
22 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Alessi, N., Caini, C., De Cola, T., Raminella, M. (2020). Packet Layer Erasure Coding in Interplanetary Links:
the LTP Erasure Coding Link Service Adapter. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC
SYSTEMS, 56(1), 403-414 [10.1109/TAES.2019.2916271].

Published Version:

Packet Layer Erasure Coding in Interplanetary Links: the LTP Erasure Coding Link Service Adapter

Published:
DOI: http://doi.org/10.1109/TAES.2019.2916271

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/776604 since: 2020-10-29

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TAES.2019.2916271
https://hdl.handle.net/11585/776604

0018-9251 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2019.2916271, IEEE
Transactions on Aerospace and Electronic Systems

1

Abstract1 — Interplanetary Networks are affected by long

propagation delays, intermittent connectivity, possible packet

losses due to residual errors, and other impairments. To cope

with these challenges, the Delay-/Disruption-Tolerant

Networking (DTN) architecture utilizes the Licklider

Transmission Protocol (LTP) as Convergence Layer on space

links. The LTP reliable service (red) relies on ARQ, but very long

propagation delays make Packet Layer Forward Error

Correcting (PL-FEC) codes very appealing to protect LTP

segments from losses. The key advantage of FEC is that LTP

retransmissions would be limited to the unlikely case of decoding

failures. To this end, a new FEC based protocol, to be inserted

immediately below LTP, the Erasure Coding Link Service

Adapter (ECLSA), is presented here. ECLSA is completely

transparent to LTP, relies on two alternative external libraries

for coding/decoding, LibecDLR and OpenFEC, both using LDPC

codes and it is fully integrated with the ION DTN suite of NASA

JPL. The paper aims to provide a solid description of ELCSA,

including features functional in a real deployment (such as the

dynamic selection of codes). Performance is evaluated at the end

of the paper, with nearly ideal results. ECLSA is released as free

software and is already included in the “contrib” section of ION.

Index Terms— Interplanetary Networking (IPN), Delay-

/Disruption-Tolerant Networking (DTN), LTP, upper-layer-FEC,

Low Density Parity Check codes (LDPC).

I. INTRODUCTION

The idea of building a computer network in space dates back

to 1963 when John Licklider wrote a document with the

visionary title “Memorandum for Members and Affiliates of

the Intergalactic Computer Network”, six years before the first

man on the Moon and the first successful experiment on

ARPANET, both in 1969. In the early 2000’s research on

InterPlanetary Networking (IPN) at NASA JPL made clear

that a new architecture and new protocols were necessary to

cope with space link challenges, including long delays, link

intermittency, non-negligible losses due to harsh propagation

1 Manuscript received XX, 2018.
 Nicola Alessi, Carlo Caini and Marco Raminella are with the University

of Bologna, Italy, and may be contacted at nicola.alessi4@unibo.it and

carlo.caini@unibo.it marco.raminella@studio.unibo.it; Tomaso de Cola is
with DLR- German Aerospace Center, Institute for Communications and

Navigation, Weßling, Germany, and may be contacted at

tomaso.decola@dlr.de .

conditions and asymmetric bandwidth. Because many of these

were common to terrestrial “challenged networks”, the IPN

research was generalized as DTN (Delay-/Disruption-Tolerant

Networking), with the ambitious aim of providing a common

solution [1]. DTN architecture is based on the introduction of

the Bundle Layer, usually between Application and Transport

[2], [3] and the corresponding Bundle Protocol (BP) is in

charge of moving “Bundles” between DTN nodes [4]. A key

novelty of DTN architecture is the ability to use different

transport protocols on different DTN hops, which, on

interplanetary links, permits the use of the Licklider

Transmission Protocol (LTP), specifically designed to cope

with the space challenges [5], [6]. The DTN architecture and

related protocols are currently standardized in parallel by

IETF [7] and, for space applications, by CCSDS [8], [9], [10],

[11].

LTP encapsulates bundles into LTP blocks, which are then

split in multiple LTP segments. These segments are passed to

UDP, by means of interfaces that are called Link Service

Adapter (LSA) in ION, the DTN suite by NASA-JPL. LTP

offers BP both reliable and unreliable service, with red and

green parts of an LTP block respectively. With the former,

recovery of lost LTP segments is based on ARQ (Automatic

Repeat reQuest) [12], as in TCP. In contrast to TCP, however,

LTP tries to concentrate all retransmissions in one cycle, at the

end of the LTP block, to minimize “chattiness”. In spite of this

smart feature, when the propagation delay is in the order of

minutes as on Earth-Mars links, the delivery time penalization

due to even a single retransmission cycle is huge. It is

therefore clear that the use of Packet Layer Forward Error

Correcting (PL-FEC) codes considering LTP segments as

information symbols, as done here, becomes very appealing,

despite its complexity and extra bandwidth requirement.

The use of PL-FEC codes on erasure channels (not

necessarily in space) is not new and has been treated in

abundant literature, including a few RFCs [13], [14], [15]. If

we restrict the scope to space channels, the first studies date

back to 2007 ([16], then extended in [17]). Later on, the study

in [18] gives an overview of how (and where in the protocol

stack) PL-FECs could be used in space, with the pros and cons

of different options. The implementation of PL-FEC is in fact

considered complementary to the use of physical layer channel

coding as typically used in current data communications: the

use of PL-FEC is aimed at recovering the datalink layer frame

losses resulting from the excessive number of bit errors not

Packet Layer Erasure Coding in Interplanetary

Links: the LTP Erasure Coding Link Service

Adapter

Nicola Alessi, Carlo Caini, Member IEEE, Tomaso De Cola, Member IEEE, and Marco Raminella

mailto:nicola.alessi4@unibo.it
mailto:carlo.caini@unibo.it
mailto:tomaso.decola@dlr.de

0018-9251 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2019.2916271, IEEE
Transactions on Aerospace and Electronic Systems

2

recoverable by the corrective capacity of physical layer

channel coding. Among the different possibilities presented in

the CCSDS Orange Book [19], the authors’ preferred solution

consists in inserting the PL-FEC immediately below LTP, as

analysed in this paper devoted to the Erasure Coding Link

Service Adapter (ECLSA). This is not a mere internal

interface from LTP to lower protocols as other LSA (e.g.

UDPLSA), but a real intermediate layer, with FEC

capabilities. The same approach, with different codes (Reed

Solomon instead of LDPC) has been recently followed by

other DTN researchers [20], [21], so confirming its validity.

ECLSA origin dates back to 2014 [22] and is the fruit of

long established collaboration between DLR and the

University of Bologna on DTN. The aim of this paper is to

describe the second version (ECLSAv2), rewritten from

scratch under new specifications. Among these we must cite

the support to multiple FEC families (LDPC IRA and LDPC

Staircase), the dynamic selection of both codeword length and

code rate, and the use of a dynamic matrix buffer to reduce

RAM occupancy, the completely new thread structure and the

new header. Thanks to these improvements, ECLSA is now a

real working protocol, fully integrated with the other protocols

contained in ION [23]. In view of this, the paper aims to

provide the reader not only with ECLSA rationale and general

description, but also with the implementation details necessary

to understand the complexity of transforming the original

concept into a running code, plenty of options. To evaluate

ECLSA performance the authors made use of a GNU/Linux

virtual testbed running ION and the full protocol stack.

Results, presented at the end of the paper, look very

encouraging.

II. DTN OVERVIEW

This section summarizes the basics of DTN architecture and

of LTP protocol for the unfamiliar reader.

A. DTN architecture essentials

DTN architecture relies on the introduction of the BP in

selected nodes, between Application and lower layers (usually

Transport). The interfaces with lower layers are called

“Convergence Layer Adapters”, and are specific for each

protocol (TCPCLA, LTPCLA, UDPCLA, etc.). There are two

critical differences with respect to Internet [2], [3]. First, by

contrast to Internet packets, bundles can be stored for long

periods at intermediate nodes, which is necessary to cope with

link intermittency typical of space and other challenged

environments. Second, as the Transport scope is no longer

end-to-end, but confined within a DTN hop , it is possible the

use of different transport protocols on different DTN hops,

which is essential to tackle the different channel impairments

present on each hop (see Transport A, B and C in Figure 1).

As shown in [24] the use of different transport protocols on

different portion of the end-to-end path, somewhat extends the

concept of TCP splitting PEPs, widely used in GEO satellite

networks. Considering for example Earth to Mars

communications, TCP could be still successfully used on both

Earth and Mars, but it should be replaced by LTP on space

links because of both link intermittency and propagation delay

(with reference to Figure 1, we could have TCP in A and C

hops and LTP in B).

Figure 1: DTN architecture protocol stack; the end-to-end path is divided into
three DTN hops, on each of which different transport (and lower) protocols

can be used.

B. Licklider Transmission Protocol

LTP was specifically designed to cope with long delays and

link intermittency typical of space links. To cope with long

propagation delays LTP minimizes interaction between

transmitting and receiving engines and replace the feedback-

based TCP window based congestion control with a rate-based

one. LTP can also successfully handle scheduled intermittent

connectivity, taking advantage of “contact” information

reported in contact plans.

As mentioned, LTP offers both reliable and unreliable

services, with “red” and “green” parts of a LTP block,

respectively. Let us focus on reliable service, by far the most

important, and list the key features that differentiate LTP from

TCP [6], [11].

 No connection establishment, such as TCP 3-way

handshake.

 Unidirectional data flow (the reverse channel is

used only for signaling) to cope with possible

channel asymmetry.

 Multiple bundles can be aggregated by the

LTPCLA in one LTP “block” [11]; blocks are

transmitted by independent LTP “sessions”;

multiple sessions in parallel are allowed.

 An LTP block is split into a number of LTP

“segments”, each passed to UDP.

 Segment acknowledgments are sent back in

response to “check points”, usually set only on the

last segment of a block, to minimize

retransmissions cycles.

A typical LTP red session with segment losses is presented

in Figure 2. All LTP segments are transmitted in order, the last

being flagged as End of Red Part (ERP), End of Block (EOB)

and Check Point (CP). Segments 2, 5 and 6 are lost and thus

not confirmed by the first Report Segment (RS) sent in

response to the check point; this report is confirmed by a

report-ack followed by retransmissions (R), the last flagged as

check point. As there are no further losses on retransmitted

segments, the second report segment is a “final” report,

confirming the arrival of all segments. Delivery time and

penalty time due to loss recovery are indicated by arrows on

the right.

The performance investigation of LTP has received not

little attention in recent years because of its suitability for both

Application

Bundle Protocol

Transport Protocol A

Network Protocol A

Bundle Protocol

Transport

Protocol A

Network

Protocol A

Transport

Protocol B

Network

Protocol B

Bundle Protocol

Transport

Protocol B

Network

Protocol B

Transport

Protocol C

Network

Protocol C

Application

Bundle Protocol

Transport Protocol C

Network Protocol C

Network A

Convergence Layer

Adapter A

Conv. Layer

Adapter A

Conv. Layer

Adapter B

Conv. Layer

Adapter B

Conv. Layer

Adapter C

Convergence Layer

Adapter A

Network B Network C

Application

Bundle Protocol

Transport Protocol A

Network Protocol A

Bundle Protocol

Transport

Protocol A

Network

Protocol A

Transport

Protocol B

Network

Protocol B

Bundle Protocol

Transport

Protocol B

Network

Protocol B

Transport

Protocol C

Network

Protocol C

Application

Bundle Protocol

Transport Protocol C

Network Protocol C

Network A

Convergence Layer

Adapter A

Conv. Layer

Adapter A

Conv. Layer

Adapter B

Conv. Layer

Adapter B

Conv. Layer

Adapter C

Convergence Layer

Adapter A

Network B Network C

0018-9251 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2019.2916271, IEEE
Transactions on Aerospace and Electronic Systems

3

deep-space [25] and cislunar [26] scenarios, and of the

implications of interfacing to the bundle protocol [27]. In this

regard, the LTP performance dependence on propagation

delay is worth stressing [28]. If the propagation delay is much

longer than the time required to transmit a block, as is typical

in deep space, the delivery time in the absence of losses can be

reasonably approximated as the propagation delay (e.g. as 1/2

RTT), which is the theoretical minimum. Then, in case of

losses on data segments only, and assuming no further loss on

retransmitted segments, as in Figure 2, only one

retransmission cycle (1 RTT) is sufficient to recover all data

segment lost; this means that the delivery time is equal to 1.5

RTT, the theoretical minimum for ARQ based protocols,

which is again an excellent result.

LTP, however, is more sensitive to loss of signalling

segments, such as report segments or report-ack, or data

segment flagged as check points, in which case the

penalization can become of two RTTs or even more.

Moreover, the original version of LTP was also particularly

sensitive to the loss of the last report ack, confirming the final

report segment. This has led to the development of an

enhanced version of LTP [28], where signalling segments can

be protected against losses by a variable amount of replication

and the problems with the loss of the last report-ack fixed.

This resulted in a much stronger resilience against losses,

especially when frequent. The LTP “enhanced” version has

thus become the standard in current ION releases and is also

used here.

Figure 2: Example of LTP session (red) in the presence of losses on data

segments.

III. UPPER LAYER FORWARD ERASURE CODING

A. Rationale of erasure codes at upper layers

Let us recall that a FEC code is a code that transforms a

message of K symbols into a codeword, i.e. a longer message

with N (N=K+M) symbols; if the code is systematic the first K

symbols of the codeword are the same as those of the

message, so the final Ms are redundancy symbols. The code

rate, Rc=K/N, represents the amount of information symbols

per code symbol; the lower the code rate, the higher the

redundancy introduced [29].

The FEC techniques that are usually applied to bits can be

also applied to packets, in particular on erasure channels to

recover from losses; in this case the terms “packet layer”,

“application layer”, “upper layer” coding are alternatively

used. At upper layers, packets can be lost either because of

network congestion or because of residual error rate on bits

(after coding on the physical channel) prevents the packet

from passing the parity check. Lost packets are recovered in

both Internet protocols and in LTP red, by means of ARQ.

Although this is the best as well as the simplest solution in

Internet, where worst case RTT is in the order of few hundred

ms, it becomes extremely inconvenient in interplanetary links,

where the propagation delays are much larger (from 3 to 23

minutes for Earth to Mars links). This is why erasure coding

on packets is so appealing on space links, despite its

disadvantages, such as complexity and the additional

bandwidth required to transmit redundancy packets.

B. LDPC coding in ECLSA

ECLSA makes use of two alternative external libraries to

perform erasure coding and decoding, LibecDLR and

OpenFEC. Both of them use Low Density Parity Check codes

[29], but of two different families: LibecDLR uses the

Irregular-Repeat-Accumulate (IRA) family (see the CCSDS

Orange book [19]), while OpenFEC relies on LDPC Staircase

and LDPC Triangle codes (see RFC 5170 [13]). RFC 6816

[15] further specifies LDPC Staircase so that they can be used

to protect media streams along the lines defined by

FECFRAME, a particular framework for using FEC

applications in IP networks, and makes an explicit reference to

OpenFEC.

The LibecDLR library is proprietary and is not included in

the open source version of ECLSA in ION, while OpenFEC is

open source [30]. Although they use different LDPC codes,

both of them can support the N and K values specified in the

CCSDS Orange book [19], shown in Table I.

TABLE 1: N AND K OF CODES DEFINED IN THE CCSDS ORANGE BOOK [19]

 Rc1=8/9 Rc2=4/5 Rc3=2/3

K1=512 N11=576 N12=640 N13=768

K2=2048 N21=2304 N22=2560 N23=3072

K3=16384 N31=18432 N32=20480 N33=24576

C. LDPC Decoding

LDPC decoding consists of solving a system of N-K linear

equations whose unknown variables are the L missing

0018-9251 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2019.2916271, IEEE
Transactions on Aerospace and Electronic Systems

4

symbols of the N-length code word. A first decoding attempt

can thus be done with a simple iterative (IT) algorithm that

tries to solve the equations where only one unknown variable

remains, one at a time. IT is fast but its decoding performance

is suboptimal. Maximum Likelihood (ML) techniques are also

possible; they offer better decoding performance, but also

require more computations. Hybrid solutions [31], [32] used

by both LibecDLR and OpenFEC, start by using the IT

algorithm and complete the decoding, if necessary, with the

ML one, thus obtaining the best of both worlds: moderate

complexity and excellent performance.

IV. ECLSA OVERVIEW

To describe ECLSA it is necessary to recall first the role

played by LTP LSAs (Link Service Adapters). In the DTN

architecture with LTP as convergence layer, after LTP block

segmentation, LTP segments are transferred to the

corresponding pair via a lower layer protocol, e.g. UDP. LSAs

are the LTP interfaces towards these lower protocols. By

contrast to UDPLSA (and other possible LSAs), ECLSA is not

just an interface internal to the LTP code, but a new layer with

FEC capabilities intermediate to LTP and lower layers and

totally transparent to both (

Figure 3). ECLSA is segment oriented, i.e. it does not

consider LTP blocks boundaries at all, which has the

advantage of offering a natural equal protection of all

segments, either original data segments, or retransmissions, or

signalling (whose protection is of particular importance as

highlighted in the LTP section). On the other hand, this

requires the introduction of aggregation timers, as it will be

shown below.

Bundle Protocol

LTP

ECLSA

UDP

Lower layers

Bundle Protocol

LTP

ECLSA

UDP

Lower layers

BP ApplicationBP Application

Figure 3: The protocol stack of two DTN nodes using ECLSA on top of UDP.

ECLSA consists of two processes, ECLSO and ECLSI,

respectively in charge of segment transmission (Outduct) and

reception (Induct).

ECLSO processing involves three logical phases (left hand

of Figure 4):

 K LTP segments are passed to ECLSA; each segment is to

be treated as an information symbol (Info packets in the

figure)

 The LDPC encoder adds M=N-K redundancy symbols

(Redundancy packets in the figure).

 The N (=K+M) symbols of the codeword are passed one-

by-one to UDP; each symbol is to be encapsulated into one

UDP datagram.

K Info
packets

Encoder

K Info
Packets

M
Redundancy

Packets

Lower layers Lower layers

Packet Erasure Channel

Decoder

Figure 4: Simplified picture of PL-FEC logical process in ECLSA.

On the receiver side, both information and redundancy

packets can be lost because of link impairments. The task of

ECLSI is to mask these losses as much as possible to LTP. It

comprises the following three phases, which are the dual of

those just described but in reverse order (now from UDP to

LTP):

 Let L be the number of UDP packets lost, each containing

one symbol of the codeword (3 crossed packets on the

right side of Figure 4); N-L symbols have arrived.

 The decoder try to extract the K information symbols from

the N-L ones received. If the decoding is successful, (as in

Figure 4) all the K information symbol are recovered,

thanks to the redundancy symbols. This decoding phase is

skipped if there are not any losses in the first K symbols,

i.e. if all information symbols have arrived.

 All known information symbols (either received or

recovered) are passed to LTP.

A successful decoding needs reception of at least K of the N

symbols transmitted (i.e. L≤M) for ideal codes, whatever the

received symbols are (information or redundancy), but is

usually not sufficient for LDPC codes, where a small margin

is requested (L<M). In the unlikely event of unsuccessful

decoding, some information symbols will be still missing.

They will be recovered by LTP (red) by means of the usual

ARQ mechanisms, being ECLSA transparent to it. Note that

for the same reason retransmitted segments (and related

signalling segments) will be protected by ECLSA as original

segments were, making thus extremely unlikely the event of

consecutive losses of the same segments (two decoding

failures should happen).

V. ECLSO DETAILED DESCRIPTION

Here we re-examine the logical phases performed by

ECLSO in detail, with a look to our implementation, where

0018-9251 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2019.2916271, IEEE
Transactions on Aerospace and Electronic Systems

5

they correspond to three threads, which run concurrently for

better efficiency [33].

A. First thread (T1): Matrix filling (from LTP)

LTP segments are passed by LTP to ECLSO, each segment

destined to become one information symbol of the N-symbol

codeword. All symbols must have the same size, thus if we

imagine a symbol as a row vector of length T (in bytes), the

N-symbol codeword becomes a matrix of N rows and T

columns, as shown in Figure 5.

Although LTP data segments are usually of the same size

(set in LTP configuration) some segments may be shorter than

others, as usually happens for the last segment of an LTP

block (also flagged as CP). To deal with this length diversity,

the first two bytes of a symbol must be reserved for indicating

the actual size of the LTP segment contained in the symbol. If

the LTP segment is shorter than T-2 (maximum possible

length), the tail bytes must be filled with zeros (“row

padding”, in white). Another kind of padding is necessary if

the number of LTP segments received by LTP, I, is lower than

K. In this case the K-I empty rows are filled with

“information” padding (row in white). After encoding, the

remaining M rows are filled with redundancy symbols (last

rows).

Figure 5: An example of coding matrix. Row and column index from 0. N=

codeword dimension; T= symbol size (B); K= number of Information

symbols; I=actual number of LTP segments added. The first two bytes
represents the LTP segment size, the other bytes the LTP segment data, last

rows the redundancy symbols. White spaces are padding.

The matrix-filling algorithm is summarized in Figure 6.

When the first LTP segment is received, the aggregation timer

starts and the segment is added in the first row; the process

goes on either until K segments arrive, i.e. the information part

of matrix is full, or until the aggregation timer expires. In both

cases the matrix is passed to the encoder (Matrix encoding

phase) and then to UDP (Matrix passing phase).

In order to avoid both premature expiring and excessive

delays, it is crucial to set the aggregation timer properly. A

conservative rule is to set it to the maximum time necessary

for LTP to pass K information symbols at the nominal Tx rate

(declared in the contact plan configured in ION and expressed

in B/s), resulting in (K T)/Tx_Rate. Note that the aggregation

timer expires only in the absence of persistent traffic, i.e. when

the last LTP block inserted in the matrix is not promptly

followed by others, meaning that there are no more bundles to

be passed to LTP. As ECLSA is transparent to LTP, both

retransmitted and signalling segments are naturally

multiplexed to data segments of new LTP blocks, thus

reducing the probability of a timer expiring.

New LTP segment

Start timer

Matrix encoding

Timer started?

Matrix full

Add segment to
matrix

no

yes

yes

Matrix passing (to
UDP)

Timer
expiring

Stop timer

no

Figure 6: ECLSO process: matrix filling from LTP (T1, expanded) followed by

matrix encoding (T2) and matrix passing to UDP (T3).

B. Second thread (T2): Matrix Encoding

The coding adapter, LibecDLR or OpenFEC is external to

ECLSA and must be chosen at compilation time. Code

selection can be either static (default) or dynamic (with 3

adaptive options), and the latter is one of the most powerful

characteristics of ECLSA. In both cases it is necessary to

specify a reference code (Nspan, Kspan) in ECLSO settings (see

Table I); the chosen pair indirectly sets also the reference code

rate, Rc.

1) Selection of K

Let us start by considering a static code rate Rc (e.g. Rc=8/9)

and examine the pros and cons of different K values. A large

K performs closer to the ideal but there are three cons: greater

amount of memory in use, longer coding delay, and more

probable excess of redundancy. In fact, whenever the

aggregation timer expires, because of lack of new LTP

segments, there are only I (I<K) info rows filled; although the

K-I padding rows are not sent (they are empty), all the M

redundancy rows are. Thus, if I<<K the result is that the actual

code rate (Rc_actual=I/N) can be much lower than the nominal

code rate (Rc=K/N), with a corresponding redundancy excess.

For example, if the code selected is (24576, 18432), there are

M=6144 redundancy rows; if the aggregation timer expires

when only a small fraction of the information matrix rows are

filled (e.g. I=500), the redundancy will be many times larger

than requested by the nominal rate (about 37 times). To keep

the best of both long and short codes, a dynamic selection is in

order.

If the “Adaptive selection of K” option is set, the K

reference value (Kspan) will represent the maximum K value, to

be selected on the basis of the two other drawbacks, memory

and delay, so allowing ECLSI to reduce the actual K if the

matrix is not full (I<Kspan). In the example considered,

K=512 would be the best choice, as 500<512, with an actual

0018-9251 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2019.2916271, IEEE
Transactions on Aerospace and Electronic Systems

6

code rate very close to the nominal one.

As LDPC Staircase codes used by OpenFEC allow for on

the spot building of a code for a given K, it is even possible to

tailor the code on the actual number of rows filled when the

aggregation timer expires, i.e. we can set K=I. In this case, we

can also have a perfect match of the actual code rate, i.e. no

redundancy rows in excess. This feature can be set in ECLSA

(OpenFEC only), by selecting the alternative “K continuous”

option.

2) Selection of Rc

Moving on to the code rate, we recall that the smaller the Rc

the higher the amount of redundancy introduced per

information symbol, and thus the more powerful the code. For

example, assuming an ideal code, with Rc=8/9 we can on

average recover one loss over 9 packets, with Rc=4/5, one over

5, with Rc=2/3, one over 3. Rc choice should therefore dictated

by an estimate of the channel Packet Loss Rate (PLR). If the

channel is stationary and loss probability known, it is easy to

make the right choice. Otherwise, if the channel is time-

varying, or is stationary but unknown, a sensible choice is to

conservatively select Rc (high redundancy). This, however,

would result in excess of protection whenever the channel is

better than the worst case. To cope with this second cause of

potential bandwidth waste, in ECLSA it possible to

dynamically select the code Rc, by enabling the “Feedback

Adaptive Rc” option. In this case, the variable target Rc rate is

calculated on feedbacks (decoding success/failure plus

additional information) sent back by the ECLSI process

running on the receiver node. It is worth stressing that this

feature is useful only if the coherence time of the channel is

longer than the RTT, otherwise it can become ineffective or

possibly harmful, given the impossibility of tracking the

channel. For a comprehensive description of the adaptive

options, see [33].

C. Third thread (T3): Matrix passing (to UDP)

After encoding, the N symbols of the codeword (rows of the

matrix) are read from the matrix and inserted one-by-one into

UDP datagrams, skipping padding to save bandwidth.

The encapsulation performed by ECLSO (and vice versa by

ECLSI) is shown in Figure 7. Note that the figure holds true

only for the K information symbols (the first two layers are

missing for the M redundancy symbols, entirely generated by

the FEC coding process).

LTP Segment
LTP Segment

Size

Information Symbol

ECLSA Packet

ECLSA Header

UDP Header

LTP Segment

Figure 7: LTP segment encapsulation in a UDP datagram via ECLSA.

The ECLSA header contains the information necessary to

ECLSI running on the receiver to correctly fill the coding

matrix at reception with the received symbols and to use the

same FEC code used for encoding in the decoding phase. The

current format (the protocol is in an experimental phase, thus

modifications are likely) is shown in Figure 8.

Ver.
(1B)

Ext.
(1B)

Flags
(1B)

Engine
ID (2B)

Matrix
ID (2B)

Symbol
ID (2B)

I
(2B)

K
(2B)

N
(2B)

T
(2B)

Figure 8: ECLSA header.

The header contains the following fields:

• Version (1B): this value is at present set at 0.

• ExtCount (Extension Count, 1B): reserved for future

purposes.

• Flags (1B): if b0=1 the decoding feedback is requested; if

b1=1 the k continuous mode is enabled. Others bits are

reserved for future purposes.

• EngineID (2B): the node identifier, as given by the upper

protocol. For LTP, it is the same as the LTP Engine ID.

• MatrixID (2B): it is the unique identifier of the coding

matrix (i.e. of the codeword) for the given EngineID. Thus,

the pair [EngineID,MatrixID] is the unique identifier for

ECLSI (ECLSI can receive by multiple senders). This pair

allows ECLSI to know to which coding matrix (codeword) an

incoming packet belongs.

• SymbolID (2B): the codeword symbol index; This is the

only field that changes for ECLSA packets referring to the

same coding matrix.

• I (SegAdded, 2B): the actual number of LTP segments

added to the coding matrix (see Figure 5). Used by ECLSI to

know the amount of matrix padding (unfilled rows).

• K (2B): The FEC parameter K of the code actually used

for encoding;

• N (2B): The FEC parameter N of the code actually used

for encoding; K and N fields are necessary to let ECLSI know

the code used by ECLSO (for the specific codeword, if the

FEC code selection is dynamic).

• T (2B): The symbol size. It is necessary to ECLSI to

know the length of a coding matrix row.

VI. ECLSI DETAILED DESCRIPTION

The three logical phases of ECLSI are implemented as

independent threads [33], as those of ECLSO.

A. First thread (T1): Matrix filling (from UDP)

The first phase of ECLSI is the dual of the last of ECLSO

and is described in Figure 9. ECLSA packets are extracted

from incoming UDP datagrams, then the ECLSA header of

each packet is read to derive the parameters of the coding

matrix to which the ECLSA packet belong. Each coding

matrix is assigned a unique identifier, which also identifies the

source node (the same as engineID), to cope with possible

multiple sources, and is temporarily stored by ECLSI in a

buffer of matrixes (dynamic to save RAM). From the ECLSA

header, the field “I” tells ECLSI how many information

symbols are actually present in the coding matrix (thus we

have K-I information padding rows), while N, K are the

parameters of the FEC code used to encode the received

codeword and T the symbol dimension in bytes. These four

parameters are associated to one coding matrix, thus are the

same for all the corresponding ECLSA packets. They are

deliberately replicated in all packets because in the presence of

losses it is not possible to know which symbols arrive and

which are lost, thus it would be unsafe to send this information

with only one specific symbol.

For the very same reason, it is paramount to define when

0018-9251 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2019.2916271, IEEE
Transactions on Aerospace and Electronic Systems

7

the matrix filling process can reasonably be considered

completed, a much less trivial task than might be imagined. In

ELCSA the process is considered completed when one of

these four conditions occurs, whatever the first:

 All information symbols have been correctly received (this

is why the ECLSA header must contain the “I” value). In

this case there is no need to wait for redundancy segments

nor to decode the matrix. This happens only when the loss

probability is very low.

 Some information symbols are missing, but the last

redundancy symbol has arrived. This usually happens in

the presence of moderate losses.

 A symbol generated by the same source and belonging to a

coding matrix with higher sequential ID than the current

one has arrived. The probability of this happening is equal

to the loss probability, as it requires the loss of a specific

symbol, the last redundancy symbol.

 A timeout occurs. On reception of each new symbol of a

specific codeword, a closing timer is set (first symbol) or

reset (other symbols); if no other symbols arrive the timer

expires and the coding matrix is considered complete. This

aims to prevent deadlocks, should the last redundancy

symbol of the last matrix sent by the same source be lost.

The probability is very low, as it requires not only the loss

of the last redundancy symbol, but also that the codeword

is the last of the flow (no other symbols are coming). In

addition to that, the closing timer is usually very small, as

it should be set to the expected inter-arrival time between

two consecutive ECLSA packets, which is usually very

short, plus a small safety margin to tackle possible losses.

In brief, its impact on delivery delay is virtually always

negligible.

New UDP packet

yes

no yes

Timer
expiring

Current code
word?

yes

no

Is it the last one?

noAll information
symbols rcvd?

Matrix passing (to
LTP)

yes

(re-)Start timer

no

Matrix decoding

Stop timer

Stop timer

Add the symbol to the
current matrix

Information
symbol?

Add the symbol to
a new matrix

Figure 9: ECLSI process: matrix filling from UDP (T1, expanded) followed

by matrix decoding (T2) and passing to LTP (T3).

B. T2: Matrix decoding

Decoding is skipped either if all information symbols are

received or if the matrix was not encoded (because the

segments added before a timeout, “I”, were less than the

“Encoding Threshold” parameter). In all other cases the matrix

must be decoded. To this end, ECLSI must know the code

used, which is specified by the parameters N, K, and T as

above.

C. Third thread (T3): Matrix passing (to LTP)

After decoding, the LTP segments contained in the

information symbols are passed sequentially to LTP (the 2B

header and row padding are removed). If the “Request

Feedback” option is set, feedback is sent to the ECLSO engine

on the source reporting the decoding status (success or failure,

plus other information). The feedback packet is sent directly

by ECLSI to ECLSO through UDP, without applying any

FEC. To protect it from losses, it can however be replicated by

setting the “Feedback burst” parameter in ECLSI

configuration.

As said, if decoding fails, LTP will require retransmission

of missing segments (red part), which should theoretically be

completely transparent to ECLSA. In practice, however, there

is a small difference, as LTP RTO timers must now include

the ECLSA processing delay.

VII. PERFORMANCE EVALUATION

ECLSA performance evaluation is complex, as results

depend on a variety of factors, including the codes used and

the characteristics of the erasure channel. Having assumed

uncorrelated losses
2
, the first step is to assess the performance

of available erasure codes. To this end, we used a virtual

GNU/Linux testbed with Virtualbricks [34], running the full

protocol stack, with ION on all VMs. As illustrated in Figure

7, LTP/ECLSA runs on top of UDP, whose generated packets

are in turn encapsulated into IP datagrams and eventually

transferred over Ethernet. Packet losses and the other

characteristics of the scenarios studied (for more details, see

the next two subsections) are reproduced by means of a

channel emulator, positioned on the link connecting the two

nodes involved, working at link layer (in particular, packet

losses are injected on frames). In real environment there are

some important differences with respect to the protocol stack

imposed by the emulation environment. In CCSDS-based

space missions, the IP datagrams to be transmitted over the

space link cannot be encapsulated into Ethernet frames, but

according to CCSDS standards will be properly transported by

the Telemetry (TM) transfer frame on downlink (i.e., from a

spacecraft to a ground station) [35] and Telecommand (TC)

transfer frame in uplink [36]. In this paper, it is assumed that

2 The assumption of uncorrelated packet losses stems from the fact that bit

errors even correlated within the same frame will result in the discarding of

that frame upon CRC validation. In the case of fading events extending to
multiple frames, it is common to resort to the application of interleavers,

helping to spread errored bits over several frames and eventually restoring the

pattern of uncorrelated losses. The occurrence of correlated frame losses is
typical in free-space optical communications. The present paper, however,

does not focus on a specific transmission technology (i.e., RF or laser) but

provides a general study of ECLSA performance.

0018-9251 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2019.2916271, IEEE
Transactions on Aerospace and Electronic Systems

8

the physical layer of the downlink implements LDPC 4/5

channel coding (as one of the possible recommendations

available in the CCSDS TM standard) applied to a stream of

sync-marked transfer frames, allowing up to 2048 information

bytes to be accommodated in the corresponding information

blocks subject to LDPC encoding. In this respect, LTP

segment length was set in our experiments to 1024 bytes

(T=1026), which means that the loss of a TM transfer frame

corresponds to the loss of an LTP segment. Concerning the

uplink, it is assumed that the physical layer implements the

LDPC 1/2 (128,64), as recommended by the TC CCSDS

standard, which allows a very low undetected codeword error

rate, in the order of 10
-5

for operational values of Eb/N0. This

allows us to assume the uplink to be error-free.

A. PL-FEC LDPC performance comparison

We commence the analysis by comparing performance

achievable by the packet layer LDPC codes (PL-FEC)

provided in LibecDLR (IRA) and OpenFEC (Staircase), with

ideal performance, achievable by Maximum Distance

Separable (MDS) codes, which can be expressed through the

Singleton bound of idealised MDS codes [37]:

Perr = ∑ (
N
i
) εi(1 − ε)N−iN

i=N−K+1 ,

where ε denotes the packet loss rate), (N,K) denotes the

reference MDS code and Perr denotes the error decoding

probability. Hence, the successful decoding probability (rate in

the rest of the paper) can be computed as 1- Perr.

Let us start from the (576,512) code (Rc=8/9), which is

likely the most appealing from an operational point of view, at

least for PLRs <8%. LDPC code results shown as markers in

Figure 10 were obtained by sending in our testbed isolated

bundles of 500kB as green LTP blocks (one bundle per block,

and one block per matrix), using the DTNperf tool [38]. Each

block consists of 494 information segments (i.e. I=494, very

close to K=512). Ideal performance is analytically computed

and plotted with a continuous line; for the sake of comparison,

it refers to the actual code rate Rc=I/(I+M), just marginally

lower than the nominal one. By examining the figure, we can

see that the two LDPC codec offer performance very close to

the ideal one). This proves that both IRA and Staircase

families are very effective.

Figure 10: Successful decoding probability vs packet loss rate for (576,512)

codes.

Then, by keeping the same K we rose N to 640, to increase

redundancy, obtaining results presented in Figure 11 (Rc=4/5,

one redundancy symbol every four information ones). To keep

centred the knee (now around 20% in accordance with the Rc

value) the chart shows the values starting from 10% on the x-

axis. LDPC codes performance is still very close to the ideal

one. Finally, we further increased N to 768, obtaining Figure

12 (Rc=2/3, one redundancy symbol every two information

ones). The knee is now around 33%, again in accordance to

Rc.

In conclusions, in all cases considered here, both IRA and

Staircase LDPC code families offer performance very close to

the ideal one, with only minor differences between them.

These results can also be interpreted in LTP terms, by

stating that ECLSA, when coupled with LTP green, offers a

sort of “almost reliable service” to the bundle protocol.

Chances of losses inside one LTP green block are negligible

until the PLR is lower than the recovery capabilities of the

codes used, i.e. before the knee (see Figure 10, Figure 11 and

Figure 12).

Figure 11: Successful decoding probability vs packet loss rate for (640,512)

codes.

Figure 12: Successful decoding probability vs packet loss rate for (768,512)

codes.

B. ECLSA and UDPLSA performance comparison

The second and most significant step of our analysis

consists in directly comparing ECLSA and UDPLSA. To this

end we have considered the same experiment as before, but

0

20

40

60

80

100

120

0% 4% 8% 12% 16% 20%

Su
cc

es
sf

u
l d

ec
o

d
in

g
ra

te
 %

PLR

K=512 N=576 Bundle=500KB (494 Infosegments)

N=576 analytical corr.

N=576 LibecDLR (IRA)

N=576 OpenFEC (Scalar)

0

20

40

60

80

100

120

10% 14% 18% 22% 26% 30%

Su
cc

es
sf

u
l d

ec
o

d
in

g
ra

te
 %

PLR

K=512 N=640 Bundle=500KB (494 Infosegments)

N=640 analytical corr.

N=640 LibecDLR (IRA)

N=640 OpenFEC (Scalar)

0

20

40

60

80

100

120

25% 29% 33% 37% 41% 45%

Su
cc

es
sf

u
l d

ec
o

d
in

g
ra

te
 %

PLR

K=512 N=768 Bundle=500KB (494 Infosegments)

N=768 analytical corr.

N=768 LibecDLR (IRA)

N=768 OpenFEC (Scalar)

0018-9251 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2019.2916271, IEEE
Transactions on Aerospace and Electronic Systems

9

with LTP red. A new performance metric, delivery time, is in

order here, because, thanks to retransmissions, LTP red blocks

are always completely received (and the encapsulated bundles

delivered). The question here is thus when and not if blocks

are completely received.

Delivery time is strongly influenced by propagation delay,

and to a lesser extent by bandwidth. Results presented in

Figure 13 refer to RTT=2s (short by interplanetary standards,

roughly corresponding to Earth to Moon RTT), and to a Tx

rate of 10 Mbit/s. Delivery time is expressed in half RTT units

for convenience, as half RTT is the theoretical absolute

minimum achievable in ideal conditions, i.e. without losses

and if the block Tx time is negligible with respect to

propagation delay. Moreover, one RTT is the minimum

penalty time in case of segment retransmissions, which also

facilitates the interpretation of results in terms of

retransmission cycles.

Let us start first consider “LTP enhanced” results (dashed

line taken from [28]). When PLR=1%, delivery time is about

3.5s (here half RTT=1s). This because, on average, we will

have about 5 losses over the first round of 494 segments sent;

these 5 losses will almost always require one retransmission

cycle, which adds one RTT (2s) to time necessary to deliver

the first round. By increasing PLR, there is a greater chance of

losses on the first retransmission cycle, which would require a

second cycle and would imply an additional RTT. When this

happens, delivery time becomes 5s instead of 3s, etc. In brief,

delivery time increases rapidly with PLR, because the need of

extra retransmission cycles.

Now we can examine ECLSA results, all referring to

K=512. The ECLSO aggregation timer is conservatively set to

500ms (a little more than the 0.4s expected filling time for

K=512), and the ECLSI closing timer to 100ms. Delivery time

is constant at about 3s when decoding failures are negligible,

i.e. with PLRs below 9%, 17% and 30% respectively, for the

three codes considered (OpenFEC LDPC Staircase, K=512,

Rc=8/9, 3/4, 2/3). Comparing these results with those of LTP

enhanced, we can see a trade off at PLR<1%, with fast

increasing superiority of ECLSA for higher PLRs.

For a thorough evaluation, however, it is necessary to

examine the nature of ECLSA delivery time components. Of

the 3s, 1s is due to the propagation delay, 0.4s to the Tx time

of 500 kB at 10 Mbit/s, the rest, variable, can be ascribed to

ECLSA overall processing times (not merely the coding and

encoding times, but also aggregation timers and other delays),

which are independent of RTT.

If we now consider interplanetary links, propagation delay

becomes dominant, and we can drop the processing delay and

the Tx time from the previous results, so obtaining the curves

in Figure 14 valid for every RTT>>2s. They clearly show the

advantage of ECLSA in terms of delivery time for PLR≥1%.

By considering that 1 RTT means from 6 to 40 min for Earth

to Mars links, the practical relevance of the ECLSA

improvement is evident. On the other hand, for fairness, we

must bear in mind the price in terms of bandwidth and

complexity (memory and processing power). For the former,

however, the increase factor can be very modest (1/Rc=1.125),

at least for PLR<9%, while the latter is destined to decrease

with technological advances.

Figure 13: Delivery time vs PLR: comparison between LTP enhanced (burst

3) and ECLSA (LTP+ECLSA). Losses on the direct direction only. RTT=2s.

Figure 14: The same as Figure 13, but for RTT>>2, (ECLSA processing time

dominated by propagation delay).

VIII. CONCLUSIONS

ECLSA was developed in ION as an LTP Link Service

Adapter, but unlike other LSAs, it does not consist of a simple

interface towards lower protocols, but is a real intermediate

layer based on an upper layer FEC encoding. ECLSA protects

LTP segments with Packet Layer FEC before encapsulating

them into a lower layer protocol, such as UDP. As it is

transparent to LTP, it naturally protects all data, retransmitted

and signalling segments, the same way, and preserves the

ARQ mechanism of LTP, now to be used only in the unlikely

event of a decoding failure. ECLSA design shown in detail in

the paper is based on multiple threads, to minimize the

processing time and to allow reception and decoding of

concurrent flows from different sources.

Results show that the performance of LDPC codes provided

by LibecDLR (LDPC IRA) and OpenFEC (LDPC Staircase),

the two external libraries that can be used by ECLSA, is

always very close to that of ideal codes (MDS). When applied

to LTP red, ECLSA significantly reduce the delivery time. On

short RTTs (2s, less than Earth to Moon RTT), results shows a

significant reduction for PLR≥3%; however, on the

interplanetary links (RTT>>2s), where the processing time is

0

2

4

6

8

10

12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

D
e

liv
e

ry
 t

im
e

 (
h

al
f

R
T

T)

PLR

K=512, Bundle=500kB, Tx rate=10Mbit/s, Losses on the forward
channel only, RTT=2s (Earth-Moon)

LTP enhanced Burst 3

LTP&ECLSA N=576 R=8/9

LTP&ECLSA N=640 R=4/5

LTP&ECLSA N=768 R=2/3

0

2

4

6

8

10

12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

D
e

liv
e

ry
 t

im
e

 (
h

al
f

R
T

T)

PLR

K=512, Bundle=500kB, Tx rate=10Mbit/s, Losses on the forward
channel only, RTT>>2s (e.g. Earth-Mars)

LTP enhanced Burst 3

LTP&ECLSA N=576 R=8/9

LTP&ECLSA N=640 R=4/5

LTP&ECLSA N=768 R=2/3

0018-9251 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2019.2916271, IEEE
Transactions on Aerospace and Electronic Systems

10

dominated by propagation time, the advantage of ECLSA

becomes outstanding for all PLR≥1%.

Future extensions of this work may include the analysis of

the proposed ECLSA implementation over more realistic

channels, i.e. introducing bursty packet erasures and in

dependence of different datalink layer frame lengths.

ACKNOWLEDGEMENTS

The authors would like to thank Gianluigi Liva and Balazs

Matuz for their support with LibecDLR code, the authors of

OpenFEC for their codecs, and Pietrofrancesco Apollonio who

authored the first version of ECLSA. A special thanks to Scott

Burleigh for his support and for ECLSA inclusion in ION.

REFERENCES

[1] S. Burleigh et al., “Delay-tolerant networking: An approach to inter-
planetary Internet,” IEEE Comm. Mag., vol. 41, No. 6, Jun. 2003, pp.

128–136.

[2] V. Cerf et al. “Delay-Tolerant Networking Architecture,” Internet
RFC 4838, Apr. 2007.http://www.rfc-editor.org/rfc/rfc4838.txt

Accessed on: June 26, 2018.

[3] F. Warthmann, “Delay-and Disruption-Tolerant Networks (DTNs), A
tutorial” v.3.2, Sept.2015, [Online], Available: http://ipnsig.org/wp-

content/uploads/2015/09/DTN_Tutorial_v3.2.pdf Accessed on: June
26, 2018.

[4] K. Scott and S. Burleigh, “Bundle Protocol Specification,” Internet

RFC 5050, Nov. 2007, http://www.rfc-editor.org/rfc/rfc5050.txt
Accessed on: June 26, 2018..

[5] M. Ramadas, S. Burleigh and S. Farrell, “Licklider Transmission

Protocol – Motivation,” Internet RFC 5326, Sept. 2008.
http://www.rfc-editor.org/rfc/rfc5325.txt Accessed on: June 26, 2018.

[6] M. Ramadas, S. Burleigh and S. Farrell, "Licklider Transmission

Protocol – Specification,” Internet RFC 5326, Sept.2008,
http:/www.rfc-editor.org/rfc/rfc5326.txt Accessed on: June 26, 2018.

[7] Internet Engineering Task Force DTN Working Group (DTNWG)

web site: https://datatracker.ietf.org/group/dtn/documents/ Accessed
on: June 26, 2018.

[8] CCSDS DTN Working Group web site: http://cwe.ccsds.org/sis/

Accessed on: June 26, 2018..
[9] CCSDS 734.0-G-1, "Rationale, Scenarios, and Requirements for DTN

in Space,” 2010, https://public.ccsds.org/Pubs/734x0g1e1.pdf

Accessed on: June 26, 2018
[10] CCSDS 734.2-B-1, “Bundle Protocol Specification,” 2015.

https://public.ccsds.org/Pubs/734x2b1.pdf Accessed on: June 26, 2018

[11] CCSDS 734.1-B-1, "Licklider Transmission Protocol (LTP) for
CCSDS”. 2015. https://public.ccsds.org/Pubs/734x1b1.pdf Accessed

on: June 26, 2018.

[12] S. Lin, D. Costello, M. Miller, “Automatic-Repeat-Request Error-
Control Schemes,” IEEE Comm.. Mag., Vol.22, No.12, p5-17, Dec.

1984.

[13] V. Roca, C. Neumann and D. Furodet, "Low Density Parity Check
(LDPC) Staircase and Triangle Forward Error Correction (FEC)

Schemes,” Internet RFC 5170, June 2008. http://www.rfc-editor.org/

rfc/rfc5170.txt Accessed on: June 26, 2018.
[14] J. Lacan, V. Roca, J. Peltotalo and S.Peltotalo, “Reed-Solomon

Forward Error Correction (FEC) Schemes,” Apr. 2009, Internet

RFC 5510 http://www.rfc-editor.org/rfc/rfc5510.txt. Accessed on:
June 26, 2018.

[15] V. Roca, M. Cunche and J. Lacan, "Simple Low-Density Parity Check

(LDPC) Staircase Forward Error Correction (FEC) Scheme for

FECFRAME,” Internet RFC 6816, Dec. 2012. http://www.rfc-

editor.org/rfc/rfc6816.txt Accessed on: June 26, 2018

[16] T. de Cola, H. Ernst, and M. Marchese, “Performance analysis of
CCSDS File Delivery Protocol and erasure coding techniques in deep

space environments”, Comput. Netw. Vol.51, no.14, pp. 4032-4049,

Oct. 2007.

[17] T. de Cola and M. Marchese, "Reliable data delivery over deep space

networks: Benefits of long erasure codes over ARQ strategies," in

IEEE Wireless Communications, vol. 17, no. 2, pp. 57-65, April 2010.

[18] T. de Cola, E. Paolini, G. Liva and G. P. Calzolari, "Reliability

Options for Data Communications in the Future Deep-Space
Missions," Proc. of the IEEE, vol. 99, no. 11, p. 2069, 2011.

[19] CCSDS, "131.5-O-1, “Erasure Correcting Codes for Near Earth and

Deep Space communications,” 2014.
https://public.ccsds.org/Pubs/131x5o1.pdf Accessed on: June 26,

2018.

[20] L. Shi et al., "Integration of Reed-Solomon codes to Licklider
transmission protocol (LTP) for space DTN," in IEEE Aerospace and

Electronic Systems Mag., vol. 32, no. 4, pp. 48-55, April 2017.

[21] J. Jiao et al., "Reliable Deep-Space File Transfers: How Data Transfer
Can Be Ensured Within a Single Round-Trip Interval," in IEEE

Vehicular Technology Mag., vol. 12, no. 4, pp. 86-94, Dec. 2017.

[22] P. Apollonio, “Erasure Error Correcting Codes Applied to DTN
Communications,” M.S. thesis, University of Bologna, Italy,

Feb.2014,http://amslaurea.unibo.it/6852/4/apollonio_erasure_error_co

rrecting_codes_applied_to_dtn_communications.pdf Accessed on:
June 26, 2018

[23] Sourceforge, "ION-DTN Delay-Tolerant Networking suitable for use

in spacecraft”, [Online]. Available:
https://sourceforge.net/projects/ion-dtn/. Accessed on: June 26, 2018.

[24] C. Caini et al., "Delay- and Disruption-Tolerant Networking (DTN):

An Alternative Solution for Future Satellite Networking
Applications," Proc. of the IEEE, vol. 99, pp. 1980-1997, Nov 2011.

[25] Q. Yu, S. C. Burleigh, R. Wang and K. Zhao, "Performance modeling
of Licklider transmission protocol (LTP) in deep-space

communication," in IEEE Transactions on Aerospace and Electronic

Systems, vol. 51, no. 3, pp. 1609-1620, July 2015.
[26] Z. Yang et al., "Analytical characterization of Licklider transmission

protocol (LTP) in cislunar communications," in IEEE Transactions on

Aerospace and Electronic Systems, vol. 50, no. 3, pp. 2019-2031, July
2014.

[27] R. Wang, Z. Wei, Q. Zhang and J. Hou, "LTP Aggregation of DTN

Bundles in Space Communications," in IEEE Transactions on
Aerospace and Electronic Systems, vol. 49, no. 3, pp. 1677-1691, July

2013.

[28] N. Alessi, S. Burleigh, C. Caini, T. De Cola, “Design and Performance
Evaluation of LTP Enhancements for Lossy Space Channels,” Wiley,

International J. of Sat. Commun. and Networking, pp.1-12 March

2018.
[29] J. K. Wolf, "An introduction to error correcting codes," 2010.[Online]:

http://circuit.ucsd.edu/~yhk/ece154c-spr15/ErrorCorrectionIII.pdf.

[30] INRIA, ISAE, OpenFEC web site: http://openfec.org/. Accessed on:
June 26, 2018..

[31] E. Paolini, M. Varrella, M. Chiani, B. Matuz and G. Liva, "Low-

Complexity LDPC Codes with Near-Optimum Performance over the
BEC," in Proc. ASMS 2008, Bologna, Italy, 2008, pp. 274-282.

[32] M. Cunche and V. Roca, "Optimizing the error recovery capabilities

of LDPC-staircase codes featuring a Gaussian elimination decoding
scheme," in Proc. SPSC 2008, Rhodes Island, US, 2008, pp. 1-7.

[33] M.Raminella,“ECLSA enhancements to support the OpenFEC codec

library and to take advantage of it characteristic features,”
undergraduate thesis, University of Bologna, Italy, Feb. 2016. An

excerpt is included in the /contrib/ECLSAv2 directory in ION.

[34] P. Apollonio, C. Caini, M. Giusti and D. Lacamera, "Virtualbricks for
DTN satellite communications research and education”, in Proc. of

PSATS 2014, Genoa, Italy, July 2014, pp. 1-14.

[35] CCSDS 131.0-B-3, TM Synchronization and Channel Coding,
CCSDS Blue Book, Issue 3, September 2017.

[36] CCSDS 231.0-B-3, TC Synchronization and Channel Coding,

CCSDS Blue Book, Issue 3, September 2017.
[37] G. Liva, E. Paolini and M. Chiani, "Bounds on the Error Probability of

Block Codes over the q-Ary Erasure Channel," in IEEE Transactions

on Communications, vol. 61, no. 6, pp. 2156-2165, June 2013.

[38] C. Caini, A. d'Amico and M. Rodolfi, "DTNperf_3: A further

enhanced tool for Delay-/Disruption- Tolerant Networking

Performance evaluation," in Proc. GLOBECOM 2013, Atlanta, GA,
US, 2013, pp. 3009-3015.

http://www.rfc-editor.org/rfc/rfc4838.txt
http://ipnsig.org/wp-content/uploads/2015/09/DTN_Tutorial_v3.2.pdf
http://ipnsig.org/wp-content/uploads/2015/09/DTN_Tutorial_v3.2.pdf
http://www.rfc-editor.org/rfc/rfc5050.txt
http://www.rfc-editor.org/rfc/rfc5325.txt
http://www.rfc-editor.org/rfc/rfc5326.txt
https://datatracker.ietf.org/group/dtn/documents/
http://cwe.ccsds.org/sis/
https://public.ccsds.org/Pubs/734x0g1e1.pdf
https://public.ccsds.org/Pubs/734x2b1.pdf
https://public.ccsds.org/Pubs/734x1b1.pdf
http://www.rfc-editor.org/rfc/rfc5170.txt
http://www.rfc-editor.org/rfc/rfc5170.txt
http://www.rfc-editor.org/rfc/rfc5510.txt
http://www.rfc-editor.org/rfc/rfc6816.txt
http://www.rfc-editor.org/rfc/rfc6816.txt
https://public.ccsds.org/Pubs/131x5o1.pdf
http://amslaurea.unibo.it/6852/4/apollonio_erasure_error_correcting_codes_applied_to_dtn_communications.pdf
http://amslaurea.unibo.it/6852/4/apollonio_erasure_error_correcting_codes_applied_to_dtn_communications.pdf
https://sourceforge.net/projects/ion-dtn/
http://circuit.ucsd.edu/~yhk/ece154c-spr15/ErrorCorrectionIII.pdf
http://openfec.org/

0018-9251 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2019.2916271, IEEE
Transactions on Aerospace and Electronic Systems

11

Nicola Alessi received the

Bachelor Degree in Computer

Science Engineering from the

University of Bologna, in

March 2016, with a thesis

based on the analysis of LTP

performance. After graduating

he implemented ECLSA

(Error Correction Link Service

Adapter) for ION. In March

2019 he achieved the Master’s

Degree at the same university with a thesis on the

Hierarchical Inter-Regional Routing Algorithm for

Interplanetary Networks, carried out at NASA-JPL

under the supervision of Scott Burleigh. His main

research interests concern Delay-/Disruption- Tolerant

Networking and related protocols.

Carlo Caini received the

Master degree in Electrical

Engineering “summa cum

laude” from the University

of Bologna, in 1986, with a

thesis on Convolutional

Codes and Viterbi

decoding. Since 1990 he

has been with the

Department of Electronics Computer Science and

Systems of the same University, where now is working

as Associate Professor of Telecommunications. At

present, his main research interests are focused on

Delay-/Disruption-Tolerant Networking, Transport

Protocols for space environments and Satellite

Networks. He has supervised the development of many

free software components for these environments.

Tomaso de Cola was born

in Manosque, France, on

April 28, 1977. He received

the ``Laurea" degree (with

honors) in

telecommunication

engineering, in 2001, the

Qualification degree as

Professional Engineer in

2002 and the Ph. D. degree in Electronic and Computer

Engineering, Robotics and Telecommunications in 2010

from the University of Genoa, Italy. From 2002 until

2007, he has worked with the Italian Consortium of

Telecommunications (CNIT), University of Genoa

Research Unit, as scientist researcher. Since 2008, he

has been with the German Aerospace Centre (DLR),

where he is involved in different European Projects

focusing on different aspects of DVB standards, CCSDS

protocols and testbed design. He is co-author of more

than 50 papers, including international conferences and

journals. His main research activity concerns: TCP/IP

protocols, satellite networks, transport protocols for

wireless links, interplanetary networks as well as delay

tolerant networks. Dr. de Cola has served on the

technical program committee at several IEEE

International Conferences. He is member of the IEEE

Communications Society. He is serving as chair of the

Satellite and Space Communications (SSC) technical

committee within ComSoc.

Marco Raminella received the

Degree in Computer Science

Engineering from the

University of Bologna in

March 2017, with a thesis on

the insertion of the open source

FEC library OpenFEC,

developed by INRIA, in

ECLSA (Error Correction Link

Service Adapter). At present, he is continuing his

studies at the same university as a Master student. His

main research interests concern DTN and related

protocols, Cloud Computing, Big Data and Machine

Learning.

