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ABSTRACT
We analytically derive the observed size–mass relation of galaxies’ atomic hydrogen (H I),
including limits on its scatter, based on simple assumptions about the structure of H I discs.
We trial three generic profiles for H I surface density as a function of radius. First, we assert
that H I surface densities saturate at a variable threshold, and otherwise fall off exponentially
with radius or, secondly, radius squared. Our third model assumes the total gas surface density
is exponential, with the H I fraction at each radius depending on local pressure. These are
tested against a compilation of 110 galaxies from the THINGS, LITTLE THINGS, LVHIS,
and Bluedisk surveys, whose H I surface density profiles are well resolved. All models fit the
observations well and predict consistent size–mass relations. Using an analytical argument, we
explain why processes that cause gas disc truncation – such as ram-pressure stripping – scarcely
affect the H I size–mass relation. This is tested with the IllustrisTNG(100) cosmological,
hydrodynamic simulation and the DARK SAGE semi-analytic model of galaxy formation,
both of which capture radially resolved disc structure. For galaxies with m∗ ≥ 109 M� and
mH I ≥ 108 M�, both simulations predict H I size–mass relations that align with observations,
show no difference between central and satellite galaxies, and show only a minor, second-order
dependence on host halo mass for satellites. Ultimately, the universally tight H I size–mass
relation is mathematically inevitable and robust. Only by completely disrupting the structure
of H I discs, e.g. through overly powerful feedback, could a simulation predict the relation
poorly.
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1 I N T RO D U C T I O N

The majority of our understanding surrounding the structure of
cold gas in low-redshift galaxies comes from observations of
the ubiquitous emission line of atomic hydrogen (H I) at a rest-
frame wavelength of ∼ 21 cm. H I in galaxies is well documented
to lie in rotationally supported discs that extend notably beyond
optical discs from stellar emission (e.g. Bosma 1981a; but see
Meurer et al. 2018). This arises because stars form in dense
gaseous regions, where a more significant fraction of hydrogen
is in a molecular state (e.g. Bigiel et al. 2008; Leroy et al.
2008). Meanwhile, the gas in a disc with higher specific angular
momentum (farther from the global minimum of the potential well)

� E-mail: adam.stevens@uwa.edu.au

is stable against local gravitational collapse, and so remains in
an atomic state (Obreschkow et al. 2016; Stevens et al. 2018).
Being more distant from sites of star formation, this gas can also
be less prone to feedback effects (although the interplay between
galaxies’ H I content and feedback is non-trivial – see e.g. Crain
et al. 2017).

As first highlighted by Broeils & Rhee (1997), a key feature of
H I discs is a genuinely tight relation between their size and mass.
H I size has canonically been measured as the radius at which the
surface density profile, �H I(r), drops below 1 M� pc−2, hereafter
denoted rH I. This convention arose in part because many earlier
radio observations were not sensitive to H I column densities much
lower than this (dating back to the likes of Warmels 1988; Broeils
& van Woerden 1994). The relation between rH I and integrated
H I mass, mH I, is a simple power law that holds over more than
four decades in mH I, with measured scatter [standard deviation
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in log10 (rH I) from the best-fitting power law] of 0.06 dex (<15
per cent; Begum et al. 2008; Lelli, McGaugh & Schombert 2016;
Wang et al. 2016). The monotonic nature of this relation is often
framed as meaning all galaxies have a common average H I surface
density within rH I (e.g. Broeils & Rhee 1997; Verheijen & Sancisi
2001; Begum et al. 2008; Wang et al. 2016). This implies there
must be commonality amongst the �H I(r) profiles of all galaxy
discs (Wang et al. 2014).

Over the last decade, it has been shown on numerous occasions
that the H I size–mass relation is reproducible in both cosmological,
hydrodynamic simulations (Wang et al. 2014; Bahé et al. 2016;
Marinacci et al. 2017; Diemer et al. 2019) and semi-analytic models
(Obreschkow et al. 2009; Wang et al. 2014; Lutz et al. 2018),
although often not all of the relation’s three defining values (slope,
normalization, and scatter) precisely align with the narrow empirical
ranges. The choice of prescription for how neutral hydrogen is
broken into its atomic and molecular components in these models
generally does not affect this outcome, even though this can change
the exact form of �H I(r) (although the results of Bahé et al. 2016
appear to be an exception). Rather, it is only in instances when
implemented feedback effects are evidently too strong or interact
with the interstellar-medium model in an unexpected fashion that
simulated galaxies start to deviate from the H I size–mass relation.
For example, Bahé et al. (2016, see their fig. 6) explicitly show
that galaxies containing excessively large H I ‘holes’ in the EAGLE
simulations steepen the predicted slope of the size–mass relation;
when these galaxies are excluded, the relation returns to consistency
with Broeils & Rhee (1997).

While many works have highlighted the existence and signifi-
cance of the H I size–mass relation, we have not yet seen a math-
ematically explicit description for why the relation exists. Wang
et al. (2014) showed that observations, zoom-in hydrodynamic
simulations, and a semi-analytic model (with resolved disc structure
– Fu et al. 2013) can all produce galaxies with �H I(r) profiles of
a common shape. They comment that this commonality should
explain the tightness of the H I size–mass relation, although it is not
explicitly derived. In this paper, we use simple models of increasing
complexity to describe galaxy discs, from which we analytically
derive the H I size–mass relation. Using these models, we investigate
what impact disc truncation from an effect like ram pressure would
have. By weighing this against recent observational and simulated
data, we discuss how the �H I(r) profiles of satellite galaxies must
be altered as they are stripped.

This paper is structured as follows. In Section 2, we give a brief
overview of the observations and simulations we use to support
our analysis. We then present our analytic models in Section 3,
deriving an H I size–mass relation in each case, and comparing how
well these models reflect both real and simulated data. Our models
are extended in Section 4 to consider the effects of ram-pressure
stripping. Here, we also explore the impact of halo mass on the
H I size–mass relation as predicted by both the TNG100 simulation
and DARK SAGE semi-analytic model. Section 5 finally offers a brief
conclusion. Supplementary equations and analysis can be found in
Appendices A, B, and C.

2 SUPPORTING DATA

While not the main focus of this work per se, we use data from both
observations and simulations to help support and/or contextualize
our arguments throughout this paper. We briefly describe them here.
Note that, where relevant, we assume h = 0.6774, per the Planck
Collaboration XIII (2016) cosmological parameters.

2.1 21-cm observations

There is an ever-increasing sample of galaxies in the literature that
have resolved 21-cm maps, from which H I surface density profiles
are inferred. In this paper, we use profiles from a variety of sources.
These include 16 galaxies from The H I Nearby Galaxy Survey
(THINGS; Walter et al. 2008), 14 from LITTLE THINGS (Hunter
et al. 2012), 41 from The Local Volume H I Survey (LVHIS; data
originally presented by Ryder et al. 1995; Westmeier, Braun &
Koribalski 2011; Westmeier, Koribalski & Braun 2013; for the
complete survey, see Koribalski et al. 2018), and 39 from the
Bluedisk sample (Wang et al. 2013). These comprise a subset of
the galaxy sample used in Wang et al. (2016, hereafter W16).
All of these galaxies have well-resolved, inclination-corrected
�H I(r) profiles, with cleanly measured H I sizes and masses.

The THINGS galaxies in our sample are the same subset used
by Obreschkow & Glazebrook (2014), which are all definitively
spirals, spanning a stellar-mass range of 2.5 × 109 to 1.6 × 1011 M�.
The galaxies we use from LITTLE THINGS are the same subset
as in Butler, Obreschkow & Oh (2017), covering 1.4 × 106 to
2.0 × 108 M� in stellar mass, and are morphologically classified as
dwarf irregulars. The LITTLE THINGS and Bluedisk galaxies are
predominantly isolated, while the LVHIS galaxies mainly occupy a
subgroup near the Sculptor Group. The LVHIS galaxies we include
are selected to have rH I greater than 1.5 times the major axis of the
PSF1 ellipse, ensuring the disc profiles are sufficiently resolved (the
other data more than meet this criterion already). Most galaxies
from LVHIS and Bluedisk are classified as spirals. All galaxies
in our sample are at z � 0. We refer the reader to the specific
papers where the data are presented for further details. While we
cannot guarantee that this sample is representative of all galaxies in
the local Universe (in fact, it is biased towards rotation-dominated
systems), we take and analyse the data as they are. Our simulated
data help compensate by offering volume-limited samples that are
orders of magnitude larger in galaxy number.

For the Bluedisk galaxies, we calculate mH I by numerically
integrating the full surface density profile of each galaxy. These
H I masses are ∼15 per cent larger than the ‘true’ mH I values given in
Wang et al. (2013), which were only integrated out to a finite surface
density. Any pre-measured mH I quantities for the other galaxies are
consistent with numerically integrating their profiles.

2.2 IllustrisTNG

IllustrisTNG2 comprises a suite of cosmological, magnetohydrody-
namic simulations of various volumes and resolutions, run with the
AREPO code (Springel 2010). In this paper, we use the main TNG100
simulation3 (Marinacci et al. 2018; Naiman et al. 2018; Nelson et al.
2018; Pillepich et al. 2018b; Springel et al. 2018), with a periodic
box of length 75 h−1 � 110 cMpc, containing 18203 dark-matter
particles of mass 7.5 × 106 M�, and 18203 initial baryonic elements
of typical mass 1.4 × 106 M�. TNG simulations include subgrid
models to follow gas cooling, star formation, growth of massive
black holes, and feedback from both stars and active galactic
nuclei (Weinberger et al. 2017; Pillepich et al. 2018a). Black-hole
feedback removes gas from its immediate neighbourhood (�1 kpc
from the centre), while supernova feedback removes gas everywhere

1Point Spread Function.
2Illustris: The Next Generation.
3TNG100 (and TNG300) have recently been made publicly available
(Nelson et al. 2019).
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according to the local star formation rate (on ∼500 pc scales)
and induced mass-loading factor. The simulations and methods
are based on the earlier Illustris project (Vogelsberger et al. 2013,
2014a,b; Genel et al. 2014; Torrey et al. 2014).

Gas cells in the simulation are post-processed to calculate their
mass fractions in the form of atomic and molecular hydrogen
(Diemer et al. 2018; Stevens et al. 2019). We present results from
three methods, based on the works by Gnedin & Kravtsov (2011),
Krumholz (2013), and Gnedin & Draine (2014). We refer the reader
to Stevens et al. (2019) and references therein for full details on
the methodology; all properties in this paper follow the ‘inherent’
method, meaning only particles/cells associated with the SUBFIND

object (Springel et al. 2001; Dolag et al. 2009) that also meet the
spherical-aperture criterion of Stevens et al. (2014) are included.
H I radii are derived by building one-dimensional H I surface
density profiles, using cylindrical annuli with an axis parallel to
the galaxy’s angular-momentum vector (computed exclusively from
stellar particles), and linearly interpolating the exact position where
these profiles drop below 1 M� pc−2.

For this work, we include galaxies at z = 0 with stellar masses
above 109 M�, H I masses above 108 M�, and H I radii greater
than the minimum gas softening length of 190 pc (both these
H I requirements only needed to be satisfied for one of the three
H I/H2 prescriptions). Our resulting TNG100 sample totals ∼15 000
galaxies; the sample size would be ∼20 000 with just the stellar-
mass cut alone. The added mH I and rH I cuts somewhat bias us
towards star-forming galaxies; these cuts reduce the total passive
fraction from ∼28 to ∼5 per cent, where we define a ‘passive’ galaxy
as one with a specific star formation rate < 10−11 yr−1 (based on the
gas cells’ instantaneous star formation rates). In practice, a passive
TNG100 galaxy often has a star formation rate of zero.

2.3 DARK SAGE

DARK SAGE is a semi-analytic model of galaxy formation originally
developed by Stevens, Croton & Mutch (2016). Its stand-out
features include a comprehensive consideration of the angular
momentum of galaxy discs. Each disc is broken into a series of
30 annuli (similar to Fu et al. 2010) whose edges are fixed in
their specific angular momentum (à la Stringer & Benson 2007)
and spaced logarithmically. The net orientation and magnitude
of gas and stellar discs’ specific angular momenta are tracked
and continuously updated based on the astrophysical processes
considered. Among others, these processes include gas cooling,
star formation and stellar feedback, and the growth and feedback
of black holes, where each of these are calculated on an annulus-
by-annulus basis. For example, stellar feedback only reheats gas
out of the same annulus where the precursory star formation took
place, while quasar winds initially remove gas from the central
annulus and can extend to outer annuli based on the energy
involved. The publicly available DARK SAGE code4 (and many of
the physical prescriptions) is based on Croton et al. (2006, 2016).
For a more thorough overview of semi-analytic models in general,
see e.g. Baugh (2006) and Somerville & Davé (2015).

DARK SAGE accounts for the effects of ram-pressure stripping on
satellite galaxies at a level of detail beyond most other semi-analytic
models. Provided a sufficient amount of hot gas around a satellite is
lost, a prescription based directly on Gunn & Gott (1972) is applied
to each annulus individually. Where ram pressure exceeds the local

4https://github.com/arhstevens/DarkSage

Figure 1. H I surface density profiles of four galaxies from our observational
sample (points). These have been hand-picked to show examples of when
each of our analytic models in Section 3 is an accurate representation of
reality; each line is the best fit of a different model to a different galaxy, with
colour indicating which line is a fit to which data.

restoring force per unit area, all gas in the satellite’s annulus is trans-
ferred to the intra-halo medium (i.e. the hot component associated
the corresponding central galaxy). Barring extreme circumstances,
the local restoring force of discs decreases with radius. As such, ram-
pressure stripping in DARK SAGE leads to the continual truncation
of gas discs. Satellites are also denied cosmological accretion of gas,
and have their hot-gas reservoir gradually depleted through tidal or
ram-pressure stripping (manifesting as starvation/strangulation –
cf. Larson, Tinsley & Caldwell 1980). Satellite galaxy discs can
still accrete from that hot gas though, where the specific-angular-
momentum vector of that gas is fixed at infall.

We use the Stevens et al. (2018) version of DARK SAGE in this
work. This was run on the Millennium simulation (Springel et al.
2005). Even though the cosmology assumed in this simulation
(Spergel et al. 2003) differs from Planck, to be consistent with
our other results, we use h = 0.6774 for our DARK SAGE results.
We otherwise maintain the galaxy properties as they are in Stevens
et al. (2018), meaning there is no rescaling to account for the other
cosmological parameters (but see Angulo & White 2010). The pre-
scription for the H I/H2 breakdown used in this version of the model
is based on McKee & Krumholz (2010). Taking the centre of each
annulus as its position for the galaxies’ �H I(r) profiles, we linearly
interpolate between the outermost annulus with �H I > 1 M� pc−2

and the next to obtain rH I. Because each consecutive annulus edge
has 40 per cent higher specific angular momentum, the separation
between the annuli where rH I is measured is typically ∼ 0.4 rH I.
We only analyse redshift-zero DARK SAGE galaxies in this paper
that occupy (sub)haloes that have been composed of at least 100
particles (equivalent to a halo mass of 8.6 × 1010 h−1 M�) at some
point in their merger-tree history, and whose stellar masses are
above 109 M� and H I masses above 108 M� at z = 0. This leaves
us with 4.3 million DARK SAGE galaxies.

3 D I S C M O D E L S A N D D E R I VAT I O N S O F T H E
H I SI ZE–MASS RELATI ON

In this section, we explore several models of progressively increas-
ing complexity for the one-dimensional distribution of H I in galaxy
discs. For each model, we show an example �H I(r) profile in Fig. 1,
which is accompanied by a real example galaxy whose observed
H I surface density profile is well described by that model. We
will show that regardless of how much detail is added to the disc
profiles, one can always mathematically derive a tight H I size–mass
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relation that matches observations. Note that, throughout parts of
this section, we use a bar to denote when surface densities and radii
have been normalized:

r̄x ≡ rx/rH I , (1a)

�̄x ≡ �x/
(
1 M� pc−2

)
, (1b)

where x represents any subscript.
Many parameters and expressions are introduced in this section.

As a point of reference, we summarize the definitions and typical
values of the key parameters of all our models in Table 1.

3.1 Model 0: pure exponential

Let us begin with the simple, canonical assumption that all discs are
exponential. To first order, except perhaps towards the very centre
of galaxies (e.g. Stevens et al. 2017), both stellar and gaseous galaxy
discs are observationally known to follow exponential profiles for
many galaxies (de Vaucouleurs 1959; Bigiel & Blitz 2012), for
which a theoretical explanation has been discussed in several works
(e.g. Freeman 1970; Dutton 2009; Elmegreen & Struck 2013). Let
us further assert that H I discs specifically are also exponential.
While this assertion is not generically supported by observations
(and is therefore incomplete), it will serve as a starting point in our
exploration of H I disc models, and hence is why we refer to this as
‘model 0’ (effectively, we are ignoring the existence of molecular
gas). With this,

�H I(r) = �0 exp (−r/rs) , (2)

where rs is the exponential scale radius and �0 is the central
H I surface density. The total H I mass is then

mH I ≡ 2π

∫ ∞

0
�H I(r) r dr (3a)

⇒ mH I = 2π �0 r2
s . (3b)

In reality, an H I disc would not extend to infinity; at some point,
one would reach the ionized intergalactic medium or another object.
Because the integral is convergent though, we assume (throughout
this paper) that H I discs extend to sufficiently large radii such that
integrating to infinity is a valid approximation.5

We should also recognize that rs can be rewritten in terms of rH I.
That is, for an exponential profile, it must be true that

rH I = ln

(
�0

�c

)
rs , (4)

where �c = 1 M� pc−2, as per the definition of rH I (although, in
principle, one could define rH I at a different threshold �c, e.g. as
explored in fig. 4 of W16). After some short algebra, one can simply
solve for rH I in terms of mH I:

rH I = f (�0) m0.5
H I , (5a)

f (�0) = (2π �0)−0.5 ln

(
�0

�c

)
. (5b)

5For �̄0 = 5, this approximation is accurate to 10 per cent if the disc actually
only extends to ∼2.4 rH I, and is accurate to 1 per cent if it extends to
∼4.1 rH I. Higher values of �̄0 converge at lower radii (and vice versa).

With the above, we have already derived an H I size–mass relation
with a normalization (in log–log space) that depends solely on �0.
Observations have shown that it is rare for �H I to exceed 9 M� pc−2

in local galaxies (on scales of ∼750 pc – Bigiel et al. 2008); at higher
surface densities, hydrogen tends to be sufficiently cool and self-
shielded to promote the formation of molecules and prevent their
photodissociation. But theoretically, the physical limit on �H I for a
given galaxy depends on metallicity (e.g. Schaye 2001; Krumholz,
McKee & Tumlinson 2009), so higher values of �0 should be
possible. For now, we take 10 M� pc−2 as the fiducial value for �0

in our model. Hence, this gives f
(
10 M� pc−2

) = 0.29 pc M−0.5
� or

equivalently

log10

(
DH I

kpc

)
= 0.5 log10

(
mH I

M�

)
− 3.236 (6)

(DH I ≡ 2 rH I). This expression is directly comparable to equation
2 of W16 and highlights the closeness in both the slope (a best fit
from W16 of 0.506 ± 0.003) and intercept (−3.293 ± 0.009) that
is empirically derived from observations.

The final characteristic trait of the H I size–mass relation is its
small scatter (0.06 dex). For model 0, any scatter must come from
variation in �0. Typically, the H I surface densities of late-type
galaxies reach a maximum value anywhere from ∼3 to ∼9 M� pc−2,
while the maxima for some early-type galaxies have been observed
to be even lower (see fig. 2 of W16). To explicitly show that
variations in �0 may only lead to a small scatter, we need to
differentiate (the logarithm of) f(�0). It is straightforward to find

d log10(f )

d�0
= log10(e)

�0

[
1

ln (�0/�c)
− 1

2

]
. (7)

Fig. 2 visualizes this derivative. The fact that this derivative is �1
for all realistic values of �0, means that f only depends weakly
on �0. If, for example, the probability distribution function of
�0 for galaxies were a uniform distribution extending from 2 to
10 M� pc−2, then the predicted scatter in the H I size–mass relation
would be 0.037 dex. Extending the upper end of this range or
applying a probability distribution function that peaks at mid values
of �0 would only decrease the value of this prediction.

Because model 0 is incomplete, our next three models are the
ones we give proper attention to throughout the rest of this paper.
Naturally though, the addition of a second parameter to the models
means it is not as straightforward to explicitly derive the tightness
of the H I size–mass relation as it was under model 0.

3.2 Model 1: saturated exponential

Let us now include a simple consideration of the presence of
molecular gas in the disc. We no longer assume that H I follows
an exponential surface density profile, but instead that all neutral
gas in a disc does (which is roughly consistent with a large variety of
observed H I+H2 profiles analysed by Bigiel & Blitz 2012). We then
assume that below a threshold gas surface density, �0, all hydrogen
is in the form of H I. For gas at higher density, the contribution from
H I saturates at �0, where the remaining hydrogen is molecular
(H2). By defining the ‘break radius’, rb, as the radius at which
H I saturation extends to, we can formally write the H I surface
density of our model disc as

�H I(r) =
{

�0, r ≤ rb

�0 exp
[−r−1

s (r − rb)
]
, r > rb

. (8)
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Table 1. Summary of the parameters defining our analytic disc models, described in Sections 3.1–3.4. The ‘mathematically allowed values’ for models 0,
1, and 2 come directly from the parameters’ definitions. For model 3, these limits are derived under the requirement that �H I(r) is always finite and real; r̄d
actually has stricter upper and lower limits that depend on �̄0,H (see equations 19 and 20). The a priori expectations are loosely based on previous works
(Bigiel et al. 2008; Leroy et al. 2008; Stevens et al. 2016, W16). We quote both the full and 16th–84th percentile ranges of the best-fitting values to our sample
of observed �̄H I(r̄) r̄ profiles (see Section 3.5).

Parameter Definition Model Mathematically A priori Full range of 68 per cent interval
allowed values expectation fits to obs. of obs.

Maximum/saturation 0 (2.5, 35.2) (7.0, 22.3)
�̄0 H I surface density, 1 >1.0 ∼2–10 (1.3, 22.4) (3.2, 8.5)

normalized by 1 M� pc−2 2 (1.5, 14.8) (3.2, 8.7)
r̄b Saturation break radius, 1 [0, 1] ∼0–0.8 (0.01, 0.83) (0.25, 0.65)

normalized by rH I 2 [0, 0.65) (0, 0.46)
�̄0,H Normalized maximum 3 ≥4.22 ∼10–1000 [4.22, 432.7) (18.5, 161.6)

H I+H2 surface density
r̄d Normalized exponential 3 >0 ∼0.1–1 (0.16, 0.72) (0.19, 0.35)

scale radius for H I+H2

Figure 2. Equation (7) – the sensitivity of model 0 to its solitary parameter.
For a population of galaxies, the mean value of f would represent the
normalization of the H I size–mass relation (with slope 0.5). The fact that
the derivative of f only weakly depends on �0 for the majority of allowable
�0 values implies that the scatter in the H I size–mass relation cannot be
large.

The relationship between rs and rH I must be updated from model 0,
where now

rH I = rb + ln

(
�0

�c

)
rs . (9)

In introducing the normalizing bar (equation 1), we can then
rearrange equation (9) to obtain

r̄s ≡ rs

rH I

= 1 − r̄b

ln (�0/�c)
. (10)

The model is hence dependent on two parameters: �0 and r̄b. Note
that setting r̄b to 0 reduces this back to model 0. As such, model
1 should always give an equally good or better fit to observed or
simulated data than model 0.

Substituting equations (8) and (10) into the integral of equa-
tion (3a) and solving for rH I, we derive the size–mass relation for
model 1:

rH I =
√

mH I

π �0

[
r̄2

b + 2 r̄s (r̄s + r̄b)
] . (11)

Assuming neither r̄b nor r̄s carry an implicit dependence on
mH I (corresponding to self-similar surface density profiles), our
simple model maintains a predicted slope of 0.5 for this fit. The
terms in the denominator of equation (11) set the normalization.

Figure 3. Top panel: variation in the H I size–mass relation of model 1 for
example parameter sets (equation 11). We highlight several cases of �0,
showing the full vertical range covered ∀r̄b ∈ [0, 1] at that �0. Compared
is the best-fitting relation from observational data (W16); the deeper shaded
region shows the 1σ scatter around the relation, and the lighter region is the
3σ scatter. Bottom panel: a more detailed depiction of how much a model-1
line in the top panel would vertically move if r̄b were varied for several
examples of fixed �0. Starred points indicate where the curves reach their
maximum. The thin, dotted, horizontal line signifies zero displacement from
the observed relation.

We can then try to associate the (small) scatter in the relation to
variations in r̄b and �0.

Certainly, we must uphold �0 > �c. And by definition in our
model, r̄b is restricted to the range [0, 1]. With these restrictions in
mind, we show the allowable scatter in the size–mass relation of
our model in the top panel of Fig. 3. We cover three values of �0

that have different sensitivities to r̄b for relating size and mass. For
each �0, we display the full range of variation in H I size at fixed
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mass for all values of r̄b. In two cases, this simply means taking the
extremes of r̄b = 1 and 0, i.e. where �H I(r) is a top-hat6 and pure
exponential, respectively. For �0 = 9 M� pc−2, rH I is smallest for
r̄b = 1. For �0 = 2 M� pc−2, it is the opposite: rH I is smallest for
r̄b = 0. This is because mH I is found by integrating �H I(r) r out to
∞. Lower r̄b and lower �0 each lead to a shallower �H I(r) profile
beyond rH I, meaning the mass contribution beyond rH I is greater.
For in-between values of �0, the maximum radius at fixed mass is
found at intermediate values of r̄b (e.g. at r̄b � 0.89 for �̄0 = 3.0).
We highlight this in the bottom panel of Fig. 3, which is another
way of showing equation (11).

At this point, one could already argue that the slope, normaliza-
tion, and scatter of the H I size–mass relation are all mathematically
inevitable. To properly claim this though, we need to more closely
analyse how representative equation (8) is of observed �H I(r) pro-
files. As we show and discuss in Section 3.5, model 1 is not always
a sufficient representation of reality. Moving forward, it is therefore
helpful to have further models to compare, which we present next.
We also cannot give a numerical prediction for the slope and scatter
of the H I size–mass relation from any model without knowing how
its parameter space should be occupied. This can be inferred from
the best-fitting parameter values to observations though: a task left
for Section 3.5.1.

3.3 Model 2: empirical

We have found that many of the observed H I profiles in our galaxy
sample follow a common shape that is more akin to falling off
exponentially with radius squared (i.e. a Gaussian), rather than
just radius. Martinsson et al. (2013) also note that a Gaussian
describes �H I(r) well for a completely different sample of observed
galaxies. For model 2, we therefore assert that this can be described
analytically as

�H I(r) =
{

�0, r ≤ rb

�0 exp
[−r−2

s (r − rb)2
]
, r > rb

, (12)

where we have maintained the option for the profile to be saturated
out to rb from model 1. Following the same procedure in Section 3.2,
we can derive the size–mass relation for this as

rH I =
√

mH I

π �0

[
r̄2

b + r̄s (r̄s + √
πr̄b)

] , (13a)

r̄s = 1 − r̄b√
ln(�0/�c)

. (13b)

The two parameters defining model 2 are the same as model 1
(�0 and r̄b – they are just folded into different overall profiles).
The parameter space is therefore restricted in the same way. Again,
using observations to inform how this parameter space should be
distributed, we infer a predicted slope and scatter for the model-2
H I size–mass relation in Section 3.5.1.

We acknowledge that we have not offered a physical justification
for equation (12). We have simply found it to empirically fit
the observed H I profiles better than either model 1 or model 3
(introduced below) in 42 per cent of cases. For 32 per cent of the
observed profiles, the best-fitting model-2 r̄b is 0. One therefore
need not invoke H I saturation for those cases, meaning these would
be well described by a one-parameter profile (akin to a variant of

6When r̄b = 1, �H I(r) = �0 until a radius where it drops to zero. This
radius is also rH I, as it is the largest radius where �H I(r) > �c.

model 0). We present and discuss profile fits to observations further
in Section 3.5.

The danger of a Gaussian-like �H I(r) profile is that it is possible
for this shape to be artificially induced by beam-smearing; the
observed profile of a galaxy is a convolution of its true profile with
the beam response, where the latter is well described by a Gaussian.
Many of the observed galaxies that are best represented by model 2
are the less well-resolved galaxies from LVHIS and Bluedisk. While
this should certainly be kept in mind when interpreting the general
applicability of model 2, we remind the reader that the most poorly
resolved galaxies were not included in our analysis, and we note
that there are galaxies from all contributing surveys to our sample
that are best described by model 2. As we will show in Section 3.6,
model 2 also fits many profiles from simulations well, which have
not had beam-smearing effects added.

3.4 Model 3: theoretical pressure law

For our final model, we maintain the assumption that cold-gas discs
are broadly described by an exponential profile. We then follow
the idea of Blitz & Rosolowsky (2004, 2006) that the fraction of
hydrogen at a given radius in the form of H I depends on the mid-
plane pressure of the disc. Using this idea, Obreschkow et al. (2009,
see their equations 10 and 11) explicitly derive a generic H I profile
for galaxies that still depends on an exponential scale length and the
total gas and stellar mass of the disc (mgas and m∗,disc, respectively):

�H I(r) = �0,H exp (−r/rd)

1 + R0 exp (−1.6 r/rd)
, (14a)

R0 = [
K r−4

d mgas

(
mgas + 〈fσ 〉m∗,disc

)]0.8
, (14b)

where K ≡ 11.3 m4 kg−2 = 4.39 × 10−5 pc4 M−2
� , 〈fσ 〉 is the mean

vertical velocity dispersion ratio of gas to stars in the disc, and
�0,H ≡ �H I(0) + �H2 (0). Many assumptions go into this expres-
sion, including an empirical scaling for the pressure law (Leroy
et al. 2008), that pressure follows the radial function of Elmegreen
(1989), that gas velocity dispersion is a constant, that stellar discs
have exponential surface density profiles with a scale length equal
to rd/2, and that stellar velocity dispersion decays exponentially
with rd.

It is useful to recognize that mgas is not an independent parameter
in equation (14), as it is directly connected to �0,H: mgas =
2π r2

d X−1 �0,H (where X � 0.76 is the mass fraction of gas that is
hydrogen). By simply defining a new quantity that also encapsulates
the constants and remaining variables in equation (14),

κ ≡
[

4.39 × 10−5

(
2π

X

)2 (
1 + 〈fσ 〉m∗,disc

mgas

)]0.8

, (15)

we can reduce equation (14) to

�̄H I(r̄) = �̄0,H exp
[ − r̄/r̄d

]
1 + κ �̄1.6

0,H exp
[ − 1.6 r̄/r̄d

] . (16)

By definition, it must hold true that �̄H I = 1 when r̄ = 1. Therefore,
it must also hold that

κ = �̄−0.6
0,H e0.6/r̄d − �̄−1.6

0,H e1.6/r̄d . (17)

We hence have a model with only two independent parameters, as
per our previous two cases. The derived H I size–mass relation for
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this model is then

mH I

r2
H I

= 2π

∫ ∞

0

r̄ �̄0,H e−r̄/r̄d dr̄

1 + (
�̄0,H e0.6/r̄d − e1.6/r̄d

)
e−1.6 r̄/r̄d

(18a)

= 1.60769 π �̄0,H r̄2
d 3F̃2(a1, a2, a3; b1, b2; c) ,

a1 = a3 = 0.625 , a2 = 1 , (18b)

b1 = b2 = 1.625 , (18c)

c = e1.6/r̄d − �̄0,H e0.6/r̄d , (18d)

where 3F̃2(a1, a2, a3; b1, b2; c) is the regularized hypergeometric
function. We note that Wang et al. (2014) previously identified
that the Bluedisk galaxies’ �H I(r) profiles are well fitted by an
expression similar to equation (16): cf. their equation 1. The main
differences here are that equation (16) (i) is derived from theory,
rather than being empirically motivated, and (ii) has fewer free
parameters.

Now we need to consider restrictions on the (�̄0,H, r̄d) parameter
space for model 3. First, the solution from equation (18) is only real
when c < 1. This means we should uphold

r̄d >
[
ln
(
�̄0,H

)]−1
. (19)

While we have already ensured that �̄H I(r̄ = 1) = 1, we should also
ensure that d�H I/dr̄|r̄=1 < 0 – i.e. the profile is declining at rH I,
not rising. Enforcing this restricts the allowed sets of parameters
further:

r̄d < −
[

ln

(
2.6 + �̄0.6

0,H

1.6 �̄0,H − �̄0.4
0,H

)]−1

. (20)

This right-hand side is only positive and finite for �̄0,H � 4.22. This
provides a perfectly reasonable lower limit for the central surface
density of neutral hydrogen in galaxy discs. As we will show in the
next subsection, in practice, observed galaxies only fill a very small
area of this allowable parameter space, typically hugging the lower
limit of equation (19).

3.5 Comparison with observations

In the top panel of Fig. 4, we show the H I surface density profiles
for the sample of observed galaxies described in Section 2.1. Rather
than showing �H I(r) by itself, we have multiplied the profiles
by r/rH I, as the area under these curves gives mH I, and hence is
what matters for the size–mass relation. In other words, these are
normalized integrand profiles. A select few examples of analytic
profiles from equations (8), (12), and (14) are compared to help
guide the eye, showing roughly that the available parameter space in
each model covers the same area in the plot as the observed profiles,
without going beyond. To be more quantitative in this comparison,
we have fitted each individual profile with each analytic model. In
the lower panels of Fig. 4, we have subtracted the respective model
best fits from each observed profile. We overlay percentile ranges of
the residuals from each model, and highlight the individual residuals
in each panel where its corresponding model gives a better fit than
the other two.

In general, all three models capture the shape of the integrand
profiles, with the area under the model curves closely shadowing

Figure 4. Top panel: Normalized H I surface density integrand profiles
for our full sample of observations (thin, solid curves), described in
Section 2.1; the area under each profile gives mH I/

(
2π r2

H I

)
for that galaxy

(cf. equation 3a). For reference, overlaid are examples from our three
analytic disc models, highlighting that the shape and variation of the model
profiles (thicker, dashed curves) are qualitatively similar to observations.
Short dashes correspond to model 1 (Section 3.2), medium-length dashes
correspond to model 2 (Section 3.3), and the longest dashes are for model
3 (Section 3.4). The colour of these thick curves represents a parameter set
assumed for the model. Three shorter panels: residuals for the best-fitting
�̄H I(r̄) r̄ profiles for each model to each observed galaxy. Where residual
profiles are green and more opaque, that model fit has the lowest χ2 of the
three. Thick, dot–dashed curves encompass 68 per cent of residuals, based
on their interpolation on to a fixed r̄ grid. Thin, double-dot–dashed curves
cover 95 per cent of residuals.

those of the real profiles. That the full 2σ -equivalent residual range
is at times nearly 1 M� pc−2 in height is not a cause for concern; the
scatter here is driven by the fact that individual residuals oscillate
about the zero line, meaning ‘bonus’ area in parts of the profiles fits
is typically cancelled by ‘missing’ area in other parts of the same fit.
Indeed, some of the residuals show a significant amount of noise,
owing to the simplicity of the fits and the lack of consideration of
disc asymmetries (in principle, the observed profiles should have
projection effects accounted for). While we do not suggest that
there is a clear ‘best’ model, we note that the scatter in the residuals
is marginally smaller for model 3 than the others (∼0.11 versus

MNRAS 490, 96–113 (2019)



Origin of the galaxy H I size–mass relation 103

∼ 0.14 M� pc−2), but model 2 provides the best fit the most often
(46 times versus 28 and 36 for models 1 and 3, respectively).

Subjectively more interesting than the scatter in the residuals of
H I profiles is the scatter in the H I size–mass relation if one were
to take each or any of these models as representative of galaxies
in the real Universe. The size–mass relations derived from all three
models predict a slope of 0.5. In order for there to be a direct
mapping for a parameter pair to a displacement from the real
H I size–mass relation, the real relation would also need to have
the same slope (otherwise we would need to introduce a tertiary
mass dependence). Given how close the slope measured by W16 is
to 0.5, we assume for the purposes of calculations throughout this
paper (with the exception of Section 3.5.1) that 0.5 is indeed the true
slope (rather than 0.506).7 The intercept in the relation also requires
minor modification to reflect this. We choose to preserve the H I size
of galaxies exactly at an H I mass of 109 M� (the typical mass for
the observations and the simulations we use later). We therefore
treat the observed intercept as −3.239 (rather than −3.293).

With these assumptions in place, we show maps of how far
scattered galaxies would be from the observed H I size–mass
relation based on their parameters for each of our three models
in Fig. 5. To help navigate these maps, contours highlight where the
scatter values correspond to integer numbers of standard deviations.
Overlaid on these plots, we show the best-fitting parameter values
from our observational sample. For models 1 and 2, we show the
full range of allowable values of r̄b and extend the range in �0 out
to 17 M� pc−2; while we do not expect an abundance of galaxies
to have such a high value of �0, some of the fits to observations
almost reach this. For model 3, the observations guide the area of
parameter space that we plot. This necessitated reframing the way
the parameter space is visualized – i.e. not just r̄d versus �̄0,H, as
these properties are highly (anti-)correlated. Per equation (19), we
know �̄0,H exp(−r̄−1

d ) > 1 always. As it happens, the fits to all the
observations find values no higher than 1.3 for this quantity.

The main message of Fig. 5 is that effectively any galaxy that
follows any of our three models – with parameters in a physically
plausible and meaningful range – will be consistent with the
observed H I size–mass relation. As one would expect for a sample
size of ∼100, most of the observational points fall between the
±1σ contours, with a small number approaching ±2σ , and only a
hint that the odd galaxy would lie further away. Given that these
models generally fit the observations well, and that the distributions
of parameters associated with those fits are consistent with nominal
expectation (see Table 1), a tight relation between H I size and
H I mass is arguably a simple inevitability.

3.5.1 Inferred model size–mass relations

In order to get the actual normalization, scatter, and slope of the
predicted H I size–mass relation for each model, one needs to know
how the parameter space of each model is occupied (and whether
there are any implicit mass biases for parts of the parameter space). It
is unclear a priori what the distribution functions of these parameter
spaces should be. What we can do, though, is use the parameter fits
to the observed profiles in our sample, and assume that this sample
is representative of the underlying parameter space distributions.
While this assumption is not robust (see Section 2.1), it should

7Other works with different galaxy samples have found slopes slightly more
deviant from 0.5 (or 2.0, dependent on axis orientation) than this (e.g. Lelli
et al. 2016; Ponomareva, Verheijen & Bosma 2016).

be sufficiently accurate for us to make a relative comparison of
the derived size–mass relations from each model. In practice, this
means fitting the relations to the observed sample in several ways,
where rH I remains the same for a given galaxy in all cases, and all
that changes for the different models is that the empirical mH I is
replaced by the analytic value derived from the parameter fits.

In Table 2, we collate the H I size–mass relations for each model,
derived with the above method. To fit the size–mass relations, we
use the HYPER-FIT (Robotham & Obreschkow 2015) web interface8

with default settings. HYPER-FIT uses a Bayesian approach to find
the maximum likelihood of a linear model that describes multi-
dimensional data. We ignored any uncertainties on the individual
data when making the fits. We fit and include in Table 2 the size–
mass relation using the ‘true’ H I masses of the galaxies too (from
numerically integrating their observed surface density profiles). As
one would expect, this fit differs from W16 because (i) our sample
is only a subset of theirs, (ii) the code to make the fit is not the
same, and (iii) our mH I measurements for the Bluedisk galaxies
differs. All these H I size–mass relations and the parameter ranges
are plotted in Fig. 6. The slope, scatter, and normalization of all
the relations each overlap within � 2 standard deviations of their
HYPER-FIT Gaussian uncertainties.

The nominal conclusion we draw from this exercise is that all
our analytic models predict H I size–mass relations that are not just
qualitatively, but also quantitatively consistent with observations.
We should stress that this conclusion has been reached imperfectly
though; ideally the distributions of the model parameter spaces
should be derived or explored independently from the data we
compare to. This is left as a task for future work. In the meantime,
more information on the model parameter distributions is given in
Appendix A.

3.6 Comparison with simulations

For context, before addressing how well our analytic H I surface
density profiles are reflected in cosmological simulations, we should
first address how well those simulations reproduce the observed
H I size–mass relation. Recently, Diemer et al. (2019, see their
fig. 5) showed that the H I size–mass relation of TNG100 (and
TNG300) galaxies at z = 0 follows that of W16 but for a small
systematic offset and a slightly larger scatter. Similarly, Lutz et al.
(2018, see their fig. 3) previously showed that the original version of
DARK SAGE (Stevens et al. 2016) reproduced the observed H I size–
mass relation, almost precisely matching W16 but for a smaller
scatter. Because the H I structure of galaxies is grown numerically
in both TNG and DARK SAGE, and this structure is subject to
a large number of astrophysical processes relevant for galaxy
evolution, these simulations provide a far more comprehensive tool
for predicting and analysing the H I size–mass relation than simple
analytic models. To summarize their relations (and update in the
case of DARK SAGE), we provide their normalizations and scatters
in Table 3. We obtained the normalizations with a least-squares
linear fit in log–log space, assuming a slope of 0.5 (in accordance
with the analytic predictions). The scatter values are then standard
deviations of the residuals between the fitted and actual H I sizes
of the galaxies. As per Sections 2.2 and 2.3, for both TNG100 and
DARK SAGE, we only consider resolved galaxies with m∗ ≥ 109 M�
and mH I ≥ 108 M�.

8http://hyperfit.icrar.org/
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Figure 5. Maps of how far scattered from the best-fitting, observed H I size–mass relation galaxies would be, based on their location in parameter space for
each of our three analytic gas disc models. Solid, dashed, and dot–dashed contours represent where the galaxies lie 1σ , 2σ , and 3σ from the W16 relation,
respectively (where σ = 0.06 dex). The dotted contour represents a displacement of zero. Square and circles represent the best-fitting parameters to observed
H I profiles; circles indicate that that model gives a better fit than the other two for that particular galaxy.

Table 2. H I size–mass relation fits to our sample of observational data (Section 2.1), where log10 (rH I/kpc) =
μ log10 (mH I/M�) − ν ± σ . All fits have been made with HYPER-FIT (Robotham & Obreschkow 2015). The ‘data’
column is a direct fit to the observed rH I and mH I values. The ‘model’ columns use the mH I given by the best-fitting
model H I profile for each galaxy.

Data Model 1 Model 2 Model 3

Slope μ 0.4942 ± 0.0052 0.4940 ± 0.0040 0.4875 ± 0.0048 0.4927 ± 0.0043
Normalization ν 3.484 ± 0.048 3.492 ± 0.037 3.410 ± 0.044 3.425 ± 0.039
Scatter σ 0.0508 ± 0.0034 0.0385 ± 0.0026 0.0468 ± 0.0032 0.0413 ± 0.0028

As with the observations, to see how well our analytic H I profiles
reflect those predicted by the simulations, we fit each simulated
galaxy with each model. For TNG100 galaxies, we build one-
dimensional H I surface density profiles on a radial fixed grid of
bin width 2

30 rH I out to 1.6 rH I. Each analytic model is fitted to the
integrand �̄(r̄) r̄ profiles using a χ2 minimization. In the left-hand
panels of Fig. 7, we show residuals for these fits for ∼200 randomly
selected TNG100 galaxies with mH I ≥ 109 M�, along with running
percentiles for the full sample. DARK SAGE already has defined bins
within which �H I is produced for each galaxy. However, because
they increase in width exponentially with radius, fitting to these bins
as is would be ineffective (i.e. often non-convergent), as this would
weigh the entire fit to the galaxy centre, where the contribution
to overall H I mass is minimal. We therefore instead interpolate the
inherent �H I(r) profiles on to the same radial grid used for TNG100,
then fit each model to �̄(r̄) r̄ on that grid. The right-hand panels of
Fig. 7 give examples and running percentiles of the residuals for the
full DARK SAGE sample.

The H I profile fits to neither TNG100 nor DARK SAGE are as
close as they were for the observed sample; the typical scatter in the
residuals is a factor of ∼2 and ∼3 larger, respectively. Nevertheless,
all three analytic profiles generally reflect the shape of TNG100
profiles, with model 3 edging model 2 for the lowest scatter in the
residuals, and models 3 and 1 each giving twice the number of
lowest-χ2 fits than model 2. For DARK SAGE , model 3 most often
gives the best fit, but the overall scatter in the model-1 fits is lower.
At some level, the noisiness of the DARK SAGE residuals cannot be
helped by the way the discs are pre-constructed with discrete annuli.
What these plots hide is that the H I mass returned by passing the
fitted parameter values back through the model equations (using
the true rH I) are more faithful to the true values for DARK SAGE

than they are for TNG100. And for both simulations, the returned
mH I values for the model-3 fits are the least faithful, while those
from model 1 are the most accurate. See Appendix A for an overview
of the fitted profile parameters to both simulations.

3.6.1 Variation with galaxy type

An outstanding question surrounding the H I size–mass relation
is whether it is equally applicable to galaxies of all types.
That is, do quenched/bulge-dominated/dispersion-supported/gas-
poor galaxies have a common H I size–mass relation with star-
forming/disc-dominated/rotation-supported/gas-rich galaxies? Ob-
servational studies have typically lacked a sufficiently large and
simultaneously diverse enough sample of galaxies to address this
directly. Where we can more readily find insight is from our sample
of simulated galaxies. To achieve this, we rank order our TNG100
and DARK SAGE galaxies in three ways: (i) by their H I-to-stellar
mass ratio, (ii) by their stellar bulge-to-total mass ratio, and (iii)
by specific star formation rate (sSFR = SFR/m∗). Then we refit
the H I size–mass relation for bins in each property of fixed galaxy
number, maintaining an assumed slope of 0.5. In Fig. 8, we show
how the normalization and scatter of these fits vary. By binning
galaxies this way, rather than on absolute values of the same
properties, we avoid caveats surrounding systematic differences in
galaxy properties between the simulations and how properties like
bulge mass are defined.9

9Nevertheless, for completion, we note that SFRs for TNG100 galaxies
are calculated from the instantaneous rates of the gas cells, while DARK

SAGE uses time-averaged quantities across the previous snapshot interval in
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Figure 6. Top panel: H I size–mass data and fitted relation for our sample of
observations (Section 2.1); diamonds are individual galaxies, and the solid
line labelled ‘data’ gives the best fit to these data. The other lines are the
predicted H I size–mass relations for each of our analytic models, assuming
their parameter spaces to be occupied consistently with the H I profile
fits to the observations. Vertical bars show the 1σ (thick) and 2σ (thin)
scatter in each relation. Bottom 3 panels: parameters for the H I size–
mass relation fits. Vertical ticks show the best-fitting values, assumed
in the top panel. Horizontal bars show the uncertainty ranges for each
parameter (thick for one standard deviation, thin for two). These are listed in
Table 2.

Table 3. The normalization and scatter (standard deviation)
of the best-fitting H I size–mass relations from observations
and our simulations. All assume a fixed-slope relation of
log10 (rH I/kpc) = 0.5 log10 (mH I/M�) − ν ± σ . The values
for observations are taken initially from Wang et al. (2016),
but re Section 3.5, the normalization has been modified
to match the assumption that the slope is 0.5. The standard
deviation quoted for simulations is cleaned for outliers; an
initial standard deviation, σ all, is first calculated for all
galaxies, then σ is recalculated after removing galaxies lying
at >3σ all. Both DARK SAGE and TNG100 had σ all > 0.11.

Data source ν σ

Observations (W16) 3.540 0.060
TNG100 (Section 2.2) 3.516 0.095
DARK SAGE (Section 2.3) 3.603 0.051

For all three galaxy property variations, DARK SAGE finds a robust
normalization to the H I size–relation that only decreases when one
selects galaxies with the least gas/star formation activity and/or the
biggest bulge fraction (cf. Lutz et al. 2018). But the scatter steadily
increases as one moves towards that end of the spectrum, with a
difference of a factor of ∼6 between the two extremes. Although,
even for σ = 0.125 dex (a scatter of 33 per cent), the relation is
still objectively tight by astrophysical standards. TNG100 exhibits
similar behaviour when selecting on H I fraction or bulge fraction,
but also shows a steady decline in normalization. When selecting
on sSFR, the situation is less ordered for TNG100. While this
result highlights that the preciseness of a derived H I size–mass
relation is dependent on the underlying galaxy sample (i.e. whether
it is representative or biased), variations in the normalization are
generally smaller than the relation’s scatter. No galaxy selected on
the properties in Fig. 8 would therefore look like an outlier from the
representative H I size–mass relation.

In summary, while the �H I(r) profiles of galaxies produced by
cosmological simulations are not all precisely characterized by a
common analytic form, their behaviour is similar enough to the
three models presented in this section, such that all methods are
ultimately consistent in predicting a tight H I size–mass relation
with minimal wiggle room in its slope, normalization, and scatter,
in the absence of heavy biases.

4 E N V I RO N M E N TA L ST R I P P I N G O F G A S

In this section, we assess one potential method for disrupting the
H I profiles of galaxies, that being the environmental stripping of
gas. Taking the analytic profiles proposed in Section 3 as a starting
point, we make analytic predictions for how disc truncation might
impact the H I size–mass relation, if at all. While we motivate ram-
pressure stripping as a mechanism for disc truncation, the following
is agnostic to the motivation. Tidal stripping, for example, can also
contribute to the truncation of a disc. We do not assess how the
induced asymmetries from tides or ram pressure (the leading side
of the galaxy should experience greater pressure, e.g. Chung et al.
2009) might fold into the H I size–mass relation. We use results from
TNG100 and DARK SAGE as a means of testing and expanding
on our analytic work; both simulations have far more complete
considerations of galaxy environment (implicitly and explicitly,
respectively). Unfortunately, we have too few and insufficiently
diverse observational data to check this against the real Universe.

4.1 Disc truncation

When accounting for ram pressure on a cold-gas disc, gas is typically
regarded as being stripped below the threshold surface density
where the gravitational restoring force per unit area is insufficient
to counterbalance the ram pressure (Gunn & Gott 1972). Assuming
that the strength of gravitational restoration falls off with disc radius
(which is a given for gas disc profiles whose gradients are negative

the Millennium merger trees. DARK SAGE bulges include contributions from
mergers and instabilities but not the pseudo-bulge (see Stevens et al. 2016,
2018 for clarification). TNG100 stellar particles are classed as being in a

rotationally supported disc if they fulfil the criteria
∣∣∣log10

(
2Ktangential
Ugravitational

)∣∣∣ <

0.2 andKtangential > 2Kradial (similar to Mitchell et al. 2018, whereK andU
are kinetic and potential energy per unit mass, respectively). The remaining
stellar particles make up the bulge. This approach for TNG100 is sufficient
for defining relative morphologies, but not absolute.
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Figure 7. Residuals to analytic fits for our model profiles to ∼200 example galaxies with mH I ≥ 109 M� each from TNG100 and DARK SAGE. Running
percentiles use the full samples (with mH I ≥ 108 M�) and are built on a common grid. Plotting convention matches that of the bottom three panels of Fig. 4.
The individual DARK SAGE residuals follow their proper annular profiles, where the spacing of the annuli increases exponentially with radius; the combination
of this with rH I being fixed in the fits leads to excessive noisiness in the residuals around rH I. Further details are described in Section 3.6.

Figure 8. Variation in the best-fitting scatter and normalization of the
H I size–mass relation (of fixed slope μ = 0.5) for TNG100 and DARK

SAGE galaxies when selecting on H I fraction (top panel), bulge-to-total
ratio (middle panel), and specific star formation rate (bottom panel) for fixed
percentile ranges. In general, the more quenched, bulge-dominated, and/or
H I-poor a population of galaxies is, the lower the average H I size and wider
the distribution of H I sizes of that population at fixed H I mass. Horizontal
and vertical dashed lines intersect at the values for the full simulation samples
(given in Table 3).

or nil everywhere, true for all models considered in Section 3), the
H I profiles of satellites experiencing ram pressure should become
progressively truncated with time. Indeed, ram pressure has been
implemented in several semi-analytic models of galaxy formation
this way (Lanzoni et al. 2005; Tecce et al. 2010; Luo et al. 2016;
Stevens et al. 2016).

Assuming any of equations (8), (12), or (16), we can analytically
show how disc truncation would affect the H I size–mass relation of
galaxies. To find mH I for a galaxy with a truncated disc, we simply
need to integrate �H I(r) r out to the truncation radius, rt. rH I will
only change from its initial value (hereafter denote as rH I,init) if
rt is smaller than it. That is, rH I → min

(
rt , rH I,init

)
. The explicit

equations for all three model profiles undergoing truncation are
provided in Appendix B. Using these, in Fig. 9, we show tracks for
how galaxies would move in the H I size–mass plane as they are
truncated to continually smaller radii.

For models 1 and 2, there are three phases seen in each track in
Fig. 9. Starting from the top right, first is the horizontal part of the
track, where r̄t > 1 and thus mH I reduces even though rH I remains
the same. The second part of the track is (the only part that is) curved
and concave up, where r̄b ≤ r̄t ≤ 1. The third, diagonally straight
part of the track covers r̄t < r̄b. While the displacement of the
galaxies in the size–mass plane from the best-fitting relation of W16
changes during truncation – with some being scattered up/left, some
scattered down, and some returning to their original displacement
– the galaxies still remain generally within the observed scatter as
a natural consequence of the equations governing the tracks.

The truncation tracks for model 3 are qualitatively similar to the
other models but with some subtle differences. Naturally, they all
share the same initial horizontal path where r̄t > 1. The tracks then
have similar curvature for r̄t ≤ 1. But rather than reaching a point
where the gradient becomes fixed, it instead continues to decrease
(moving from right to left), going below 0.5, before becoming
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Figure 9. Tracks for example galaxies in the size–mass plane when their
H I discs become progressively truncated. Galaxies start in the top right of
each track, following the direction of the arrows, having been manually
assigned an initial rH I. The precise path depends on whether the discs
are initialized assuming model 1 (short dashes), model 2 (medium-length
dashes), or model 3 (longest dashes). Line colour differentiates parameter
choices for the models. Equations are provided in Appendix B.

concave down and reapproaching 0.5 asymptotically. As such, they
also do not diverge from the observed size–mass relation.

The conclusion we draw is that galaxies undergoing environmen-
tal stripping are generally not outliers in the H I size–mass relation.
What is more, this is not necessarily restricted by our decision to
model gas stripping as the progressive truncation of a satellite’s
disc. To back that up, let us consider now that ram pressure (or any
environmental process) not only leads to truncation, but also to an
overall suppression of gas surface density (see e.g. Cayatte et al.
1990). For models 1 and 2, if �H I(r) drops by a uniform fraction
across the disc, then �0 drops and r̄b increases (as rH I decreases but
rb does not). Similarly for model 3, �̄0,H would drop and r̄d would
rise. In all cases, the galaxy would still reside within the region of the
respective model’s parameter space assessed above, and therefore
the galaxy would still conform to the observed size–mass scatter.
Furthermore, any change in rs could simply be captured as a change
in r̄b or r̄d. The only way a galaxy would become an outlier in the
H I size–mass relation is for the functional form of its �H I(r) profile
to undergo a drastic change such that it no longer resembles any of
equations (8, 12, or 14).

4.2 Results from DARK SAGE

Let us now examine what effect galaxy environment has on the
H I size–mass relation in the DARK SAGE semi-analytic model.
DARK SAGE provides a trustworthy and logical numerical exper-
iment to test the picture described in Section 4.1 for two main
reasons. First, Stevens & Brown (2017) have already shown how
the model predicts that environment impacts galaxies’ H I content
similarly to what is observed at z = 0 (also see Stevens et al. 2018).
Secondly, cold-gas stripping is explicitly implemented in the model
by finding the innermost annulus of a satellite galaxy’s disc where
there is insufficient restoration from gravity to balance the ram
pressure it experiences as it travels through its parent halo’s hot gas
medium, and truncates the disc there. Because DARK SAGE is run on
a 500 h−1 Mpc box, there is plenty of statistical power in galaxies
across all environments.

Figure 10. Top panel: Best-fitting H I size–mass relation for all DARK

SAGE (Stevens et al. 2018) galaxies at z = 0 with m∗ ≥ 109 M� and mH I ≥
108 M� (see Table 3). This assumes a slope of 0.5, and is compared to the
observed relation of W16. The 1σ scatter in both relations is shown. Second
panel: Difference in the H I size of DARK SAGE central and satellite galaxies
relative to the fitted relation in the top panel. Running medians (thick curves)
and percentiles (thin curves) are given for both galaxy types (differentiated
by dash style and colour). The grey shaded region covers ± one standard
deviation from the fitted relation. The bottom panel compares the difference
in H I size for satellites in denoted halo mass bins [M ≡ log10 (M200c/M�)]
to the median for all satellites at the same H I mass. Thick and thin lines
still refer to the median and 16th/84th percentiles here, respectively. Longer
dashes in the lines correspond to lower halo masses. The lightly shaded
region in the bottom panel covers the 16th–84th percentile range for all
satellites (the same as the sandwiched range for satellites in the second
panel, provided for reference along with the horizontal dotted line at 0). All
percentiles for all panels are calculated in bins of minimum width 0.2 dex
in log10(mH I), each with a minimum of 20 galaxies.

In the top panel of Fig. 10, we show the best-fitting H I size–
mass relation for the Stevens et al. (2018) version of DARK SAGE.
This assumed a fixed slope of 0.5 (the normalization and scatter
are given in Table 3). We then break galaxies into centrals and
satellites in the middle panel, showing deviations (or lack thereof)
from the fitted relation for all galaxies on the y-axis. The distinction
between satellite and central provides a zeroth-order consideration
of environment, as only satellites are subject to stripping processes
(by construction, as described in Section 2.3). Almost no difference
is seen between centrals and satellites; only towards the resolution
limit (mH I � 108.5 M�) does anything become apparent, and that
should not be overanalysed. This is in contrast to their difference in
H I mass at fixed stellar mass, for example (see fig. 3 of Stevens &
Brown 2017). In fact, over most of the considered mass range, the
median lines for centrals and satellites both run close to the zero line
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(i.e. in line with the fitted relation for all galaxies), as do the 16th and
84th percentiles for both only deviate moderately from the edges of
the ±1σ range of the fit. Already this tells us that environment does
not have more than a secondary effect on H I size–mass relation (if
any), consistent with the derivations in Section 4.1.

To properly test this, we need to more quantitatively break
galaxies into different environments. This mandates that we define
a metric for environment. We choose to use the parent halo mass of
a galaxy for this. Observations suggest this is a more meaningful
metric than, for example, galaxy number density based on the Nth
nearest neighbour (e.g. Brown et al. 2017). The greater the halo
mass, the denser the typical intrahalo gas medium the satellites will
move through, and the faster they will move through it. Therefore,
the effects of stripping will be stronger on the satellites. This is
demonstrably true for DARK SAGE (surmisable from Stevens et al.
2016, 2018; Stevens & Brown 2017).

The bottom panel of Fig. 10 dissects DARK SAGE satellites by their
parent halo mass, showing any differences in rH I when controlled
for mH I. The running medians for each halo mass bin give a hint
of a trend that higher halo mass means slightly lower rH I for fixed
mH I > 108.5 M�. Specifically, the separation between the lowest
and highest halo mass bins reaches a maximum of ∼0.03 dex.
Similar behaviour to a lesser extent is seen for the upper percentiles.
Only for the lower percentiles is there a more noticeable separation,
but this becomes less clear for Mhalo � 1014 M�; at these masses,
the lower percentiles appear to be more convergent. In contrast to
the medians, the separation of these percentiles between the lowest
and highest halo mass bins exceeds 0.08 dex when mH I > 109 M�.

So how does this low-rH I population fit in with the picture of
Fig. 9? The short answer: these galaxies tend to be those with higher
central gas surface densities. This is exemplified by the �̄0 = 9
(black) and �̄0,H = 150 (cyan) curves in Fig. 9. To explain: this
population starts slightly on the lower side of the size–mass relation,
experiences a minimal horizontal evolution once truncation starts,
and then begins to move further down and away from the primary
relation. Physically, the H I gets reduced to that in the densest
allowable state. Higher average density implies lower r2

H I/mH I. The
further along the truncation tracks in Fig. 9 the galaxies move, the
stronger the ram pressure they must be feeling, and therefore the
more massive a halo they must reside in. Based on our results,
the corresponding halo masses required to move galaxies along the
concave-up parts of those tracks (until their gradients reach their
minimum) should continuously cover the range from � 1012 to
� 1014 M�. In haloes of greater mass, stripping must be sufficiently
strong to take galaxies beyond this, where the tracks have a constant
or slow-changing gradient (for models 1/2 and 3, respectively).
From here, further truncation from more-massive haloes has zero
or little effect on their displacement from the nominal H I size–mass
relation, and thus the lower percentiles in the lower panel of Fig. 10
become converged.

The overarching conclusion here is that galaxy environment
indeed (only) plays a second-order role in the H I size–mass relation.
We examine this concept further, under a different definition of
H I size, in Appendix C.

4.3 Results from TNG100

The works of Stevens et al. (2019) and Diemer et al. (2019)
have shown that the H I properties of galaxies in the TNG100
simulation at z = 0 broadly align with observations. This is true
when galaxies are broken into centrals and satellites, and further
when satellites are broken into bins of parent halo mass (Stevens

Figure 11. As for Fig. 10 but now assessing TNG100 galaxies at z = 0. Only
galaxies with m∗ ≥ 109 M� are included (following the sample in Stevens
et al. 2019). Line styles in the second panel indicate the post-processing
prescription used for the H I/H2 breakdown, which give effectively identical
results. Line styles in the bottom panel instead correspond to the range of
satellites’ host halo masses; for clarity, we only show the Gnedin & Draine
(2014) prescription here, as results from the other prescriptions are again
very similar.

et al. 2019). This allows us to conclude that the effects of ram-
pressure stripping in the simulation generally represent reality. This
is supported by the analysis of jellyfish galaxies in TNG by Yun
et al. (2019). With this in mind, we can use TNG100 as a second,
independent test of whether a galaxy’s environment plays any role
in where it sits in the H I size–mass plane. What makes this test
independent is that, because TNG100 is a hydrodynamic simulation,
hydrodynamical and gravitational effects like ram-pressure and tidal
stripping self-consistently result from interactions calculated at the
simulation’s smallest resolvable scale, meaning they do not need to
be modelled explicitly. The simulation is therefore agnostic a priori
(and predictive a posteriori) as to how satellite stripping functions on
a macroscopic scale, such as whether disc truncation is sufficiently
descriptive or not.

With Fig. 11, we repeat the process done for DARK SAGE in
the previous subsection. That is, we first plot the best-fitting fixed-
slope H I size–mass relation for TNG100 galaxies in the top panel,
then show potential deviations from this for satellites and centrals
separately in the middle panel, and finally show the secondary effect
of parent halo mass for satellites in the bottom panel (using the same
halo mass bins as in Stevens et al. 2019). In the middle panel, we
show results for three prescriptions for separating the neutral gas
in the simulation into its atomic and molecular components. The
results from all three are barely distinguishable, which is why we
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only show one prescription in the bottom panel (cf. the results
in Stevens et al. 2019). In fact, centrals and satellites are barely
distinguishable from each other either, in line with the results of
DARK SAGE.

TNG100 has another feature similar to DARK SAGE in that as one
approaches low H I masses (∼ 108 M�), the simulated galaxies obey
the H I size–mass relation less strictly, and centrals and satellites
start behaving slightly differently. Again, we heed caution in reading
too much into this, as rH I is not always well resolved for these
galaxies; while we have imposed a minimum rH I equal to the
minimum gravitational softening scale for gas in the simulation,
for rH I to be well resolved would require it to be at least several
times the softening scale (i.e. > 1 kpc).

As for the finer impact of environment, the median rH I of
TNG100 satellites at fixed mH I > 109 M� is practically independent
of halo mass. That in itself is consistent with the earlier results
in this section, but one notable difference in Fig. 11 is a drop
in 	 log10 (rH I) at mH I � 108.5 M� for satellites only in haloes of
M200c ≥ 1014 M�. This is seen most obviously in the median and
16th percentile lines. Although potentially interesting, this should
be taken with a grain of salt; in addition to the resolution limitations
mentioned above, TNG100 only has 14 haloes at these masses (and
it has zero with M200c > 1014.6 M�, which is why there is one mass
bin fewer in Fig. 11 than Fig. 10). There are also fewer total satellites
(that contribute to Fig. 11) in this halo mass bin (299) than the others.
Otherwise, there is once again a divide in the lower percentiles for
satellites in the lowest and highest halo mass bins, although this is
less clean that it was for DARK SAGE. We have confirmed that the
TNG100 galaxies with lower rH I values are those with the highest
�̄0 fits for models 1 and 2. Again then, any effect environment has
on the H I size–mass relation is secondary.

5 C O N C L U S I O N

That the H I size–mass relation is so tight is perhaps unsurprising.
Given the commonality of how H I is distributed in most galaxies,
and the tendency for H I to saturate due to the H I–H2 phase
transition, it is a natural consequence that rH I

∝∼ m0.5
H I with a small

scatter (Section 3; also see Wang et al. 2014, 2016).
We have demonstrated analytically and with two different

cosmological-simulation methods that satellite galaxies are no
different to centrals in their H I size–mass relation to first order
(Section 4). Effects such as ram-pressure stripping cause galaxies
to move predominantly down and along the relation; which specific
galaxies lie above or below the median (or best-fitting) relation
might change, but the scatter and median remain effectively un-
changed, with only the lower tail of the size distribution at fixed
mass dragged down by �0.1 dex.

The conclusions of this paper are applicable to galaxies with
m∗ ≥ 109 M� and mH I ≥ 108 M�, per our simulation mass limita-
tions. Given the mass range of the observations we have assessed
(mH I � 106.3 M�), these feasibly could extend to lower masses too.
We have demonstrated that selecting galaxies in a fixed bracket of
H I richness, morphology, or star formation activity does not change
the crux of our results, even if the exact parameters (most notably
the scatter) of the best-fitting H I size–mass relation to a sample of
galaxies is susceptible to biases in these properties (Section 3.6.1).
While we have focused on galaxies at z = 0, our conclusions should
be qualitatively applicable across a wide redshift range (although
there may be small systematics related to redshift that we have not
explored – see e.g. fig. 7 of Obreschkow et al. 2009). This gives

promise that an H I size can be accurately inferred from single-
dish or unresolved 21-cm detections. This is important for large
H I surveys like WALLABY10 and APERTIF,11 as most detected
galaxies will not have directly resolved H I sizes.

The robustness of the H I size–mass relation makes it an obvious
test for any model or simulation of galaxy evolution. It should be
difficult to get the slope wrong by more than a few per cent, the
scatter by more than a factor of ∼2, and the normalization wrong
by more than the scatter’s magnitude. Any large tension with the
observed H I size–mass relation should therefore provide motivation
to revise feedback models and/or assumptions about the interstellar
medium. In practice, we found no impact from the way the H I-to-
H2 ratio is treated in TNG100 (cf. Fig. 11 of this paper and fig. 5 of
Diemer et al. 2019). A similar conclusion can be drawn for DARK

SAGE (cf. Fig. 10 of this paper and fig. 3 of Lutz et al. 2018).
Even if feedback (or any process) were to generate a ‘hole’ in

the centre of an H I disc, unless that hole were sufficiently large to
qualify the galaxy as a ring galaxy (and, perhaps, even then), it would
still lie on the observed H I size–mass relation. This simply arises
from the multiplicative r term in the integrand used for calculating
a galaxy’s H I mass, meaning the central region only contributes a
small percentage to the integral.

There is nothing mystical about the H I size–mass relation. It is
inevitable.
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APPENDI X A: MODEL PARAMETER
D I S T R I BU T I O N F U N C T I O N S

As discussed in Section 3.5.1, a key part in understanding the
precise normalization and scatter of the H I size–mass relation
lies in the probability distributions of parameters that describe
galaxies’ H I surface density profiles. While we could not directly
predict these from analytic modelling, we were able to obtain
said distributions as an outcome from fitting our analytic model
�̄H I(r̄) r̄ profiles to observations (important percentiles were given
in Table 1). This same exercise can be done for DARK SAGE and
TNG100 galaxies too.

In Figs A1, A2, and A3, we present the two-dimensional
probability distribution functions of our three model parameter
spaces, based on the fits to each of our three data sources. These
figures also include the cumulative distribution functions of each
individual parameter. There are varying degrees of similarity and
difference in the observation and simulation parameter distributions.
For example, DARK SAGE has systematically higher �̄0 (for both
models 1 and 2) for its galaxies versus observations, which is in
line with DARK SAGE discs generally having too many baryons in
their centres (for discussion on this, see Stevens et al. 2016, 2018).
Given that the H I size–mass ratio is less sensitive to variations in
�̄0 for higher initial values of �̄0 (Fig. 2), it makes sense that DARK

SAGE has a smaller scatter in the H I size–mass relation than what
is observed (Table 3). Likewise, because TNG100 galaxies tend to
have low �̄0, it follows that the simulation has a larger scatter in the
H I size–mass relation. Similarly, the limited (extended) range of
model-3 �̄0,H fits for DARK SAGE (TNG100) also implies a smaller
(larger) scatter in the H I size–mass relation relative to observations.
Broadly speaking, there is less variation in the distributions of r̄b

and r̄d between the datasets.
Where Fig. A1 stands out from the others is in the fact that the

distribution of model-1 parameter fits from the simulations has a
corrugated structure. In other words, both DARK SAGE and TNG100
show common preferred values of r̄b at regular intervals. This is
merely a reflection of the underlying radial grid used to build the
�H I(r) profiles of the simulated galaxies (see Section 3.6); r̄b tends
to be close to one of the points on that grid. Evidently, there is a
preferable number of points on any given �H I(r) profile that are
deemed to be saturated, where small variations in r̄b between the
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Figure A1. Main panel: Two-dimensional distribution functions of model
1’s parameter space from the H I surface density profile fits to observations
and simulations (see Section 3). Pixels are coloured according the number
density of DARK SAGE and/or TNG100 galaxies; Ngal is the base-10
logarithm of the fraction of total galaxies per unit square on the axes.
Smaller pixels are used for DARK SAGE, as there are many more galaxies
than TNG100. Where galaxies from both simulations occupy the same area
of parameter space, the RGB colours from the two colour bars are summed.
The corrugated structure is an artefact of our �H I(r) profiles all using a
common grid of fixed bin width in r̄ . Circles are individual observations,
the same as in Fig. 5. Smaller panels: Cumulative distribution functions for
each model parameter from the same data. Key percentiles for observations
are summarized in Table 1.

outermost saturated point and the next give only subtle changes to
the goodness of fit to the rest of the profile. Model 2 differs in that
these small variations in r̄b have a more significant effect on the rest
of the profile, such that a better fit might be found with a different
(r̄b, �̄0) pair altogether. There is no analogy to be drawn here for
model 3, as its parameters are substantially different to models 1
and 2.

We emphasize that there are clear systematic differences in the
parameter space occupancies of our two simulations. Outside of
similarities in how neutral gas is broken into atomic and molecular
components, the way the interstellar media of galaxies is built and
modelled in the two simulations is vastly different. For TNG100,
the gas structure of galaxies (i) is fully three-dimensional, (ii)
self-consistently interacts with dark matter, (iii) is self-consistently
affected by feedback, and (iv) has a quantitative consideration of
temperature (which feeds into the phase decomposition). Instead,
DARK SAGE gas discs (i) are modelled in one dimension, (ii) are
built after the dark matter is evolved, (iii) only allow feedback to
affect the same disc annulus where stars formed, and (iv) only treat
the coldness of gas in a qualitative sense. Bearing all of this in mind,
it perhaps should not come as a surprise that there are systematic
differences in the typical one-dimensional H I structure of galaxies
predicted by these methods.

Figure A2. As per Fig. A1 but now for model 2’s parameter space.

Figure A3. As per Fig. A1 but now for model 3’s parameter space. The
thin, dot–dashed lines give example reference values of �̄0,H.
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A P P E N D I X B : T RU N C AT I O N E QUAT I O N S

Here we provide the equations relating the H I size and mass of
galaxies whose profiles have been truncated (see Section 4.1). For
model 1, after integrating �H I(r) r out to rt (using equation 8), one
obtains

mH I = 2π �0 r2
H I,init

[
r̄2

b

2
+ r̄s(r̄s + r̄b) (B1)

− r̄s(r̄s + r̄t) exp

(
r̄b − r̄t

r̄s

)]
.

This equation holds for r̄t > r̄b. Physically, a case where r̄t ≤ r̄b is
the same type of profile as one with r̄b = 1; i.e. �H I(r) is constant
until a radius where it drops to zero, meaning mH I = π�0r

2
H I =

π�0r
2
trunc.

An equivalent form of equation (B1) is also easily found for
model 2:

mH I = π �0 r2
H I,init

[
r̄2

b + √
π r̄s r̄b erf

(
r̄t − r̄b

r̄s

)
(B2)

+ r̄2
s − r̄2

s exp

(
− (r̄b − r̄t)2

r̄2
s

)]
,

where ‘erf’ is the Gauss error function.
The same procedure for model 3 gives

mH I = 2π �0,H r̄d r2
H I,init

[
5

3
B1 H1 r̄t (3a)

+ 25

9
(B2 H2 − B1 H3) r̄d

] [
− B2 B0

]−1

,

B0 ≡ exp

(
1.6

r̄d

)
− �0,H exp

(
0.6

r̄d

)
, (3b)

B1 ≡ exp

(
2.2 r̄t

r̄d

)
− exp

(
1.6 + 0.6 r̄t

r̄d

)
(3c)

+�0,H exp

(
0.6 + 0.6 r̄t

r̄d

)
,

B2 ≡ B3 − B0 , (3d)

B3 ≡ exp

(
1.6 r̄t

r̄d

)
, (3e)

H1 ≡ 2F1

(
0.375, 1; 1.375; B3 B−1

0

)
, (3f)

H2 ≡ 3F2

(
1, 0.375, 0.375; 1.375, 1.375; B−1

0

)
, (3g)

H3 ≡ 3F2

(
1, 0.375, 0.375; 1.375, 1.375; B3 B−1

0

)
, (3h)

where the pFq(α1, ..., αp; β1, ..., βq; γ ) terms are hypergeometric
functions (note that these are not regularized like equation 18).

APPENDIX C: AN ALTERNATIVE H I SIZE
MEASURE

It is a fair question to ask whether part of the tightness and ubiquity
of the H I size–mass relation comes from how rH I is defined. As

mentioned in Section 1, the definition �H I(rH I) ≡ �c = 1 M� pc−2

originates from the typical H I column density that radio observa-
tions have been sensitive to in the past (e.g. Warmels 1988; Broeils
& van Woerden 1994, where earlier works had to use �̄c > 1,
e.g. Bosma 1981b). While W16 (see their fig. 3) have shown that
varying �c by a factor of ∼3 has little impact on the interpretation of
the H I size–mass relation (cf. Begum et al. 2008, who use �̄c < 1),
there is no fundamental physical reason why an absolute threshold
surface density is the ‘right’ way to measure H I size in the first place.
In the optical community, for example, a more common practice is
to refer to the stellar size of a galaxy by its half-mass radius. If,
instead, we were also to use the radius enclosing half a galaxy’s
H I mass to define its H I size, would that significantly affect the
H I size–mass relation?

We formally define rhalf
H I through the expression

mH I

2
= 2π

∫ rhalf
H I

0
�H I(r) r dr . (C1)

If we use model 1 or 2 to solve this integral, because �H I(r) is
piecewise, we would need to separately consider the instances when
rhalf

H I ≤ rb and rhalf
H I > rb; in the former case, one trivially obtains

mH I = 2π �0[rhalf
H I ]2. Otherwise, the solution to this integral for any

of our models is essentially already given by equations (B1)–(B3),
where rt can be replaced with rhalf

H I .
The only real difference between the normal H I size–mass

relation and the mH I–rhalf
H I relation is that the latter is more sensitive

to the H I profile parameter values. Predictably, it should then have
a larger scatter (but not too much larger), a lower normalization,
and the same slope.

To test these expectations, we measure rhalf
H I from observed,

TNG100, and DARK SAGE galaxies, plotting them against mH I in
Fig. C1. One clear difference for the DARK SAGE galaxies in
Fig. C1 versus Fig. 10 is the upturn in the typical rhalf

H I values
of centrals at mH I � 109 M�. This is not a sign that the analytic
model breaks down; rather, what we are seeing here is a tendency
for low-mH I galaxies to have both low r̄b and low �0. This could
potentially just be a reflection of the fact that this mass scale is
at the simulation’s resolution limit; the median H I mass of DARK

SAGE galaxies occupying Millennium haloes of 100 particles is
∼ 109 M�. Our DARK SAGE galaxy sample with mH I � 109 M� is
therefore almost certainly not halo-mass complete. Current results
from these galaxies should thus be taken with a grain of salt, but they
should mature as DARK SAGE is transitioned to higher-resolution
simulations. TNG100 does not share the same feature. That is,
satellites and centrals follow the same power-law-like relation for
the full H I mass range (similar to the top panel of Fig. 11).

For DARK SAGE , satellites in low-mass haloes behave the same
as centrals in their upturn in rhalf

H I at low mH I (cf. the top and bottom
panels of Fig. C1). But for most satellites, i.e. those in haloes of
M200c � 1013 M�, there is no strong upturn. To explain this, we
need to understand how disc truncation would affect the mH I–rhalf

H I

relation. As pointed out in Section 4.1, a truncated model-1 or
-2 profile with r̄t < r̄b is indistinguishable from a non-truncated
profile with r̄b = 1. The higher the halo mass, the more truncated
the satellite’s H I is, therefore the larger the typical fitted r̄b is,
meaning the more common it is for rhalf

H I ≤ rb, where rhalf
H I ∝ m0.5

H I .
Also, because many of these satellites will have had more H I before
infall, they are less likely to be biased towards low �0 like DARK

SAGE centrals of the same current mass; in principle, unlike r̄b,
truncation should not affect the best-fitting �0 to �H I(r) [or, in
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Figure C1. Similar to Figs 10 and 11 (for the right- and left-hand panels, respectively) but now the classical H I radius has been replaced with the H I half-mass
radius. For simplicity, we only show the GD14 prescription for the H I/H2 breakdown for TNG100 (the other prescriptions give effectively the same results).
Measurements of individual galaxies from our observed sample are overlaid in the top panels. Thin, dot–dashed lines in the top panel give the best-fitting
linear relation to the simulated galaxies, assuming a slope of 0.5. Systematic differences seen between the simulations and observations are consistent with the
standard H I size–mass relation results.

this case, �̄H I(r̄) r̄]. Both effects mean satellites at low mH I should
typically have lower rhalf

H I than centrals.
The effect of halo mass on rhalf

H I is otherwise the opposite to
how it was for rH I. That is, at fixed mH I ∈ [109, 1010] M�, satellites
in higher halo masses have slightly higher rhalf

H I on average. This
can again be explained in terms of �0. DARK SAGE satellites in
higher-mass haloes tend to have slightly lower � 0; the medians
for those in haloes of M200c < 1012 M� and > 1014 M� are 10 and
9 M� pc−2, respectively. While there is still a tendency for lower �0

to also mean higher r̄b, the specific value of r̄b is less important, as
the vast majority of satellites have rhalf

H I < rb anyway. What matters
is �0 = 〈

�H I(< rhalf
H I )

〉
, and a higher average density guarantees

lower rhalf
H I at fixed mH I by definition.

One reason why DARK SAGE satellites have lower �0 in
higher halo masses could be to do with coherent accretion. Any
gas that satellite galaxies accrete in DARK SAGE is assumed to
carry a constant specific-angular-momentum vector, fixed at infall.
Incoherent accretion leads to the build-up of more gas in the galaxy’s
centre; ergo, coherent accretion promotes lower �0. Satellites in
more-massive haloes are likely to have been satellites for longer,
and are therefore likely to have had more of their gas accreted
coherently. Because this is a feature of the model put in by hand,

it is not obvious the extent to which the subtle impact environment
has in the bottom panel of Fig. C1 should be reflected in reality.

The other opposite between the bottom panel of Fig. 10 and
bottom-right panel of Fig. C1 is that the effect of environment is
more strongly seen in the lower percentiles of the former but the
upper percentiles of the latter. While the movement of galaxies in
the classical H I size–mass plane away from the main relation was
most significant for those with high �0, it is the low-�0 galaxies
that are most sensitive movers in the mH I–rhalf

H I plane.
For TNG100, we note that any potential variation in satellites’

rhalf
H I with halo mass is even less evident than that seen for rH I in the

bottom panel Fig. 11. Consistent with expectation, the scatter in the
mH I–rhalf

H I relation for TNG100 is larger than for rH I, with a typical
half-range between the 16th and 84th percentiles of 0.13 dex. For
DARK SAGE galaxies with mH I > 109 M�, the same half-range is
� 0.05 dex.

This exercise highlights that the universality and tightness of the
H I size–mass relation is relatively insensitive to the definition of
H I size. It is a truly physical relation.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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