN is used for predicting the maximum operating 
time under fault condition. 

It should be noted that the back-EMF distortion of the short 
circuit current will remain in both the healthy and faulty phases, 
resulting in control difficulties for the inverters of the 
remaining healthy phases. Hence in this paper the fault is 
assumed to be an open phase fault.  

Due to the failure occurrence, the following scenarios are 
foreseen: 

1.  Mode I - after the failure detection, the faulty sector is de 
energized (no contribution to the torque production is given) 
and the current in the remaining sectors is kept unchanged (i.e. 
no post fault compensation strategy is adopted). Such approach 
on one hand prevents the failure propagation, but on the other 
hand, the overall torque developed by the multisector machine 
drops and the system performance is compromised. 

2.  Mode II – following the faulty sector de energization, the 
current in the healthy sectors is increased (i.e. overload 
condition) in order to keep the same generated torque, as in the 
pre fault operation. Such method allows to avoid the 
performance derating of the multisector machine. 

Further, it is worth to underline that the machine under study 
is characterized by three sectors, therefore its availability is also 
guaranteed in case two sectors are affected by failure. 

Considering the described scenarios, the thermal behavior of 
the multisector machine has been evaluated using the complete 
fine-tuned 3D-LPTN. In particular, each thermal simulation is 
divided in three stages and their time duration has been selected 
in order to reach the thermal steady state. 

•  Healthy operation (i.e. 1st stage): during the timespan 
from 0 to 4 hours, the three sectors are simultaneously active 
and they are fed with a phase current of 7 A per winding sector, 
which allows to deliver the rated torque at the motor shaft.  

•  Single failure operation (i.e. 2nd stage): from 4 to 8 hours, 
one sector is opened, as result of a failure detection, and the 
current in the healthy sector windings is increased from 7 A to 
11 A, in order to produce the rated torque (i.e. 4 Nm). 

•  Double failure operation (i.e. 3rd stage): for the next 11.5 
minutes (i.e. from 8 to 8.19 hours), another sector is de 
energized and the rated torque is only developed by one sector, 
whose winding is supplied with 22.5 A. 
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The phase current values related to the above stages are listed 

in Table V. Also, a direct comparison of end winding 
temperature profiles predicted by the developed 3D-LPTN with 
the experimental measured temperature profiles at different 
machine failure operation modes is made and the results are 
shown in Fig. 18. 

Table V 
Phase Current Value for Developing the Rated Torque at Different Failure 

Modes 

Loading Condition 1st Sector 2nd Sector 3rd Sector
Healthy operation 7 A 7 A 7 A 

Single failure 
operation 

11 A 11 A 0 A 

Double failure 
operation 

22.5 A 0 A 0 A 

 
For healthy condition, the maximum difference between the 

predicted and measured temperatures is 2.4 oC which 
corresponds to a relative error of 3.3%. Under the single failure 
operation, the maximum absolute error is 3.74 oC which 
corresponds to a relative error of 2.8%. For the double failure 
operation, the maximum absolute error is 6 oC, and the 
corresponding relative error is 3.4%. According to the 
prediction, the machine can produce the rated torque for 11.5 
minutes under double failure operation, while the measured 
result is 10 minutes. Overall, good agreements have been 
achieved between the simulations and experimental tests.  

The unbalanced magnetic force of the machine under healthy 
and faulty conditions are compared in Fig. 19. The machine 
under healthy condition features no unbalanced magnetic force, 
while the machine features the heaviest unbalanced magnetic 
force under double failure operation, which will shorten the 
lifespan of the bearings. The maximum unbalanced magnetic 
force under double failure operation is 154 N. 

Furthermore, the proposed model can also be used to predict 
the temperatures under short-circuit faults. The short-circuit 
faults can result in very high fault current (depending on the 
design), which may cause the extremely high temperatures in 
faulty points. To avoid more dangerous consequences, the 
maximum postfault operation time is the most important index 
in the analysis of short-circuit faults. 

To assess the dangerous level of the short-circuit fault, the 
maximum acceptable temperature Tmax is set according to the 
thermal class of the insulation. Then, the temperature 
prediction under the short-circuit faults can be addressed as 
follows: 

1. The short-current is calculated and assigned to the faulty 
phases. The theoretical “steady-state” temperature under this 
current is calculated and compared with the maximum 
acceptable temperature Tmax.  

2. If the “steady-state” temperature is higher than the 
maximum acceptable temperature Tmax, the short-circuit 
windings burn after long-time operation, which is of course 
dangerous. For this condition, the proposed model can be used 
to predict the maximum postfault operation time according to 
the transient temperatures of short-circuit windings. 

This feature of the developed thermal model is evaluated by 
considering a single-phase short-circuit fault occurring inside 

the machine, whose rotor is rotating at 3000r/min. Knowing 
that the phase back-EMF of the investigated 21-slot/6-pole 
machine is equal to 21.6V (RMS value) at 3000r/min, while its 
phase inductance and resistance are 0.78 mH and 80 mΩ (at 
100°C) respectively; the single-phase short-circuit current 
results equal to 29.2 A at 3000r/min [41]. Although the 
short-circuit fault is promptly detected and the gate pulses to 
the faulty winding sector are removed (i.e. the current in 
healthy phases of the faulty sector becomes zero), the 29.2 A 
current is still circulating through the machine’s faulty phase 
(i.e. the fault is fed by the back-EMF even if the power lane is 
de-energized). Under these conditions, the developed thermal 
model is used to determine the maximum postfault operation 
time. In particular, the resulting short-circuit current is given as 
input to the thermal model and it is found that the short-circuit 
phase winding will achieve 200°C (i.e. magnet wire thermal 
class) in 720 seconds, which is the maximum operation time 
after a single-phase short-circuit fault at 3000r/min. 

 

 
Fig. 18.  Comparison between measured and LPTN predicted winding 
temperatures under healthy, single failure and double failure operations. 
 

 
Fig. 19.  Unbalanced magnetic force of the rotor under healthy, single 
failure and double failure operations. 
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VI. CONCLUSIONS 

This paper presented a detailed thermal analysis of a 
fault-tolerant multisector machine, which was performed 
through a 3D-LPTN which models the whole machine. The 
developed LPTN was fine-tuned against experimental data for 
determining its critical parameters and an analytical formula is 
deduced to recalibrate the natural convection coefficient 
according to operating conditions. A genetic algorithm was 
used during the fine-tuning procedure. The accuracy of the 
developed 3D-LPTN was assessed in healthy and faulty 
conditions, with a maximum estimation error of 3.4% in the 
worst-case scenario. The fault-tolerant capability of the 
designed machine was experimentally proved and its 
operational boundaries were experimentally defined in case of 
both single and double failure. For a single failure, the machine 
is still able to develop the rated torque without compromising 
the insulation lifetime (hot-spot temperature below the magnet 
wire thermal class). In case of double failure, the machine can 
produce the rated torque for about 10 minutes before the 
winding temperature exceeds the limitation, under the 
condition which features the highest unbalanced magnetic force. 
At the next step of the presented work, the empty slots will be 
thermally exploited to improve the thermal performance of the 
presented machine, while making careful consideration to 
aspects such as the space utilization, losses, and the 
electromagnetic design goals of the multi-sector machine 
design. 
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