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ABSTRACT
The Intentional Analytics Model (IAM) has been envisioned as
a way to tightly couple OLAP and analytics by (i) letting users
explore multidimensional cubes stating their intentions, and (ii)
returning multidimensional data coupled with knowledge in-
sights in the form of annotations of subsets of data. Goal of this
demonstration is to showcase the IAM approach using a notebook
where the user can create a data exploration session by writing
describe and assess statements, whose results are displayed by
combining tabular data and charts so as to bring the highlights
discovered to the user’s attention. The demonstration plan will
show the effectiveness of the IAM approach in supporting data
exploration and analysis and its added value as compared to a
traditional OLAP session by proposing two scenarios with guided
interaction and letting users run custom sessions.

1 INTRODUCTION
In the context of exploratory data analysis, it has recently become
evident that the OLAP paradigm alone is no longer sufficient
to keep the pace with the increasing needs of new-generation
decision makers when exploring multidimensional data cubes.
Indeed, the enormous success of machine learning techniques has
consistently shifted the interest of users towards more sophisti-
cated analytical applications [12]. In this direction, the Intentional
Analytics Model (IAM) has been envisioned as a way to tightly
couple OLAP and analytics [16]. The IAM approach relies on two
major cornerstones: (i) the user explores a multidimensional cube
by expressing her analysis intentions rather than by explicitly
stating what data she needs, and (ii) in return she receives an
enhanced cube, i.e., multidimensional data coupled with knowl-
edge insights in the form of annotations of subsets of data. As to
(i), five intentional operators were envisioned, namely, describe,
assess, explain, predict, and suggest. As to (ii), the insights are
ranked based on their estimated relevance for the user, and the
one deemed most relevant is shown.

In our previous work, we have focused on the first two op-
erators: describe, whose goal is to describe one or more cube
measures, possibly focused on one or more level members [5],
and assess, which evaluates the performance of a cube measure
with reference to some benchmark [3]. For both operators we
have proposed a syntax, a semantics, and some optimization
strategies.

Contributions and Outline. Goal of this demonstration is to
showcase the IAM approach using a notebook where the user can
create a data exploration session by writing describe and assess
statements, whose results are displayed by combining tabular
data and charts so as to bring the highlights discovered to the
user’s attention. The underlying DBMS is Oracle, coupled with a
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custom multidimensional engine. The demonstration is based on
a cube storing COVID-19 data and hinges on two scenarios: in
the first one, the user will get an overview of the epidemic trend
in Europe; in the second one, (s)he will focus on the deaths in
Europe.

The paper outline is as follows. After introducing the two op-
erators with their syntax in Section 2, in Section 3 we present the
implementation that supports the demo, while in 4 we describe
the demonstration experience in terms of user scenarios.

RelatedWork. The idea of coupling data and analytical mod-
els was born in the 90’s with inductive databases, where data
were coupled with patterns meant as generalizations of the data
[13], and is at the core of the IAM approach [16] on which this
paper relies. Specifically, coupling the OLAP paradigm and data
mining to create an approach where concise patterns are ex-
tracted from multidimensional data for user’s evaluation, was
the goal of some approaches commonly labeled as OLAM [9]. In
this direction, several additional operators have been proposed
over the years to complement the fundamental ones of OLAP
(e.g., [6, 7, 14, 15]),

The IAM approach can be regarded as OLAM since, like the
approaches mentioned above, it relies on mining techniques to
enhance the cube resulting from an OLAP query. Its novelty over
the previous approaches lies in (i) the adoption of a declarative
syntax to hide the complexity of query specification; (ii) the use
of multiple mining techniques, rather than a single one like in
previous approaches, to give users a wider variety of insights;
and (iii) the automatic selection of the most relevant insight.

We finally mention that, though some tools (e.g., Spotfire and
Tableau) integrate OLAP and analytics capabilities in the same
environment, none of them allows users to formulate queries
at a higher level of abstraction than OLAP (as done in the IAM
using intentions), nor they support the automated out-of-the-box
enrichment of cubes with insights obtained by analytics (as done
in the IAM through enhanced cubes).

2 THE IAM APPROACH
The IAM approach is sketched in Figure 1 and operates as follows:

(1) The user expresses an intention on a cube 𝐶0 by writing
either a describe or an assess statement; both types of
statement express an aggregation and, possibly, a selection
clause over 𝐶0.

(2) The cube 𝐶 derived from 𝐶0 by applying the aggregation
and selection expressed in the statement is retrieved.

(3) A set of models are computed over𝐶 ; a model is a concise,
information-rich knowledge artifact that gives an insight
on the cube cells. The possible model types range from
simple functions such as top-k to more elaborate tech-
niques such as clustering, outliers, etc. A model is made
of a set of components (e.g., a clustering model is made of
a set of clusters).
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Figure 1: The IAM approach: the user expresses an inten-
tion and receives in return an enhanced cube
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Figure 2: The COVID19 cube

(4) A measure of relevance is computed for each component
and model. An enhanced cube including the data of𝐶 and
the most relevant model is then displayed.

The IAM approach follows the direction of so-called aug-
mented analytics, which employs enabling technologies —such as
machine learning and AI— to assist users with data preparation
and insight generation, aimed at automating many aspects of
data science. This lets skilled users run their analysis process
more efficiently and effectively on the one hand; on the other, it
widens the user-base to people non skilled in model development
and deployment. In fact, with IAM, having different models au-
tomatically computed and evaluated in terms of their relevance
relieves skilled users from the time-wasting effort of trying dif-
ferent possibilities. Additionally, even users who just have basic
OLAP skills and no knowledge of programming languages (e.g.,
Python) are enabled to run complex analytical models on their
data.

Working example. Both the paper and the demonstration
will use the COVID19 cube, whose conceptual model is depicted
in Figure 2 using the DFM notation [8]. The cube stores the
COVID-19 data by week and country over 4 years, and features
two measures, cases and deaths1.

2.1 The describe operator
The describe operator provides an answer to the user asking
“showme my business” by describing one or more cube measures,
possibly focused on one or more level members, at some given
granularity. The resulting cube is enhanced by showing either
the top/bottom-k cells, the skyline, the outliers, or clusters of
cells.
1https://www.ecdc.europa.eu/en/publications-data/
data-national-14-day-notification-rate-covid-19

Let 𝐶0 be a cube,𝑀 be the set of its measures, 𝐿 be the set of
its levels. The syntax for describe is

with 𝐶0 describe𝑚1, . . . ,𝑚𝑧 [ for 𝑃 ] by 𝑙1, . . . , 𝑙𝑛

where 𝑚1, . . . ,𝑚𝑧 ∈ 𝑀 ; 𝑃 is an optional set of selection predi-
cates, each of type 𝑙 = 𝑢 (where 𝑙 ∈ 𝐿 and 𝑢 is a member of 𝑙);
and 𝑙1, . . . , 𝑙𝑛 (with 𝑙𝑖 ∈ 𝐿) is a group-by set of 𝐶0. The cube 𝐶 is
derived from 𝐶0 by applying the conjunction of the predicates
in 𝑃 and aggregating by 𝑙1, . . . , 𝑙𝑛 . The description models com-
puted over𝐶 are top-k, bottom-k, skyline (only if 𝑧 ≥ 2), outliers,
and clustering. Each of the first four models returns two com-
ponents (e.g., outlier and not outlier), while the last one returns
one component for each cluster. The size of each model (e.g., the
value of 𝑘 for top-k and the number of clusters) is automatically
determined as explained in [5].

To evaluate the relevance of a description model, a measure
based on the interestingness of its components —expressed in
terms of how novel, peculiar, and surprising they are expected to
be— is used [5]. Intuitively, given a component 𝑐 , its novelty is
higher if 𝑐 corresponds to a larger number of previously-unseen
cells; the peculiarity of 𝑐 is related to the measure deviation
between the cells of 𝑐 and the corresponding ones in the cube
resulting from the previous intention; finally, 𝑐 is surprising if it
includes cells that have not been seen frequently.

The enhanced cube obtained from a describe statement in-
cludes 𝐶 and the model having maximum interestingness. It is
visualized by coupling a table area, which shows the cube cells
using a pivot table, a chart area, which represents the cube cells
through a suitable chart, and a component area, which shows the
model components and their properties. A color code is used to
emphasize, in the three areas, the cells belonging to each compo-
nent.

Example 2.1. The statement

with COVID19 describe cases

for continent = ’Europe’ by country, month

returns a (bidimensional) cube 𝐶 showing the monthly cases for
each European country. As shown in Figure 3, the model with
maximum interestingness in this case is clustering; the chart
chosen is a bubble chart. In the upper part of the screenshot, the
intention written by the user and its system-generated expan-
sion listing the models considered (via the using clause). Below,
clockwise, the chart, the component area, and the table area. □

In [5] we measured the saving in user’s effort when writing
a describe intention over the one necessary to obtain the same
result using plain SQL and Python. To this end we adopted the
simple metric proposed by [10], where the ASCII character length
is used as an approximation for the effort it takes to craft a query.
We tried different intentions with increasing complexities; it
turned out that the total formulation effort using SQL+Python
is almost two orders of magnitude larger than using describe
intentions. For instance, for the intention in Example 2.1, the
effort for writing the intention is 70 characters, while the one for
writing the necessary OLAP query and Python code would be
286 and 5200 characters, respectively.

2.2 The assess operator
The assess operator aims at comparing the behavior of the phe-
nomenon represented by𝐶0 to a benchmark and judging, through
a labeling, the outcome of the comparison. The resulting cube is
enhanced by showing the labeling deemed the most relevant.
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Figure 3: A description of the monthly cases for each Euro-
pean country via the describe operator

The syntax for assess is

with 𝐶0 assess𝑚 [ for 𝑃 ] by 𝑙1, . . . , 𝑙𝑛

where𝑚 ∈ 𝑀 ; 𝑃 is an optional set of selection predicates, each
of type 𝑙 = 𝑢; and 𝑙1, . . . , 𝑙𝑛 (with 𝑙𝑖 ∈ 𝐿) is a group-by set of 𝐶0.
Like for describe, cube 𝐶 is obtained from 𝐶0 by applying the
conjunction of the predicates in 𝑃 and aggregating by 𝑙1, . . . , 𝑙𝑛 .
Each assessment model includes (i) a benchmark, that represents
the expected or desirable performance of𝑚; (ii) a function to be
used for comparing𝑚 to the benchmark measure; and (iii) the
labeling of each cell in 𝐶 based on the result of the comparison
[3]. The benchmarks we consider are of two types:

• Sibling benchmarks compare the values of𝑚 in each cell
of a slice of 𝐶 with its values in another slice of 𝐶 related
to a sibling member (e.g., assess the monthly COVID-19
cases in Italy with reference to those in France).

• Parent benchmarks compare the values of𝑚 in each cell of
𝐶 against the one taken in a parent (aggregated) cell (e.g.,
assess the monthly cases in Italy with reference to those
in Europe).

As to comparison, three functions are considered, namely, dif-
ference, relative difference, and ratio; we call 𝑅 the set of these
functions. Finally, the labeling functions we consider are of two
types:

• Functions based on explicit ranges. Specifically, we defined
functions with 2, 3, and 5 labels that can operate on val-
ues resulting from either a difference (centered on 0 and
working with absolute values), or a relative difference (cen-
tered on 0 and working with percentage values), or a ratio
(centered on 1).

• Functions based on the overall value distribution. Specifi-
cally, we consider an equi-depth binning function (quar-
tiles, can be coupled with any comparison function) and
two equi-width binning functions (with 3 and 5 labels, can
be coupled with both difference and relative difference).

We call 𝑇 the set of these functions.

To determine the most relevant assessment model, i.e., one
among all possible combinations of a benchmark, a comparison
function, and a labeling function, a different approach than the
one followed for description models must be followed. The rea-
son for this is twofold. First of all, given the large number of
alternatives (mainly related to the possibility of having hundreds
of candidate benchmarks), we had to adopt a greedy approach,
which means first selecting one benchmark 𝐵, then one compar-
ison function 𝑟 for 𝐵, and finally one labeling function 𝜆 for 𝑟 .
Secondly, while novelty, peculiarity, and surprise well capture
the salient aspects of an analysis aimed at describing data, they
cannot be used for assessment since they do not reflect the in-
terest of a judgment. Thus, the approach we follow to select one
assessment model is based on its representativeness, and it can be
summarized as follows [4]:

(1) The set of candidate benchmarks 𝑆 is determined. Specifi-
cally: for each level 𝑙𝑖 in the by clause, 𝑆 includes a parent
benchmark on the level 𝑙 ′

𝑖
that aggregates 𝑙𝑖 ; if there is

a predicate (𝑙𝑖 = 𝑢) ∈ 𝑃 , then 𝑆 also includes a sibling
benchmark for each other member of 𝑙𝑖 .

(2) Cube 𝐶 is retrieved and joined with the corresponding
parent and sibling benchmarks.

(3) One representative benchmark 𝐵 is selected as the centroid
of 𝑆 obtained via the k-medoid algorithm [11] applied to
the distance of measure values with 𝑘 = 1.

(4) One representative function 𝑟 is selected as the centroid
of 𝑅 obtained via the k-medoid algorithm applied to the
the distance between the meta-features describing the
result of the comparison (namely, the mean, variance, and
skewness of each comparison) with 𝑘 = 1.

(5) One representative labeling function 𝜆 is selected as the
centroid of𝑇 obtained via the k-medoid algorithm applied
to the Kendall’s Tau distance [1] between the labelings,
with 𝑘 = 1.

The enhanced cube obtained from an assess statement is vi-
sualized like for describe; here, different color schemes can be
selected for labels to convey the desired semantics (e.g., red and
green for bad and good performance, respectively).

Example 2.2. The statement

with COVID19 assess deaths

for month = ’2021-12’ and continent = ’Europe’ by country

returns a cube showing the number of deaths on Dec. 2021 for
each European country. The system-generated expansion (Figure
4) compares the deaths in each country with the European aver-
age (as specified by the against clause) via a relative difference
(using clause); the labeling scheme selected (labels clause) uses
five ranges: quite lower, (−∞,−0.5]; lower, (−0.5,−0.1]; same,
(−0.1, 0.1); higher, [0.1, 0.5); quite higher, [0.5, +∞). □

Like for describe, in [3] we evaluated the saving in user’s ef-
fort when writing an assess statement over the one necessary
to obtain the same result using plain SQL and Python. It turned
out that the total formulation effort using SQL+Python is, for
intentions with different complexities, always two orders of mag-
nitude larger than using assess statements. For instance, for the
intention in Example 2.2, the effort for writing the intention is 84
characters, while the one for writing the necessary OLAP queries
(including those for computing the candidate benchmarks) and
Python code would be 940 and 11200 characters, respectively.
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Figure 4: An assessment of the number of deaths on Dec.
2021 for each European country via the assess operator

3 IMPLEMENTATION
The prototype used for the demo relies on the multidimensional
engine described by [2], which in turn relies on the Oracle 11g
DBMS to execute queries on a star schema based on multidi-
mensional metadata (in principle, the prototype could work on
top of any other multidimensional engine). The mining mod-
els are imported from the Scikit-Learn Python library. Finally,
the web-based interface is implemented in JavaScript and ex-
ploits the D3 library for chart visualization; it can be accessed at
http://big.csr.unibo.it/projects/iam-demo/web/.

The interface hinges on a notebook where the user can cre-
ate a data exploration session by writing describe and assess
statements. Each statement is first written by the user through
the syntax of Section 2, then it is expanded by the system by
introducing additional clauses as shown in Examples 2.1 and 2.2.
This expansion is particularly useful for assess as it lets users
understand which benchmark, comparison function, and labeling
function have been selected by the system. Besides, for both de-
scribe and assess, it allows users to override the system selections
and select a different model by editing the using, against, and
labels clauses.

4 DEMONSTRATION PLAN
The demonstration will aim at showing the effectiveness of the
IAM approach in supporting data exploration and analysis. It
will include two scenarios with guided interaction, aimed at
motivating the approach and letting users familiarize with the
syntax; after that, users will have a chance to run custom sessions.

In the first scenario, the users will play the role of an ana-
lyst who wishes to get an overview of the epidemic trend in
Europe. They will start by describing the monthly trend of cases
in Europe (with COVID19 describe cases by continent, month
for continent=’Europe’), then they will drill-down to countries
(with COVID19 describe cases by country, month for conti-
nent=’Europe’, as in Example 2.1). Since the intention highlights
as most interesting the cluster including the months from Jan-
uary to March 2022 (green bubbles in Figure 3), the users will
finally focus on these months to assess the infections on a coun-
try basis (e.g., with COVID19 assess cases for month = ’2022-01’
and continent = ’Europe’ by country).

In the second scenario, the users will investigate the deaths
in Europe. After comparing the European deaths with those of
the other continents (with COVID19 assess deaths by continent),
they will drill down to monthly deaths in Europe (with COVID19
assess deaths by month for continent=’Europe’). Finally, they
will focus on the month showing the highest number of deaths
and drill down to countries (with COVID19 assess deaths for
month = ’2021-12’ and continent = ’Europe’ by country, as in
Example 2.2).

In both scenarios, users will be allowed to edit all the clauses
to better tailor the analysis to their needs, for instance, by forcing
one specific model in a describe statement or a specific bench-
mark in an assess statement. Besides, they will be allowed to get
further information on any result by hovering on charts following
the details-on-demand paradigm.
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