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Abstract

We propose a new estimator of high-dimensional spectral density matrices, called ALgebraic
Spectral Estimator (ALSE), under the assumption of an underlying low rank plus sparse structure,
as typically assumed in dynamic factor models. The ALSE is computed by minimizing a quadratic
loss under a nuclear norm plus l1 norm constraint to control the latent rank and the residual sparsity
pattern. The loss function requires as input the classical smoothed periodogram estimator and two
threshold parameters, the choice of which is thoroughly discussed. We prove consistency of ALSE
as both the dimension p and the sample size T diverge to infinity, as well as the recovery of latent
rank and residual sparsity pattern with probability one. We then propose the UNshrunk ALgebraic
Spectral Estimator (UNALSE), which is designed to minimize the Frobenius loss with respect to the
pre-estimator while retaining the optimality of the ALSE. When applying UNALSE to a standard
US quarterly macroeconomic dataset, we find evidence of two main sources of comovements: a real
factor driving the economy at business cycle frequencies, and a nominal factor driving the higher
frequency dynamics. The paper is also complemented by an extensive simulation exercise.
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1 Introduction

An appealing, natural, and classical way to model time series data is through spectral analysis (Brillinger,

2001). Given a p-dimensional vector stochastic process, its p × p spectral density matrix characterizes

all second order dependencies. Moreover, conditional second order dependencies can also be extracted

starting from the inverse of the spectral density matrix. The spectral approach is appealing since, once

we move from the time domain to the frequency domain, data become asymptotically independent, as

the sample size T grows to infinity.

Statistical methods for the study of time series based on spectral analysis include: pseudo-maximum

likelihood estimation (Velasco and Robinson, 2000), linear regression (Harvey, 1978), cointegration tests

or information criteria based on the zero-frequency spectral density matrix of a vector of time series

(Stock and Watson, 1988), and similarly seasonal cointegration tests based on the spectral density matrix

at selected frequencies (Joyeux, 1992), de-trending methods (Corbae et al., 2002), Granger causality

tests (Breitung and Candelon, 2006; Farnè and Montanari, 2021), and the analysis of low frequency

co-movements (Müller and Watson, 2018). Finally, the inverse spectral density matrix is at the basis of

graphical models and dynamic network analysis (Dahlhaus, 2000; Eichler, 2007; Davis et al., 2016).

The use of spectral analysis is widespread in many applied fields. Examples are the construction of

business cycle indicators in macroeconomics (Altissimo et al., 2010), portfolio optimization at different

horizons in finance (Chaudhuri and Lo, 2015), and the study of brain activity in biostatistics (Ombao

et al., 2001, 2005; Fiecas and Ombao, 2011, 2016).

All above methods and applications require as input an estimator of the spectral density matrix or of

its inverse. Just like for the covariance matrix estimation in time domain, estimation of a spectral density

matrix is a hard problem when the dimension of the process p is comparable, or even larger, than the

sample size T . In this case, the classical smoothed periodogram estimator is not positive definite simply

due to lack of degrees of freedom. Given the increased availability of large datasets in the recent years,

this issue becomes of fundamental importance. Wu and Zaffaroni (2018) provide consistency results

for the smoothed periodogram estimator in high dimension, which hold uniformly over all frequencies.

Zhang and Wu (2021) improve on those results, by providing bounds for the estimation error which hold
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uniformly over all p2 entries.

To solve the problem of the curse of dimensionality, here, we start from observing that the second

moments of most high-dimensional time series tend to have both a low rank and a sparse component.

Indeed, on the one hand, most economic datasets are known to be mainly “dense” rather than sparse

(Giannone et al., 2021). Moreover, there exist mathematical results proving that large dimensional panels

of time series can in general be represented as having a factor structure (Forni and Lippi, 2001; Hallin

and Lippi, 2013). On the other hand, once the common factors are controlled for, there is evidence of

sparseness in the second order structure of the residuals (Barigozzi and Hallin, 2017).

In this paper, we assume that the spectral density matrix, Σ(θ), of p-dimensional time series has the

low rank plus sparse structure: Σ(θ) = L(θ) + S(θ), θ ∈ [−π, π], where L(θ) has rank r < p, and S(θ)

is a sparse matrix. Based on this assumption, our estimators L̂(θ) and Ŝ(θ) of the two components of

the spectral density matrix are obtained by regularizing the smoothed periodogram estimator, Σ̃(θ), by

means of a nuclear norm plus l1 norm penalization. Specifically, at each given frequency θ ∈ [−π, π] we

define the ALgebraic Spectral Estimator (ALSE) as the couple of matrices

(
L̂(θ), Ŝ(θ)

)
= argmin

L(θ),S(θ)

1

2
‖Σ̃(θ)− (L(θ) + S(θ))‖2

F + ψ‖L(θ)‖∗ + ρ‖S(θ)‖1, (1)

where L(θ) and S(θ) indicate generic values of the matrices belonging to appropriate algebraic matrix

varieties, ‖L(θ)‖∗ = tr(L(θ)) and ‖S(θ)‖1 =
∑p

i,j=1 |Sij(θ)|, and ψ and ρ are threshold parameters. An

estimator of the spectral density matrix is then Σ̂(θ) = L̂(θ) + Ŝ(θ). The above optimization problem

is solved by iterating between a singular value thresholding step (Cai et al., 2010), giving L̂(θ), and a

soft-thresholding step (Daubechies et al., 2004), giving Ŝ(θ). The algorithm we employ has also been

described in Luo (2011) for the case of covariance estimation.

We prove the algebraic and parametric consistency of ALSE uniformly over frequencies, as both the

dimension p and the sample size T diverge. By algebraic consistency, we mean that, with probability

tending to 1: (i) the ALSE low rank estimate is positive semidefinite having as rank the true rank r,

(ii) the ALSE residual estimate is positive definite having as sparsity pattern the true one, and (iii) the

ALSE estimate of Σ(θ) is positive definite. Our consistency results are obtained by generalizing to our
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framework the results for the smoothed periodogram of Wu and Zaffaroni (2018) and Zhang and Wu

(2021). We also provide a thorough discussion on the selection of the threshold parameters ψ and ρ.

We then apply to ALSE in (1) the un-shrinkage step of estimated latent eigenvalues by Farnè and

Montanari (2020), which optimizes the finite sample Frobenius loss with respect to the smoothed pe-

riodogram while retaining algebraic consistency. This step consists in unshrinking L̂(θ), while a new

estimate of the sparse component is obtained by retaining the off-diagonal sparsity pattern of Ŝ(θ), and

computing its diagonal by difference from the diagonal of Σ̂(θ) and the new estimate of the low rank

component. We call the resulting estimator of the overall spectral density matrix UNshrunk ALgebraic

Spectral Estimator (UNALSE). By construction UNALSE improves over ALSE in terms of Frobenius

norm while it is equivalent to ALSE in terms of spectral norm.

Our approach is based on the fundamental identifiability assumptions we make on the behavior of

the eigenvalues of the spectral density matrix. We assume the r eigenvalues of the low rank component,

L(θ), to be diverging at a rate pα with α ∈ [0, 1]. In the language of factor models, this means we are

allowing for the presence of factors with different degrees of pervasiveness, i.e., both weak and strong

factors. Moreover, we assume the sparse component, S(θ), to have eigenvalues diverging at most at a rate

pδ with δ ∈ [0, 1/2] and δ < α. These assumptions imply the existence of an eigen-gap in the spectrum

of the spectral density matrix, Σ(θ), which widens as p increases.

There exist alternative approaches to the estimation of large spectral density matrices. Forni et al.

(2000) propose principal component analysis in the frequency domain to recover the low rank component.

Böhm and von Sachs (2008, 2009) propose to shrink the smoothed periodogram towards either a reduced

rank target or the identity, respectively. Fiecas and von Sachs (2014) propose a penalized likelihood

approach, and Fiecas et al. (2019) consider constrained l1 minimization for estimating the inverse. While

some of those works assume either a low rank or a sparsity structure, none of them considers both

assumptions jointly.

Similar approaches based on a low rank plus sparse assumption exist in time domain, i.e., for the

estimation of the covariance matrix. Fan et al. (2013) consider principal components to recover the

low rank component and then, in a second step, apply soft or hard thresholding to the orthogonal

complement to obtain a sparse and positive definite residual. Their resulting estimator is called POET.
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Farnè and Montanari (2020) adopt a minimization algorithm analogous to the one considered in this

paper which recovers the covariance matrix consistently, both algebraically and parametrically. The

resulting estimator is called UNALCE and they show that it systematically outperforms POET both in

terms of parametric consistency, and, more importantly, because it provides the algebraic recovery of

latent rank and sparsity pattern. A similar approach was proposed by Luo (2011), however it is based

on the assumption of bounded eigenvalues for the covariance matrix, which does not allow for the joint

identification of the two components.

Our assumption of a low rank plus sparse decomposition of the spectral density matrix is also strictly

related to, and inspired by, the Generalized Dynamic Factor Model (GDFM) representation of a large

panel of time series, originally proved by Forni and Lippi (2001). This is a very popular approach to

dimension reduction (see, e.g., the application in Altissimo et al., 2010). In the GDFM, r latent factors

are loaded by each series in a dynamic way, i.e., not only contemporaneously but also with lags. The key

assumptions are: (i) pervasiveness of the factors resulting in r leading spiking spectral eigenvalues, and

(ii) weak serial and cross-correlation in the residuals, resulting in boundedness of the spectral eigenvalues.

In our notation these conditions imply α = 1 and δ = 0.

Forni et al. (2000, 2005, 2017) consider different estimators of the GDFM, which are all built starting

from a consistent estimator of the spectral density matrix. In particular, in all those approaches the low

rank component of the spectral density is estimated via the r leading dynamic principal components, i.e.,

the principal components of the spectral density matrix across frequencies of the smoothed periodogram

(see also Brillinger, 2001). The consistency of this method relies on the pervasiveness of spectral eigenval-

ues with respect to the dimension p. The spectral density of the residual component, called idiosyncratic

component in the GDFM literature, is then estimated as the difference between the estimated spectral

density of the observed data and its estimated low rank component. Hence, by construction, the spectral

density of the idiosyncratic component has rank p− r, i.e., it is not positive definite, and, therefore, not

invertible. There exist also few papers dealing with determining the dynamic rank, r: Hallin and Liška

(2007) propose an information criterion, and Onatski (2009) proposes a test based on the asymptotic

distribution of the spectral eigenvalues.

The above approaches to the estimation of the GDFM suffer from some drawbacks. First, any
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estimator of the spectral density matrix based on the principal components of an input estimator, like

the smoothed periodogram, is likely to suffer from numerical instability, especially if p is large, due to

the Marčenko and Pastur (1967) law. Second, the strict pervasiveness assumption of spectral eigenvalues

(α = 1) is rarely satisfied in practice, since the factor strength might vary across frequencies, e.g., due

to common, frequency specific, features. Third, the weak correlation assumption increases the number

of parameters when p is large, which prevents the residual component to be identified.

The estimator we propose in this paper is able to address those drawbacks, because it tolerates

weakly pervasive factors, relevantly reduces the number of estimated parameters and, given its algebraic

consistency, it is also a consistent estimator of the latent rank r. For these reasons, it can be used as

input of all the estimators of the GDFM considered in the literature.

The paper is organized as follows. In Section 2 we present our main results using the GDFM setting

as a guiding example. In Sections 3, 4, and 5 we present the general framework, describe estimation, and

prove consistency. In Section 6 we discuss the unshrinking of ALSE generating UNALSE. In Section 7 we

discuss the choice of the threshold parameters. Section 8 presents the results when applying UNALSE to

a dataset of quarterly US macroeconomic time series. In Appendix A we prove all theoretical results of

the paper. In Appendix B we consider the implications of our assumptions for a large VAR setting. In

Appendix C we show how the theory presented can be extended also to non-linear models. In Appendix

D we show simulation results under a variety of data generating processes.

Notation. We denote a p × p Hermitian positive-definite complex matrix as A and its transposed

complex conjugate as A†. Let λi(A), i = 1, . . . , p, be the (real) eigenvalues of A in descending order,

and by Aij its (i, j)th entry. Define Aij as the complex conjugate of Aij, and |Aij| =
√
AijAij; the real

and imaginary parts are indicated as Re(Aij) and Im(Aij), respectively. To indicate that A is positive

definite or semidefinite we write: A � 0 or A � 0, respectively. We use the following norms. Element-

wise norms: l0 norm: ‖A‖0 =
∑p

i=1

∑p
j=1 1(Aij 6= 0); l1 norm: ‖A‖1 =

∑p
i=1

∑p
j=1 |Aij|; Frobenius

norm: ‖A‖F =
√∑p

i=1

∑p
j=1 |Aij|2 =

√
tr(AA†); maximum norm: ‖A‖∞ = max1≤i,j≤p |Aij|. Vector-

induced norms: l0,v norm ‖A‖0,v = max1≤i≤p
∑p

j=1 1(Aij 6= 0); l1,v norm ‖A‖1,v = max1≤j≤p
∑p

i=1 |Aij|;

l∞,v norm ‖A‖∞,v = max1≤i≤p
∑p

j=1 |Aij|; spectral norm: ‖A‖2 =
√
λ1(AA†) = λ1(A); nuclear norm:

‖A‖∗ = tr(A) =
∑p

i=1 λi(A). The minimum nonzero off-diagonal element of A in absolute value is
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denoted as ‖A‖min,off = min 1≤i,j≤p
i 6=j,Aij 6=0

|Aij|.

For two sequences {an} and {bn} such that an, bn →∞ as n→∞, we write an = O(bn) if an/bn ≤ C

for some finite positive real C independent of n and an � bn if an/bn = O(1) and bn/an = O(1).

2 Overview of results

In this section, we present the main features of our estimator under the assumption that the data follow

a Generalized Dynamic Factor Model (GDFM) as defined by Forni and Lippi (2001). The GDFM setting

has to be considered just as a motivating example, which is well suited to allow the reader to immediately

appreciate the contribution of this paper with respect to the state of art. In the following sections, we

present our theory in more detail showing that the validity of our results is actually much broader than

the case here considered.

Let X = {Xit, i = 1, . . . , p , t ∈ Z} be a p-dimensional panel of zero-mean second order stationary

time series. The set of all L2-convergent linear combinations of Xit’s and their limits, as p→∞, of L2-

convergent sequences thereof, is a Hilbert space, denoted by HX . Hence, for all t ∈ Z and all p ∈ N, any

dynamic linear combination of Xits, yt =
∑p

i=1

∑∞
k=−∞ aikXi,t−k, such that

∑p
i=1

∑∞
k=−∞ a

2
ik = 1, belongs

to HX . Following (Hallin and Lippi, 2013, Definitions 2.1, 2.2), we define as common variable the L2-

limit of any standardized dynamic linear combination of the Xs, say yt√
Var(yt)

, such that Var(yt)→∞, as

p→∞. The Hilbert space of all common variables is denoted by Hcom, while its orthogonal complement

with respect to HX , denoted as Hidio, contains all the idiosyncratic variables, i.e., all dynamic linear

combinations yt with bounded variance Var(yt) for all p ∈ N.

Hallin and Lippi (2013) prove that there exist two unique zero-mean stochastic processes {χit} ∈ Hcom

and {εit} ∈ Hidio, mutually orthogonal at all leads and lags, such that

Xit = χit + εit, i ∈ N, t ∈ Z. (2)

The process {χit} is called common component, the process {εit} is called idiosyncratic component.

We denote the p × p spectral density matrices of the p-dimensional processes {Xt = (X1t · · ·Xpt)
′},

7



{χt = (χ1t · · ·χpt)′}, and {εt = (ε1t · · · εpt)′} as Σ(θ), L(θ) and S(θ), respectively. Under representation

(2): (i) {χt} is driven by an r-tuple of mutually orthogonal white noises loaded by a linear time filter for

all p ∈ N, i.e., rk(L(θ)) = r for all θ ∈ [−π, π]; (ii) {εt} is orthogonal to those white noises at all leads

and lags, and (iii) {Xt} follows representation (2) if and only if the r eigenvalues of L(θ) diverge for all

θ ∈ [−π, π] as p diverges, while the eigenvalues of S(θ) remain bounded for all p ∈ N and all θ ∈ [−π, π]

(Forni et al., 2000). The scalar r is called the number of dynamic factors. All this defines the GDFM,

which encompasses the approximate static factor models of Chamberlain and Rothschild (1983), as well

as the exact dynamic factor models of Sargent and Sims (1977).

As usual in the GDFM literature, in this section we adopt the assumption (relaxed later on) that the

r eigenvalues of L(θ)
p

are bounded away from 0 for all p ∈ N and all θ ∈ [−π, π]. Similarly, the definition

of idiosyncratic variable leads to the condition λ1(S(θ)) = ‖S(θ)‖2 <∞ for all p ∈ N and all θ ∈ [−π, π].

These assumptions on L(θ) and S(θ) imply that the gap between the rth and the (r+ 1)th eigenvalue of

the spectral density matrix Σ(θ) increases at all θ ∈ [−π, π] as p increases, making the recovery of the

low rank component possible in the limit p→∞.

In this section, we further adopt the assumption (relaxed later on) that the idiosyncratic spectral

density matrix S(θ) is such that ‖S(θ)‖0,v is bounded for all p ∈ N and all θ ∈ [−π, π]. Since ‖S(θ)‖2 ≤

‖S(θ)‖0,v, the original assumption ‖S(θ)‖2 <∞ still holds. This is done in order to enforce element-wise

sparsity on S(θ).

Suppose now that we observe a sample of size T of p-dimensional data vectors. A classical estimator

of the spectral density matrix, which is our pre-estimator, is the smoothed periodogram, defined as

Σ̃(θh) =
1

2π

T−1∑
k=−(T−1)

K

(
k

MT

)
e−iθhk Γ̂X(k), θh =

hπ

MT

, |h| ≤MT , (3)

where Γ̂X(k) = T−1
∑T−|k|

t=1 XtX
′
t+k, and K(·) is a suitable kernel function with MT being the associated

smoothing parameter. According to Brillinger (2001), for any given θh, Σ̃(θh) is consistent if MT

T
→ 0

while MT →∞ and T →∞. Wu and Zaffaroni (2018) prove the consistency of Σ̃(θh) uniformly over the

frequencies, under appropriate assumptions to be discussed later.

Under the GDFM setting described above, augmented with the sparsity assumption for S(θ), we
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define the ALgebraic Spectral Estimator (ALSE) estimator of the spectral density matrix Σ(θ) as Σ̂(θ) =

L̂(θ) + Ŝ(θ), where L̂(θ) and Ŝ(θ) are such that they satisfy (1). We refer to Section 4 for details on

computing the solution of such minimization problem.

Consistency of ALSE under the GDFM setting is in the following Corollary to our main contribution

which is Theorem 5.1.

Corollary 2.1. For all p ∈ N, assume that: (i) the r nonzero eigenvalues of L(θ) are such that λj(L(θ))

p

is finite and bounded away from zero for all j = 1, . . . , r; (ii) ‖S(θ)‖0,v is bounded; (iii) {χit, t ∈ Z, i =

1, . . . , p} and {εit, t ∈ Z, i = 1, . . . , p}, are Gaussian processes. Then, under the assumptions and the

conditions of Theorem 5.1, there exist positive reals κ1 and κ2 independent of p and T such that, as

T →∞ and for all p ∈ N, the following hold:

1. P
(

max|h|≤MT

1
p
‖L̂(θh)− L(θh)‖2 ≤ κ1

√
MT log(MT p)

T

)
→ 1;

2. P
(
rk(L̂(θh)) = r

)
→ 1, for all θh = hπ

MT
, |h| ≤MT ;

3. P
(

max|h|≤MT
‖Ŝ(θh)− S(θh)‖2 ≤ κ2

{
max|h|≤MT

‖S(θh)‖0,v

}√
MT log(MT p)

T

)
→ 1;

4. P
(

max|h|≤MT

1
p
‖Σ̂(θh)− Σ(θh)‖2 ≤ κ1

√
MT log(MT p)

T

)
→ 1.

Furthermore, under the assumptions and the conditions of Corollary 5.1, there exists a positive real κ4 in-

dependent of p and T such that, as T → ∞ and for all p ∈ N, the following hold:

P
(

max|h|≤MT
‖Ŝ−1(θh)− S−1(θh)‖2 ≤ κ4

{
max|h|≤MT

‖S(θh)‖0,v

}√
MT log(MT p)

T

)
→ 1.

The results of Corollary 2.1 contribute to the GDFM literature in three ways. First, the exact rank

recovery in part 2 allows to bypass the use of existing criteria for determining the number of factors, like

those by Hallin and Liška (2007) and Onatski (2009). Second, we derive a consistency result also for the

estimator of the idiosyncratic spectral density Ŝ(θ). Third, assuming that S(θ) is full rank, we obtain

a result also for the estimators of its inverse. Our consistency rates are comparable to those derived by

Fan et al. (2013) for the estimation of the covariance matrix of {Xt} when this is generated by a static

factor model with sparse idiosyncratic covariance.

In fact Theorem 5.1, which is our main result, holds beyond the standard GDFM assumptions. In

particular, first, we relax the strict pervasiveness assumption on latent dynamic factors, by allowing

the r eigenvalues of the matrix L(θ)
pα

, with α ≤ 1, to be bounded away from 0 for all p ∈ N and all
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θ ∈ [−π, π]. Second, we allow for the maximum number of nonzeros per column in S(θ), ‖S(θ)‖0,v, to

be at most proportional to pδ, with δ ∈ [0, 1
2
] and δ < α for all p ∈ N and all θ ∈ [−π, π]. This means

that we allow the idiosyncratic spectrum to be quite far from the diagonal matrix. Our setting reduces

to the GDFM one when α = 1 and δ = 0. Third, we propose an unshrinking procedure such that the

resulting UNshrunk ALgebraic Spectral Estimator (UNALSE) optimizes the finite sample Frobenius loss

with respect to the smoothed periodogram while retaining algebraic consistency.

3 Model setup

The aim of this paper is estimating the spectral density matrix of a p-dimensional process X = {Xit, i =

1, . . . , p, t ∈ Z}, following the data generating process:

Xt = χt + εt, t ∈ Z, (4)

χt =
∞∑
s=0

Bsut−s, t ∈ Z, (5)

εt =
∞∑
s=0

Cset−s, t ∈ Z, (6)

where Xt, χt, εt, and et are p-dimensional, ut is r-dimensional, the Bs are p × r, and the Cs are p × p.

While Forni and Lippi (2001) derive a two-sided singular MA representation for the process {χt}, the

existence of a one-sided representation (5) is proved by Hallin and Lippi (2013, Theorem 2.2). The MA

representation (6) for the process {εt} is the usual Wold representation.

We make the two following assumptions on the MA processes in (5) and (6).

Assumption 3.1. (i) {ut, t ∈ Z} is a r-dimensional independent and identically distributed process with

E[ut] = 0r and E[utu
′
t] = Ir and with r finite and independent of p for all p ∈ N; (ii) there exists

Ku > 0 and du > 4 independent of j and t such that E[|ujt|du ] ≤ Ku for all j = 1,. . . , r; (iii) for all

p ∈ N, {et, t ∈ Z} is a p-dimensional independent and identically distributed process with E(et) = 0p and

E[ete
′
t] = Ip; (iv) there exists Ke > 0 and de > 4 independent of j and t such that E[|ejt|de ] ≤ Ke for all

j ∈ N; (v) {ut} and {et} are two mutually independent processes.
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Assumption 3.2. There exist Mχ,Mε > 0, ρχ, ρε ∈ [0, 1), α ∈ (1
2
, 1] and δ′ ∈ [0, α), such that, for all

p ∈ N: (i) ‖Bs‖∞,v ≤Mχρ
s
χ; (ii) ‖Bs‖F ≤Mχρ

s
χp

α/2; (iii) ‖Cs‖∞,v ≤Mερ
s
ε; (iv) ‖Cs‖1 ≤Mερ

s
εp
δ′/2.

Under Assumptions 3.1 and 3.2, the processes {χt} and {εt} satisfying (5) and (6) are zero-mean linear

and weakly stationary for any fixed p, and consequently the process {Xt} also is. Similar assumptions

are made by Forni et al. (2017) in a GDFM context and allow us to control the amount of physical

dependence of {Xt} across time (Wu and Zaffaroni, 2018). Notice that cross-sectional heteroskedasticity

of both {χt} and {εt} is allowed for.

Some more comments on Assumption 3.2 are needed. First, the fact that in part (i) there is no

dependence on p is natural since Bs has a finite number of columns. Second, part (ii) implies the

largest eigenvalue of BsB
′
s diverges with pα, because ‖Bs‖2

2 ≤ ‖Bs‖2
F ≤M2

χρ
2s
χ p

α, a requirement which is

compatible with the idea of pervasive factors at all lags that we impose in Assumption 3.4 below. Third,

part (iii) imposes finite column sums, i.e., the `∞,v norm, for the coefficients Cs, meaning that for each

given Xit the p innovations e1t, . . . , ept have a finite effect for any p ∈ N, which is in agreement with

the idiosyncratic nature of {εt} assumed in the GDFM literature. Fourth, to account for some stronger

dependence in {εt}, in part (iv) we allow the entire `1 norm of Cs to be diverging with p. This, together

with part (iii), implies that the diverging behavior of those coefficients is implicitly due to the row sums,

i.e., the `1,v norm. This is just a useful and natural way of parametrizing the model and, obviously,

we could equivalently assume the viceversa or let both row and column sums diverge (compatibly with

part (iv)). Fourth, the assumption δ′ < α ensures that the common component always dominates the

idiosyncratic component when p→∞.

Now, using the Singular Value Decomposition, we can always write the MA coefficients as: Bs =

UL,sΛL,sVL,s, Cs = US,sΛS,sVS,s, s ∈ Z+ ∪ {0}, where UL,s is p × r with U ′L,sUL,s = Ir, VL,s is r × r with

VL,sV
′
L,s = V ′L,sVL,s = Ir, ΛL,s is r × r diagonal, real, and positive definite matrix of singular values.

Similarly, US,s is p × p with US,sU ′S,s = U ′S,sUS,s = Ip, VS,s is p × p with VS,sV ′S,s = V ′S,sVS,s = Ip, ΛS,s is

p × p diagonal, real, and positive definite of singular values. By means of the following assumption, we

impose a low rank plus sparse structure on the filters.

Assumption 3.3. For all s ∈ Z+ ∪ {0}: (i) UL,s = UL; (ii) ‖US,sU ′S,s‖0 = qs with qs ∈ N and qs < p2
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for all p ∈ N.

In other words, in part (i) we allow the matrices B′sBs to have a different condition number across all

lags s, and in part (ii) we allow the matrices CsC ′s to have a different sparsity pattern across all lags s.

Although part (i) might seem restrictive in that it assumes that the space spanned by UL,s is the same

at all lags s, it is in fact quite reasonable if, as usually assumed, the spectral density of {χt} has to have

rank r at all frequencies (see below). Moreover, we notice that all results in the next section hold locally

in a neighborhood of L(θ) (see also Chandrasekaran et al., 2012).

Under Assumption 3.3, the lag-k autocovariances of {χt} and of {εt} are given by

Γχ(k) =
∑∞

s=0 ULΛL,sΛL,s+kU
′
L and Γε(k) =

∑∞
s=0 US,sΛS,sΛS,s+kU

′
S,s+k, respectively, and the spectral

density matrices of {χt} and of {εt} are given by L(θ) = 1
2π
UL
(∑∞

k=−∞ (
∑∞

s=0 ΛL,sΛL,s+k) e−iθk
)
U ′L

and S(θ) = 1
2π

∑∞
k=−∞

(∑∞
s=0 US,sΛS,sΛ

′
S,s+kU

′
S,s+ke

−iθk
)
, respectively. Therefore, Γχ(k) is of rank r

for all k ∈ Z, and L(θ) is of rank r for all θ ∈ [−π, π]. This is natural and standard requirement

in GDFM literature (Forni et al., 2000). Moreover, since by Assumption 3.3(ii) US,s must be sparse

for any s ∈ Z+ ∪ {0}, then Γε(k) will be sparse, and S(θ) will also be sparse. In particular, letting

Qk = {i, j = 1, . . . , p, Γε,ij(k) 6= 0} with cardinality, say, q, and Q(θ) = {i, j = 1, . . . , p, Sij(θ) 6= 0}, we

have Q(θ) ⊆ ∪∞k=0Qk with cardinality at most q, for some θ ∈ [−π, π]. This has nontrivial implications

for the ability of our method to retrieve nonzero entries which are discussed in Remark 5.6 below.

Summing up, Assumption 3.3 characterizes the spectral density matrix of {Xt}, which is Σ(θ) =

L(θ) + S(θ), as having a low rank plus sparse structure at all frequencies θ ∈ [−π, π].

To fully characterize the low rank property of L(θ), we make the following assumption, which strength-

ens Assumptions 3.2(ii) and 3.3(i).

Assumption 3.4. For all p ∈ N, all θ ∈ [−π, π], the spectral density L(θ) exists, and for all j = 1, . . . , r,

there exist continuous functions Mmin
j (θ),Mmax

j (θ) : [−π, π] → R+ such that Mmin
j (θ) ≤ λj(L(θ))

pα
≤

Mmax
j (θ), with α ∈ (1

2
, 1], and Mmin

j (θ) ≥Mmax
j+1 (θ), for j = 1, . . . , (r − 1).

The case α = 1 corresponds to the classical assumption in factor model literature of strong perva-

siveness of the latent factors (Forni et al., 2017). Here, by allowing the eigenvalues of L(θ) to be of order

pα, α ∈ (1
2
, 1], we allow also for weaker factors.
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To fully characterize the sparseness property of S(θ), we make the following assumption which

strengthens Assumptions 3.2(iv) and 3.3(ii).

Assumption 3.5. For all p ∈ N and all θ ∈ [−π, π], the spectral density S(θ) exists and: (i) there exist

δ ∈ [0, 1
2
] and δ2 > 0, such that ‖S(θ)‖0,v ≤ δ2p

δ for all θ ∈ [−π, π]; (ii) there exists M > 0 such that

λp(S(θ)) >M.

Part (i) controls the maximum number of nonzeros per row in S(θ), which is independent of θ

because of Assumption 3.3(ii), and it is allowed to increase with p. In particular, the maximum number

of nonzeros (across frequencies) in S(θ), which we denoted as q, is such that q ≤ p supθ∈[−π,π] ‖S(θ)‖0,v.

Hence, because of Assumption 3.5, q can grow with p at a maximum rate p3/2. This fully characterizes

the sparsity conditions on S(θ). Moreover, since Assumption 3.2(iv) implies that ‖S(θ)‖1 = O(pδ
′
), and

since by Assumption 3.5 ‖S(θ)‖1 ≤ p‖S(θ)‖1,v ≤ p‖S(θ)‖0,v‖S(θ)‖∞ = O(pδ+1), then we must have

δ′ ≤ 1 + δ. In part (ii), by assuming positive definiteness of S(θ), we guarantee that also Σ(θ) is positive

definite, because of Weyl’s inequality.

Remark 3.1. From Assumption 3.5 it follows that the largest eigenvalue of S(θ) is at most of order pδ,

δ ∈ [0, 1
2
] since ‖S(θ)‖2 ≤ ‖S(θ)‖∞‖S(θ)‖0,v = O(pδ). Moreover, by Assumption 3.4 the eigenvalues of

L(θ) are of order pα, α ∈ (1
2
, 1], so that δ < α. Therefore, there exists an eigengap between the eigenvalues

of L(θ) and those of S(θ) across all frequencies θ ∈ [−π, π]. In the GDFM setting the presence of an

eigengap growing with p is the condition which allows for the recovery of the number of factors r (Hallin

and Liška, 2007 and Onatski, 2009). Notice that here we impose λj(L(θ)) � pα, while we just have an

upper bound for λ1(S(θ)), so the eigengap implied by our assumptions is at least of order pα−δ but could

be wider.

Remark 3.2. It is also worth noticing that in Assumption 3.4 we could easily allow for factors having

different degree of pervasiveness, i.e., by assuming the eigenvalues at frequency θ to be of order pα(θ)

(in that case, α in Assumption 3.2 would be the infimum over frequencies of all α(θ)). Likewise in

Assumption 3.5 we could assume ‖S(θ)‖0,v ≤ δ2p
δ(θ). However, in order to keep the notation simple, we

prefer to keep treating α and δ as constants (see also Remark 5.6 below for more details).
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In order to study the properties of our estimator and guarantee algebraic consistency, we need to

formalize further the low rank plus sparse structure. To this end we introduce the following algebraic

matrix varieties for generic integers r and q:

L(r) = {L ∈ Cp×p | L � 0, L = UDU †, U ∈ Cp×r, U †U = Ir, D ∈ Rr×rdiagonal, rk(D) = r < p}, (7)

S(q) = {S ∈ Cp×p | S � 0, |supp(S)| ≤ q < p2}, (8)

where supp(S) is the orthogonal complement of ker(S) = {v ∈ Cp | Sv = 0}. In other words, L(r) is the

variety of Hermitian matrices with at most rank r and S(q) is the variety of Hermitian matrices with

at most q nonzero elements. Therefore, under our assumptions L(θ) ∈ L(r) and S(θ) ∈ S(q) for all

θ ∈ [−π, π].

In order to give a rigorous definition of sparsity, we need to introduce further notation. The tangent

spaces to L(r) and S(q) in L(θ) and S(θ) are respectively defined, for all θ ∈ [−π, π], as:

T (L(θ)) = {M ∈ Cp×p |M = UY †1 + Y2U
† | Y1, Y2 ∈ Cp×r, U ∈ Cp×r, U †U = Ir, U

†L(θ)U ∈ Cr×rdiagonal},

Ω(S(θ)) = {N ∈ Cp×p | supp(N) ⊆ supp(S(θ))}.

The following uncertainty principle holds (Chandrasekaran et al., 2011): if L(θ) is nearly sparse, S(θ)

cannot be recovered, and if S(θ) is nearly low rank, L(θ) cannot be recovered. Therefore, in order to

identify L(θ) and S(θ) at each θ ∈ [−π, π], we need to ensure that the tangent spaces to L(r) and S(q)

are close to orthogonality. To this end, Chandrasekaran et al. (2011) introduce the following measures

for any generic L ∈ L(r) and S ∈ S(q):

ξ(T (L)) = max
M∈T (L)
‖M‖2≤1

‖M‖∞, µ(Ω(S)) = max
N∈Ω(S)
‖N‖∞≤1

‖N‖2.

So if ξ(T (L)) is small then the elements of the tangent space T (L) are “diffuse”, i.e., these elements are

not too sparse; as a result L cannot be very sparse. Similarly, the quantity µ(Ω(S)) being small implies

that the spectrum of any element of the tangent space Ω(S) is “diffuse”, i.e., the singular values of S are

14



not too large. Moreover, (Chandrasekaran et al., 2011, Propositions 3 and 4) show that the following

relationships always hold for any generic L ∈ L(r) and S ∈ S(q):

√
r

p
≤ ξ(T (L)) ≤ 2, min

1≤i≤p

p∑
j=1

1(Sij = 0) ≤ µ(Ω(S)) ≤ max
1≤i≤p

p∑
j=1

1(Sij = 0) = ‖S‖0,v. (9)

Moreover, a necessary condition to ensure both parametric and algebraic consistency is:

ξ(T (L(θ))) · µ(Ω(S(θ)) ≤ 1

54
, θ ∈ [−π, π], (10)

which guarantees that L(θ) is far from sparsity and S(θ) is far from rank-deficiency. Indeed, the smaller

is the product between the dual norms ξ(T (L(θ))) and µ(Ω(S(θ)), the closer the two spaces L(r) and

S(q) are to orthogonality, thus making easier to perform low rank plus sparse decomposition effectively.

To control the rank-sparsity incoherence measures we make the following assumption, which guaran-

tees that (9) and (10) are satisfied.

Assumption 3.6. For all p ∈ N, there exist κL, κS > 0 with
√
rκS
κL
≤ 1

54
,
√
r

2
≤ κL and κS ≤ δ2, such that

ξ(T (θ)) =
√
r

κLpδ
and µ(Ω(θ)) = κSp

δ, for all θ ∈ [−π, π], and where δ and δ2 are defined in Assumption

3.5.

Now, because of Assumption 3.3, T (L(θ)) depends only on the rank of L∗ = Γχ(0) which is r, and

Ω(S(θ)) depends only on the support of S∞ =
∑∞

k=−∞ Γε(k), which has dimension q. For this reason,

hereafter, we use the shorthand notation T , Ω, ξ(T ), and µ(Ω).

Remark 3.3. The validity of our setup goes beyond the VMA(∞) framework discussed so far. First, it

is obvious that any stable VARMA with finite lags would fit into our framework. We refer to Appendix

B for specific conditions on the VARMA coefficients such that our assumptions are satisfied. Second, as

long as {ut} and {et} can be expressed as measurable functions of i.i.d. processes satisfying Assumption

3.1, it can be shown that the theory developed in this paper is still valid. We refer to Appendix C for

details and the extension to the non-linear case in which {ut} and {et} are allowed to be conditionally

heteroskedastic.
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4 Estimation

Suppose now to observe a sample of p-dimensional data vectors with size T , i.e., we observe {Xit, i =

1, . . . , p, t = 1, . . . , T}, and we compute the ALSE Σ̂(θ) = L̂(θ) + Ŝ(θ) such that it satisfies (1) which,

for convenience, we rewrite here:

(
L̂(θ), Ŝ(θ)

)
= argmin
L(θ)�0,S(θ)�0
L(θ)+S(θ)�0

1

2
‖Σ̃(θ)− (L(θ) + S(θ))‖2

F + ψ‖L(θ)‖∗ + ρ‖S(θ)‖1, (11)

where Σ̃(θ) is the smoothed periodogram estimator defined in (3), L(θ) and S(θ) indicate generic values

of the matrices, and ψ and ρ are positive threshold parameters and their choice is discussed in Section 7.

The minimization problem (11) is a non-smooth convex optimization problem which is the tightest

convex relaxation of the following NP-hard problem:

min
L(θ),S(θ)

1

2
‖Σ̃(θ)− (L(θ) + S(θ))‖2

F + ψ rk(L(θ)) + ρ‖S(θ)‖0, (12)

which would be the natural target under the low rank plus sparse assumption. Indeed, we know that:

(i) ‖S(θ)‖1 is the tightest convex relaxation of ‖S(θ)‖0 (Donoho, 2006); (ii) ‖L(θ)‖∗ is the tightest convex

relaxation of rk(L(θ)) (Fazel et al., 2001).

In practice, the solution of (11) is computed as follows. For any given frequency θh = πh
MT

, with

|h| ≤MT , we apply the following iterative procedure:

1. set (L0(θh), S0(θh))=
(

diag(Σ̃(θ))
2

,diag(Σ̃(θ))
2

)
, η0 =1, and initialize Y0(θh) = L0(θh) and Z0(θh) = S0(θh);

2. for k ≥ 1, repeat:

(a) compute ∂ 1
2
‖Yk−1(θh)+Zk−1(θh)−Σ̃(θh)‖2F

∂Yk−1(θh)
=

∂ 1
2
‖Yk−1(θh)+Zk−1(θh)−Σ̃(θh)‖2F

∂Zk−1(θh)
= Yk−1(θh)+Zk−1(θh)−Σ̃(θh);

(b) apply the singular value thresholding operator of Cai et al. (2010) Tψ(·) to EY,k(θh) = Yk−1(θh)−
1
2
(Yk−1(θh) + Zk−1(θh)− Σ̃(θh)) and set Lk(θh) = Tψ(EY,k(θh));

(c) apply the soft-thresholding operator of Daubechies et al. (2004) Tρ(·) to EZ,k(θh) = Zk−1(θh)−
1
2
(Yk−1(θh) + Zk−1(θh)− Σ̃(θh)) and set Sk(θh) = Tρ(EZ,k(θh));

(d) set (Yk(θh), Zk(θh)) = (Lk(θh), Sk(θh)) + ηk−1−1

ηk
[(Lk(θh), Sk(θh))− (Lk−1(θh), Sk−1(θh))] where
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ηk =
1+
√

1+4η2k−1

2
;

(e) stop if ‖Lk−Lk−1‖F
‖1+Lk−1‖F

+ ‖Sk−Sk−1‖F
‖1+Sk−1‖F

≤ ς, where ς is a prescribed precision level (we set ς = 0.01);

3. set L̂(θh) = Yk(θh) and Ŝ(θh) = Zk(θh).

The two thresholding operators introduced in the above algorithm are defined as follows.

(I) Singular value thresholding operator: let the Singular Value Decomposition of a positive semi-

definite complex symmetric matrix A be A = UAΛAU
†
A, then, define Tψ(A)=UAΛψ,AU

†
A, where Λψ,A

is a diagonal matrix with ith diagonal element Λψ,A,ii = max (ΛA,ii − ψ, 0).

(II) Soft-thresholding operator: for a positive definite complex symmetric matrix A define

Tρ(Aij) =
Aij

(AijAij)1/2
max((AijAij)

1/2 − ρ, 0).

Two features of ALSE must be stressed. First, not only ALSE produces the estimates L̂(θ) and

Ŝ(θ), but it also produces estimates of rk(L(θ)) = r and of supp(S(θ)) and therefore of its cardinality q.

Second, the solution of the above minimization can be searched without the need of constraining L(θ)

and S(θ) to the manifolds L(r) and S(q) defined in (7)-(8) (see also Remark 5.6 and Appendix A).

5 Consistency

We now prove the algebraic and parametric consistency of the pair of estimates (L̂(θ), Ŝ(θ)), and, in

order to do this, we introduce two definitions, taken from Chandrasekaran et al. (2012). First, we say

that (Ŝ(θ), L̂(θ)) is algebraically consistent if the following conditions hold, for any given θ ∈ [−π, π]:

1. rk(L̂(θ)) = rk(L(θ)); 2. sgn(Re(Ŝij(θ))) = sgn(Re(Sij(θ))), for all i, j = 1, . . . , p (by convention we let

sgn(0) = 0); 3. L̂(θ) + Ŝ(θ) and Ŝ(θ) are positive definite and L̂(θ) is positive semidefinite. Condition 2

is also often referred to as sparsistency (Lam and Fan, 2009). Second, we use the classical definition of

parametric consistency, which holds if the estimates (Ŝ(θ), L̂(θ)) are close to (S(θ), L(θ)), for any given

θ ∈ [−π, π], with high probability in `2 norm.

In order to prove consistency of the pre-estimator of the spectral density matrix Σ̃(θ), defined in (3),

we make the following standard assumption on the kernel function and its bandwidth.

Assumption 5.1. The kernel function K(·) is even, bounded, with support [−1, 1], and bandwidth MT ,

such that: (i) for some k > 0, |K(s) − 1| = O(sk), as s → 0; (ii)
∫∞
−∞K

2(s)ds < K for some finite K;
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(iii)
∑

s′∈Z sup|s′−s′′|≤1 |K(s′ϑ)−K(s′′ϑ)| = O(1), as ϑ→ 0; (iv) c1T
ζ ≤MT ≤ c2T

ζ, for some c1, c2 > 0

and ζ, ζ > 0, with 0 < ζ < ζ < 1 < ζ(2k + 1).

By properly adapting the results of Wu and Zaffaroni (2018) and Zhang and Wu (2021) to the inter-

mediate spikiness-sparsity regimes described in Section 3, we prove uniform consistency over frequencies

of the smoothed periodogram pre-estimator (3).

Lemma 5.1. Under Assumptions 3.1, 3.2, and 5.1, there exists G,G′ > 0 and d > 4, independent of p

and T , such that, as T →∞ and for all p ∈ N, for θh = hπ
MT

, |h| ≤MT :

1. P
(

max|h|≤MT

1
pα
‖Σ̃(θh)− Σ(θh)‖2 ≤ G

√
MT logMT

T

)
→ 1;

2. P
(

max|h|≤MT
‖Σ̃(θh)− Σ(θh)‖∞ ≤ G′max

(
MT p

2/d log7/2 p
T 1−2/d ,

√
MT log(MT p)

T

))
→ 1.

The proof of part 1 is new to this paper and it is a non-trivial generalization to the case of weakly

pervasive factors of the result proved in Forni et al. (2017, Proposition 6) derived for the GDFM when

α = 1. Part 2 is derived by adapting the results of Zhang and Wu (2021, Proposition 4.3) to the present

context.

Remark 5.1. Notice that in part 1 of Lemma 5.1 the bias term, which is of order 1
Mk
T
, is not included,

since, for all MT satisfying Assumption 5.1(iv), this term is always dominated by the variance term.

Indeed, while the optimal choice balancing variance and squared bias is MT = O(T 1/(2k+1)), we are

instead assuming MT = O(T ζ) with ζ > ζ > 1
2k+1

, and with this choice of MT the mean squared error of

the smoothed periodogram is dominated by the variance, while the squared bias becomes negligible, as

T →∞. Typical values of k are 1 if we choose the Bartlett kernel, or 2 if we choose the Parzen kernel.

The following theorem, proving consistency of ALSE, is the main result of the paper.

Theorem 5.1. Define ϕp,T,d = max

(
MT p

2/d log7/2 p
T 1−2/d ,

√
MT log(MT p)

T

)
, with d = max(du, de) > 4 and

ψ0 = ψ
pα
, and define mp = supθ∈[−π,π] ‖S(θ)‖0,v. Set ψ0 =

ϕp,T,d
ξ(T )

and γ ∈
[
9ξ(T ), 1

6µ(Ω)

]
. Suppose that

Assumptions 3.1 through 3.6 and 5.1 hold and suppose also that for all θ ∈ [−π, π] there exist G2, G3 > 0

such that: (I) λr(L(θ)) > G2
ψ0

ξ2(T )
; (II) ‖S(θ)‖min,off > G3

ψ0

µ(Ω)
. Then, there exist positive reals κ1 and

κ2 independent of p and T such that, as T →∞ and for all p ∈ N, the following hold:
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1. P
(

max|h|≤MT

1
pα+δ
‖L̂(θh)− L(θh)‖2 ≤ κ1ϕp,T,d

)
→ 1;

2. P
(

max|h|≤MT
‖Ŝ(θh)− S(θh)‖∞ ≤ κ2ϕp,T,d

)
→ 1;

3. P
(
rk(L̂(θh)) = r

)
→ 1, for all θh = hπ

MT
, |h| ≤MT ;

4. P
(
sgn(Re(Ŝ(θh)ij) = sgn(Re(S(θh)ij))

)
→ 1, for all θh = hπ

MT
, |h| ≤MT and all i, j = 1, . . . , p;

5. P
(

max|h|≤MT
‖Ŝ(θh)− S(θh)‖2 ≤ κ2mpϕp,T,d

)
→ 1;

6. P
(

max|h|≤MT

1
pα+δ
‖Σ̂(θh)− Σ(θh)‖2 ≤ κ1ϕp,T,d

)
→ 1.

This theorem is a generalization of the results by Chandrasekaran et al. (2012) for the covariance

matrix of independent data having a low-rank plus sparse structure. In particular, here we go one step

further by considering the case of spectral densities with r ultra-spiking eigenvalues in the sense the they

increase with pα, α ∈ (1
2
, 1], as prescribed by Assumption 3.4, and where the residual component has a

number of non-zeros also growing with pδ, δ ∈ [0, 1
2
], as prescribed by Assumption 3.5.

The following remarks provide more intuitions about our results and a comparison with the existing

literature.

Remark 5.2. While under the assumptions of Chandrasekaran et al. (2012) the eigen-gap does not

depend on p, ours is widening as p increases. This latter assumption, which is standard in GDFM

literature (Forni et al., 2017) and other factor model works (Fan et al., 2013), makes identification

and thus disentangling of the low rank and sparse component easier, but on the other hand it implies

convergence rates that depend polynomially on p, which appear in the rescaling terms in parts 1 and 6,

and are discussed in the next remarks.

Remark 5.3. Because of the spiking behavior of the r eigenvalues of L(θ), it is natural to work with

the minimization (11) rescaled by pα. This implies that we obtain convergence rates for L̂(θ) rescaled

by pα. This is standard in this kind of literature, see e.g. Fan et al. (2013, Theorem 3) for the case of

covariance matrices. This explains also the reason why we give conditions for ψ0 = ψ
pα

rather than for ψ.

Remark 5.4. The choice of ψ0 to be increasing with pδ and of γ to be decreasing with pδ, because of

the definitions of ξ(T ) and µ(Ω) in Assumption 3.6, implies that ρ0 = γψ0 does not depend on δ. This

choice makes sense, indeed the sparsity of S(θ) is at most O(pδ) and, therefore, the less sparse is S(θ)
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(higher δ) the more this component will become important and the more weight we need to attach to

the penalty ‖L(θ)‖2 in (11). Such penalization scheme gives rise to the term pδ in parts 1 and 6. The

rates of convergence are slower with respect to those in Lemma 5.1 obtained for the pre-estimator Σ̃(θ).

This is the price to pay for considering a penalized estimator.

Related to this, it is also useful to notice that parts 1 and 2 could be restated as follows:

P
(

max|h|≤MT

1
pα
‖L̂(θh)− L(θh)‖2 ≤ κψ0

)
→ 1 and P

(
max|h|≤MT

‖Ŝ(θh)− S(θh)‖∞ ≤ κρ0

)
→ 1, re-

spectively. In this way the role of the penalty constants in determining the convergence becomes clear.

The specific definitions of ψ0 and γ, and thus of ρ0 are not ad hoc, but they are derived by extending

the results of Chandrasekaran et al. (2012) to our setting.

Remark 5.5. Part 5 shows that the estimation error of Ŝ(θ) depends on the sparsity of S(θ) as mea-

sured by mp. The smaller mp is (more sparse), the smaller the estimation error is. By noticing that,

because of Assumptions 3.3 and 3.5, it holds that mp ≤ δ2p
δ, this result could also be restated as

P
(

max|h|≤MT

1
pδ
‖Ŝ(θh)− S(θh)‖2 ≤ κ2δ2ϕp,T,d

)
→ 1, which represents the worst case scenario in which

S(θ) is the least sparse compatibly with Assumption 3.5. Notice also that, since δ < α, the effect of

sparsity in part 6 is always dominated by the estimation error of the low rank component L̂(θ).

Remark 5.6. For the estimation algorithm to work properly it is crucial that rk(L(θ)) is constant across

frequencies as required by Assumption 3.3(i). As already mentioned this is standard in GDFM literature.

Moreover, we notice that, although in principle we allow for the number of nonzero elements of S(θ) to

be frequency dependent, ALSE is in fact able to control only for the maximum number of nonzeros

across all frequencies. This is because, as shown in Appendix A, ALSE is equivalent to looking for a

solution of the minimization (11) restricted to Ω, which depends only on S∞ and in turn it holds that

supθ∈[−π,π] ‖S(θ)‖0,v = ‖S∞‖0,v.

By looking at the rate ϕp,T,d, it is clear that in general p can grow at most polynomially in T , so let

us assume p � T η for some η > 0. Let us also consider the standard case in which we use the Bartlett

kernel with bandwidth to MT = b
√
T c to compute the pre-estimator, i.e., we set ζ = 1

2
and k = 1 in

Assumption 5.1. These are the same choices used in Section 8 and in the simulation study. Furthermore,

recall that d denotes the minimum number of moments of {ut} and {et} we require to exist, which by
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Assumption 3.1 must be such that d > 4.

Clearly, under these conditions, the second term in ϕp,T,d is always decreasing as T →∞. A necessary

condition for the first term to converge is d > 2(1 + η), which is non binding as long as η ≤ 1 since, by

assumption, d > 4. However, if p increases faster than T , i.e., η > 1, we must guarantee the existence of

more moments to still have consistency. If, for example, η = 2, then we must have d > 6. Summing up,

in general, the larger is p the lighter the tails have to be in order to guarantee consistency.

As far as the rate of consistency is concerned, we notice that if d > 8(1 + η) we get the classical

consistency rate ϕp,T,d =
√

MT log(MT p)
T

, which is similar to results for the estimation of large covariance

matrices, see also Remark 5.7 below. In particular, this rate is achieved, regardless of η, in the sub-

Gaussian case, i.e., when we can set d =∞, in which case we can also allow for larger values of p as long

as log p = o(T ). However, in general, when we are in presence of heavy tails, we would typically have

the slower consistency rate ϕp,T,d = MT p
2/d log7/2 p
T 1−2/d , unless p is very small.

To have consistency we also need conditions (I) and (II) to hold. Condition (I) must be compatible

with Assumption 3.4, which requires λr(L(θ)) � pα for all θ ∈ [−π, π]. Thus, we must require that
ψ0

ξ2(T )pα
→ 0, as p, T → ∞. In light of the previous comments, setting again MT = b

√
T c, we must

have either p6δ−2α+4/d

T
→ 0 or p12δ−4α

T
→ 0, in the heavy tail or in the sub-Gaussian case, respectively.

Both conditions are always true when δ = 0, while they require larger T the smaller the eigengap gets

(decreasing α− δ). A sufficient condition for both to hold is δ ≤ α
3
− 1

6
+ ε, for some ε > 0.

Condition (II) must be compatible with the obvious requirement ‖S(θ)‖min,off ≤ G′3 for some G′3 > 0.

This is always true, indeed, by Assumption 3.6, because condition (II) can be written as ‖S(θ)‖min,off >

G3
κs√
rκL

ϕp,T,d, which under the conditions on p, T , and d, stated above, is always decreasing to zero as

p, T →∞.

The following Corollary characterizes the inverse of the estimated spectral density matrix.

Corollary 5.1. Suppose that all assumptions of Theorem 5.1 hold, and suppose also that mpϕp,T,d → 0,

as T → ∞ and for all p ∈ N. Then, there exist positive reals κ3 and κ4 independent of p and T such

that, as T →∞ and for all p ∈ N, the following hold:

1. P
(

min|h|≤MT
λp(Ŝ(θh)) ≥ κ3

)
→ 1;

2. P
(

max|h|≤MT
‖Ŝ−1(θh)− S−1(θh)‖2 ≤ κ4mpϕp,T,d

)
→ 1;
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3. P
(

min|h|≤MT
λp(Σ̂(θh)) ≥ κ3

)
→ 1.

If we further suppose that pα+δmpϕp,T,d → 0, then, there exists a positive real κ5 independent of p and T

such that, as T →∞ and for all p ∈ N, the following hold:

4. P
(

max|h|≤MT

1
pα+δ
‖Σ̂−1(θh)− Σ−1(θh)‖2 ≤ κ5ϕp,T,d

)
→ 1.

Remark 5.7. The results in Theorem 5.1 and Corollary 5.1 can be compared to those obtained by

Fan et al. (2013, Remark 2) for the estimation of a large covariance matrix with a low rank component

generated by r strong factors, plus a sparse component having bounded eigenvalues and `0,v norm equal

to mp (by considering the exact sparse case in their work, i.e., when setting q = 0 therein). They also

assume to observe time series drawn from a distribution with sub-exponential tails, thus assuming all

moments to exist, and obtain for their estimator of the sparse component and its inverse a consistency

rate Op

(
mp

√
log p
T

)
. This is also the same rate obtained by Bickel and Levina (2008, Theorem 2)

when considering the case of a large purely sparse covariance matrix with Gaussian entries. Using our

notation the assumptions of Fan et al. (2013) correspond to setting α = 1, δ = 0, and d = ∞, in which

case from part 5 of Theorem 5.1 and from part 2 of Corollary 5.1, we would get a similar rate, which,

with our notation, is Op

(
mp

√
MT log(MT p)

T

)
. Concerning the estimator of the entire covariance matrix,

Fan et al. (2013, Remark 3) obtain a consistency rate Op

(
pmp

√
log p
T

)
, which is similar to the rate

Op

(
pmp

√
MT log(MT p)

T

)
that what we would get from part 6 of Theorem 5.1 when α = 1, δ = 0, and

d =∞.

Remark 5.8. Concerning the estimator of the inverse spectral density in part 4 of Corollary 5.1, we

obtain the same rate of the estimator of Σ(θ) given in part 6 of Theorem 5.1, which is worse than

what obtained for the inverse covariance matrix by Fan et al. (2013). To obtain a comparable rate

we should follow the approach of Fan et al. (2013, Equation (2.13) and Appendix C.4.2) and define

the inverse estimator by explicitly exploiting the existence of a low-rank component and then applying

the Sherman-Morrison-Woodbury formula. This, however, would require to explicitly estimate also the

coefficients Bs of the common filters (see (5)), which is beyond the scope of this paper, and, therefore, it

is left for further research.
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6 Unshrinking

ALSE may suffer from systematic sub-optimality for what concerns the estimated eigenvalues. Indeed,

if p is large and the latent eigenvalues are spiked (α ' 1), the singular value thresholding procedure by

Cai et al. (2010) may lead to the over-shrinkage of the eigenvalues of L̂(θh). For this reason, following

Farnè and Montanari (2020), we propose to un-shrink those eigenvalues. The new estimate of S(θ) is

then obtained by keeping fixed the off-diagonal sparsity pattern recovered, and deriving its diagonal by

difference from the diagonal of Σ̂(θh). More specifically, let r̂ = rk(L̂(θh)) and consider the spectral

decomposition L̂(θh) = Ŵ (θh)D̂(θh)Ŵ
†(θh), where D̂(θh) is r̂ × r̂ diagonal matrix of the nonzero eigen-

values of L̂(θh), and Ŵ (θh) is the p× r̂ matrix of corresponding normalized eigenvectors. Then, for any

θh = hπ
MT

, |h| ≤MT , the resulting UNshrunk ALgebraic Spectral Estimator (UNALSE) is defined as:

L̂UNALSE(θh) = Ŵ (θh)
(
D̂(θh) + ψIr

)
Ŵ †(θh),

diag(ŜUNALSE(θh)) = diag(Σ̂(θh))− diag(L̂UNALSE(θh)), off-diag(ŜUNALSE(θh)) = off-diag(Ŝ(θh)),

Σ̂UNALSE(θh) = L̂UNALSE(θh) + ŜUNALSE(θh).

By construction rk(L̂UNALSE(θh)) = rk(L̂(θh)) and supp(ŜUNALSE(θh)) = supp(Ŝ(θh)), thus the algebraic

consistency of ALSE, proved in parts 3 and 4 of Theorem 5.1, is preserved by UNALSE. Theorem A.1

in Appendix A also shows that, under the same assumptions and conditions of Theorem 5.1, UNALSE

is the closest (according to the Frobenius norm) estimator to the smoothed periodogram pre-estimator.

7 Threshold selection

In solving problem (11), the choice of the thresholds ψ and ρ is a nontrivial issue. Let us denote the

solutions of (11) with given thresholds ψ and ρ as L̂ψ,ρ(θh), Ŝψ,ρ(θh), and Σ̂ψ,ρ(θh) = L̂ψ,ρ(θh) + Ŝψ,ρ(θh).

For any θh = hπ
MT

, |h| ≤MT , we consider the following criterion:

MCh(ψ, ρ) = max

{
r̂ψ,ρ‖L̂ψ,ρ(θh)‖2

ψβ̂ψ,ρ(θh)
,
‖Ŝψ,ρ(θh)‖1,v

ρ(1− β̂ψ,ρ(θh))

}
, (13)
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where r̂ψ,ρ = rk(L̂ψ,ρ(θh)) and β̂ψ,ρ(θh) =
tr(L̂ψ,ρ(θh))

tr(Σ̂ψ,ρ(θh))
is the estimated proportion of latent variance. The

optimal threshold pair (ψ̆h, ρ̆h) is thus selected as the mini-max (ψ̆h, ρ̆h) = arg minψ,ρ,Ŝψ,ρ(θh)�0MCh(ψ, ρ),

where ψ and ρ vary across pre-specified grids and the minimum is taken over the threshold pairs that

return a positive definite Ŝψ,ρ(θh). This threshold selection method penalizes solution pairs with too dis-

persed latent eigenvalues and too many residual nonzeros in single rows, by comparing two appropriately

re-scaled versions of the spectral norm of the low rank solution and the row-wise maximum norm of the

residual solution.

In order to ensure the effectiveness of the above approach, the threshold grids need to be properly

chosen at each frequency θh. From the conditions in Theorem 5.1, we must always have ψ > 1
ξ(T )

√
1
T
.

Then, we recall from (Chandrasekaran et al., 2011, Proposition 4) that we must have (see also (9))

inc(L(θh)) ≤ ξ(T ) ≤ 2 inc(L(θh)) with
√

r
p
≤ inc(L(θh)) ≤ 1, where inc(L(θh)) is the incoherence of

L(θh), defined as inc(L(θh)) = maxi=1,...,p ‖Pei‖2, with ei the canonical basis vector (ith column of the

p-dimensional identity matrix), and the operator P projecting each ei onto the row/column space of

L(θh). In light of this, we initialize the grid for the threshold ψ as the sequence of nthr equi-spaced real

numbers from
√

p
T

1

2ĩnc
to
√

p
T

1

ĩnc
, where, for any given positive real rthr, we set ĩnc = 4

√
rthr
p
, which is the

geometric mean of the minimum and maximum incoherence values.

Concerning the sparsity threshold, we let ρ = ρ1

√
p
T

1

ĩnc
and we initialize the grid for the threshold ρ1

as the sequence of nthr equi-spaced real numbers from sthr√
p
to sthr

4
√
p
, where sthr is a given positive real. The

two extremes represent two plausible extreme values for the proportion of nonzero entries satisfying the

assumptions of Theorem 5.1. Once we have a grid for ρ1 we immediately have a grid for ρ.

In practice, we set nthr = 10 and we adopt the following recursive approach.

1. Set sthr = 1 and increase it until we get thresholds (ψ̆h,1, ρ̆h,1) such that the ALSE Ŝψ̆h,1,ρ̆h,1(θh) is

diagonal for all frequencies; denote as sthr,1 the chosen value of sthr,1.

2. Set rthr = 1 and increase it until we get thresholds (ψ̆h,2, ρ̆h,2) such that ψ̆h,2 is close but not equal

to the left-extreme of the grid and the ALSE L̂ψ̆h,2,ρ̆h,2(θh) has rank constant across frequencies.

3. Starting from sthr = sthr,1 decrease sthr until we get thresholds (ψ̆h,3, ρ̆h,3) such that the ALSE

Ŝψ̆h,3,ρ̆h,3(θh) is non-diagonal, but positive definite for all frequencies, and the selected ρ̆h,3 not equal

to the left-extreme of the grid.
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4. The optimal thresholds are given by ψ̆h = ψ̆h,2 and ρ̆h = ρ̆h,3.

8 Real data analysis

We consider a dataset of p = 101 quarterly macroeconomic indicators regarding the US economy observed

over T = 210 time points spanning the period 1960:Q2-2012:Q3 (see, e.g., McCracken and Ng, 2020).

Throughout, we compute the smoothed periodogram by settingMT = b
√
T c = 14 and using the Bartlett

kernel. UNALSE is computed as described in Sections 4 and 6, while the thresholds are chosen as

explained in Section 7. Results are reported using frequencies fh = θh
2π

= h
2MT

, |h| ≤ MT , measured in

cycles per unit of time. Thus, for a given frequency fh the corresponding period is given by f−1
h and, since

our data is quarterly, its unit of measure are quarters, with one quarter being equal to three months.

In the first panel of Figure 1 we show the four largest eigenvalues, rescaled by p, of the smoothed

periodogram estimator. The top eigenvalue shows a maximum at fh = 0.07 and a second peak at

fh = 0.31, corresponding to periods of about 3.5 years and 9 months, respectively. Note that 3.5 years is

around the typical period of a business cycle, while the higher frequency peak is typically more related

to nominal variables such as inflation (see also the results in Barigozzi and Luciani, 2021, and below).

The estimated rank by UNALSE is r̂ = 2 at all frequencies, which is an agreement with the recent

findings by Avarucci et al. (2022), who interpret the two common factors as a demand (high-frequency)

and a supply (low-frequency) factors (see also Angeletos et al., 2020). The second panel of Figure 1

shows the proportion of latent variance β̂(fh) = tr(L̂(fh))

tr(Σ̂(fh))
so the contribution of L̂(fh), which follows the

pattern of the leading eigenvalues of Σ̃(fh), hence it captures the business cycle frequency. The third

panel of Figure 1 reports the proportion of residual covariance ε̂(fh) =
∑p
i=1

∑p
j=i+1 |Ŝij(fh)|∑p

i=1

∑p
j=i+1 |Σ̂ij(fh)|

, summarizing

the contribution of Ŝ(fh), which is maximum at frequency fh = 0.48, corresponding to a period of about

6 months. Secondary maxima are at fh = 0.03, i.e., a period of 8 years, and fh = 0.24, corresponding to

a period of 1 year. Finally, the fraction of nonzeros in the fourth panel of Figure 1 has a similar pattern.

In Figure 2 (first two panels) we show heat-maps of L̂(fh) at frequencies 0.07 and 0.31. The variables

contributing more to the comovements at the low frequency (fh = 0.07) are either related to the labor

market (variables from i = 70, . . . , 94) such as (i) Unemployment rate; (ii) Average Mean Duration
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Figure 1: US macroeconomic data - Co-movements and sparsity. From the left, we report over the
chosen frequencies fh = h

29
, h = 0, . . . , 14, the four estimated eigenvalues, the estimated latent variance

proportion, the estimated residual covariance proportion, and the fraction of residual nonzeros.
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Figure 2: US macroeconomic data - Heat maps of Re(L̂(fh)) and Re(Ŝ(fh)) at selected frequencies. The
X-axis and the Y-axis contain the 101 variables of the dataset. Positive values are in white, negative
ones in black, zeros in gray.

Re(L̂(fh = 0.07)). Re(L̂(fh = 0.31)). Re(Ŝ(fh = 0.03)). Re(Ŝ(fh = 0.48)).

of Unemployment; (iii) All Employees in various sectors, or are related to credit market and the real

economy (variables from i = 25, . . . , 37) such as GDP, Investment, and Consumption growth rates. All

these are the variables typically driving the business cycle. Note that these variables drive also the

comovements at fh = 0. At higher frequency (fh = 0.31) the most relevant variables are the growth

rates, i.e., inflation, of Consumer and Production Price Indexes (variables from i = 7, . . . , 19). Thus

the two main sources of common variation are related to: (i) the real economy, and (ii) to the nominal

economy.

In Figure 2 (last two panels) we show heat-maps of Ŝ(fh) at frequencies 0.03 and 0.48. It is worth

mentioning some prominent co-spectral relationship at selected frequencies. At frequency fh = 0.03, the

following pairs display strong co-dependence: (i) Consumer Loans at All Commercial Banks and Total

Consumer Credit (Owned and Securitized); (ii) 3-Year Treasury Constant Maturity Rate and 10-Year

Treasury Constant Maturity Rate; (iii) Compensation Per Hour in the Manufacturing Sector and in the

Business Sector. At frequency fh = 0.48, we observe a strong relationship for the following variable pairs:
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(i) Consumer Price Index for All Urban Consumers of All Items Less Energy and of All Items Less Food

& Energy; (ii) Real Imports and Exports of Goods & Services Per-Capita; (iii) Real Exports of Goods

& Services and Gross Private Domestic Investment Price Index; (iv) Unit Labor Cost in the Business

Sector and Output Per Hour of All Persons in the Business Sector. At frequency fh = 0.24, the strongest

co-spectral relationships are instead (not shown): (i) Producer Price Index of Industrial Commodities

and of All Commodities; (ii) Producer Price Index of Industrial Commodities and Treasury Constant

Maturity rate. These local, co-movements can be interpreted as due to weaker, idiosyncratic, factors

related to the banking system represented by credit variables (low-frequency), to prices and interest

rates, i.e., related to monetary policy (mid-frequency), and to the trade/consumption dimension of the

US economy (high-frequency). No relevant idiosyncratic comovements are found in the long run, i.e., at

fh = 0.

9 Conclusions

In this paper, we consistently estimate the spectral density matrix under the assumption of a low rank

plus sparse multivariate spectrum for the data. We prove that the nuclear norm plus l1 norm heuristics

consistently recovers across frequencies the spectral components and their sum, as well as the dynamic

rank and the residual sparsity pattern. We call the resulting estimators UNALSE (UNshrunk ALgebraic

Spectral Estimator). The empirical implications of our approach are discussed on a standard US macroe-

conomic dataset, showing that we are able to catch the driving variables of the latent dynamics, as well

as the particular strength of specific local relationships which might be heterogeneous across frequencies.

This opens up the way to enhanced dynamic factor scores estimation and temporal network analysis.
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