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S U M M A R Y
In this paper, we model the crack growth in an elastic medium constituted by two welded
half-spaces with different rigidities. We implement a 2-D boundary element method (BEM)
computing shear and normal tractions acting on the crack and the slip accommodating stress
drop from an arbitrary initial configuration to a final frictional configuration. The direction of
crack growth follows the criterion of maximum energy release (strain and gravitational energy)
provided that it overcomes the surface fracture energy and the work dissipated by friction. The
energetic criterion leads to estimates of the dip angle of seismic faults depending on the
amplitude of the initial stress and it includes the classical Anderson’s results as a particular
case. Moreover, in presence of a sharp rigidity contrast, the direction of crack growth is
strongly deflected. The model simulates non-planar, complex, fault geometries, as in the case
of detachment and listric faults and it explains the increase of dip angles for both normal and
reverse faults, when they enter soft sedimentary layers.
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1 I N T RO D U C T I O N

The faulting mechanism in the Earth’s crust is extremely multifaceted: some faults can be represented with a good approximation as planes,
but in many cases this approximation is not sufficient as the fault surfaces may present bends and inflections and even bifurcations that generate
complex geometries. A fault geometry is strictly connected with the peculiar geological setting of the area that surrounds it (Bürgmann &
Dresen 2008; Copley 2017) and with the presence of fluids in the subsoil (Logan 1992). Ferrari & Bonafede (2012), use the asymptotic
theory of generalized Cauchy kernel equations to study the singular behaviour of a strike-slip crack crossing the welded interface between
two different media. They show that, in order to get a non-singular stress after faulting, the crack surface must change abruptly its dip across
the interface or it may bifurcate to provide wedge shaped structures toward the surface. Unfortunately, a similar method cannot be easily
extended to dip-slip cracks. The Anderson’s theory (Anderson 1942) assumes that normal and reverse faults are generated, respectively, in
extensive and compressive environments in which one of the principal stress axes is vertical. It also assumes that sliding occurs on optimally
oriented fault planes where the modified Coulomb’s fracture criterion

|τ | =
{

− fs (σn + p) , if σn < 0
0, if σn ≥ 0

(1)

(e.g. Jaeger & Cook 1976) is first fulfilled.
In eq. (1), τ and σn are, respectively, the shear and normal stresses acting on the fault plane (σn < 0 if compressive), fs is the static

friction coefficient of the fault plane, p is pore pressure and the cohesion term is neglected. The modified Coulomb’s criterion provides the
minimal condition that allows fault sliding and the Anderson’s theory assumes that the optimal dip angle is the one for which sliding occurs
with the lowest shear traction acting on the fault or, for a 2-D state of stress, with the maximum Coulomb stress σc = |τ | + fs(σn + p) (e.g.
Turcotte & Schubert 2002).

Most faults in the Earth’s crust are in rough accordance with the Anderson’s theory which predicts that normal and reverse faults have
dip angles greater and smaller than 45◦, respectively, as it is often observed (e.g. Jackson 1987; Copley 2017) even if a considerable number
of faults have non-Andersonian geometries (e.g. Célérier 2008). Fractures near very shallow dipping faults can give rise to decollements (or
detachments) generating large horizontal displacements of overlying rock sheets. These almost horizontal faults cannot be described by the
Anderson’s theory and a long debate has risen to explain the related mechanism (Voight 1976). Hubbert & Rubey (1959) proposed that in
some conditions the pore pressure can be comparable to the lithostatic pressure (due for example to sediment compaction or dehydration
reactions in metamorphism), thus allowing to fulfill the Coulomb’s criterion even for very shallow dipping faults. However, this mechanism
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does not work for low dipping normal faults because in this case the maximum principal stress is vertical and the pore pressure cannot be
greater than the horizontal stress (Scholz 2002) in order to avoid hydrofracture.

Other examples of non-Andersonian fault geometries are listric faults (very common curved fault surfaces whose dip angle progressively
decreases with depth generating an upward concave shape), low angle normal faults (Wernicke 1995, and reference therein) and high-angle
reverse faults. The latter ones, as reviewed by Sibson (1990), could be explained as reactivation of pre-existing normal faults. At the same time
in some cases low angle normal faults can be interpreted as the reactivation of pre-existing thrusts (Chiarabba & Amato 2003). Alternatively,
Forsyth (1992) sustains that the formation of low angle normal faults is related to stress inhomogeneities that, within the lithosphere, could
play an important tectonic role in accommodating extension. Heterogeneities (or anisotropy) of material properties could provide an easier
pathway for extension than high-angle faulting. Following this suggestion, the present model aims to answer to the following questions: (i)
Can non-Andersonian fault geometries be favoured by the presence of rigidity contrasts within the crust? and (ii) Is it possible to devise a
method to predict the growth direction on the basis of elastic parameters? The present model is devoted to giving a quantitative answer to
these questions.

In order to investigate the effect of rigidity contrasts on the geometry of dip-slip faults, we here present a 2-D crack model (plane strain)
for quasi-static fault growth following the criterion of ‘maximum energy release’ or minimum final energy (e.g. Göldner & Sih 1977). The
latter one is used in modelling the direction of crack surface extension (or propagation) as an alternative to the one perpendicular to the
maximum tensile stress (e.g. Erdogan & Sih 1963; Gunnars et al. 1997). As in Selcuk et al. (1994), we assume the presence of a single
interface where the elastic modulus of rigidity changes suddenly. Accordingly, the present model can be used to interpret locally complex
geometries of faults in a heterogeneous crust.

Several models have been proposed to represent fault growth or to interpret fault geometry complexities either assuming that preferred
directions are the ones maximizing the Coulomb stress (e.g. Olson & Cooke 2005; Pollard & Fletcher 2005), or optimizing the work budget
even with support of experimental approaches (Yagupsky et al. 2014; McBeck et al., 2017, 2018). Some authors, instead, use strain energy
density to predict preferred fault directions (e.g. Du & Aydin 1995; Okubo & Schultz 2005; Olson & Cooke 2005). Mohapatra & Johnson
(1998) showed that the formation of listric faults on pre-existing thrust ramps can be energetically favoured by means of a finite element
model based on the potential energy minimization approach (Melosh & William 1989), in agreement with the present model.

The fault growth, following energetic criteria, considers the creation of new fault surface without requiring the reactivation of pre-existing
fault planes unlike models based on the Coulomb criterion (1). In particular the Anderson’s theory assumes that pre-existing faults with all
possible orientations are present before failure (Jaeger & Cook 1976), as the frictional shear strength − fs(σn + p) is a property of the surfaces
(e.g. Scholz 2002) and a pre-existing fault plane is necessary in order to apply (1).

The present model is based on the boundary element method (BEM) and it allows us to represent crack growth through iterative addition
of elements (e.g. Kame & Yamashita 1999; Gupta 2011) following a similar procedure to the one used by Maccaferri et al. (2010) when
studying the propagation of dykes in proximity of an elastic discontinuity. We deploy a procedure representing a tectonic shear fault surface
including the effect of residual frictional traction on the rupture surface after its formation. Friction is described as the product of a dynamic
friction coefficient fd times the effective normal stress, following the idea from Coulomb’s time that on a pre-existing surface ‘a static
friction coefficient must be exceeded for slip to commence’, while during sliding ‘slip is resisted by a dynamic friction’ (Scholz 2002). As
in Kattenhorn & Pollard (1999), Kanamori & Heaton (2013) and McBeck et al. (2017) we consider a constant frictional resistance during
sliding. Rate and state dependent friction laws account for a variable dynamic friction coefficient. We here neglect these effects on dynamic
friction which account for a small percentage change per order of magnitude change in the slip rate (e.g. Scholz 2002). We will also show
that our results are not affected by small variations of the dynamic friction coefficient.

1.1 Single dislocation model

The crack model to be solved consists in finding the Burger’s vectors of dislocations given an assigned initial stress field S0
i j and a residual

stress assuming a plane strain configuration. The initial stress field is assumed lithostatic (Pollard & Fletcher 2005, p. 229), plus an additional
tectonic loading acting along the x-axis

S0
zz = − ρgz; S0

xx = − ρgz + �σ ; S0
xz = 0 (Initial stress field) . (2)

In eq. (2), ρ is the rock density and g is the gravity acceleration, while �σ represents the tectonic loading (�σ < 0 represents a
compressive tectonic loading), which gives rise to a shear component �σ‖ and a normal component �σ⊥ of traction acting on the fault
surface. In the shallow low rigidity crust a laterally confined sedimentary basin can be considered with rigid vertical boundaries. In this
case, as an alternative to a lithostatic stress field, a uniaxial initial strain state can be assumed. This alternative choice provides an initial
horizontal component of the stress field S0

xx = − ν

1−ν
ρgz + �σ where a tensile deviatoric stress of mechanical origin is present, which can

favour the growth of a normal fault, despite a low tectonic stress �σ there. However, even in presence of sedimentation, the net horizontal
deviatoric stress is expected to vanish after a typical geothermal gradient is restablished, due to the effect of related compressive thermal
stresses (Turcotte & Schubert 2002), so we keep the assumption of eq. (2).

We can therefore compute the tectonic shear stress drop τ that must be released by the dislocation at its centre (xc, zc) as τ = τ 0 − τ 1.
With τ 0 and τ 1 we indicate, respectively, the shear traction acting on the fault plane before and after the dislocation takes place. If we assume
that the crack releases all the shear stress induced by the tectonic stress (τ 1 = 0), we can express the stress drop as τ = τ 0 = �σ‖. Modelling
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Figure 1. Scheme of variables and coordinates of a dislocation element. The top, centre and bottom coordinates are, respectively, (x1, z1), (xc, zc), (x2, z2).
The dip angle is δ and the Burger’s vector magnitude is indicated as b. We also represent the reference (x1, z1) system with z1 parallel to the dislocation, that
is obtained performed rotating the initial reference system (x, z) by an angle θ = π

2 − δ.

fault friction requires the computation of the normal stress acting on the fault plane, σn = −ρgz + �σ⊥ that corresponds to the normal
stress induced by the lithostatic loading, plus the normal traction induced by the tectonic stress on the fault plane. In case of a 2-D dip-slip
dislocation (Fig. 1) with a dip angle δ, �σ⊥ and �σ‖ can be written as:

� σ‖ = − 1

2
�σ sin 2δ (3)

� σ⊥ = 1

2
�σ (1 − cos 2δ) (4)

According to the Coulomb’s criterion, fault slip occurs if∣∣∣∣−1

2
�σ sin 2δ

∣∣∣∣ = fs

[
ρgz − p − 1

2
�σ (1 − cos 2δ)

]
. (5)

For a given dip-angle we can find the expression for the minimum magnitude of the tectonic stress that is able to generate slip as:

�σ = 2 fs (ρgz − p)

fs [1 − cos 2δ] ± sin 2δ
. (6)

The Anderson’s theory assumes that fault slip occurs over a plane where |�σ | is minimum, whose angle can be found from the following
equation, where the positive and negative determinations are, respectively, the solutions for reverse and normal faults.

d�σ

dδ
= 0 → tan 2δ = ± 1

fs
(Anderson’s theory) . (7)

The energy release due to the dislocation in a homogeneous space can be written as (Scholz 2002)

�E = 1

2

∫



(
τ 0 + τ 1

)
bd
, (8)

where 
 is the dislocation surface and b is the magnitude of the displacement discontinuity (Burger’s vector). Since we are not considering
opening components of the Burger’s vector, b is the slip magnitude. It must be stressed that eq. (8) provides the energy difference between
the static initial state (before any motion started) and the final static state (after any motion has damped out); in particular, eq. (8) expresses
the total energy release, including the deformation (or elastic) energy and the gravitational potential energy (e.g. Kostrov 1974; Dahlen &
Tromp 1998; Kanamori & Heaton 2013). The total energy release �E is spent to provide the fracture energy (necessary to create the fracture
surface by breaking molecular bonds), to produce heat (through frictional processes related to surface slip) and to generate seismic waves.

In order to take into account the residual friction τ 1 = − fd (σn + p), the shear stress drop must be redefined as in this case the dislocation
does not release all the tectonic stress and τ = τ 0 + fd (σn + p) (Kattenhorn & Pollard 1999), where fd is the dynamic friction coefficient.
The magnitude of the Burger’s vector or slip b = |b| is expressed in terms of the stress drop as

b = G f τ with G f = π (λ + 2μ)

4μ (λ + μ)
W (9)

(Stein & Wysession 2003), where W is the width of the fault in the dip direction while μ and λ are Lamè parameters and Gf is termed
‘geometrical factor’. Then �E can be expressed as:

�E = G f

2

∫



(
τ 02 − τ 12

)
d


= G f

2

∫



{
(�σ sin 2δ)2 − f 2

d

[
ρgz − p − 1

2 �σ (1 − cos 2δ)
]2

}
d
.

(10)
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In this section, we assume a hydrostatic pore pressure p = ρ f gz, with ρ f < ρ density of the fluid (we shall also consider near lithostatic
pore pressure later). The dislocation surface 
 can be rewritten per unit of length L along strike and in terms of the width W. In order to
perform the integration, it is useful to express a width element in terms of depth z as �W = �z/ sin δ and then, following eq. 10 integrate
along z from z1 = zC − 1

2 W sin δ to z2 = zC + 1
2 W sin δ (Fig. 1), where zC is the dislocation centre

�E = G f L

2

∫ z2

z1

{[
−1

2
�σ sin (2δ)

]2

− f 2
d

[(
ρ − ρ f

)
gz − 1

2
�σ (1 − cos (2δ))

]2
}

· 1

sin (δ)
dz

= G f L

2

[
�σ 2 sin 2δ cos 2δ W − f 2

d

(
ρ − ρ f

)2
g2W 3

12

sin 2δ − f 2
d

(
ρ − ρ f

)2
g2z2

c W − f 2
d �σ 2W sin 4δ + 2

(
ρ − ρ f

)
gW�σ f 2

d zC sin 2δ
]
. (11)

It is worth to notice that the condition �E = 0, leads to the Anderson’s prediction with fd replacing fs (eq. 6). This sounds reasonable
because the Coulomb criterion used in the Anderson theory provides a condition for sliding on a pre-existing surface to start, while a finite
energy release is accomplished only during the development of a finite sliding (b in eq. 8). Now we can find the dip angle δ that maximizes
the energy release by imposing d�E

dδ
= 0 from which we obtain (eq. 12):

sin2δ = f 2
d

(
ρ − ρ f

)2
g2W 2 − 24

(
ρ − ρ f

)
g�σ f 2

d zC − 12�σ 2

−24�σ 2
(
1 + f 2

d

) . (12)

In order to allow the fault surface growth and consequently the fault sliding, according to the energetic criterion, we assume that the
energy release per unit length must be greater than the sum of the work E f done against friction and the fracture energy ET(W) (per unit
length), requested to create a fault surface L × W, that is �E > E f + ET . In particular:

1. Ef which is released from the fault as thermal energy (e.g. Mulargia et al. 2004) is given by

E f (W ) = − fd (σn + p) W b (13)

Since the friction work cannot be negative, then in eq. (13) E f = 0 for σn + p > 0.

1. ET depends on the Poisson’s modulus ν and on the specific surface fracture energy γ s that is ET (W ) = 2(1 − ν2)γs W (Griffith 1921)
with γ s ≈ 1–10 J m–2 for most materials, but for some earthquakes it can reach much higher values, up to 106 J m–2 (Scholz 2002; Thio 2009,
p. 30).

In Figs 2(a) and (b) we plot the energy release and the energy dissipated against friction per unit of length obtained for different dip
angles, respectively for a reverse (�σ < 0) and a normal (�σ > 0) fault. Imposing the same magnitude of tectonic stress |�σ | and using the
same dynamic friction coefficient fd = 0.3, a normal fault produces a much greater energy release �E with respect to a reverse fault. In fact,
in the case of a normal fault, the extensive tectonic stress leads to a lower τ 1 (i.e. to a greater stress drop τ ). Due to the lower |σn|, an extensive
tectonic environment also produces a lower dissipation of the friction energy E f with respect to a compressive tectonic environment. In case
of a normal fault with high dip angle, the tectonic stress can be so high to make σn positive at shallow depth leading to the vanishing of the
friction effects even for angles close to those maximizing �E (Fig. 2b). In Figs 2(c) and (d), we plot �E computed with different tectonic
loading magnitudes |�σ |, respectively, for a reverse and normal fault. Curves with �E always negative indicate that the tectonic stress is
not able to allow the sliding of the fault regardless of its dip angle. A comparison between the Anderson’s criterion and the energy criterion
can be made by considering fs = fd . We recall that, the direction of the crack growth, according to the energetic criterion, depends on the
total tectonic stress acting on the fault plane which may be greater than the minimum tectonic stress capable of generating slip according to
the Anderson’s theory. In this case, it is worth to note that for both reverse and normal faults, as the energy release increases, its maximum
is reached for dip angles that deviate most from the Anderson’s solution. This means that the maximum energy release criterion provides,
respectively, greater and smaller dip angles for reverse and normal faults with respect to the Anderson’s condition (eq. 7), while we recall
that the same solution is obtained only if �E → 0 with fd replacing fs. It is worth to notice that the difference between �E and E f for both
normal and reverse faults decreases with a lowering of �E (Figs 2a and b) and if �E → 0 then E f > �E ; this means that the dip angle
provided by the Anderson’s criterion is energetically unable to produce fault sliding.

2 M O D E L

2.1 The stress computation

In order to model the crack growth, we firstly need to set up a suitable representation of the stress field generated by a 2-D fault, arbitrarily
placed in a medium consisting of two welded half-spaces, each of which with assigned elastic parameters (layer l = 1, in z > 0, is assumed to
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Figure 2. Energy release (solid lines) per unit length, �E, as a function of the dip angle in case of reverse (a) and normal faults (b). The two cases shown have
|�σ | = 100 and 130 MPa and fd = 0.3. The dashed lines are frictionally dissipated energy per unit length, E f , as functions of the dip angle. In bottom panels
�E(δ) is plotted for different |�σ | ranging from 25 to 130 MPa. Yellow dots indicate the maximum of the curves for both reverse (c) and normal (d) faults.
The vertical red lines represent the Anderson’s solution for the dip angle computed with a fs = 0.3. A fault width W = 1 km and zc = 5 km are assumed, for
each fault mechanism. The rock and pore fluid densities are 2800 and 1000 kg m–3, respectively.

lay below layer l = 2, in z < 0). As we represent fault elements as closed Volterra dislocations (with uniform b), we firstly need to compute the
stress field generated in the two half-spaces by elementary dislocations. For this purpose, we use analytic solutions for semi-infinite vertically
dipping edge and tensile dislocations in a layered medium provided by Rivalta et al. (2002) and Bonafede & Rivalta (1999). They distinguish
two different cases: in the first one the dislocation surface is entirely embedded in one half-space and in the second one the dislocation crosses
the elastic discontinuity interface. This approach is functional to our scope since in order to represent the crack growth we must be able to
model a fault that is initially embedded in one half-space, but during its growth it may cross the elastic discontinuity surface.

We firstly introduce the stress tensors sT
i j due to a semi-infinite, vertically dipping tensile (apex ‘T’, equations (31, 32, 35 and 37) in

Bonafede & Rivalta 1999). We also introduce s E
i j for a vertical edge dislocation surface (apex ‘E’, equations (27, 28, 31 and 33) in Rivalta

et al. 2002). Both kinds of dislocation {x = 0, z > z1} have unitary Burger’s vector. In the following equations the stress tensor si j for both
kinds of dislocation is computed in each layer l as the difference between the stress tensor solution in a homogeneous unbounded medium
(hl

i j ) with the same elastic properties of layer ‘l’ and the Galerkin component (gl
i j ) computed in the half-space ‘l’, that is necessary to provide

the continuity of displacements and tractions across a welded interface. In our notation indexes ‘i’ and ‘j’ represent the 2-D coordinates (x,
z).

sT
i j (x, z; z1) =

{
hT,1

i j (x, z; z1) − gT,1
i j (x, z; z1) , z > 0

hT,2
i j (x, z; z1) − gT,2

i j (x, z; z1) , z < 0
(14)

s E
i j (x, z; z1) =

{
hE,1

i j (x, z; z1) − gE,1
i j (x, z; z1) , z > 0

hE,2
i j (x, z; z1) − gE,2

i j (x, z; z1) , z < 0.
(15)
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For a generic semi-infinite inclined dip-slip dislocation with top placed in x = x1 	=0 and dip angle δ, we need to translate eqs (14) and
(15) by x → x − x1 (Fig. 1) and to combine them as follows (e.g. Maccaferri et al. 2010) in order to obtain a dip-slip dislocation with dip
angle δ and unit Burger’s vector:

si j (x, z; x1, z1, δ) = − cos δsT
i j (x, z; x1, z1) + sin δs E

i j (x, z; x1, z1) . (16)

In order to find the stress field s(closed)
i j due to a unitary Burger’s vector for a closed dip-slip dislocation with its center point in (xc, zc)

(Fig. 1), we need to subtract from eq. (16) the solution of a semi-infinite dislocation with top in (x2, z2) having the same dip angle δ:

s(closed)
i j (x, z; xc, zc, δ) = si j (x, z; x1, z1, δ) − si j (x, z; x2, z2, δ) . (17)

From eq. (17) and performing a rotation of the reference frame by θ = π

2 − δ, which brings (x, z) into (x1, z1) as sketched in Fig. 1,
we can then compute the shear (I = s(closed)

x1z1 ) and the normal (Y = s(closed)
x1x1 ) tractions acting on an oriented dislocation plane with dip angle

δ. Finally, we obtain the stress field σi j generated by the closed dip-slip dislocation by multiplying s(closed)
i j by b, that is defined from here on

out as b = ±|b|, where b is the Burger’s vector or slip

σi j (x, z; xc, zc, δ) = b · s(closed)
i j (x, z; xc, zc, δ) . (18)

It is worth to notice that according to our notation, if 0◦ ≤ δ ≤ 90◦, b is positive for a reverse fault and negative for a normal fault. As
an example, Fig. 3 shows the resulting shear and normal stress components and the Coulomb failure function (CFF) for a dip-slip dislocation
with δ = 30◦, fs = 0.4 and b = 1 m embedded in a medium containing an elastic discontinuity. In the half-space where the dislocation takes
place, the stress components have similar pattern as those obtained in a homogeneous half-space (Figs 3a, b and c), with the exception of the
areas closest to the material discontinuity. If the rigidity in the upper half-space (which does not contain the dislocation) is lower, the stress
components have a much lower intensity, due to the step-like decrease of the rigidity modulus (Figs 3d, e and f). Otherwise if the rigidity of
the upper half-space is greater, there stress lobes are wider with respect to the ones in the lower half-space, due to the step-like increase of the
rigidity modulus (Figs 3g, h and i).

2.2 The boundary element model

Once we know the shear stress I and the normal stress Y provided by a unitary slip, we can find the magnitude of the Burger’s vector required
by the crack to generate an assigned shear stress drop by imposing bI = −τ , where τ is the shear stress drop on the fault plane.

According to the boundary element technique, we model a fault as a crack split up into N interacting closed dislocation elements. Then
we can find the slip on each elementary dislocation (b = bk, k = 1,. . . , N) imposing that equilibrium of stresses holds at the mid-point of the
dislocation element (Maccaferri et al. 2010). In absence of friction this means that we have to solve the following N × N linear system.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑N
k = 1 bk I1k = −τ 0

1

. . .

. . .∑N
k = 1 bk INk = − τ 0

N

. (19)

In system (19) the terms τ 0
m (m = 1,. . . , N) represent the shear tractions of tectonic origin released at the midpoint of the mth dislocation

element, while Imk are called ‘influence coefficients’. They represent the shear stresses computed at the midpoint of the mth dislocation due
to the kth dislocation with unitary Burger’s vector, also accounting for self shear-stress generated by each dislocation element on its surface
(when m = k). It is worth to notice that, differently from Maccaferri et al. (2010) who represent a dike as a crack with a 2N x 2N linear system,
we do not need to impose the equilibrium of normal stresses of the crack since we are assuming that the Burger’s vectors (i) have no normal
component and (ii) in absence of friction the environmental normal stress σn + p has no influence on fault equilibrium; hence the problem
to be solved is a system of N equations with N unknowns (system 19).

2.2.1 Including the fault friction

If we consider as final traction on the fault the dynamic frictional resistance, the shear stress of tectonic origin is not completely released as it
is in (19) and for a crack represented by N different dislocation elements, we have to generalize the equilibrium sets of equation as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑N
k = 1 bk (I1k + fd Y1k) = − [

τ 0
1 + fd (σn1 + p1)

]
. . .

. . .∑N
k = 1 bk (INk + fd YNk) = − [

τ 0
N + fd (σnN + pN )

], (20)

where σnm , pm m = 1,..N are the environmental normal stress components and pore pressure on the m-th dislocation. Compared to the Rivalta
et al. (2002) paper, here the z-axis origin is translated in order to have the elastic discontinuity at a vertical coordinate z0 > 0 where the
lithostatic pressure (evaluated starting from z = 0) has values pertinent to typical seismogenic depths (a few km). In (20) the frictional
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Figure 3. Induced normal (a, d, g) and shear (b, e, h) stress and Coulomb failure function (c, f, i), CFF = shear stress + fsnormal stress generated by a reverse
dislocation (yellow segment) with b = 1 m, fs = 0.4 and δ = 30◦ in a layered medium. The green dashed line represents the elastic discontinuity. CFF is
computed considering a receiving fault with the same dip as the dislocation source. The homogeneous medium (a, b and c) has a rigidity μ = 30 GPa and a
Poisson’s modulus ν = 0.25. Indicating with μ1 the rigidity of the deeper layer and μ2 the rigidy of the shallower one, in panels d, e and f μ1 = 30 GPa
and μ2 = 6 GPa, while in panels g, h and i μ1 = 6 GPa and μ2 = 30 GPa. The Poisson ratio is v = 0.25 everywhere. Colour and contour represent stresses
magnitude expressed in MPa.

terms (those multiplied by fd ) are kept only if they are positive. The influence coefficients Ymk, represent the normal stresses computed at
the midpoint of the mth dislocation element due to the kth dislocation element with unitary Burger’s vector and they are needed to include
the normal stresses generated by the interaction among the N elements that make up the crack. It is worth to notice that in a homogeneous
medium Ymk = 0 when m = k since faults do not generate self-induced normal stress (Fig. 3a). This is no longer true in the case of a layered
medium, as the feedback interaction with the discontinuity leads to an induced normal stress that is not simply antisymmetric with respect to
the fault plane (Figs 3d and g). Of course, in absence of friction ( fd = 0) the system (20) reproduces system (19).
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2.3 The crack growth

Our model of fault growth represents a quasi-static crack propagation, that is a slower increase of the slip surface than during the dynamic
rupture propagation. While the latter characterizes the coseismic stage of the fault cycle, here we assume that the fault surface can extend
both through seismic and aseismic slip (Gudmundsson et al. 2013) during subsequent earthquakes whose slip surface is adjacent and almost
coplanar with the one created by the last event occurred, as for example during main shock–aftershock sequences (e.g. Convertito et al. 2013)
or during swarms (Hainzl & Fischer 2002). Fault growth is often observed laterally, that is close to the along-strike direction, as, for example
during subsequent earthquakes occurring along a plate boundary or a tectonic lineament (e.g. Nalbant et al. 2005; Tallarico et al. 2005).
However, from observation near the surface even the upwards fault growth is envisaged (e.g Baudon & Cartwright 2008). Accordingly, in our
model, during the quasi-static fault growth, the configuration at a given instant of time is interpreted as the cumulative effect of successive
dislocation events (Cowie & Scholz 1992) fulfilling the crack requirement (19) or (20) and occurring on adjacent fault patches.

We start from an initial crack constituted by N dislocation elements with the same width �W = d (i.e. the total width is W = Nd)
and the same dip, in order to simulate a planar fault surface. From this configuration we apply the boundary element criterion in order to find
the Burger’s vector of each dislocation element and then we can estimate the strain energy accounting for a friction dependent stress drop
(Cooke & Murphy 2004) which reduces the amount of energy per unit length available for crack growth to:

�E (W ) =
∑N

m=1

d

2
{bm · [τm − fd (σnm + pm)]} (21)

We can also describe the work done against friction (per unit length), which is dissipated as thermal energy, as:

E f (W ) = −
∑N

m = 1
d · bm · fd (σnm + pm) where E f m = 0 i f σnm + pm ≥ 0 (22)

The crack growth is simulated by adding a dislocation element beyond the tip of the crack and recomputing the new equilibrium
using the boundary element technique with N + 1 dislocation elements. According to the theoretical formulation, the crack growth at each
iteration is allowed if bk > 0, k = 1, N + 1 and the energy release is greater than the fracture energy and the friction dissipated energy
�E(W + d) > E f (W + d) + ET (W + d) (we use γS = 1 J m–2). In order to model a variable direction of crack growth, the dip angle of the
additional dislocation element (δN+1) is the one that maximizes the energy release (eq. 8) and it is chosen exploring different configurations
with one degree dip-angle variations with respect to the dip, δN, of the adjacent dislocation element (δN+1∈[δN-6◦,δN + 6◦]). The scheme of
the crack growth procedure is shown in Fig. 4. According to Hirano & Yamashita (2015) and Kusakabe & Kame (2017), during the dynamic
crack propagation on prescribed surfaces, large changes of the energy release rate may occur with respect to the monotonic increase expected
in a homogeneous medium only when the fault tip gets very close to the elastic interface and is affected by reflected waves. Thus, the present
quasi-static model likely overestimates the interface effects if applied to the dynamic crack propagation.

2.4 Study cases

We perform four different sets (SET) of simulations (SIM). In SET1 we preliminarily model different crack growths starting from planar
faults with different dip-angles in a homogeneous medium with no friction. In the following set of simulations, we consider starting faults
with a dip-angle of 30◦ for reverse fault and 45◦ for normal faults, as we will see that this starting parameter is not crucial. In SET2-4 we
perform several simulations considering two welded half-spaces with rigidity ratios r = μ1/μ2 , where the half-space 1 is the deepest one. In
SET2 we consider uniform tectonic loading �σ and vanishing friction. In SET3 and SET4 we assume a rigidity-scaled tectonic loading, so
that in the low rigidity layer we assume �σlow = �σμlow/μhigh. This condition reflects the case in which the tectonic stress is lower in the low
rigidity layer and higher in the stiffer layer, in order to provide a vertically uniform strain. While in SET3 we consider no friction, in SET4 we
investigate the effect of the dynamic friction coefficient on the crack growth in a tectonic environment and we focus on the difference between
normal and reverse faults. For SET4 we use a hydrostatic pore pressure profile as a function of depth: p (z) = p f (z) = ρ f gz . To consider
the case of high pore pressure we also assume p(z) = plit (z) = ρgz for compressive environments, while, in order to avoid hydro-fracture,
p (z) = ρgz − �σ for extensive environments (�σ > 0) is used. The simulations parameters are reported in Table 1. The initial planar fault
is constituted by 10 dislocation elements with a length of 100 m each. For SET4 we assign a value to the tectonic stress and rigidity of the
stiffer layer (�σ = 60 MPa for normal faults, �σ = -150 MPa for reverse faults and μ = 30 GPa), while tectonic stress and rigidity of the less
rigid layer are computed, respectively, according to the rigidity ratio ‘r’ (μlower = μr if r < 1, μlower = μ/r if r > 1). The magnitude of |�σ | is
chosen as it is a reasonable value for both normal and reverse faults (Copley 2017). The lithostatic pressure is computed assuming a constant
rock density along depth ρ = 2800 kg m–3. In all the simulations a maximum number of 50 iterations was imposed (i.e. the maximum number
of dislocation elements is 60).

3 M O D E L L I N G R E S U LT S

Fig. 5 shows the SET1 resulting crack growth in a homogeneous medium without friction. Apart from the academic interest in separating
effects due to the different parameters affecting crack growth, this case may apply to fault surfaces with negligible residual stress which are
usually expected in near-lithostatic pore pressure environments (Hubbert & Rubey 1959), even if this assumption is not exactly equivalent to
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Figure 4. Iterative scheme of the crack growth modelling. During the growth the ‘Stress equilibrium’ function is recalled several times.

the one of a vanishing friction coefficient, as will be seen in the following of this section. In all cases of SET1, the crack growth following the
energetic criterion tends to rapidly bend to the dip of about 45◦, which corresponds to the direction of the maximum shear stress and therefore
to the maximum energy release (eq. 12 with fd = 0). The small deviation from 45◦ obtained in SIM1, 2 and 4 are due to the fact that the
dislocation segments above the top of the starting fault are affected by the mechanical interaction with the dislocation elements of the initial
fault plane. If the dip angle of the starting fault is lower than 45◦ (SIM1 and SIM2) the crack propagates with an angle slightly bigger than
45◦, the opposite happens for dip angles of the initial fault greater than 45◦. In any case we argue that the dip angle of the initial fault plane
has little influence on the direction of crack growth and, in the subsequent sets of simulations, we keep fixed the starting dip-angle, in order
to focus on the influence of the other parameters of the model.

Fig. 6(a) shows the results of SET2 simulations where the crack growth occurs without friction in a layered medium with rigidity ratio
‘r’ and the tectonic stress is assumed constant along depth. According to the equations of the previous sections, the crack growth depends
on the tectonic stress profile �σ (z). The assumption of a vertically uniform tectonic stress is suitable to represent the brittle, shallow crust
in the first 5 km (McGarr & Gay 1978; Kattenhorn & Pollard 1999). For comparison, we also report the result of SIM3 obtained in the
homogeneous medium (r = 1). In all simulations of SET2 cracks quickly bend towards the same direction of 45◦ as in SET1 up to 1 km
from the discontinuity, then the growth direction changes significantly depending on the magnitude of the rigidity contrast. If r < 1 (the crack
approaches a higher rigidity layer) the dip angle has a rapid decrease that is greater for smaller r. For r = 0.05 (SIM5) the crack follows the
elastic discontinuity line (dip goes to 0). If r > 1, (the crack propagates towards a lower rigidity layer), the dip angle has a rapid increase, but
it decreases again while rising upwards. For all simulations of SET2 except for the limit case of SIM5, the crack, while moving away from
the discontinuity and rising, tends to bend asymptotically towards the 45◦ dip following the direction of maximum shear stress, as expected
in a homogeneous space.

Fig. 6(b) shows the results of SET3 that has the same parameters of SET2 but the tectonic stresses are scaled with the rigidity modulus of
the two layers. This assumption leads to a constant tectonically induced strain along the model boundaries and demand that the two layers of
the crust must remain welded (Kusznir & Park 1984; Bürgmann & Dresen 2008). In these cases, the main results of Fig. 6(a) are confirmed,
as the rigidity contrast induces a curvature on the crack growth: if r > 1 (r < 1) the dip-angle of the crack increases (decreases) near the
discontinuity. Unlike the SET2 simulations, however, in SET3 the resulting cracks with r < 1 bend more quickly to 45◦ after passing the



1104 M. Nespoli, M.E. Belardinelli and M. Bonafede

Table 1. Parameters of simulations concerning a crack growth starting in layer 1 (below) and propagating towards layer 2 (above) with
different rigidity moduli μ1 and μ2. Rows report in order: simulation number, rigidity ratio r = μ1/μ2, starting dip angle δ, dynamic
friction coefficients in layer 1 ( fd1) and 2 ( fd2), notes on crack growth stopping. The rigidity and the tectonic stress in the stiffest layer are
μ = 30 GPa and |�σ | = 0.1GPa (SET 1 to 3), respectively. In SET3 and 4 the tectonic stress �σlow of the less rigid layer (with rigidity
μlow) is computed according to �σlow = �σμlow/μ. The initial planar fault is constituted by 10 dislocation elements with a length of 100 m
each. In SET4 different pore pressure vertical profiles are considered (p = p f , pli t , pli t − �σ ) and the tectonic stress is �σ = 0.06 GPa
for normal faults and �σ = −0.15 GPa for reverse faults, except for the simulation 22 N in which �σ = 0.03 GPa. The density of pore
fluids and crust is assumed as 1000 and 2800 kg m–3, respectively.

SIM r = μ1/μ2 Starting δ fd1 fd2 �σ Growth stop

SET1 1 1 0 0 0 Constant No
2 1 30◦ 0 0 Constant No
3 1 45◦ 0 0 Constant No
4 1 90◦ 0 0 Constant No

SET2 5 0.05 30◦ 0 0 Constant No
6 20 30◦ 0 0 Constant No
7 5 30◦ 0 0 Constant No
8 0.2 30◦ 0 0 Constant No

SET3 9 0.05 30◦ 0 0 Scaled No
10 20 30◦ 0 0 Scaled Yes
11 5 30◦ 0 0 Scaled No
12 0.2 30◦ 0 0 Scaled No
13 1 30◦ 0 0 Scaled No

SET4 p = p f p = { pl i t (R)
pl i t − �σ (N)

14R and
14N

5 30◦( R)/45◦ (N) 0.3 0.3 Scaled Yes Yes

15R and 15N 0.2 30◦( R)/45◦ (N) 0.3 0.3 Scaled It does not start No
16R and 16N 0.2 30◦( R)/45◦ (N) 0.05 0.3 Scaled No No
17R and 17N 1 30◦( R)/45◦ (N) 0.3 0.3 Scaled No No
18R and 18N 2 30◦( R)/45◦ (N) 0.3 0.3 Scaled No No
19R and 19N 0.05 30◦( R)/45◦ (N) 0.3 0.3 Scaled It does not start Yes (R), No (N)
20R and 20N 0.05 30◦( R)/45◦ (N) 0.05 0.3 Scaled It does not start No (R), No (N)
21R and 21N 1 30◦( R)/45◦ (N) 0.05 0.3 Scaled No No

22N 4 10◦dip, long
detachment

0.3 0.3 Scaled p = p f

Detachment friction fd = 0.05 No

Figure 5. Crack growth pattern (coloured lines) obtained in simulations of SET1 (homogeneous elastic medium, absence of friction), for a starting planar fault
(black lines) with different dip angles: SIM1 (δ = 0◦), SIM 2 (δ = 30◦), SIM 3 (δ = 45◦) and SIM 4 (δ = 90◦). The tectonic stress �σ = 100 MPa is
assumed uniform along depth.
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Figure 6. Crack growth pattern (coloured lines) obtained in simulations of SET2 and SET3 (heterogeneous elastic medium, absence of friction). The tectonic
stress �σ = 100 MPa is assumed uniform over depth in SET2 (a) while in SET3 (b) it is rescaled according to the rigidity ratio r . The simulations have
different rigidity ratios. Starting planar faults (black lines) have a dip-angle δ = 30◦. The green dashed line shows the elastic discontinuity. The dip angle
attained by the crack before meeting the discontinuity is indicated.

discontinuity. In the case of SIM9 the crack follows the layer interface for about 1 km, but unlike SIM5, after a few iterations, it finds enough
energy to cross it. In cases with r > 1, the dip increase is much more pronounced compared to the SET2 simulations due to the fact that
the interaction among the fault segments is more important because the upper, less rigid layer has a lower tectonic stress. SIM11 gives rise
to a two-segment fault with different dip-angles, while SIM10 reaches a dip angle δ > 90◦ and it is the only simulation of SET1 that stops
growing. It is worth to notice that results of SET1 to SET3 are the same for both normal and reverse environments as they only depend on the
shear stress modules (eqs 19 and 21), which are the same for both fault mechanisms. This is no longer true in presence of friction (SET4) as
the normal stress generated by a reverse dislocation (Figs 3a, d and g) has an opposite sign with respect to that of a normal dislocation, so in
SET4 we distinguish the results of simulations of normal and reverse faults, indicated, respectively with "N" and "R" in Table 1 (Figs 7 and
S1).

Figs 7(a) and (b) show the results of reverse faults obtained including the dynamic friction coefficient, fd = 0.3, that is assumed constant
along depth. The main effect of friction is that the crack growth, far from the elastic discontinuity, proceeds with a dip-angle not greater than
40◦ regardless of the p profile, differently from what occurs in absence of friction. For instance, in absence of friction, r > 1 leads to crack
dip >45◦ near the discontinuity (Fig. 6).

Figs 7(c) and (d) show the results of SET4 simulations for an extensional tectonic environment (�σ > 0) that gives rise to the growth
of a normal fault. Below the elastic discontinuity, the main difference between reverse and normal faulting is that, in agreement with the
maximum energy release criterion (Fig. 2), normal faulting promotes greater dip angles (δ ≥ 45◦) quickly reached after the crack growth
starts.

In Fig. 7 for cases with r < 1, the fault growth is accomplished only assuming high pore pressures. According to our model, results for
high fluid pore pressure p(z) (Figs 7b and d) do not reproduce the ones with no friction (Fig. 6b) owing to the presence of elastic interactions
between fault elements which do not depend on p ( fd Ymk terms in system 20).

Fig. S1 shows the results of other simulations that consider a lower friction coefficient in the deepest layer for both reverse and normal
faults of SET4. In these cases, we assume that the layer with a lower rigidity and therefore a lower tectonic stress, has also lower friction
coefficient ( fd = 0.05). This assumption allows the crack growth even in the presence of small tectonic stress and p (e.g. SIM16R to be
compared to SIM15R with p = pf in Table 1). If we don’t consider the friction lowering, the crack cannot even start its growth in the cases
where layer 1 has both a low rigidity and low tectonic stress as for example in SIM15R and SIM15N (r = 0.2, with p = pf , Table 1) unless a
high fluid pore pressure is assumed (Figs 7b and d). The friction coefficient has an effect on the direction of crack growth as emphasized in
SIM21R and SIM21N (Fig. S1, r = 1) that have a uniform rigidity along depth: in these cases the dip-angle change at the interface depends
primarily on the change of the dynamic friction coefficient.

4 D I S C U S S I O N A N D C O N C LU S I O N S

In this work we implemented an iterative BEM model in order to simulate crack growth across a welded layered elastic medium. We started
from an initial planar fault formed by 10 dislocation elements, embedded in a lithostatic stress field superimposed onto a horizontal tectonic
stress. We initially compute the stress equilibrium with the BEM procedure (eqs 19 and 20), then we impose that the energy release is positive
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Figure 7. Crack growth pattern (coloured lines) obtained in simulations of SET4 (heterogeneous elastic medium, presence of friction). The tectonic stress �σ

is rescaled according to the rigidity ratio r . The maximum values in magnitude are �σ = 0.06 GPa for normal faults and �σ = − 0.15 GPa for reverse
faults. The simulations have different rigidity ratios. Starting planar faults (black lines) have a dip-angle δ = 30◦ for reverse faults and δ = 45◦ for normal
faults. The green dashed line shows the elastic discontinuity. Panels (a) and (c) show results for hydrostatic pore pressure, p f , and fd = 0.3 for a reverse (a)
and a normal (c) fault. Panel (b) refers to a reverse fault with lithostatic pore pressure, pli t , and panel (d) refers to a normal fault with a pore pressure equal to
the lithostatic one minus �σ .

in order to allow the crack growth and the maximum energy release to determine its direction. The growth of the crack has been simulated
by iterative addition of dislocation elements, whose dip angles are chosen as to provide the greatest release of energy, which results in the
minimum potential energy, in the spirit of Griffith’s energy criterion of failure (Melosh & Williams 1989).

Preliminarily, we study the growth of cracks embedded in a homogeneous elastic medium with uniform tectonic stress without friction
(SET1, Fig. 5) and we find that all cracks, regardless of the dip-angle of the initial fault plane, quickly bend to a dip-angle δ ≈ 45◦ (the
direction of maximum shear stress) and they maintain this direction indefinitely. In absence of friction, a dip-angle of 45◦ is provided both
by the Anderson’s theory of faulting (Anderson 1942) and by the maximum energy release criterion (eq. 12). While including friction both
numerical and analytical results based on the maximum energy release criterion (Section 1.1) lead, respectively to a lower dip-angle for
normal faults and a greater dip-angle for reverse faults with respect to the Anderson’s theory (Figs 2 and 7). Dip angles of about 53◦ and 36◦

for normal and reverse faults, respectively, are predicted by the Anderson’s theory for fs = 0.3. Our results confirm that in a homogeneous
medium (r = 1 and uniform friction), the fault does not bend (SIM17R and N in Fig 7).

Otherwise, when faults cross a rigidity contrast interface, they are affected by a dip angle change that increases in magnitude for larger
rigidity contrasts. If r > 1 i.e. the fault starts in the medium with higher rigidity, rising towards the interface with the lower rigidity medium,
it bends getting a greater dip angle up to become almost vertical (e.g. SIM6 and 7 in Fig. 6) or listric. On the contrary if r < 1, that is the
fault starts in the medium with lower rigidity, rising towards the interface with the higher rigidity medium, it bends getting a smaller dip
angle up to become almost horizontal (e.g. SIM5 and 9 in Fig. 6) or a detachment fault. This behaviour is due to the shear stress induced by
deeper dislocation elements on the shallowest ones. Indeed, while in a homogeneous medium the maximum shear stress induced by a single
dislocation element is along its dip-direction (Fig. S2d), the maximum shear stress in presence of a shallow layer with low rigidity (r > 1), is
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Figure 8. Crack growth pattern (coloured thick line) obtained in simulations of SET22N (heterogeneous elastic medium, presence of friction). The tectonic
stress is �σ 1 = 30 MPa in the lower layer, while in the upper layer �σ2 = �σ1 /r where r = μ1/μ2 (Table 1). The pore pressure is assumed as hydrostatic.
The dynamic friction coefficient is fd = 0.3 all over the fault surface apart from the starting low-dip segment (enclosed within a black rectangle) that has
lower friction coefficient ( fd = 0.05). The colour represents the distribution of the total slip (or Burger’s vector) magnitude occurred during all the crack (or
fault) growth. Black arrows show the direction of slip.

obtained in a clockwise rotated direction with respect to the fault dip (Fig. S2e). Vice versa an anticlockwise rotation is fostered considering
a crack that reaches a stiffer medium (r < 1, Fig. S2f).

According to Vendeville (1991) the mechanism generating fault curvature can be subdivided into two different groups: the first one
assumes that curvature is due to a mechanical origin, mainly related to vertical changes in friction and/or stress field, the second one assumes
that the curvature of the faults is induced as a result of their formation due to compaction and sedimentation. Vendeville (1991) also says that
the dip changes introduced by the friction coefficient are minimal and could not explain, alone, great fault curvatures as confirmed also by
experimental approaches (Vasquez et al. 2018). This is in accordance with our results in a homogeneous medium (r = 1), as evidenced by
SIM21R and SIM21N in Figs S1 where the effect of friction variation on the fault geometry is modelled: the crack growth direction primarily
depends on the fault mechanism and secondly on the dynamic friction coefficients, fd. (Figs 7 and S1). The results of the present paper allow
us to interpret several complexities of the dip-slip fault geometry in terms of rigidity contrasts.

4.1 Listric faults

A listric fault usually flattens downwards (Shelton 1984; Spahić et al. 2011) with a low-angle plane lying on a (as often assumed) undeformed
basement (Mauduit & Brun 1998). Even if listric faults are more common in extensional environments (Maloney et al. 2012), they can also
occur in compressional regimes (Groshong 2006). The synsedimentary listric faults are well documented by seismic data, as mainly described
by reflection seismic surveys, but they are not restricted to these environments and may also involve crustal basement (Mandl 1988). An
example of a normal listric fault is the Gubbio (central Italy) fault (Mirabella et al. 2004), while the high angle–dipping listric fault that led
to the Mw 7.9 Wenchuan (China) earthquake of 12 May 2008 (Zhang et al. 2010) is a reverse fault. Also, the Laramide front of New Mexico
(Magnani et al. 2013) is characterized by listric thrust faulting. The basal orientation of a listric fault plane is most likely favoured by the
presence of deep mechanically weak layers and by pressurized fluids, which significantly reduce the effect of frictional resistance (Maloney
et al. 2012; Passone & Mai 2017).

According to our model, listric geometries can be obtained only if r > 1, that is when the fault meets an interface above which the
medium is softer. The results of simulations are quite stable and regardless of the dynamic friction coefficient, the magnitude of the tectonic
stress, the pore pressure and the fault mechanism, the fault grows by increasing the dip angle in the shallow and less rigid layer. Nevertheless,
it is worth to notice that if the tectonic stress decreases too much in the upper softer layer (case of uniform strain), and if the pore pressure
is hydrostatic, the fault growth stops soon after crossing the interface (SIM14 in Figs 7a and c). This could provide an explanation to the
formation of blind listric faults (e.g. fig. 3in Ekström et al. 1992).

An example of a r > 1 configuration is when shallow layers of recently formed sedimentary rocks, with low rigidity, are superimposed
to stiffer layers whose rigidity increases with depth. This condition is very common as in the shallow and brittle crust, the rigidity generally
increases with depth, as confirmed by depth-increasing S-wave speed, Vs =√

μ/ρ (e.g. Haslinger et al. 1999; Nespoli et al. 2017, 2018)
despite the density ρ is usually estimated to increase with depth. Then, the listric fault geometry is expected to be common according to our
model. The rigidity contrast can be so effective on crack growth to bend the fault planes up to a dip-angle ≥45◦ even in case of reverse faults
(SIM14R, Figs 7a and b). In case of normal faults, the crack is allowed to propagate in the shallow softer layer almost vertically (SIM14N in
Figs 7c and d to be compared with fig. 2 of Tung & Masterlark 2018).

Fig. 8 shows the results of SIM22N (r > 1, Table 1) that reproduces the crack growth of a typical listric fault. The starting plane was
modelled with a larger width with respect to other simulations, a dip of 10◦ and a low dynamic friction ( fd = 0.05). Most of the slip released
during all the crack growth occurs in the central segment of the fault. The low dynamic friction on the starting plane is needed in order to
allow the crack to start its growth, which continues up to the surface by defining a clear listric geometry. In the next paragraph we will state
the conditions promoting such a low angle starting plane.
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4.2 Detachment and ramp-flat-ramp faults

Detachment faults (i.e. curved, convex-upward faults with decreasing dip at shallower depths) are envisaged to occur at ocean ridges and
represent an important mechanism in the generation of the oceanic crust (Smith et al. 2006). Moreover, in ramp-flat-ramp structures the fault
surface in characterized by high-dip segments connected by a low-dip segment. Detachments often derive from low-angle normal faults, but
they also occur where thrusts move above a layer of a very weak and ductile material (Scholz 2002). Braunmiller & Nabelek (1996) assess
that the formation of detachments can be justified below the schizosphere (i.e. below the brittle–ductile transition). In real cases, for low
angle faults such as the Woodlark detachment fault (SW Pacific), the Corinth Rift detachment (Jolivet et al. 2010 and reference therein), the
Altotiberina (Central Italy) fault (Collettini & Barchi 2002; Anderlini et al. 2016; Pauselli & Ranalli 2017) a vanishing frictional resistance
is usually ascribed to their formation even if the problem is not completely resolved (Yue & Suppe 2014).

According to our results, detachment faults and ramp-flat-ramp faults can be realized only if r < 1 (Figs 6 and 7). Beside this condition,
a low dynamic friction coefficient in the deeper layer (SIM16N and SIM16R in Fig. S1) or a high pore pressure (SIM15N and SIM15R in
Fig. 7) is necessary at least if the strain is uniform along depth, as we definitely assumed in SET4. Otherwise, if friction is not low enough,
the fault is even not able to start growing as in simulations SIM15, SIM19 and SIM20 unless a high pore pressure is considered (Figs 7b
and d) because the energy release is not sufficient to provide the work dissipated by friction. Another way to allow crack growth with r < 1
in presence of friction could be to assume a tectonic stress uniform with depth (as in SET2) as due to the cumulative effect of previous
earthquakes occurred in the stiffer layer.

Only if r  0.2 (Fig. 6a) the fault can propagate along the elastic discontinuity producing the horizontal detachment of the deeper layer
with respect to the shallower one (i.e. a decollement fault), without penetrating the upper stiffer layer. The decollement of SIM5 (Fig. 6a) cannot
cross the stiffer layer since this is energetically disfavoured. Accordingly if r is equal to 20 per cent or larger some alternative mechanisms
should be provided to model decollement faults [e.g. for normal faults, deflected stresses (Axen 1992) or mineralogical weakening (Smith &
Faulkner 2010)]. It is worth to notice that, according to our model, we achieve a persistent horizontal crack growth only assuming a strong
contrast (r = 0.05), a vanishing friction coefficient and a uniform stress along depth (SIM 5 in Fig. 6a), otherwise, if stress is proportional
to rigidity, the fault is allowed to penetrate the upper medium (SIM9 in Fig 6b), forming a ramp-flat-ramp structure, as we will discuss below.
Nevertheless, our results show that a high pore pressure can promote a fault growth with very low dip values (e.g. SIM19R and SIM19N,
Figs 7b and d, respectively) in agreement with Hubbert & Rubbey (1959).

In the case r = 0.05 the interface above the much softer deeper layer might be identified with the brittle-ductile transition within the
crust (SIM5 in Fig. 6a to be compared with Fig. 2b in Jolivet et al. 2010). Below this transition an elasto-plastic rock rheology can be assumed,
where plasticity is realized if the deviatoric stress is above a threshold. In these conditions rocks behave like viscoelastic materials with very
low viscosity and we can assume as a rough approximation an effective elastic behaviour with very low rigidity (e.g. Carcione et al. 2014),
especially near the crack tip where deviatoric stresses concentrate. Usually detachments mark the brittle-ductile transition (e.g. Fayon et al.
2000; Jolivet et al. 2010; Platt et al. 2014; Rabillard et al. 2018) where they can be interpreted as ductile shear zones (Rabillard et al. 2018)
also called ductile faults (Scholz 2002).

Ramp-flat-ramp faults usually occur in layered, large-scale, extensional environments (Fossen 2016) consisting of two high dip-angle
ramps linked by a subhorizontal segment (flat). Some examples of ramp-flat-ramp faults are in the eastern Betic Cordillera, Spain (Pedrera et
al. 2012), in the Norwegian Njord oil field (Ehrlich & Gabrielsen 2004) and in the Monte Amiata geothermal area in Italy (Brogi 2004). A
ramp-flat-ramp fault growing almost horizontally in correspondence of the elastic discontinuity, and then allowed to rise in the stiffer layer
after some iterations can be obtained for strong rigidity contrasts, low friction or high pore pressure if a vertically uniform strain is assumed
in elastic medium (SIM9, Fig. 6b and SIM19N in Fig. 7 and 20 N in Fig. S1 to be compared with fig. 1 of Vasquez et al. 2018). It is worth
to note that the higher the rigidity ratio r , the wider the flat (compare e.g. SIM9 to SIM12 in Fig. 6b or SIM20N to SIM16N in Fig. S1d) in
agreement with experiments by Vasquez et al. (2018).

Our results reinforce the hypothesis that when faults grow at depth in low rigidity or ductile media, low-dipping faults, leading to the
creation of detachment planes, are allowed by a combination of three factors: great contrasts of rigidity in which a layer with high rigidity is
superimposed to the softer layer, a high pore pressure (Figs 7b and d and Figs S1b and d) or a low dynamic friction coefficient at least in the
softer layer (Fig. S1, all cases).

4.3 Concluding remarks

We devised a quasi-static crack model for fault growth across a two welded elastic half-spaces, where the fault configuration at a given instant
of time is interpreted as the cumulative effect of successive slip events. As we do not pre-assign the fault surface, we use the maximum energy
release criterion to determine the orientation of the incremental surface during fault growth as a part of the solution.

This approach allows us to assess that the presence of crustal rigidity contrasts: (i) justifies non-Andersonian geometries characterized
by high and low dip-angles in the case of reverse and normal faults, respectively and (ii) considerably influences the fault growth direction
allowing to create curved fault surfaces: faults rising toward softer regions tend to become listric while faults rising towards stiffer regions
tend to behave as detachments.

It might be interesting to extend our model to several layers with different rigidity or rheology, bounded by a free surface, in order to
model a wider and more realistic range of cases. Even considering a two-layer configuration, following the criterion of maximum energy
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release, our results suggest that significant changes of the dip angle can be obtained, strongly localized near the layer discontinuities, in both
cases of extensive and compressive tectonic environments. This means that the rigidity contrast can foster the birth of a curved fault geometry
and it is a key parameter for its interpretation.
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Supplementary data are available at GJI online.
Figure S1. Crack growth pattern (coloured lines) obtained in simulations of SET4 (heterogeneous elastic medium, presence of friction). The
tectonic stress in the upper layer is �σ 2 = 60 MPa (–150 MPa) for normal (reverse) faults, while in the lower layer is rescaled according to the
rigidity ratio r (indicated in labels). Starting planar faults (black lines) have a dip-angle δ = 30◦ for reverse faults and 45◦ for normal faults.
The green dashed line represents the elastic discontinuity. The fault surface is characterized by different friction coefficients, according to its
depth: within the upper layer fd = 0.3, while in the deepest layer fd = 0.05. Panel (a) and (c) refer to a reverse and normal fault, respectively
for hydrostatic pore pressure p. Panel (b) refers to a reverse and normal fault, for lithostatic pore pressure, while panel (d) refers to a normal
fault with the maximum possible value of pore pressure.
Figure S2. Induced shear stress (a, b and c) and induced maximum shear stress (d, e and f) generated by a reverse dislocation (yellow segment)
with b = 1 m, fs = 0.4 and δ = 30◦ in a layered medium. The green dashed line represents the elastic discontinuity. Shear stress is computed
considering a receiving fault with the same dip as the dislocation source. The homogeneous medium (a, d) has a rigidity μ = 30 GPa and
a Poisson’s modulus v = 0.25. Indicating with μ1 the rigidity of the deeper layer and μ2 the rigidity of the shallower one, in panels (b) and
(e) μ1 = 30 GPa and μ2 = 6 GPa, while in panels C and F, μ1 = 6 GPa and μ2 = 30 GPa. The Poisson ratio is v = 0.25 everywhere. Colour
and contour represent stresses magnitude expressed in MPa. The magenta rectangles in panels (a), (b) and (c) delimit the area represented in
panels (d), (e) and (f). Yellow and grey bars show the orientation of the planes of maximum shear stress.
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