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Abstract: SHAP (Shapley additive explanations) is a framework for explainable AI that makes
explanations locally and globally. In this work, we propose a general method to obtain representative
SHAP values within a repeated nested cross-validation procedure and separately for the training
and test sets of the different cross-validation rounds to assess the real generalization abilities of the
explanations. We applied this method to predict individual age using brain complexity features
extracted from MRI scans of 159 healthy subjects. In particular, we used four implementations of the
fractal dimension (FD) of the cerebral cortex—a measurement of brain complexity. Representative
SHAP values highlighted that the most recent implementation of the FD had the highest impact over
the others and was among the top-ranking features for predicting age. SHAP rankings were not the
same in the training and test sets, but the top-ranking features were consistent. In conclusion, we
propose a method—and share all the source code—that allows a rigorous assessment of the SHAP
explanations of a trained model in a repeated nested cross-validation setting.

Keywords: brain complexity; explainable Al; fractal dimension; machine learning; SHAP

1. Introduction

The explainability of artificial intelligence (Al) algorithms is becoming more and more
critical in many fields of research [1,2], especially in medicine. In fact, clinicians have to trust
algorithms when a prediction occurs and make crucial decisions that can have physical and
psychological implications for patients. Therefore, an interpretable model should clarify
how it arrived at a specific decision and which features it considered relevant. In medicine,
interpretability is thus necessary for Al to ensure concordance with medical goals [3]. For
this purpose, many explainable Al (XAI) methods have been proposed to unfold models’
behavior [4-8]. For example, the local interpretable model-agnostic explanations (LIME) method
interprets individual model predictions based on a local approximation of the model around
a given prediction [7]. The deep learning important features (DeepLIFT) method is a recursive
prediction explanation method for deep learning models [8]. It decomposes the output
prediction on a specific input by backpropagating the contributions of all neurons in the
network to every input feature. Then, DeepLIFT compares the activation of each neuron to
its reference activation and assigns contribution scores according to this difference.

Recently, Lundberg and Lee proposed an innovative approach for XAl, called SHAP
(Shapley additive explanations) [9]. SHAP is a powerful XAI framework for interpreting
predictions based on classical Shapley values from game theory by assigning to each feature
an importance value for every sample [10]. This approach can provide both local (on the
single sample) and global explanations of the model. According to game theory, features
can be seen as players playing a cooperative game to provide a specific prediction, and the
importance of each feature can be computed through the so-called Shapley values [9]. The
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SHAP method is preferable to other explanation methods because it satisfies three desirable
properties [9]: local accuracy (i.e., the definition of local explanations in addition to global
explanations); missingness (i.e., a missing feature does not contribute to the explanation);
consistency (i.e., if a model changes so that the marginal contribution of a feature value
increases or stays the same (regardless of other features), the SHAP value also increases or
stays the same). A comparison between SHAP and other XAI methods (e.g., LIME) has
already been explored in the literature (see, e.g., [11,12]). In particular, Lombardi et al. [11]
showed that SHAP values can provide more reliable explanations (i.e., less influenced by
small variations of the training set) for the morphological aging mechanisms and can be
exploited to identify personalized age-related imaging biomarkers.

However, one of the main characteristics of many machine learning strategies is
their inherent stochastic nature [13], which leads to the performance not being exactly
reproducible. The problem of reproducibility in science has been debated for the past few
decades, especially in medicine and healthcare [14-18]. For example, even the choice of
random seeds in many machine learning models (whenever they are present) could lead
to high variability of the performance between two different training procedures of the
same model [19]. To reduce this phenomenon, many authors repeat the training procedure
tens of times, changing the random seeds during the process and taking a final average
performance of the model based on these repetitions (see, e.g., [20-23]). Furthermore,
due to the frequent scarcity of data in medical research [24], one common approach in
medicine is the repetition of a nested cross-validation (nCV) loop [25]. NCV is a procedure
that helps examine the unbiased generalization performance of the trained models and,
simultaneously, performs hyperparameters optimization [25]. This method is especially
effective when the amount of data is relatively low because it allows for training and
testing a model many times using wide non-overlapping portions (i.e., folds) of the dataset.
This approach allows the possibility of testing the model on all subjects of the dataset and
obtaining an average performance.

However, the SHAP framework has been proposed for hold-out strategies [26-30],
where SHAP values are computed only when a final model is trained. Some authors
adopted the SHAP method with CV strategies [31-36], but SHAP was used only after the
CV procedure on often unclear portions of the dataset. Recently, two related works [11,37]
adopted an average of SHAP values, performing multiple trainings of the model with
different undersampling of the training data and computing SHAP values on the test
sets. To the best of our knowledge, the application of SHAP values in a repeated nCV
strategy is lacking. Since SHAP values depend on the model predictions, variability in the
performance of re-trained models may lead to the variability of SHAP values, with the risk
of reducing the consistency of the model’s explainability. Moreover, we consider it essential
to evaluate the SHAP values separately for the training and test set of the different (outer)
cross-validation rounds to evaluate the generalization abilities of the SHAP explanations of
a trained model.

For these reasons, in this study, we extended the use of SHAP values for a repeated
nCV setting by estimating representative SHAP values separately for the training and
test sets. We also aimed to share our open-source tool to enable other researchers to use
SHAP explainable values in repeated nCV in their own studies. To test our method, we
applied representative SHAP values computed in nCV to two regression tasks and one
classification task in predicting individual age using brain complexity features from two
public and international neuroimaging datasets of in vivo magnetic resonance imaging
(MRI) scans for a total of 159 healthy subjects (age range 6-85 years).

2. Materials and Methods
2.1. Shapley Values
Shapley values are a concept taken from cooperative game theory and are used

to attribute a player’s contribution to the end result of a game [10]. Let us consider a
cooperative game where a set of players each collaborate to create some value. If we can
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measure the total result of the game, Shapley values capture the marginal contribution of
each player to the end result. Now, let us imagine a machine learning model as a game
in which features cooperate to produce a model output and associate to each feature a
contribution in terms of the Shapley value. A Shapley value for a feature is computed
by the difference between the prediction of the model output with that feature and the
prediction of the model without that feature. This method requires re-training the model
on all features subsets S C F, where F is the set of all features. If we consider a generic
model f, we can denote a model trained with the i-th feature present as fs;; and a model
trained without the i-th feature as fs. Then, predictions from the two models are compared
on the difference fg,(i1 (xsu(iy) — fs(xs), where x5 and xg ;) represent the values of the
input features in the set S and S U {i}, respectively. We need to sum this term over all the
possible combinations of subsets S to get ¢;, the marginal value of adding the i-th feature to
the training. This can be accomplished by adding the weighted average among all possible
differences that give the Shapley value of the i-th feature, as follows:

1 IF|—1\ !
¢i=1= ), ( ) [fsugiy (xsugiy) — fs(xs)), (1)
IFl s\ 15]

where |S| and |F| are the cardinalities of S and F, respectively. The combinatorial term
calculates how many permutations of each subset size we have when constructing it among
all remaining features excluding feature i. We then use this combinatorial term to divide
the marginal contribution of the feature i to all groups of size |S|. In addition, we have
to divide them by the number of features participating in the model prediction, that is,
the total number of features F. This term is needed to average out the effect of how much
the feature i contributes regardless of the size of the total number of features. We can use
these values as contributions of the features for the model output. Indeed, we can define
an explanation model g as a linear function of the feature contributions [9]:

M
gz)=do+) ¢izi @)
i=1

where ¢ is the SHAP value equal to E[f(z)] (i.e., the average of the samples’ outcomes),
z; are binary variables with z; € {0,1}, M is the number of input features, and binary
values refer to the presence (1) or absence (0) of a feature. Shapley values satisfy the local
accuracy and consistency properties [9], but still cannot handle missing values. In order to
also satisfy the missingness property, Lundberg and Lee proposed SHAP values, which are
explained in Section 2.2.

2.2. SHAP Values

SHAP values are the classical Shapley values of a conditional expectation function of
the original model f [9]. Since most models cannot handle arbitrary patterns of missing
input values, Lundberg and Lee approximated missing values with values of the dataset
picked randomly to cancel their statistical power [9]. For this reason, SHAP values provide
a unique additive feature importance measure that adheres to all the properties, including
the missingness property. A single SHAP value is a real number that refers to a single
feature of a sample. The sign of the SHAP value tells us along which direction the feature
drives the output of a specific sample, while the absolute value tells us the impact of that
feature. The sum of the SHAP values for a given sample Y™, ¢; = f(x) — E[f(z)] provides
the difference between the output prediction and the base value, which is the value of a
featureless model, that is, the average of the samples’ outcomes E[f(z)].

2.3. Computing SHAP Values in Repeated Nested Cross-Validation

Let us consider a dataset composed of N samples with M features and a K-fold nCV
procedure (see Figure 1). This strategy involves nesting two K-fold CV loops, where the
inner loop is used to optimize, for example, model hyperparameters. The outer loop
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gives an unbiased estimate of the performance of the best model [25]. The procedure
starts by splitting the dataset into K folds (outer CV): one fold is kept as a test set of the
outer CV, while the other K — 1 folds (the training set of the outer CV) are, in turn, split
into K inner folds, that is, K — 1 for training and the K-th for validation, to provide an
unbiased evaluation of the model fit on the inner training set while tuning the model’s
hyperparameters. Once the best combination of hyperparameters that maximized the
performance metrics in the validation set has been found, the model with that combination
of hyperparameters is re-trained on the outer training set and tested on the test set kept out
from the outer CV. The nested CV is repeated R times with different random seeds to make
different data splitting of the K folds. This procedure can be used both for regression and
classification tasks.

The pseudo-code for the computation of representative SHAP values in the training
and test sets of the outer CV is illustrated in Algorithm 1. For each repetition r of the outer
CV loop, we compute SHAP values qbf{k of every sample n and feature i for the k round
(split iteration) of the outer CV separately for the training and test using the SHAP Python
module Explainer [38]. Then, for each sample 1, we compute a representative SHAP value
for the training (¢, )" and test (¢yest)! sets. For the training set, we compute (¢y4i )i as
the average of the SHAP values overall for the K — 1 folds of the outer CV as follows:

(¢train)f1r = ﬁ Kil (QDZk) 3)

k=1

Since, in the r repeated CV, a sample 1 belongs to one fold used as a test only, namely fold
k*, the representative SHAP value of the test set of that sample 7 is simply

(thest)fqr = ¢1iqu*- 4)

Algorithm 1 N: number of samples; M: number of features; K: number of folds; R: number
of repetitions.

X < Dataset # Data table with N samples and M features (N rows x M columns)
y < Target
model < Classifier
Explainer <— SHAP.Explainer() # Shap function which computes SHAP values
train_folds_shap_values <— 0 # Initialized matrix (N rows x M columns)
test_folds_shap_values <— 0 # Initialized matrix (N rows x M columns)
forr in 1,...,R do
fold_splits < split(K)
innerCV (fold_splits, model )
outerCV (innerCV,K).fit(X,y)
fork in fold_splits do
X_train,y_train < fold_splits.train(k)
X_test,y_test <— fold_splits.test(k)
best_k_model < outer_CV [k].best_model
best_k_model.fit(X_train,y_train)
train_shap_values <— Explainer(best_k_model (X_train))
test_shap_values <— Explainer(best_k_model (X_test))

train_folds_shap_values < train_folds_shap_values + %

test_folds_shap_values < test_folds_shap_values + test_shap_values
end for
end for
average_train_folds_shap_values = train_folds_shap_values/R  # Pyain
average_test_folds_shap_values = test_folds_shap_values/R  # Qiest
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Finally, after the R repeated CVs, the final representative SHAP values for the sample
n and feature i are obtained by averaging over the R repetitions in both the training and
test sets:

1

(‘f)tmin)iz = (thram) @)

ll[\ﬂm

1

(‘l_’test); = (‘Ptest) (6)

il Mw

2.4. Experimental Tests: Age Prediction Using Features of Brain Complexity

Individual age prediction using neuroimaging data is a popular approach for identify-
ing biomarkers supporting brain health [39]. In this context, biomarkers quantifying brain
complexity, including the local gyrification index (1GI) and the fractal dimension (FD) of
the cerebral gray and white matter, have been proved to have predictive capabilities in age
prediction [39—41]. In a previous paper, we used two public datasets to show that, among
others, our implementation of the fractal dimension, using an automated selection of the
fractal scale within which the cerebral cortex manifests the highest statistical self-similarity,
yielded the most accurate machine learning models for individual age prediction [40].

SHAP values - training set

Feature #1
Feature #2
/ Foatyre#d

a N

SHAP values - test set

Feature #1
Feature #2
Fealure #3

SHAP values - training set

Feature #1
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/ e
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Feare :
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A Reanh __ Buaspansnsssasas selected model | §
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v % N R = -
Training set ~ Validation Training set Test set SHAP value SHAP value
inner CV  setinner CV outer CV outer CV - training set - test set

Figure 1. Schematic representation of the computation of representative SHAP values. SHAP values
of training and test folds are computed separately for each round of the outer CV. Then, SHAP values
are averaged over the training folds. This procedure is repeated K times, and SHAP values for the
training and test sets are averaged over the R repetitions (Image adapted from [42]).
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To prove the utility of computing the SHAP values in repeated nCV, in this study, we
considered two regression tasks and one classification task for age prediction using features
of brain complexity extracted from MRI data [40]. In particular, we used the high-resolution
public and international T;-weigthed datasets of healthy children and adolescents (Nathan
Kline Institute (NKI)—Rockland Sample Pediatric Multimodal Imaging Test—Retest Sam-
ple—NKI2 dataset [43,44]) and adults (International Consortium for Brain Mapping (ICBM)
dataset [45]). Briefly, the NKI2 dataset comprises MRI examinations of 73 healthy pediatric
subjects aged 6 to 17 years (43 males and 30 females, age 11.8 + 3.1 years, mean + standard
deviation). The ICBM dataset comprises MRI examinations of 86 healthy adult and elderly
subjects ranging from 19 to 85 years (41 males and 45 females, age 44.2 + 17.1 years). For
classification purposes, we also considered a dichotomous task defined as the prediction
of a young group vs. an elder group in the ICBM dataset. The young group consisted of
subjects with an age < 30 years (25 subjects—9 males and 16 females, 22.6 + 3.3 years), and
the elder group of subjects with an age > 56 years (28 subjects—11 males and 17 females,
64.9 + 8.2 years).

The extraction of features of brain complexity from MRI data has been described
in detail previously [40]. Briefly, a completely automated cortical reconstruction of each
subject’s structural Tj-weighted MRI scan was performed by employing the FreeSurfer
image analysis suite (http://surfernmr.mgh.harvard.edu/, accessed on 29 May 2022) [46],
a dedicated brain segmentation software program [47-52]. This includes removal of non-
brain tissue using a hybrid watershed /surface deformation procedure, automated Talairach
transformation, segmentation of the subcortical white matter and deep gray matter volu-
metric structures, intensity normalization, tessellation of the gray/white matter boundary,
automated topology correction [53], and surface deformation following intensity gradients
to optimally place the gray/white and gray/cerebrospinal fluid borders at the location
where the greatest shift in intensity defines the transition to the other tissue class. The local
cortical gyrification 1GI was computed following a surface-based approach [54]. Briefly,
in each vertex, a spherical region of interest is delineated on an outer envelope (ROIp)
that tightly wraps the pial cortical surface, and its corresponding region of interest on the
pial cortical surface (ROIp) is identified using a matching algorithm based on geodesic
constraints. Thus, the 1GI is derived as the ratio between ROIp and ROIp areas, quan-
tifying the amount of cortex buried within the sulcal folds in the surrounding spherical
region. Then, we averaged the 1GI within the entire cortex to obtain a gyrification index
(GI) representative of the cortical complexity of each subject. Moreover, we recorded the
following FreeSurfer outputs: the cerebral cortical gray matter volume (CortexVol), the
estimated intracranial volume (eTIV), and the average cortical thickness (CT) throughout
the cerebral cortex.

Lastly, we estimated the FD of the cerebral cortex of each subject using four dif-
ferent strategies for the selection of spatial scales. These include the use of (1) a priori
selection of the interval 4 mm-256 mm (inspired by Kiselev et al. [55]) (FD A priori#1); (2) a
priori selection of 5-40% of the smallest Euclidean dimension of the cerebral cortex [56]
(rounded to the nearest power of 2) (FD 4 priori#2); (3) an automated selection of spatial scales,
within which the cerebral cortex manifests the highest statistical self-similarity [57,58]
(FD Auto Marzietal.2018); (4) an improved automated selection of the interval of spatial scales,
based on the search of the interval of spatial scales that presents the highest rounded
R? dj coefficient, and in the case of an equal rounded R?, i coefficient, preferring the widest
interval in the log-log plot (FD auto fractatbrain) [40,59,60].

We predicted individual age using an extreme gradient boosting (XGBoost) model—an
XGBoost regressor or classifier for regression and classification tasks, respectively. XGBoost
is a tree-based machine learning model widely used to achieve cutting-edge performance
on a variety of recent machine learning challenges [61]. As inputs, we thus used nine
features: the four implementations of the FD of the cerebral cortex, the volume of the
cerebral cortex (i.e., CortexVol), the average cortical thickness (i.e., CT), the average gyri-
fication index (i.e., GI), the estimated total intracranial volume (i.e., eTIV), and sex. The
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models” hyperparameters were chosen from a hyperparameter space through a random
search based on the average performance of the model. The hyperparameters space was
defined as follows: the minimum loss reduction required to make a further partition
on a leaf of the tree gamma € (0.6,0.7,0.8), the subsample ratio of columns when con-
structing each tree colsample_bytree € (0.25,0.5,0.75,1), the maximum depth of a tree
max_depth € (2,3,4), the minimum number of instances needed to be in each node
min_child_weight € (2,3,5), the number of decision trees n_estimators € (5,10,20,100),
and the ratio of training data randomly sampled prior to growing trees subsample €
(0.1,0.2,0.4). Moreover, since SHAP has an optimized implementation for tree-based mod-
els (called TreeExplainer), using XGBoost, we can compute SHAP values in polynomial
time, in contrast to model-agnostic explainers for this class of models [62]. We adopted a
repeated (100 times) nCV strategy, and we chose a five-fold CV in both the inner and outer
loops because it offers a favorable bias—variance trade-off [63].

The performance in the regression and classification tasks has been measured through
the mean absolute error (MAE) and area under the receiver operating characteristic (ROC)
curve (AUC), respectively. The average MAE or AUC from all repetitions was computed to
get a final model assessment score.

The repository with all the source code, using Google Colab notebooks, is available
on GitHub at https://github.com/Imaging- Al-for-Health-virtual-lab/SHAP-in-repeated-
nested-CV (accessed on 29 May 2022).

3. Results

For the two regression tasks, we obtained an MAE of 1.61 £ 0.14 years (mean =+ standard
deviation) in the NKI2 dataset and 12.13 £ 0.86 years in the ICBM dataset. For the classi-
fication task, we obtained an ROC AUC value of 0.881 £ 0.068 and balanced accuracy of
0.77 £ 0.06 (Figure 2). The point in the ROC curve with the minimum distance from the
ideal classifier (at coordinates (0,1)) showed specificity = 0.8 and sensitivity = 0.826.
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Figure 2. Average (and % 99.9% confidence interval (CI)) ROC curve of the model trained in the
classification task in a five-fold nCV over 100 repetitions using the ICBM dataset. The point in the
ROC curve with the minimum distance from the ideal classifier (at coordinates (0,1)) is represented
in blue (at coordinates (0.200, 0.826)). The ROC curve of a random classifier is overlayed in red as
a reference.

The beeswarm summary plots of representative SHAP values and average impact
for training and test sets of the regression tasks computed using our method, in nCV over
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100 repetitions, are shown in Figure 3 and 4 for the NKI2 and ICBM datasets, respectively.
The beeswarm summary plots show how the top-ranking features in a dataset impact the
model’s output. The given representative SHAP explanation is depicted by a single dot on
each feature row for each sample (i.e., subject). The SHAP value of that feature determines
the x position of the dot, and dots pile up along each feature row to show density. Color is
used to display the original value of a feature [64]. The average impact is represented by
bar plots showing global feature importance as the mean absolute representative SHAP
value for that feature over all the given samples [65].
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Figure 3. Results for the NKI2 regression task in a 5-fold nCV over 100 repetitions. Top row:
beeswarm summary plots of representative SHAP values for the training (on the left) and test sets
(on the right). The given SHAP explanation is represented by a single dot on each feature row for
each sample (i.e., subject). The SHAP value of each feature determines the x position of the dot, and
dots pile up along each feature row to show density. Color is used to display the original value of the
feature. Bottom row: summary bar plot representing global feature importance as represented by the
mean absolute SHAP value for that feature over all the given samples for the training (on the left)
and test sets (on the right).

The same plots for the classification task using the ICBM dataset are shown in Figure 5.
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Figure 4. Results for the ICBM regression task in a five-fold nCV over 100 repetitions. Top row:
beeswarm summary plots of representative SHAP values for the training (on the left) and test sets
(on the right). The given SHAP explanation is represented by a single dot on each feature row for
each sample (i.e., subject). The SHAP value of each feature determines the x position of the dot, and
dots pile up along each feature row to show density. Color is used to display the original value of the
feature. Bottom row: summary bar plot representing global feature importance as represented by the
mean absolute SHAP value for that feature over all the given samples for the training (on the left)
and test sets (on the right).
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Figure 5. Results for the ICBM classification task in a five-fold nCV over 100 repetitions. Top row:
beeswarm summary plots of representative SHAP values for the training (on the left) and test sets
(on the right). The given SHAP explanation is represented by a single dot on each feature row for
each sample (i.e., subject). The SHAP value of each feature determines the x position of the dot, and
dots pile up along each feature row to show density. Color is used to display the original value of the
feature. Bottom row: summary bar plot representing global feature importance as represented by the
mean absolute SHAP value for that feature over all the given samples for the training (on the left)
and test sets (on the right).
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4. Discussion

In this study, we proposed a method to compute representative SHAP values in a
repeated nested CV procedure. Regarding the standard performance of machine learning
models, in which average performance metrics are usually given, representative explainable
values acting as a final assessment of the behavior of the entire model are also essential.
Whereas the current literature mainly focuses on SHAP values computed on the entire
dataset, we propose separate representative SHAP values for the training and test sets to
allow a rigorous assessment of the generalization abilities of the SHAP explanations of a
trained model.

Based on traditional Shapley values [10], SHAP uses a game-theoretic framework to
reframe the task of explaining the contribution of different features to the model output for
a particular instance. However, since the SHAP values depend on the model predictions,
variability in the performance of re-trained models leads to variability of the model’s
explainability through SHAP values. An example of this effect is shown in Figure 6, in
which we report the frequency with which each feature was identified as the most important
(highest impact as measured by the absolute value of the SHAP value over all the given
samples) across all outer CV test folds in 100 repetitions for each regression/classification
task. It is apparent that the most impactful feature changes over the different folds and
repetitions. Still, the order of the most impactful features in a single iteration may differ
between training and test sets—see, for example, the summary bar plot representing global
feature importance for the regression task using the NKI dataset in Figure 7.
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Figure 6. Relative frequency of neuroimaging features. For each regression/classification task, the
frequency with which each feature was identified as the most important (highest impact as measured
by the absolute value of the SHAP value over all the given samples across all outer CV test folds in

100 repetitions) is shown.
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Figure 7. Summary bar plot representing global feature importance for a single iteration of the
regression task using the NKI dataset, separately, for the training (on the left) and test sets (on the
right). The order of the most impactful features in one iteration differs between training and test sets.
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Previously, SHAP values were estimated for the test set of a single nCV repetition, thus
generating potentially unstable explanations [36,66,67]. Bliithgen et al. proposed using
SHAP values in the test sets of a repeated CV without detailing the procedure adopted and
considering only the average impact on model output magnitude, thus losing information
about the signs of the SHAP values, which inform the positive/negative association with
each feature [68]. In two recent works [11,37], the average of SHAP values of samples
in test sets among 100 repetitions of an ML model has been applied. In [11], the authors
trained a deep neural network (DNN) model for age prediction using MRI data from the
Autism Brain Imaging Data Exchange (ABIDE I) dataset collected from 17 international
sites. For hyperparameter tuning, they used a leave-one-site-out CV, where the data from
one site was adopted as a test set to evaluate the model’s performance, while the data from
all other sites was used as a training set. After each CV, they randomly undersampled the
training set 100 times by removing a percentage of the samples in each iteration to produce
small variations of the composition of the set and trained the DNN model to predict the
subjects” age. They tested the DNN models on each test set sample, collecting 100 MAEs
and SHAP values and averaging them for each sample. In [37], the authors adopted a leave-
one-subject-out CV strategy using MRI data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset, splitting the dataset into as many sets as the number of subjects.
One subject was randomly selected for testing, while the others were used to train the
model. For each CV (over 100 repetitions), they randomly undersampled the training set
multiple times by selecting a fixed amount of samples for each diagnostic category from the
training set. Then, a random forest model was trained within each CV round based on a
grid search and nested k-fold stratified CV. The tuned model was tested on each sample of
the test subject, and SHAP values were computed 100 times and averaged for each sample.
Basically, in their first work, the authors trained the same model multiple times on different
portions of training datasets [11], whereas, in the other study, they added hyperparameter
tuning within the repetitions to select the best model given by the different subsets [37].

Our method allows the user to estimate representative SHAP values, separately for the
training and test sets, in a repeated nCV setting, following a well-documented algorithm,
which is accompanied by the source code. This will enable other researchers to apply the
procedure in their own studies. It differs from the Lombardi et al. approach [11,37] for
two main reasons: (i) we repeat the nested CV R times rather than generating repeated
undersampled training set in a single nested CV; (ii) our proposed method allows the user
to separately compute representative SHAP values for the training and test sets—coherently
averaged, sample by sample, among folds and repetitions. This gives the user a stronger
understanding of the average behavior of the model’s interpretability in a very robust and
popular validation setting (i.e., the repeated nested CV). Moreover, our method can be
easily applied to simpler validation schemes, including repeated hold-out procedures and
any machine learning model in a regression or classification task.

Our results on individual age prediction using brain complexity features are consis-
tent with previous findings [40]. We previously showed that a monotonic decrease in
structural complexity (in terms of FD auto fractaibrain) Of the cerebral cortex with age during
almost all the lifespan [40] and, more recently, that cardiorespiratory fitness is positively
associated with cortical gray matter complexity in the temporal lobe, a region which is
particularly sensitive to normal and pathological aging [60]. In the present study, as ex-
pected, low values of brain complexity (FD ayto fractalbrain) and cortical thickness give a
positive contribution to the model output (individual age) in both children and adults
(see the beeswarm plots in Figures 3-5). In other words, we confirmed that a lower brain
complexity and cortical thinning are valuable predictors of older subjects in both a young
and adult cohort. Moreover, our results suggest that our latest development of the fractal
dimension (FD auto fractatbrain) [40] is more predictive of individual age compared to other
implementations. This result strengthens the importance of the selection of the interval of
spatial scales for an adequate characterization of the structural complexity of the cerebral
cortex, which is especially fascinating when using ultra-high-field MRI [59]. Moreover,
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ED puto fractalbrain Was the most impactful neuroimaging feature for predicting the age in
children (NKI2 dataset) and the second most important feature for adults (ICBM dataset),
with an impact on the model output close to that of the first top-ranking CT feature (see
Figures 4 and 5). This result confirms the ability of the fractal dimension of the cerebral
cortex, in addition to cortical thickness and gyrification, to characterize brain maturation
and aging, as previously observed for neurodegeneration [69]. In addition, we showed that
the global feature importance of the FD a0 fractatbrain Was consistently greater than that of
the GI—a well-established index of the structural complexity of the human cortex.

As expected, feature rankings were not consistently the same in the training and test
sets. Indeed, whereas the same ranking was observed for the ICBM regression task (see
Figure 4), this was not the case for the NKI2 regression task (see Figure 3) and ICBM
classification task (see Figure 5), in which only the first three and four top-ranking features
were identical, respectively.

The main limitation of our proposed method is the computation time. Indeed, while
the SHAP’s explainer TreeExplainer, tailored for tree-based models such as XGBoost, is very
efficient, the model-agnostic SHAP explainer is computationally demanding, especially
within repeated nested cross-validation. Still, we considered the age prediction task using
brain complexity features to exemplify the use of SHAP in repeated nCV. We refer to
more specialized literature for improving age prediction using, for example, functional
connectivity features extracted by functional MRI [70] and electroencephalography (EEG)
data [71], which could also potentially use recent deep learning advances [72,73].

5. Conclusions

We proposed a method to compute representative SHAP values of the behavior of a
machine learning model in a repeated nested cross-validation procedure, separately for the
training and test sets. This will allow a rigorous assessment of the SHAP explanations of a
trained model. Future efforts should focus on developing integrated frameworks for the
training, testing, and explainability of Al models designed in machine learning pipelines,
independently of the validation strategy.
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CortexVol  Cerebral cortical gray matter volume

CI Confidence interval

CT Average cortical thickness

eTIV Estimated intracranial volume
FD Fractal dimension

GI Average gyrification index
ICBM International Consortium for Brain Mapping
IGI Local gyrification index

MAE Mean absolute error

ML Machine learning

MRI Magnetic resonance imaging
nCV Nested cross-validation

NKI Nathan Kline Institute

ROC Receiver operating characteristic
SHAP Shapley additive explanations
XAI Explainable artificial intelligence

XGBoost  Extreme gradient boosting
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