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Abstract

Using asset staleness as liquidity proxy, two novel test statistics that allow to

make inference on the level of liquidity of an asset and on the difference in

liquidity between two assets are proposed. The (in-fill) asymptotic properties

of the tests are established, and correct procedures to use the tests in multiple

testing are provided. A simulation study confirms that the newly defined tests

show desirable finite sample properties. Two applications show how the tests

can be used for the investor’s asset allocation problem in a high-dimensional

setting.

Keywords: Asset allocation; Hypothesis testing; Liquidity; Staleness.

1. Introduction

Market liquidity is a central aspect of modern finance, and the financial eco-

nomics literature has made considerable efforts toward defining and measuring

liquidity. The statistical uncertainty surrounding liquidity measures naturally

raises issues that are relevant for investments, trading decisions and policy im-

plementation. Consider an investment manager who wants to allocate funds

toward equally (il)liquid assets in order to build a portfolio with the desired

exposure to illiquidity and benefit from the illiquidity premium. This portfolio

strategy requires to know the liquidity level of an asset. Similarly, consider a

∗Corresponding author.
Preprint submitted to Econometrics & Statistics July 7, 2022



policymaker who wants to assess whether a market reform has an impact on the

liquidity of an asset. This requires to know whether the liquidity of the asset

has changed after the regulatory intervention. As we can only measure liquidity

with uncertainty, statistical inference is necessary to answer these questions.

We provide a formal testing procedure, exclusively based on observed trans-

action prices, to infer the level of (a proxy of) assets’ liquidity and to test

whether two assets present the same level of liquidity. We build on the econo-

metric framework for stale prices of Bandi et al. (2017). Under the null of an

Itô-semimartingale they derive the asymptotic distribution of the percentage of

log-price variations smaller than an asymptotically vanishing threshold, defin-

ing a new economic indicator named idle time. Empirically, Bandi et al. (2017)

found that the Itô-semimartingale null is conclusively rejected in favor of a fric-

tional alternative in which prices update less frequently than what is assumed

by standard asset pricing models in continuous time. In Bandi et al. (2020b),

the same authors show that this market feature has a systematic component,

i.e. temporary market freezing may occur simultaneously across many assets.

Classical models of price formation provide an economic rationale for the

existence of stale prices, suggesting that in the presence of trading costs, ra-

tional investors with privileged information can have an incentive to not trade.

Therefore, similarly to the zeros measure of Lesmond et al. (1999), idle time can

be considered a comprehensive estimate of the degree of liquidity by implicitly

including not only the spread, but also commission costs, a portion of the ex-

pected price impact costs, and possible opportunity costs of informed traders.

This intuition is corroborated by the results of Bandi et al. (2020a) who provide

empirical evidence that zero returns (referred to as stale returns) are not the

mere consequence of market institutional features, such as price rounding. On

the contrary, they are related both to the absence of transaction volume and to

the magnitude of the bid-ask spread.

We introduce two statistical tests. The first, named staleness level test, is

designed to validate whether the idle time of a given asset is different from

a predefined level, established a priori by the researcher. The second, named
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staleness equivalence test, compares the idle times of two assets and assesses

whether or not they are statistically indistinguishable.

We study the limiting properties of our test statistics in an asymptotic en-

vironment in which the number of observations increases to infinity over a fixed

time span. We assume that the underlying price processes evolve as a vector

of semimartingales with positive probability of repeated prices. In the staleness

level test, we fix the probability of a stale price under the null hypothesis. In the

staleness equivalence test, the null is defined as the scenario in which the two

assets involved have the same probability of a stale price. For these two tests we

show that, under the corresponding null hypotheses, the test statistics converge

to asymptotically normal random variables. Moreover, we provide weak conver-

gence results for the estimators of the limiting variances. The alternatives are

naturally defined as the scenarios in which the null hypotheses are false. Hence,

in the staleness level test, it is possible to statistically assess whether or not an

asset has a predefined level of liquidity. In the staleness equivalence test, the

null is rejected whenever the two assets involved show two significantly different

levels of liquidity.

Considered the relevant role of asset allocation strategies in past and recent

studies (see, among others, Golosnoy et al., 2020; Sass & Thös, 2021) we con-

tribute to this literature applying the novel testing procedures to two different

diversification problems. In the first application, we show how the staleness

equivalence test can be used to obtain groups of equally liquid assets on a daily

basis. These groups can be used within a RnB estimator of the integrated co-

variance matrix (Hautsch et al., 2012) to limit the loss of observations due to

asynchronous trading and obtain more efficient estimates in large dimension.

We evaluate our approach taking the point of view of a mean-variance investor

pursuing a volatility timing strategy with a high-dimensional portfolio involving

more than one hundred assets. The second application concerns an investor who

wants to build a portfolio of assets with a specific liquidity profile. As liquidity is

time-varying, the investor needs to control whether the selected assets maintain

the desired liquidity level over time. This situation can depict a passive fund
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willing to replicate the performance of an index, but wants to avoid exposure

towards the most illiquid assets of the index. Instead of investing in all the

components of the index according to the index weights, the fund can invest

only in a subset of highly liquid stocks and then optimize the weights to mini-

mize the tracking error (Jansen & Van Dijk, 2002). Analogously, this situation

also suits a hedge fund who wants to gain from an exposure to the most risky

assets of an index. Ibbotson et al. (2013) propose to consider illiquidity as an

investment style alternative to size, value and momentum. As illiquid assets

carry a premium to compensate investors for the liquidation risk, these assets

typically provide larger yields. We consider an investor picking stocks with stal-

eness within two pre-specified bounds from a given pool of assets, and allocating

funds using an equally-weighted portfolio strategy. The portfolio composition

is revisited on a daily basis following the variations in the assets staleness. We

show that using a stock selection procedure based on the staleness level test

limits the turnover rate and drastically reduces transaction costs compared to

a benchmark procedure that simply considers the ranking of idle times.

The reminder of the paper is organized as follows: Section 2 introduces

the theoretical framework and presents the main results; Section 3 outlines

the Monte Carlo simulations studying the finite sample properties of our tests;

Section 4 describes the results of the empirical applications; Section 5 concludes

the paper. Mathematical proofs are relegated to the Appendix.

2. Framework

2.1. Setup and Assumptions

Let us consider N assets, and assume that the logarithmic efficient price

process of the k-th asset, Y
(k)
t , follows a Brownian semimartingale

Y
(k)
t =

∫ t

0

µ(k)
s ds+

∫ t

0

σ(k)
s dW (k)

s , (1)

where µ
(k)
s denotes an integrable predictable process, σ

(k)
s is a càdlàg pro-

cess and W
(k)
s is a standard Brownian motion. Further for q, k with q 6= k,
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E[dW
(q)
s dW

(k)
s ] = ρq,kds.

Let s ∈ [t, t+1] and t = sn,0 < sn,1 < · · · < sn,n = t+1 be an evenly-spaced

partition of [t, t + 1], with ∆ = sn,j − sn,j−1. Following Bandi et al. (2017,

2020b), we model observed price processes including both an idiosyncratic and

a systematic component of staleness. This choice leads to the following reduced-

form model for the observed log-price X
(k)
sn,j on the discrete time grid {sn,j}X

(k)
0,n = Y

(k)
0,n ,

X
(k)
j∆,n = (1− Sj,n)

((
1− I

(k)
j,n

)
Y

(k)
j,n + I

(k)
j,nX

(k)
(j−1)∆,n

)
+ Sj,nX

(k)
(j−1)∆,n,

(2)

where I
(k)
j,n and Sj,n are triangular arrays of Fj−measurable Bernoulli variates

representing, respectively, the idiosyncratic and systematic staleness. For more

details about the interpretation of the two triangular arrays, I
(k)
j,n and Sj,n, we

refer to Bandi et al. (2020b). Here we limit to say that, should I
(k)
j,n = 1 then the

j-th log-return of the k-th log-price process is zero. If Sj,n = 1 the j-th log-asset

returns of all assets are set equal to zero. In what follows, we will assume that

p
(k)
I,n

.
= E

[
I
(k)
j,n

]
n→∞−−−−→ p

(k)
I ∈ (0, 1), (3)

pS,n
.
= E [Sj,n]

n→∞−−−−→ pS ∈ (0, 1), (4)

where p
(k)
I,n indicates the idiosyncratic probability of stale prices for asset k at

the frequency n, pS,n indicates the systematic probability of stale prices at the

frequency n and where p
(k)
I and pS denote, respectively, their asymptotic values.

2.2. Testing staleness

To formally define the statistical hypotheses underlying the two tests, we

need to rewrite the observed price process in (2) in the following equivalent

form

X
(k)
j∆,n = (1− T

(k)
j∆,n)Y

(k)
j∆,n + T

(k)
j∆,nX

(k)
(j−1)∆,n, (5)

where T
(k)
j∆,n

.
= Sj∆,n+ I

(k)
j∆,n−Sj∆,nI

(k)
j∆,n is a triangular array of Fj−measurable

Bernoulli variates representing the total staleness for asset k. Accordingly, we

5



define the total staleness probability for asset k at the frequency n as

p
(k)
T,n

.
= E(T

(k)
j,n)

n→∞−−−−→ p
(k)
T

.
= pS + (1− pS) p

(k)
I , (6)

where p
(k)
T indicates the asymptotic total staleness probability for asset k. From

(6) one can note that both the systematic and idiosyncratic staleness contribute

to the total probability of a stale price for the kth asset. Moreover, given that

each asset is equally affected by the systematic component, any difference in

total staleness of two given assets can be inputed solely to heterogeneity in

the idiosyncratic components. These arguments lead to define the null and the

alternative hypotheses of the two tests as follows.

Testing hypothesis 2.1. Let π ∈ (0, 1) be a given real number and let k be

an integer k = 1, ..., N . Let p
(k)
T be the total staleness probability of asset k.

The null HL0 and the alternative HLA hypotheses for the staleness level test are

defined, respectively, as

HL0 : p
(k)
T = π, HLA : p

(k)
T 6= π. (7)

Similarly, let q 6= k be an integer, q = 1, . . . , N . The null HE0 and the alternative

HEA hypotheses for the staleness equivalence test are defined, respectively, as

HE0 : p
(q)
T = p

(k)
T , HEA : p

(q)
T 6= p

(k)
T . (8)

Some clarifying observations are in order. A statistical test capable to dis-

tinguish between the null and the alternative hypotheses in (7) is required to

asses whether a specific asset has a given level of total staleness, no matter its

composition in terms of the systematic or the idiosyncratic component. On the

other hand, the introduction of a second test capable to discriminate between

the null and the alternative hypotheses in (8) is warranted in any situation in

which the researcher/investor wants to establish whether or not two assets show

statistically comparable levels of total staleness.
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Before proceeding to the formal definition of the two statistical tests we need

to introduce the following two kernel sample averages:

U(k)
n

.
=

1

n

n∑
j=1

S

 |X(k)
j∆,n −X

(k)
(j−1)∆,n|

H
(k)
j,n

 , (9)

M(q,k)
n

.
=

1

n

n∑
j=1

S

 |X(q)
j∆,n −X

(q)
(j−1)∆,n|

H
(q)
j,n

 S
 |X(k)

j∆,n −X
(k)
(j−1)∆,n|

H
(k)
j,n

 ,(10)

where S(·) : R → [0, 1] is an integrable function with bounded first derivative

in R and is such that S(0) = 1 (S is typically called a kernel smoother), and

H
(k)
j,n = hnξ

(k)
j,n is a threshold observed on the evenly-spaced grid, with ξ

(k)
j,n a

bounded positive adapted stochastic process and hn → 0 as n→∞. The logic

of the estimators U(k)
n and M(q,k)

n is clarified in Bandi et al. (2020b). Here we

limit to say that, under mild assumptions (listed for convenience in Appendix

A.1), Bandi et al. (2020b) show that

U(k)
n

P−−−−→
n→∞

pS + (1− pS) p
(k)
I , (11)

M(q,k)
n

P−−−−→
n→∞

pS + (1− pS) p
(q)
I p

(k)
I . (12)

The first convergence result shows that U(k)
n is a consistent estimator of the

total staleness p
(k)
T , and we use it to define our test statistics and illustrate their

asymptotic properties. The second convergence result is needed to estimate the

asymptotic distribution of the tests.

Theorem 2.1. Let q, k = 1, . . . , N with q 6= k and let `
(k)
n and t

(q,k)
n be the test

statistics for the staleness level and staleness equivalence tests defined, respec-

tively, as

`(k)
n =

(
U(k)
n − π

)
, (13)

t(q,k)
n =

(
U(q)
n − U(k)

n

)
. (14)
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Assume that

lim
n→+∞

√
n
(
p

(k)
T,n − p

(k)
T

)
→ 0, k = 1, ..., N,

under the assumptions of Section 2.1, we have that

 n

p
(k)
T,n

(
1− p(k)

T,n

)
 1

2

`(k)
n

d−→ N(0, 1) (under HL0 ),

 n

(1− pS,n)
(
p

(q)
I,n + p

(k)
I,n − 2p

(q)
I,np

(k)
I,n

)
 1

2

t(q,k)
n

d−→ N(0, 1) (under HE0 ).

Finally, we also have that

 n

p
(k)
T,n

(
1− p(k)

T,n

)
 1

2

`(k)
n

p−→ +∞ (under HLA),

 n

(1− pS,n)
(
p

(q)
I,n + p

(k)
I,n − 2p

(q)
I,np

(k)
I,n

)
 1

2

t(q,k)
n

p−→ +∞ (under HEA).

Proof. See Appendix A.

From Theorem 2.1, we have that the random variables `
(k)
n and t

(q,k)
n are,

under their corresponding null hypotheses, asymptotically Gaussian with vari-

ances given by, respectively,
p

(k)
T

(
1−p(k)

T

)
n and

(1−pS)
(
p

(q)
I +p

(k)
I −2p

(q)
I p

(k)
I

)
n . On the

other side, under the alternatives, they diverge in probability to +∞, deliver-

ing an asymptotic unit power. Since, however, the idiosyncratic probabilities

p
(q)
I,n and the systematic probability pS,n are unknown, the variances of the test

statistics must be replaced by consistent estimators.

The following corollary illustrates the feasible version of Theorem 2.1 in

which suitable estimators of the asymptotic variances are used.

Corollary 2.2. Feasible version of the Central Limit Theorem 2.1.
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Let,

V̂
`
(k)
n

.
=

U(k)
n

(
1− U(k)

n

)
n

,

V̂
t
(q,k)
n

.
=

U(q)
n + U(k)

n − 2M(q,k)
n

n
.

Then, we have that

V̂−1/2

`
(k)
n

`(k)
n

d−→ N(0, 1) (under HL0 ),

V̂−1/2

t
(q,k)
n

t(q,k)
n

d−→ N(0, 1) (under HE0 ).

and also that

V̂−1/2

`
(k)
n

`(k)
n

p−→ +∞ (under HLA),

V̂−1/2

t
(q,k)
n

t(q,k)
n

p−→ +∞ (under HEA).

Proof. See Appendix A.

2.3. Multiple testing problem

Empirical applications might require computing the staleness level and the

staleness equivalence tests for a portfolio of assets. Consider the set of N assets,(
X(1), . . . , X(N)

)
, and let X = {1, ..., N} be the collection of the first N integers.

Suppose we want to assess whether the assets have the same pre-specified level

of staleness, or verify whether they all have the same degree of staleness. To

formally define the problem, we specify the hypotheses that need to be tested

in a multiple test on the staleness level and staleness equivalence, respectively.

Testing hypothesis 2.2. Let π be a pre-specified level of total staleness, then

the null HML
0 and the alternative HML

A hypothesis for the multiple test on stal-

eness level are

HML
0 : p

(1)
T = · · · = p

(N)
T = π vs HML

A : ∃k ∈ X : p
(k)
T 6= π. (15)
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Similarly, the null HME
0 and the alternative HME

A hypothesis for the multiple

test on staleness equivalence are

HME
0 : p

(1)
T = · · · = p

(N)
T vs HME

A : ∃q, k ∈ X , q 6= k : p
(k)
T 6= p

(q)
T .

(16)

In the first case, we could simply run the staleness level test for all the

assets, and reject HML
0 if at least one asset rejects the single test. In the second

case, we could run the staleness equivalence test across all the pairs, and reject

HME
0 if at least one pair appears statistically different. Since these are multiple

testing problems, the size of the tests must be corrected accordingly to avoid

spurious over-rejections (Romano et al., 2008). We outline a procedure to do so

controlling the family-wise error (FWE) rate.

To test for these hypotheses controlling the FWE rate, we propose the fol-

lowing test statistics,

TML
X = max

k∈X

∣∣∣∣∣∣ `
(k)
n

V̂
1
2

`
(k)
n

∣∣∣∣∣∣ , (17)

TME
X = max

q,k∈X
q 6=k

∣∣∣∣∣∣ t
(q,k)
n

V̂
1
2

t
(q,k)
n

∣∣∣∣∣∣ . (18)

Standard results from extreme value theory (Embrechts et al., 1997) show that

the normalized maxima of independent Gaussian random variables has a limiting

Gumbel distribution, as the number of observations grows to infinity. However,

it is clear from Lemma 1 that the test statistics in Equations (17)-(18) are based

on dependent random variables.

Lemma 1. Let Ln =
(
`
(1)
n , . . . , `

(N)
n

)′
∈ RN and Tn =

(
t
(1,2)
n , . . . , t

(N−1,N)
n

)′
∈

R
N(N−1)

2 be the vectors obtained by collecting, respectively, all the test statistics

on the staleness level and staleness equivalence. Assume that

lim
n→+∞

√
n
(
p

(k)
T,n − p

(k)
T

)
→ 0, k = 1, ..., N.

10



Then, as n→∞, it holds that

√
nLn

d−→ NN (0,Σ) (under HML
0 ),

√
nTn

d−→ NN(N−1)
2

(0,Ξ) (under HME
0 ),

where NN (·) denotes the multivariate N -dimensional Normal distribution, and

where the two variance-covariance matrices Σ and Ξ are given, respectively, by

Σq,k =

π(1− π) q = k

pS + (1− pS)p
(q)
I p

(k)
I − π2 q 6= k

(19)

Ξ(h,k),(r,q) =


(1− pS)

(
p

(h)
I − 2p

(h)
I p

(k)
I + p

(k)
I

)
h = r, k = q

(1− pS)
(
p

(h)
I − p(h)

I p
(q)
I − p

(k)
I p

(h)
I + p

(k)
I p

(q)
I

)
h = r, k 6= q

0 h 6= r, k 6= q

Proof. See Appendix A.

To obtain the distribution of TML
X and TME

X , we rely on the results of Arellano-

Valle & Genton (2008), who derive the exact distribution for the maximum of

dependent Gaussian random variables.

Lemma 2. Consider, for a fixed i, the following partition of the asymptotic

covariance matrix of Ln in Lemma 1,

Σ =

 Σ−i−i Σ−ii

Σi−i Σii

 ,

where the subscript −i indicates the removal of the ith row or column of Σ and

Σii denotes the element of Σ on the ith row of the ith column. The p.d.f. of

TML
X can be written as

fTML
X

(x) =

N∑
i=1

φ (0,Σii) ΦN−1

(
x

Σ−ii
Σii

,Σ−i−i −
Σ−iiΣ

′
−ii

Σii

)
, (20)
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with φ(·) and ΦN (·) denoting the marginal Gaussian density and the N -variate

Gaussian cumulative distribution, respectively. Analogous result can be obtained

for TME
X .

Proof. The result follows from Lemma 1 and Corollary 4 of Arellano-Valle &

Genton (2008)

The computational cost to obtain the exact limiting density in Equation (20)

is quite high when the number of assets is large. As our empirical application

involves more than 150 assets, we compute the critical values of the test statistics

using Monte Carlo simulations instead of the theoretical result in Equation (20).

We compare exact and simulated critical values in a small setting and find that

differences are negligible.

The two test statistics TML
X and TME

X , while controlling for the FWE rate, do

not identify the source of rejection. Consider, for example, the case of TML
X : the

rejection of the null does not say which assets, among those included in X , have

an estimated level of total staleness statistically different from the pre-defined

level π. A similar argument applies for TML
X . To solve this issue, we propose the

following algorithm: first we run the multiple test (either TML
X or TME

X ) using

the whole set of indexes X . Then, if the multiple null hypothesis is rejected, we

remove from X the asset with the highest value of the test statistic, obtaining a

new set X ′ ⊂ X . We repeat the first step on the new set X ′ and we iterate the

procedure until the null is not rejected anymore. At the end of the procedure

the original set X is split into two non-overlapping sets X = X0

⋃
X1. In the

case of TML
X (resp. TME

X ) the set X1 contains all the assets (resp. all the pairs of

assets) for which the hypothesis HL0 (resp. HE0 ) is rejected.

3. Simulations

This section studies the finite sample sizes and powers of the tests outlined

in Sections 2.2 and 2.3. We consider a set of N assets and assume that the
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efficient log-price Y (k) of the kth asset obeys the following factor structure,

dFt = σF dW
F
t ,

dY
(k)
t = β(k) dFt + σ(k) dW

(k)
t , (21)

where Ft is a factor common to all the N assets,
(
dWF

t , dW
(1)
t , . . . , dW

(N)
t

)
are

independent standard Brownian motions, and β(k) is a factor loading drawn from

a normal distribution, N
(
β, σβ

)
, to consider an heterogeneous impact of the

factor on the assets. We generate a trading day of six hours setting σF = 0.01,

σ(k) = 0.01, β = 0.5 and σβ = 0.45. Then, we consider sampling schemes at

the frequencies ∆ = (1, 10, 30, 60, 300) seconds and obtain the observed price

process on these grids asX
(k)
0,n = Y

(k)
0,n ,

X
(k)
j,n = (1− Sj,n)

((
1− I

(k)
j,n

)
Y

(k)
j,n + I

(k)
j,nX

(k)
(j−1),n

)
+ Sj,nX

(k)
(j−1),n,

(22)

where
(
Sj,n, B

(1)
j,n, . . . , B

(N)
j,n

)
are independent Bernoulli random variables with

E [Sj,n] = pS,n and E
[
B

(k)
j,n

]
= p

(k)
I,n , k = {1, . . . , N}. To obtain the finite sample

staleness probabilities, we consider the following scaling laws

pS,n = pS (1− exp (−0.001n)) ,

p
(k)
I,n = p

(k)
I (1− exp (−0.001n)) ∀k ∈ {1, . . . , N},

where n = 1
∆ and

(
pS, p

(1)
I , . . . , p

(N)
I

)
are the limiting staleness probabilities.

This scaling law simply reflects the empirical evidence that the higher the sam-

pling frequency the higher the likelihood of a stale price (Bandi et al., 2020b).

For each frequency, the kernel averages U(k)
n and M(q,k)

n in Equations (9)-

(10) are computed replacing the kernel S(·) with the indicator function for zero

13



returns, in formula

U(k)
n =

1

n

n∑
j=1

1{
X

(k)
j∆,n−X

(k)

(j−1)∆,n
=0
}, (23)

M(q,k)
n =

1

n

n∑
j=1

1{
X

(q)
j∆,n−X

(q)

(j−1)∆,n
=0
} 1{

X
(k)
j∆,n−X

(k)

(j−1)∆,n
=0
}, (24)

whence U(k)
n and M(q,k)

n represent, respectively, the percentage of zero returns

for the asset k and the percentage of simultaneous zero returns for asset q and

k.

The adoption, in the definitions (23) and (24), of an indicator function in

place of a kernel smoother S(·), brings the double advantage of I) a less nuanced

interpretation of the moment estimators (percentages of zero returns) and II) of

a smaller estimator bias in finite sample. Kernel-based estimators are key only

when a large number of assets are simultaneously involved. In this context the

bivariate moment estimator M(q,k)
n must be replaced with its N -variate (for a

generic number of assets N) counterpart, which is naturally defined as

M(N)
n =

1

n

n∑
j=1

N∏
k=1

1{
X

(k)
j∆,n−X

(k)

(j−1)∆,n
=0
}. (25)

As a matter of fact, as the number of assets involved increases, the across-

assets product of indicator functions that appear in Equation (25) becomes,

in finite sample, prone to produce a zero-valued estimator even in presence of

high level of systematic staleness (it is enough that one out of the N assets

involved has a non-zero return to have a product identically equal to zero, no

matter how large, but finite, N is). As a consequence, for finite but large N , the

choice of a finite (small) threshold (as in Bandi et al., 2020b) is unavoidable.

This choice is paid for in terms of a positive bias in the estimation of price

staleness: a non-null threshold is deemed to include, in the estimation, small

fluctuations due to the efficient price volatility, inflating the estimation. The

case analyzed here is different. Since no more than two assets are involved at
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a time, the choice of a kernel smoother would be, in finite sample, suboptimal.

This said, both definitions (either with indicator functions or kernels) give the

same results asymptotically (i.e., when the number of observations n and the

number of assets N diverge simultaneously), see Bandi et al. (2020b) for more

details. We decided to frame the theory in terms of kernel functions (for sake

of generality) and to adopt indicator functions in the empirical application (for

the finite sample advantages just discussed).

3.1. Testing the staleness level

We assess the finite sample properties of the test on the staleness level, as-

suming a single stock, i.e. N = 1. Given that we simulate only one process,

it is not necessary to distinguish between idiosyncratic and systematic stale-

ness, hence we consider three scenarios characterized by three different levels of

(asymptotic) total staleness probability, more specifically pT ∈ {0.1, 0.3, 0.5}.

To verify that the staleness level test, associated to the statistic defined in

Equation (13), is properly sized we implement the test with π = pT. Similarly,

to check the power, the test is implemented inputing a π 6= pT, in particular we

choose π = pT + π∆, where π∆ ∈ {0.01, 0.025, 0.05}.

Table 1 displays the power and size of the test statistic `
(k)
n for different

significance levels α, and several sampling frequencies, ∆ = {1, 10, 30, 60, 300}

seconds, over 1000 replications. The test is properly sized at high frequency, but

one can note that distortions appear at moderate frequencies. At the 5-minute

sampling frequency, the test exhibits a high number of over-rejections, and this

evidence is stronger the greater pT. This finite sample distortion emerges be-

cause of the discrepancy between pT,n and pT, and clearly vanishes as n increases

because pT,n converges to pT. At the same time, the test is very powerful across

all the sampling frequencies and for all the values of π∆.

To study the properties of the multiple test statistic on the staleness level

in Equation (17), we consider a realistic setting where the N stocks are divided

in G groups with different degrees of staleness: this means that each group

contains stocks exhibiting the same probability of a stale price. We consider
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three dimensions, N = {80, 120, 160}, four numbers of groups, G = {1, 2, 4, 8},

and three asymptotic systematic staleness probabilities pS = {0.005, 0.01, 0.05}.

Recall that X is composed of two subsets, i.e. X = {X0,XA}, where X0 and

XA contain the indices k of the assets which do and do not satisfy the null

hypothesis, respectively. When G = 1, we have that X ≡ X0, and we can assess

the ability to control the FWE rate. The asymptotic idiosyncratic staleness

probability is set to p
(k)
I = 0.1, and the staleness probability under HML

0 is

π = pS + (1− pS)p
(k)
I . The upper panel of Table 2 shows the FWE rate at level

α = 0.05 over 100 replications. These results are similar to those observed for

the size of staleness level test (Table 1), suggesting that small sample effects

carry over to the multiple testing problem. To assess the power of the test, we

consider G = {2, 4, 8}. We spread the idiosyncratic staleness probabilities of the

assets over an equally-spaced grid within the interval pL = 0.1 and pH = 0.5.

Assets in the first group have idiosyncratic staleness probability equal to pL,

while the idiosyncratic staleness probability of the assets in the g-th group is

equal to pL + g p
H−pL
G , with g ∈ {2, . . . , G}. We assume that the assets in the

first group belong to X0, i.e. π = pS + (1 − pS)pL, while those in the others

G−1 groups belong to XA. We assess the ability of rejecting the null hypothesis

counting the number of assets correctly allocated to the subset XA. Results in

Table 2 confirm that the test is very powerful up to the 1-minute sampling

frequency.
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Table 1: Power and Size for the test on the staleness level

π∆ ∆ (sec.) pT = 0.1 pT = 0.3 pT = 0.5

α 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

0

1 0.115 0.054 0.011 0.097 0.052 0.014 0.083 0.049 0.013

10 0.120 0.064 0.018 0.087 0.042 0.005 0.094 0.042 0.010

30 0.118 0.062 0.015 0.106 0.043 0.009 0.104 0.054 0.011

60 0.149 0.108 0.039 0.203 0.117 0.025 0.228 0.119 0.042

300 0.682 0.682 0.473 0.943 0.906 0.784 0.999 0.994 0.982

0.01

1 1.000 0.999 0.993 0.969 0.939 0.794 0.941 0.895 0.726

10 0.563 0.423 0.215 0.418 0.281 0.104 0.371 0.232 0.074

30 0.340 0.254 0.098 0.267 0.166 0.065 0.256 0.168 0.042

60 0.306 0.255 0.118 0.325 0.203 0.074 0.342 0.226 0.092

300 0.812 0.656 0.467 0.978 0.957 0.855 1.000 0.999 0.983

0.025

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 0.987 0.969 0.903 0.877 0.804 0.566 0.828 0.720 0.472

30 0.791 0.701 0.464 0.567 0.423 0.217 0.545 0.404 0.187

60 0.657 0.516 0.313 0.500 0.373 0.176 0.575 0.410 0.189

300 0.915 0.813 0.651 0.983 0.969 0.909 1.000 0.998 0.985

0.05

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 1.000 1.000 1.000 1.000 0.999 0.992 0.999 0.999 0.992

30 0.998 0.994 0.975 0.949 0.904 0.741 0.912 0.850 0.630

60 0.979 0.948 0.813 0.863 0.775 0.519 0.885 0.772 0.535

300 0.962 0.911 0.820 0.997 0.987 0.953 1.000 1.000 0.997

This table shows the rejection frequencies of the test on the staleness level `
(k)
n over

1000 replications. We assume three different levels of total staleness probability pT.

∆ refers to the sampling frequency and α is the nominal size of the test.
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Table 2: FWE rate and Power of the Multiple Test on Staleness Level

G ∆ (sec.) N = 80 N = 120 N = 160

pS 0.001 0.005 0.05 0.001 0.005 0.05 0.001 0.005 0.05

1

1 0.060 0.040 0.020 0.040 0.060 0.080 0.090 0.060 0.110

10 0.060 0.070 0.080 0.080 0.090 0.010 0.120 0.070 0.070

30 0.080 0.130 0.070 0.120 0.080 0.100 0.090 0.100 0.130

60 0.220 0.250 0.180 0.210 0.250 0.100 0.360 0.330 0.150

300 1.000 1.000 0.930 1.000 1.000 0.900 1.000 1.000 0.910

2

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

300 0.346 0.304 0.141 0.265 0.260 0.114 0.255 0.231 0.094

4

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

60 1.000 1.000 0.998 0.999 1.000 0.996 0.999 0.999 0.995

300 0.114 0.103 0.054 0.096 0.098 0.036 0.092 0.078 0.037

8

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

30 0.992 0.990 0.971 0.990 0.987 0.964 0.985 0.984 0.961

60 0.912 0.910 0.885 0.907 0.902 0.876 0.899 0.897 0.875

300 0.073 0.073 0.040 0.076 0.061 0.030 0.064 0.055 0.027

This table shows the finite sample properties of the multiple test on the staleness level

over 100 replications. The upper panel (G = 1) shows the FWE rate. The other panels

(G = {2, 4, 8}) show the power of the test, measured as the fraction of assets correctly

assigned to the set under the alternative XA.
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3.2. Testing staleness equivalence

We assess the finite sample properties of the staleness equivalence test in

Equation (14). For this purpose, we consider a set of two assets, i.e. N =

2. We assume that the first asset has an idiosyncratic staleness probability

p
(1)
I = 0.30, while for the second asset, we consider four different scenarios, i.e.

p
(2)
I = {0.30, 0.35, 0.40, 0.50}. The case p

(1)
I = p

(2)
I is used to study the size of

the test. Table 3 displays the power and size of the test statistic at different

significance level α, for various level of the systematic staleness probability pS,

and for different sampling frequencies, ∆ = {1, 10, 30, 60, 300} seconds, over

1000 replications. The results in Table 3 highlight that the test is properly sized

and the various scenarios do not lead to significant size distortions. At the same

time, the test is already quite powerful for p
(2)
I = 0.35 at the 1-minute sampling

frequency, though less powerful than the staleness level test. The lower power is

a consequence of the fact that the staleness equivalence test requires the three

estimators U(1)
n , U(2)

n , and M(1,2)
n instead of one (U(1)

n ), slowing convergence to

normality in finite samples. Finally, we note that the level of the systematic

component has hardly any impact on the power of the test.

To study the properties of the multiple testing procedure of staleness equiv-

alence, we create a realistic setting where the N stocks are divided in G equally-

sized groups. Stocks in the same group exhibit the same degree of staleness, but

the latter differs across the groups. Similarly to the simulations for the multiple

staleness level test, we set the minimum and maximum idiosyncratic staleness

probability to pL = 0.1 and pH = 0.9, and let the intra-group staleness be

pH−pL
G distance apart. We consider several scenarios where N = {80, 120, 160}

and G = {1, 2, 4, 8}. When G = 1, we can assess the ability to control the

FWE rate. When G = {2, 4, 8}, we assume that the assets in the first group

belong to X0 and the others to XA, and evaluate the power of the test counting

the number of assets correctly allocated to the subset XA. Table 4 reports the

size and power of the multiple test on staleness equivalence at the significance

level α = 0.05 and at the sampling frequency ∆ = 60 seconds (these values

will be used in the empirical applications), over 100 replications. The results
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highlight that the multiple test on staleness equivalence is properly sized for all

levels of the systematic staleness probability, and for all the number of assets

considered. As to the power, we highlight that the test is extremely powerful

for all the considered cases.

Table 3: Power and Size of the Staleness Equivalence test

p
(2)
I ∆ (sec.) pS = 0.005 pS = 0.01 pS = 0.05

α 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

0.30

1 0.115 0.058 0.010 0.086 0.039 0.007 0.105 0.054 0.013
10 0.093 0.052 0.012 0.099 0.051 0.013 0.110 0.053 0.017
30 0.097 0.043 0.008 0.085 0.042 0.007 0.093 0.045 0.003
60 0.099 0.055 0.009 0.104 0.049 0.010 0.091 0.044 0.007
300 0.095 0.053 0.006 0.108 0.056 0.010 0.113 0.057 0.010

0.35

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 0.986 0.965 0.876 0.987 0.967 0.885 0.989 0.962 0.869
30 0.764 0.629 0.374 0.767 0.640 0.384 0.785 0.654 0.378
60 0.557 0.409 0.183 0.555 0.403 0.187 0.507 0.374 0.176
300 0.190 0.107 0.028 0.182 0.090 0.017 0.199 0.101 0.024

0.40

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
30 0.994 0.990 0.950 0.996 0.988 0.948 0.994 0.982 0.932
60 0.927 0.867 0.672 0.931 0.881 0.678 0.934 0.850 0.619
300 0.337 0.232 0.068 0.295 0.184 0.044 0.314 0.201 0.044

0.50

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
60 1.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000 0.998
300 0.564 0.409 0.192 0.576 0.442 0.206 0.588 0.430 0.191

This table shows the rejection frequencies of the test on the staleness equivalence t
(q,k)
n

over 1000 replications. We assume three different levels of the systematic staleness

probability pS, and set p
(1)
I = 0.30. ∆ refers to the sampling frequency and α is the

nominal size of the test.

20



Table 4: FWE rate and Power of Multiple Test on Staleness Equivalence

G N = 80 N = 120 N = 160

pS 0.001 0.005 0.05 0.001 0.005 0.05 0.001 0.005 0.05

1 0.050 0.030 0.050 0.060 0.070 0.020 0.080 0.080 0.070
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
8 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

FWE rate and power of the multiple test on staleness equivalence for three different

levels of the systematic staleness probability pS. G is the number of groups considered

in the simulation and N is the number of simulated assets. The row with G = 1

reports the results for the FWE rate, whereas the other ones refer to the power. The

test is applied with a confidence level of α = 0.05 and ∆ = 60 seconds.

4. Empirical applications

This section presents two applications of the testing procedures outlined

above.

4.1. Data

Our empirical analysis is based on high frequency data for N = 152 compa-

nies from the NYSE, ranging from January 2006 until December 2014 (T = 2183

days). We observe prices at the 1-minute frequency. Idle times U(k)
n and M(q,k)

n

in Equations (9)-(10) are computed at one-minute frequency as well. As in the

Monte Carlo simulations, we replace the kernels with the indicator functions,

see Equations (23)-(24).

4.2. Volatility timing with optimal staleness groups

We consider an investor pursuing a volatility timing asset allocation strategy

(Fleming et al., 2001, 2003) with a vast dimensional portfolio, re-balancing on

a daily basis. On any day t, the investor allocates funds into N risky assets
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solving the global minimum variance portfolio problem,

minwt w′tΣtwt,

s.t.w′tι = 1,

where wt is a N × 1 vector of portfolio weights, Σt is the N × N integrated

covariance matrix on day t, ι is a N × 1 vector of ones. When Σt is positive

definite, the optimal portfolio allocation has closed-form solution

wt =
Σ−1
t ι

ι′Σ−1
t ι

. (26)

Our aim is to obtain accurate estimates of the latent daily integrated covari-

ance matrix Σt using high-frequency data. This task can be very challenging

due to the asyncronicity characterizing stock prices sampled at high frequency,

which induces a downward bias in the estimates of the daily covariance. A typ-

ical solution is to resort to refresh time sampling, i.e. create a discrete time

grid where price updates are synchronized, and use the synchronized prices to

estimate the integrated covariance. Although this strategy removes the bias,

it forces to discard a large amount of observations, particularly if one of the

stocks in portfolio is extremely illiquid. To limit this problem, Hautsch et al.

(2012) propose a Regularizing and Blocking (RnB) estimator of the integrated

covariance, working in two steps: first, stocks with homogeneous liquidity are

grouped together, and the daily covariance of each group is estimated. They

suggest to use an estimator robust to the microstructure noise, such as the Mul-

tivariate Realized Kernel (MRK) of Barndorff-Nielsen et al. (2011); second, the

covariances from the sub-groups are combined to obtain the entire covariance

matrix, and the latter is regularized in order to ensure it is positive definite.

The approach of Hautsch et al. (2012) is based on a k-means algorithm

applied to the number of daily transactions. Their procedure forces to keep

the number of groups and the groups composition fixed throughout the days of

the sample. We propose a flexible procedure to obtain daily groups of equally-

liquid assets. We sequentially implement the multiple staleness equivalence
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testing strategy (outlined in Section 2.3). At each iteration, the stock with

the highest staleness is removed from the group (which, initially, contains all

the assets) until the null hypothesis of staleness equivalence among the assets

is rejected. Once a group is established, a new sequence of iterations starts.

The multiple staleness equivalence test is now performed on the assets removed

from the previous groups. The procedure is iterated until the null hypothesis

cannot be rejected anymore. Thus, when the iteration is ended, all the assets are

assigned to a group. This procedure allows to have data-driven group size and

structure that change every day. We refer to these groups as optimal staleness

groups. As in Hautsch et al. (2012), we estimate the daily integrated covariance

using the MRK estimator of Barndorff-Nielsen et al. (2011) on the optimal

staleness groups, stacking the sub-group covariances and regularizing the entire

covariance matrix. We name this the Staleness Group (SG) estimator.

The relevance of accounting for a dynamic group structure is depicted in

Figure 1, which shows the monthly average number of identified groups using

the procedure based on the staleness equivalence test. The plot shows that

the number of groups changes over time, reaching the minima during periods

of turmoil. This suggests that when the trading activity hastens, the number

of classes shrinks due to a stronger market concentration. On the other hand,

the number of identified groups is higher over days characterized by a more

regular trading activity. Besides the dynamic number of groups, we emphasize

the importance of letting also the group structure to vary over time. Figure

2 shows the monthly idle time ranking of the stocks described in Section 4.1.

The plot highlights how stocks tend to change their position in the ranking,

suggesting that assuming a constant group structure over time is restrictive.

To assess the merit of our SG estimator for portfolio optimization, we rely

on the approach of Engle & Colacito (2006). We consider several alternative

estimators of the integrated covariance, and use Equation (26) to obtain global

minimum variance portfolio solutions with each one of them. The estimator

returning the lowest portfolio variance is the most accurate. The analysis is

performed in-sample so that we do not need to specify any time series model
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to obtain forecasts. We consider the 5-minute realized volatility of the portfolio

returns as a measure of portfolio volatility σp,t. As competitors of our SG

estimator, we select the MRK of Barndorff-Nielsen et al. (2011), and the RnB

estimator of Hautsch et al. (2012) using 2, 4 and 8 blocks. As these estimators

are not positive definite, we need a regularization method to ensure that this

property holds. We rely on the eigenvalue cleaning (EC) approach used in

Hautsch et al. (2012) and on the factor model regularization using a number of

factors equal to one (F1) and three (F3) as in Hautsch et al. (2015).

Table 5 displays the average annualized portfolio volatility obtained with

the different estimators and regularization methods on the 152 companies de-

scribed in Section 4.1. For each regularization method, the SG estimator returns

the lowest portfolio variance. To formally determine whether the superior per-

formance of our SG estimator is statistically significant, we apply the Model

Confidence Set (MCS) of Hansen et al. (2011) to the portfolio volatility esti-

mates obtained from each regularization method. The MCS uses a bootstrap

procedure to identify the (sub)set of “best forecasting” models with a given con-

fidence level. In the implementation, we use 10000 bootstrap samples obtained

from a block bootstrap with block size of 20 observations, and build the opti-

mal subset at the 90% confidence level using the maximum difference criterion.

Results in Table 5 shows that, for each regularization method, the estimate ob-

tained with the SG estimator is the only one included in the Model Confidence

Set (MCS) of Hansen et al. (2011). Moreover, when we jointly consider all the

estimators and regularization methods, the SG estimator regularized with EC

method is the overall winner.
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Figure 1: Average number of identified groups
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This graph shows the monthly average number of identified groups using the grouping

procedure based on the staleness equivalence test.
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Figure 2: Idle time heatmap

This plot sorts assets based on their idle time computed on a monthly basis. We

assign a specific color to each stock depending on its position in the ranking in the

first month. Tracking the firms over time clarifies to what extent stocks that used to

be illiquid become more liquid and viceversa.
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Table 5: Volatility of different IC estimators

Estimator Regularization Method

EC F1 F3

MRK 0.0722 0.0711 0.0728

SG 0.0578 0.0652 0.0716

RnB2 0.0644 0.0789 0.1428

RnB4 0.0615 0.0716 0.1179

RnB8 0.0596 0.0849 0.1047

This table shows the average annualized portfolio volatility obtained with the different

estimators and regularization methods. Underlined numbers highlight which estimator

is in the Model Confidence Set for a given regularization method. Bold numbers denote

that an estimator is part of the Model Confidence Set considering all regularization

methods.

4.3. Staleness-based asset allocation

Liquidity is a relevant risk factor in the asset allocation decisions of investors.

Some investors prefer to allocate funds towards highly liquid assets to reduce

the impact of transaction costs on the portfolio performance. For instance, large

passive funds trying to replicate the performance of an equity index may prefer

to hold only a subset of the index components instead of the entire index, in

order to minimize the costs associated to the most illiquid assets (Jansen &

Van Dijk, 2002). Other investors, such as hedge funds, may prefer to expose

themselves to highly illiquid assets, to benefit from the liquidity risk premium

(Ibbotson et al., 2013). Both examples suggest that investors can benefit from

a stock picking procedure allowing them to select stocks with a specific liquidity

profile, taking also into account the dynamic nature of liquidity. We meet the

investor’s need developing a simple procedure building portfolios with a pre-

specified degree of staleness.

We consider an investor who can allocate funds in the 152 companies de-
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scribed in Section 4.1, but is willing to invest only in those stocks with to-

tal staleness p
(k)
T within a given staleness fork, i.e. p

(k)
T ∈ (πL, π

U ), with

0 < πL < πU < 1. On any given day t, the investor picks the stocks, and

then naively distributes its funds over the selected stocks following a simple 1
n

rule. Nothing prevents the investor to optimize the portfolio weights solving the

Markowitz problem but we prefer to adopt a 1
n rule to assess the merit of our

stock picking procedure. Formally, let ωk,t be the portfolio weight of asset k on

day t, then

ωk,t =


1
nπt

πL ≤ p(k)
T,t ≤ πU

0 p
(k)
T,t < πL or p

(k)
T,t > πU

,

where p
(k)
T,t is the total staleness probability of the asset k on day t and nπt

denotes the number of assets whose total staleness falls in the interval (πL, π
U )

on day t.

This task would be easy if we could measure the probability of a stale price

without errors, but we can only obtain a noisy estimate of it using idle time. As

the latter is naturally characterized by some degree of uncertainty, we may have

assets that belong to the interval (πL, π
U ), but whose idle times lay outside of it.

Spurious exclusion of these assets limits portfolio diversification and inevitably

increases the portfolio turnover, thus raising the transaction costs. To avoid

this issue, we use the test of staleness level to select the assets to include in the

investor’s portfolio. On any given day, for each asset k, we adopt the following

selection rule:

• If πL < U(k) < πU , we include the kth asset in the portfolio.

• If U(k) < πL, then we test the null hypothesis H0 : U(k) = πL against the

alternative HA : U(k) < πL. Rejection of H0 favors the exclusion of the

kth asset from the portfolio.

• If U(k) > πU , then we test the null hypothesis H0 : U(k) = πU against the

alternative HA : U(k) > πU . Rejection of H0 favors the exclusion of the

kth asset from the portfolio.
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As we need to test all the assets laying outside the staleness interval, we account

for the multiple testing problem using the results of Section 2.3.

We use this procedure to build a portfolio ΠP with staleness between πL =

0.5 and πU = 0.7, thus considering an investor seeking an exposure toward

illiquid assets. For comparison purposes, we also build an alternative portfolio

ΠA composed by the assets strictly laying inside the interval (πL, π
U ). To

appreciate the benefits of testing the staleness level, we evaluate ΠP and ΠA

over two different dimensions: first, we assess the stability of the two portfolios

computing the daily portfolio turnover (Liu, 2009; Bollerslev et al., 2018),

TOt =

N∑
j=1

∣∣∣∣wj,t − wj,t−1
1 + rj,t

1 + w′trt

∣∣∣∣ , (27)

where rt = (r1,t, . . . , rN,t) denotes the vector of daily returns on the N assets

on day t. Our procedure takes into account the intrinsic uncertainty in the

estimates of idle time and should yield a more stable asset selection over time,

thus lowering the turnover of ΠP with respect to ΠA. Second, a lower turnover

reduces the transaction costs thus increasing the utility of an investor. We

assume the investor has quadratic utility with risk aversion γ,

U (rp,t, γ) = (1 + rp,t)−
γ

2(1 + γ)
(1 + rp,t)

2
,

with rp,t = w′trt − cTOt the portfolio returns adjusted by the transaction cost

c. We compute the fee ϕγ an investor with risk aversion γ would be willing to

pay to switch from portfolio ΠA to portfolio ΠP solving the system

T∑
t=1

U
(
r

(ΠA)
p,t , γ

)
=

T∑
t=1

U
(
r

(ΠP )
p,t − ϕγ , γ

)
.

To determine whether the ϕγ are significantly different from zero, we use a block

bootstrap on the difference in the utilities with a block length of 12 days.

Figure 3 reports the portfolio turnover in (27) for the ΠP and the ΠA port-

folio, respectively. The selection rule based on the staleness equivalence test
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attenuates spurious turnover, making the portfolio more stable over time and

thus less expensive. To assess to what extent the lower turnover yields utility

gain, we consider a coefficient of risk aversion γ = {1, 10} and transaction costs

c = {0.5%, 1%, 2%}. These values are similar to those usually considered in the

literature (Bollerslev et al., 2018). Table 6 shows that a positive and statistically

significant utility gain appears regardless of the degree of transaction costs. In

particular, an investor would be willing to pay up to 115 basis points per year

to use the stock selection rule based on the staleness level test.

Figure 3: Portfolio turnover

2007 2008 2009 2010 2011 2012 2013 2014
0.5

0.75

1

1.25

1.5

Time series of portfolio turnover, as defined in Equation (27), for the ΠP portfolio (red

dotted line), computed using the multiple staleness level test, and the ΠA portfolio

(black continuous line), composed by the assets strictly inside the interval (πL, π
U ) =

(0.5, 0.7).
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Table 6: Liquidity portfolio performance

c γ = 1 γ = 10

0.5% 28.91* 28.74*

1% 57.81* 57.14*

2% 115.47* 113.05*

The table reports the economic gains in annual basis points, ϕγ , of switching from

the ΠA portfolio to the ΠP portfolio for various transaction costs c and risk aversion

coefficients γ. Asterisks denote ϕγ significantly different from zero at the 5% level.

5. Conclusions

Building on the econometrics framework of stale prices, we propose two

statistical tests designed to study the liquidity of equity stocks. We show how

to use these tests to answer two questions from the financial economic literature.

The first testing procedure allows to create groups composed by equally

liquid stocks. We apply this procedure for the construction of a large dimen-

sion covariance matrix using high frequency data and prove its validity against

several benchmark estimators.

The second testing procedure allows to assess whether a set of stocks has a

pre-specified liquidity profile. Taking the perspective of an investor willing to

bear an exposure toward illiquidity, we show that the portfolio built using our

testing procedure results in a higher utility for the investor.
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Appendix A. Technical Appendix

Appendix A.1. Technical assumptions from Bandi et al. (2020b)

We assume that the Bernoulli variates have limited temporal dependence,

i.e.

V
(

1
n

∑n
j=1

∏N
q=1 I

(q)
j,n

)
n→∞−−−−→ 0,

V
(

1
n

∑n
j=1 Sj,n

)
n→∞−−−−→ 0,

and

V
(

1
n

∑n
j=1 Sj,n

∏N
q=1 I

(q)
j,n

)
n→∞−−−−→ 0.

We also assume that the maximum number of consecutive stale prices is asymp-

totically bounded. Let f
(q)
j be the number of consecutive stale prices for the qth

asset before instant sn,j , with j = 1, . . . , n, then F
(q)
n = maxj f

(q)
j is such that

F
(q)
n log n

nα
n→∞−−−−→ 0.

with α < 1/2.

Appendix A.2. Proof of Theorem (2.1)

Proof. We first prove the result for the test on the staleness level. From Bandi

et al. (2020b), it holds that

U(k)
n =

1

n

 n∑
j=1

Sj,n + I
(k)
j,n − Sj,nI

(k)
j,n

+ oP

(
1√
n

)
. (A.1)

Recalling that p
(k)
T,n = pS,n + (1− pS,n) p

(k)
I,n , we have that

E
[
Sj,n + I

(k)
j,n − Sj,nI

(k)
j,n

]
= p

(k)
T,n,

V
(
Sj,n + I

(k)
j,n − Sj,nI

(k)
j,n

)
= p

(k)
T,n

(
1− p(k)

T,n

)
,

and

v2
n =

n∑
j=1

V
(
Sj,n + I

(k)
j,n − Sj,nI

(k)
j,n − π

)
= n p

(k)
T,n

(
1− p(k)

T,n

)
.
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As the expected value E
[∣∣∣Sj,n + I

(k)
j,n − Sj,nI

(k)
j,n − p

(k)
T,n

∣∣∣2+δ
]

does not depend on

j, we have that
∑n
j=1 E

[∣∣∣Sj,n + I
(k)
j,n − Sj,nI

(k)
j,n − p

(k)
T,n

∣∣∣2+δ
]
∼ n as n → ∞.

Therefore the Lyapunov condition is satisfied, i.e.

∀δ > 0⇒ 1

v2+δ
n

n∑
j=1

E
[∣∣∣Sj,n + I

(k)
j,n − Sj,nI

(k)
j,n − p

(k)
T,n

∣∣∣2+δ
]

= O

(
1

nδ/2

)
→ 0,

the CLT applies

1

vn

n∑
j=1

(
Sj,n + I

(k)
j,n − Sj,nI

(k)
j,n − p

(k)
T,n

)
d−→ N(0, 1),

and by Slutsky’s theorem, we have that under HL0 in (7),

 n

p
(k)
T,n

(
1− p(k)

T,n

)
 1

2

`(k)
n =

√
n√

p
(k)
T,n

(
1− p(k)

T,n

) (U(k)
n − π

)

=
1√

np
(k)
T,n

(
1− p(k)

T,n

) n∑
j=1

(
Sj,n + I

(k)
j,n − Sj,nI

(k)
j,n − π

)
+ oP (1)

=
1

vn

n∑
j=1

(
Sj,n + I

(k)
j,n − Sj,nI

(k)
j,n − p

(k)
T,n

)
︸ ︷︷ ︸

d−→N(0,1)

+

→0︷ ︸︸ ︷
√
n
(
p

(k)
T,n − π

)
p

(k)
T,n

(
1− p(k)

T,n

) +oP (1)

d−→ N(0, 1),

which completes the first proof.

We now turn to the proof for the test of staleness equivalence. Note that

(A.1) implies that,

U(q)
n − U(k)

n = 1
n

∑n
j=1

(
Sj,n + I

(q)
j,n − Sj,nI

(q)
j,n − Sj,n − I

(k)
j,n + Sj,nI

(k)
j,n

)
+ oP ( 1√

n
)

= 1
n

∑n
j=1

(
I
(q)
j,n − I

(k)
j,n − Sj,n

(
I
(q)
j,n − I

(k)
j,n

))
+ oP ( 1√

n
)

= 1
n

∑n
j=1 (1− Sj,n)

(
I
(q)
j,n − I

(k)
j,n

)
+ oP ( 1√

n
).
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Under HE0 in (8), we have that

E
[
(1− Sj,n)

(
I
(q)
j,n − I

(k)
j,n

)]
= 0,

V
(

(1− Sj,n)
(
I
(q)
j,n − I

(k)
j,n

))
= (1− pS,n)

(
p

(q)
I,n + p

(k)
I,n − 2 p

(q)
I,n p

(k)
I,n

)
,

and follows that

s2
n =

n∑
j=1

V
(

(1− Sj,n)
(
I
(q)
j,n − I

(k)
j,n

))
= n(1− pS,n)

(
p

(q)
I,n + p

(k)
I,n − 2p

(q)
I,np

(k)
I,n

)
.

Since
∣∣∣(1− Sj,n)

(
I
(q)
j,n − I

(k)
j,n

)∣∣∣ ∈ {0, 1}, then we have that for all δ > 0

E
[∣∣∣(1− Sj,n)

(
I
(q)
j,n − I

(k)
j,n

)∣∣∣2+δ
]

= γδ <∞,

for all j, and
∑n
j=1 E

[
| (1− Sj,n)

(
I
(q)
j,n − I

(k)
j,n

)
|2+δ

]
∼ n as n → ∞. Then the

Lyapunov condition is satisfied, i.e.

∀δ > 0⇒ 1

s2+δ
n

n∑
j=1

E
[
| (1− Sj,n)

(
I
(q)
j,n − I

(k)
j,n

)
|2+δ

]
= O

(
1

nδ/2

)
→ 0.

and by CLT, we obtain

1

sn

n∑
j=1

(1− Sj,n)
(
I
(q)
j,n − I

(k)
j,n

)
d−→ N(0, 1).

From Slutsky’s theorem, we finally obtain

(
n

(1−pS,n)
(
p

(q)
I,n+p

(k)
I,n−2p

(q)
I,np

(k)
I,n

)) 1
2

t(q,k)
n =

√
n

(1− pS,n)
(
p

(q)
I,n + p

(k)
I,n − 2p

(q)
I,np

(k)
I,n

) (U(q)
n − U(k)

n

)

=
1

sn

n∑
j=1

(1− Sj,n)
(
I
(q)
j,n − I

(k)
j,n

)
+ oP (1)

d−→ N(0, 1),

which concludes the proof, since all the results under the alternative hypotheses

are trivial.

35



Appendix A.3. Proof of Corollary (2.2)

Proof. From Bandi et al. (2020b) we have that, for all k, q = 1, ...., N and q 6= k

U(k)
n

p−→ p
(k)
T = pS + (1− pS) p

(k)
I ,

M(q,k)
n

p−→ pS + (1− pS) p
(q)
I p

(k)
I , (A.2)

from which

U(k)
n

(
1− U(k)

n

)
p−→ p

(k)
T

(
1− p(k)

T

)
,

U(q)
n + U(k)

n − 2M(q,k)
n

p−→ (1− pS)
(
p

(q)
I + p

(k)
I − 2p

(q)
I p

(k)
I

)
.

Therefore, under HL0

V̂−1/2

`
(k)
n

`
(k)
n =

(
n

U(k)
n

(
1−U(k)

n

)) 1
2

`
(k)
n

=

 p
(k)
T,n

(
1− p(k)

T,n

)
U(k)
n

(
1− U(k)

n

)


1
2

︸ ︷︷ ︸
p−→1

 n

p
(k)
T,n

(
1− p(k)

T,n

)
 1

2

`(k)
n︸ ︷︷ ︸

d−→N(0,1)

d−→ N(0, 1),

and under HE0

V̂−1/2

t
(q,k)
n

t
(q,k)
n =

(
n

U(q)
n +U(k)

n −2M(q,k)
n

) 1
2

t
(q,k)
n

=

(
(1−pS,n)

(
p

(q)
I,n+p

(k)
I,n−2p

(q)
I,np

(k)
I,n

)
U(q)
n +U(k)

n −2M(q,k)
n

) 1
2

︸ ︷︷ ︸
p−→1

(
n

(1−pS,n)
(
p

(q)
I,n+p

(k)
I,n−2p

(q)
I,np

(k)
I,n

)) 1
2

t(q,k)
n︸ ︷︷ ︸

d−→N(0,1)

d−→ N(0, 1).

Appendix A.4. Proof of Lemma (1)

Proof. From the Cramer-Wold theorem, we know that

√
nLn

d−→ NN (0,Σ) iff
√
na′Ln

d−→ N(0,a′Σa),
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for any (column) vector a =
(
a(1), . . . , a(N)

)′ ∈ RN . Let Bj,n be defined as

Bj,n
.
=


Sj,n + I

(1)
j,n − Sj,nI

(1)
j,n − p

(1)
T,n

...

Sj,n + I
(N)
j,n − Sj,nI

(N)
j,n − p

(N)
T,n

 ,

so that, under HML
0 in (15), it holds E [Bj,n] = 0 (component-wise). Then, by

linearity, E [a′Bj,n] = 0. Now consider the matrix Mn
.
= E

[
Bj,nB′j,n

]
, whose

generic element M
(k,q)
n is computed as

M
(k,q)
n = E

[(
Sj,n + I

(k)
j,n − Sj,nI

(k)
j,n − p

(k)
T,n

)(
Sj,n + I

(q)
j,n − Sj,nI

(q)
j,n − p

(q)
T,n

)]
∀k, q ∈ {1, . . . , N}

= E
[(

Sj,n + I
(k)
j,n − Sj,nI

(k)
j,n

)(
Sj,n + I

(q)
j,n − Sj,nI

(q)
j,n

)]
− p(k)

T,np
(q)
T,n ∀k, q ∈ {1, . . . , N}

=

p
(k)
T,n

(
1− p(k)

T,n

)
k = q

pS,n + (1− pS,n)p
(q)
I,np

(k)
I,n − p

(k)
T,np

(q)
T,n k 6= q

Since E [Bj,n] = 0 we have

V [a′Bj,n] = a′E
[
Bj,nB′j,n

]
a = a′Mna,

and follows that

q2
n =

n∑
j=1

V [a′Bj,n] = na′Mna.

As E
[
|a′Bj,n|2+δ

]
does not depend on j, then

∑n
j=1 E

[
|a′Bj,n|2+δ

]
∼ n, as

n→∞. Hence, for all δ > 0

1

q2+δ
n

∑n
j=1 E

[
|a′Bj,n|2+δ

]
= O

(
1

nδ/2

)
→ 0,

and the Lyapunov’s condition is thus satisfied. Applying the CLT, we obtain

1

qn

n∑
j=1

a′Bj,n
d−→ N(0, 1).
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Under HML
0 in (15), we have that Mn → Σ, where Σ is defined in Equation

(19), and by Slutsky’s theorem

√
na′Ln =

√
n
[
a(1)

(
U(1)
n − π

)
+ · · ·+ a(N)

(
U(N)
n − π

)]
Using (A.1)

=
1√
n

n∑
j=1

a′Bj,n +
√
n
[
a(1)

(
p

(1)
T,n − π

)
+ · · ·+ a(N)

(
p

(N)
T,n − π

)]
+ oP (1)

=

√
a′Mna√
na′Mna

n∑
j=1

a′Bj,n +
√
n
[
a(1)

(
p

(1)
T,n − π

)
+ · · ·+ a(N)

(
p

(N)
T,n − π

)]
+ oP (1)

=
√

a′Mna︸ ︷︷ ︸
−→
√
a′Σ a

1

qn

n∑
j=1

a′Bj,n︸ ︷︷ ︸
d−→N(0,1)

+
√
n
[
a(1)

(
p

(1)
T,n − π

)
+ · · ·+ a(N)

(
p

(N)
T,n − π

)]
︸ ︷︷ ︸

−→0

+oP (1)

d−→ N (0,a′Σa) ,

which completes the proof. Analogous steps can be used to show that under

HME
0 in (16),

√
nTn

d−→ NN(N−1)
2

(0,Ξ).
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Science, 66 , 1–14.
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