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S1 Analysis of DLS measurements

According to Siegert’s relationship, the second-order auto-correlation function of the light intensity

measured by a DLS experiment for a suspension of monodisperse particles is
ga(7) — 1= e 2P47, (S1)

where g = (47 /A)ngsin(6/2) is the modulus of light scattering vector, A, ng and 6 being the light
wavelength, the solvent refraction index, and the scattering angle, respectively. By assuming a
Brownian motion of the particles caused by the movement of solvent molecules that surround them,

the translational diffusion coefficient, D, can be approximated by the Stokes-Einstein equation,

kpT
D= S2
61k (52)
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where kp is Boltzmann’s constant, T' the absolute temperature, 7 the viscosity of the solvent at T’
and Ry is the radius of sphere that best approximates the hydrated particle shape (hydrodynamic
radius). In the case of particles with polydisperse dimensions and assuming a simple Gaussian

distribution function of Ry, the auto-correlation function becomes

RH,ub 2D 5
Ry
where
1 —(Ry- 2 /(9¢2 9
p(RH) = — ¢ (RH RH,max) /(QSRH,maXRH,max) (84)
ZRy

In this equation, Ry = max{ Ry max(1 = PGERy max)» REmin} and Ry ub = R max(1 +PGERY max)
are the lower and the upper bounds of the integrals calculated on the basis of the dispersion {ry; .. -
Notice that in these equations, 7 min is the minimum allowed value of the lower integration bound,
which cannot be negative. In our case we fixed Ry min = 50 A. The normalization factor Z Ry 1S

determined by the following equation

R ub 2 2 2
7 ’ —(Rg—RH max 2 R .
/ e ( H H, ) /( £RH7 ax H,ma: ) lR

Ry

= (m(erf((RH,ub - RH,maX)/(\/ifRH,maxRH,maX)))

—erf (R = Rimax)/ (V2 Ry o Rt max))) /2. (S5)

The integral in Eq. S3 is numerically calculated with Simpson’s rule by using 100 points. The

average of the k-power of the hydration radius is defined as

1 Ry up (R —Rp max)? 2 R2
<RE>— R, i Frtma) ™ Clryy o Ritma) g g (S6)

ZRy Ry
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The average hydration radius, corresponding to £k = 1 in Eq. S6, is

<Rg> = - eXp(_R%—I,maX/SQ - R%{,ulo/s2 - R%le/s*?)(s? eXp(1“3%{,1110/32
+ (2R max R 1) /5%) — 52 exp((2R i max Rirun) /5% + R%{,lb/SQ)
—VTsR i maxerfc((Ruub — Ri,max)/$) exp(R%,max/s2
+RI2LI,ub/S2 + R%I,lb/52)
+V/ TSR max exp(R%—I,maX/SQ + Rlztl,ub/s2

+RY /5% )erfe((Rugb — Rimax)/$))/V/T (S7)
where s = 2R1211,max€12%H an- The second moment of the distribution is the case k = 2, which reads

<Ri> = —exp(~Ripmax/5" = Ripun/5” = Rigan/s°) (25" Ritmax exp (R /5°
+(2Rumax R b)/5°) + 25* Ry exp(Rip /8>
+(2RH maxRir1n)/5%) — 25> Rit max eXp((2RH max R ub ) /5
+R%{’Ib/52) - QSQRHyub exp((2RH7maxRH,ub)/s2 + R%{7Ib/s2)
—\/7?33erfc((RH7ub — Rimax)/$) e><p(R%,7maX/s2
+R%{,ub/82 + Rlzﬁl,lb/32)
—2v/7sRY paxerfe((Reub — R max) /) exp(Rir max /s>
‘f'R%r,ulo/S2 + R%I,lb/SQ) +/7s? GXP(R%{,max/SQ + R%r,ulo/s2
+R3 1,/ 8%)erfe((Reb — Rimax)/s)
+2V/ 5 Ry XD (R max /5 + Rigup/5°

+R12g,1b/52)erfc((RH,1b - RH,max)/S))/2~ (88)
The dispersion of Ry is calculated as

€ry = (KRY > ) <Ry > —1)1/2, (S9)
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S2 Average micelle aggregation number
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Figure S1: Size distribution of a cylinder with spherical end-caps according to the ladder model
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S3 SAXS amplitude of the core-shell end-cap cylinder

The SAXS amplitude of the core-shell end-cap cylinder formed by m P80 molecules reads!

Aeem(q) = Gsin (qHB m —mg) ) + F'cos (qHB(m - mo)) (S11)
2
7T J1 (QLRk,cyl)
G = kz 7| Pk,cyl Pk—1 cyl)Rk; Cylm
- Z/ dX Hy(X)sin(q)[X Rpycap + ) (S12)
h/Rk ,cap
Vhyd,cyl
B = S13
27TR§ oyl (S13)
2 1
F = > / dX Hy(X) cos(q)[X Rpcap + 1) (S14)
k=1 7h/Rk,cap

JI(CIJ_Rk,cap V31— X2)
QLRk,cap V13— X2

H/f(X) = 47TR2,cap(pk,cap - pk—l,cap)(l - X2) (815)

where Ji () is the Bessel functions of the first order, R; ¢y1 = Ra ¢yl +0cy1 and Ricap = R2,cap + dcap-
Moreover, pg cy1 = po,cap = po is the ED of bulk water.
The corresponding orientational average squared amplitude (the so-called form factor) and the

average amplitude of the m-micelle are the following integrals

w/2
Paom() = / 0B, sin 5 A2, (a) (S16)

w/2
PO (q) = /0 0B, 5in By Ace m(a) (517)

The numerical calculus of these integrals is realized with the 32-point Gauss-Legendre quadrature

method. The working factors appearing in Eqs. 8 and 9 are:

Ny = 2¢{B*(F?+ G?)+ EF(EF +2¢|BG) (S18)
Dy = E®44q;iB? (S19)
N1 = E(EF +qBG) (S20)
Dy = E*+¢qiB? (S21)

All the electron densities are calculated based on the volumetric properties of each group forming

the P80 molecule and considering the number of water molecules embedded among the polar heads
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Figure S2: Distribution function of the circular cross-section radius of a barrel with an elliptical
radial profile (Eq. 11). Parameters are R,, = 300 A and Ry = 1000 A.

in the k = 1 domain of both the end-cap and the cylinder regions. Detailed expressions are reported

in the Sect. S11.2 (Eqgs. S65, S68, S69, S70, S71 and S72).

S4 Distribution function of the circular cross-section radius of a

polydisperse barrel shape with smooth radial elliptical profile

The normalization factor Zg,,, seen in Eq. 13, is given by

Rpsup
’ —(Rr—R max 2 2 2 RQ
ZRM / e ( M M, ) /( SRM M’max)dRM

Ry

= (m(erf((RM,ub - RM,max)/(\@gRMRM,max)))

—erf((Rarm — RM,maX)/(\/§§RMRM,maX)))/2- (522)

The average platelet radius and its dispersion, defined in Eqgs. 14-15, are

Ry = Gl/ZRM((4—7T)I/—|—7T)/4 (823)
R = \/<R2>/R3—1 (S24)
<R?’> = Ga/Zp,,((10 = 37)v> + (31 — 8)v +4)/6 (S25)
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where

G = ((§ry Rasmax) exp((—(Rigw/ (Ery Barmax)?)/2)
—(R31un/ (ERp BMmax)?) /2 = (B3 max/ Ry BMmax)?) /2) (2(E Ry Rt max)
exp((RasmaxRBas b )/ (€ry Ratmax)” + (Rig b/ (ERar RMimax))/2)
~2(ERy Rt max) exp((Riw/ (ERp Barmax)?) /2 + (
Rt max Razun)/ (Rar Bamax)?) — V2V/T Ragmaxerfo((Razub — Ragmax)/ (V2
(ERp Rarmax))) exp((Rig b/ (ERy Rarmax)?) /2 + (Rigun/ (§Rar Rt max)?) /2
(R max/ ERy Rarmax)?) /2) + V2T
Ragmaxerfe((Rariy — Rarmax)/(V2(ERy Rasmax)))
exp((Rigin/ (Ern Barmax)?) /2 + (Rig b/

(gl'%MRM,maX)Z)/2 + (R%J,max/(fRMRM,maX)2>/2)))/2 (826>
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Gz = ((ERy Ratmax) exp((—(Rigm/ (Ery Ritmax)?)/2)
~(Risub Ry Bamax)?) /2 = (B masx/ (ERa B max)?) /2) (2R 0 max
(€Rus Batmax) exp((Rasmax R n) / (€Ru Batmax)?
+(Rr ub/ (ERp Barmax)?)) + 2Ra110(ERyy Rasmax) exp((
Rt maxBarn) / (Era Batimax)” + (Rig ./ (§Rp Bmax))/2)
—2 Rz max (ERpy Rt max) XD (R (ERyy Ratmax)?) /2 + (
Rt maxBatub)/ (ERp Bvimax)?) — 2Rz ub (ERyy B max)
exp((Rig 1/ (ERy B max)?) /2 + (RazmaxBarub) €y Ratmax)”) —
V2T R axerfe((Razub — Rtmax)/(V2(ERy Ratmax)))
exp((Rim/
(ERn Ratimax)?) /2 + (B3 p b (€Rps Bt max)®) /2 + (R g max/ (Sp Bt max)?) /2)
+V2y/TRY axerfe((Rarmn —
Rtmax) [ (V2(ERy Rt max))) exp (R 1 Ry Rt max)?) /2
(R 1 ub/ Ry Ritmax)?) /2 + (R max (ERas Rt max) ) /2) —
V2y/merfe((Raub — Ratmax)/(V2(ERy Rasmax))) (R Rtmax) exp((Riyp/
(ERp Batmax)®) /2R3 b/ (ER s Brmax)) /2 + (B s/ (ERas Bbmax)?) /2)
V2v/merfe((Rara — Rasmax)/ (V2
(ERpr Rt max))) (ERyr Rt mar)? exp((Rig 1/ (€Rp Rbmax)?) /2

+(R?\4,ub/(€RJMRM7maX)2)/2 + (R?W,max/(gRM RM,maX)z)/2)))/2 (827)
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Figure S3: p(R) of the circular cross-section radius of a polydisperse barrel shape. Rp/max =
1800 A, Ry min = 500 A, pg = 3.

S5 Averages of the half thickness of the core of the platelet and
its square over a Gaussian distribution comprised between two
bounds

The distribution function of ¢ (the half thickness of the core of the platelet) is

pt (t) = ief(tftmax)z/(2£t2maxt?nax) (S28)

The normalization factor Z; is determined by the following equation

tu
7, = /b6_(t_tﬂlax)2/(2§t2maxt?ﬂax)dt

213

= (V2r(erf((tup — tmax)/ (V2pmantmax))) — erf (b — tmax)/ (V2 purtmax))) /2. (S29)

where t1, = max{tmax(l — Pc&tua)s tmin} and tup = tmax(1 + peét,., ) are the lower and the upper
bounds of the integrals calculated based on the dispersion & . . In these equations, i, is the
minimum allowed value of the lower integration bound, which cannot be negative. In our case we

fixed tmin =1 A
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The average of the k-power of the half thickness of the platelet core is defined as

by
ctbor L[k )2/ Q€ ) g (S30)

T Jty,

The average thickness, corresponding to k = 1 in Eq. S30, is

ty = —exp(—tha/s” — toy/s” — t,/5%)(s% exp(tl, /s
+(2tmaxtin) /5%) — 5 exp((2tmaxtub)/s” + ti,/s°)
— /T stmaxerfe((tub — tmax)/5) eXP(thay /5
+t2,/8% + 1, /5%)
/T stmax XDt /5 + top /87

2 /s2)erfe((tp — tmax)/5)) /. (S31)

where s? = 2¢2 . The second moment of the distribution is the case k = 2, which reads

max gtmax

<t?> = —exp(—td,. /5% — 12, /5% — 13 /57)(25% tmax exp(t2, /s°
+(2tmaxtin) /57) + 257t exp(t, /57
+(2tmaxtib) /%) — 28 bmax exp((2tmaxtub) /8°
+t2 /5%) — 25%tup, exp((2tmaxtub) /s> + th,/5%)
—vmsderfe((tup — tmax)/s) exp(t2,.. /s>
+on /st + th,/5%)
—2\/773t12naxerfc((tub — tmax)/S) exp(tfna@(/s2
12, /8% +18,/5%) + V7S exp(t2,. /5% + 12, /5%
+t2 /s%)erfe((ty, — tmax)/S)
+2/Tst2 o exp(tan /52 + 12157

+i,/5%)erfe((tn — tmax)/5))/2- (S32)
The dispersion of ¢ is calculated as

&= (<> /12 —1)1/2, (S33)
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S6 Average number of stacked platelets over a Gaussian distribu-

tion comprised between two bounds

The Gaussian distribution function of the number N, of stacked platelets is

1
O (s34

c

The normalization factor Z; is determined by the following equation

Nc,ub 9 2
ZNC — / e*(Nc*Nc,max) /(ZUNC)ch
Ne¢ b

Ncu _Ncmax Nc _Ncmax
:(mwﬁpqu>_m(vwvﬂ. (335)
2 \/§ch \EO'NC

where N¢jp, = max{Nemax — PGON,, Nemin} and Neup = Nemax + Peon, are the lower and the
upper bounds of the integrals and N yin is the minimum allowed value of the lower integration

bound, which was fixed to N.min = 1. The average number of stacked platelets is

Nc,ub G5
Nc,O = / Ncch(NC) dNe = ——
Ne¢ b ZN.

GB = Vv 27T]Vc,maXO'Nc

+O—]2\78 (6_(Nc,1b_Nc,max)z/(20']2vc) _ 6_(Nc,ub_Nc,max)2/(20'12\[6))

m Negb — Nemax Neub — Nemax
+N, o C\/> [erfe <’> — erfe <’ 536
c;max?Y N, 9 \/§UNC \/§UNC ( )

S7 Distribution function of the center-to-border distance of a

polydisperse barrel

For a barrel with minimum and maximum circular cross-section radius vRj; and Ry, respectively,
and with height H, the distance from the center and the border taken along a direction that forms

an angle 8 with the barrel axis is given by the function

H 0<pB<tan"! (21/[1?1)

2cos f3
H Ry [Hv tan 8+(1-v)\/A(1—20) 3, + H2 tan® ] 0< 8 < tan-] (21/11}1%) (S37)
Ry B=1

cos ,8[4(1—V)2R?V[+H2 tan? ,B]

S11



Hence, the average center-to-border distance is the zenith integral

w/2
Re — / 4B sin B £o(8) (938)
0

For a polydisperse barrel over both Rj; and H, the probability density of the center-to-border dis-
tance, p(R.), is obtained by sampling Rj; and H over the two corresponding distribution functions
p(Rar) and p(H) determined by the analysis of SAXS data. A simple Monte Carlo method that

samples 300000 values of R. has been developed for this aim.

S8 SAXS amplitude of 3 specular layers of electron densities with

smooth transitions

The excess ED profile, relative to the average ED of the entire barrel (py,1, see Eq. S122), of 3

specular layers with smooth transitions along the z direction perpendicular to the layers is?

3
py(z Z Pt — Pri-1)E(2, 2, 0p1,5) (539)
j=1

where pro = ppr, the indexes j = 1,2, 3 correspond to the outer, middle, and inner domains, the
z levels are z; = t + 7;, with, by definition, 71 = #; + t2, 2 = t2 and 73 = 0. The smoothness
parameter on going from the j-layer to the (j —1)-layer is oy, ;. The function E(z, 29, o) represents

a combination of two symmetrical error functions?,

1 z+ 2 z—Z
E(z,zp,0) = 3 [erf (21/200> —erf (21/200)] (540)

A representative plot of §p¢(2) is shown in Fig. S4. To note, the volume fraction distributions along

z of the three domains are,

vi1(z) = E(z,21,0p11) — E(2, 22,0p12) (541)
902(2) = E(Z7227Up1,2) - E(Z>Z370p173) (842)
03(2) = E(z,23,0p3) (S43)

Details on the calculation of the electron densities py ; in Eq. S39 on the basis of the composition
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of the platelet are shown in Sect. S11.3.2 (Egs. S65, S115, S116, S117).

The one-dimensional Fourier transform of Eq. S39 reads

P1-Po

6p¢(2)

P2-Po

P3-Po

Figure S4: Excess ED calculated with Eq. S39.

3 )

sin(gz)) —q202, /2

Aq £(q) 2Zz3 Pfj— Pfj—1) qz~] ?op 5/
j=1 J

Eq. S44 can be re-written in the more useful complex space according to

.3
An,f(q) — Z Pfj — Pfj-1)€ zagl’j/Z(eiqzj )
q =
The squared amplitude is
2 —q%02 /2 —q%02 /2
Aﬂ,f(q) = 2 Z Z Pl — pf7j1—1)e 7 (pf,j2 - pf7j2—1)6 72
1=1j2=1

("1t + i) _ o1a(Tiy —Tia) _ o =1(m ~ i) 4 a2 +T0)

S13
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The averages < (t + tg)_lAaf(q) >, which enter into Eq. 18, read

3
_ 202
<+ AR > = o Z (Prn — Prar-1)Pe T
(e ’2‘1”1 <(t+t) et >y —2 < (t+t) >y

+e —12q7j, <(t+t2)_1 —2iqt >t)

—q%(c2 +02)/2
2 Z Z pf?.]l pf:]l 1)(pf7]2 pf:j? 1) I (Ujl UJ2)/
J1=1j2=j1+1

(eiq(TJlJ’_TJQ) < (t + t2)—1€2iqt >, _(eiq(le ~Tjy)
e T T)) < (t 4 t9) T >y

e Tt T2) < (t 4 ty) e Ha >y (S47)

We have calculated the term < (t + t2) '€’ >, by sampling the Gaussian distribution seen
in Eq. S30 over n; points and by performing an analytical integration over the piecewise lines

according to

tu

(bt ta) e s = T [ gy etk () (26 ) g
Zt b

ne—1

~ ziﬁ 3 (1 — igk Attt — ity (1 g ty)~Le (1 —tman)/ (6 )
tq °
7j=1

+((1 4 igkAt)ekti — glaktiv) (¢, tg)_le_(tj_tmx) ACTNEN) (S48)

where the sampled points are t; = ty, + (j — 1)At, with At = (typ, — ) /(e — 1).

S9 Calculation of the radial averages of Eq. 18

The three radial averages shown in Eq. 18, which involve the following three functions,

FI(R) = ti(t1 +2(R+t2))(R+t2) 2, (S49)
FQ(R) = tg(tz + QR)(R + tg)_Q, (S50)
F3(R) = R*(R+1y)7% (S51)
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are defined by the following integral

R b
<Fu(R)>r = / Fu(R) p(R)dR
VR b

1 RM,ub _ _ 2 2 2
— Fk,a(RM) e (RM RM,max) /(2€RM RM’maX)dRM, (852)
ZRM R

where, considering the definition of p(R, Ry, vRyr) (Eq. 11), we have introduced the following

functions

Ryg,ub
Fro(Ry) = / Fi,(R)p(R, Ry, vRy)dAR

Rarb
Ry
= Fi(R)p(R, Ry, vRy)dAR (S53)

vRy s

We have been able, by exploiting the computer algebra system Maxima?, to analytically solve the

integrals shown in Eq. S53. Results, for the case Ry;(2v — 1) + t2 > 0, are given by the following

S15



relationships:

Fio(Ry) = —(VRy +tav/2Ryv — Ry + ta(27
3t + (wt? — 2mtgt) )R, + ((—2mty
R3,) + (47toty, — 2mt2)R2, + 6mtdt,
Ry )v + (At Ry, + (dntoty + mt3)
R34 (((2t3 + 8tot1)R3, + 8t Ry )v* + (1245
tiRas + (Stoty — 43 R, — 4t R3)v + (263 — 4
tot1)R%, 4+ 4t3ty) sin ™ (Ryv — Rag)/(t2 + Ry
V) + ((4tot? — Smtdty)R3, + (43 — 167ty
t1)R3; — 8mt1 Ry)v? + (26313 — 8xt3
t1) Ry + ((—4tot?) — 8wtat)) R, + (Smty
t| — 6t3)R3; + 87t Ry )v — 21t Ry + 2
2R3, + Awtat  R3, — 26313 Ry — 27
tat1)/((—2taRa) + 4t3R3, — 2R3, + (10R3, + 8ta Ry, — 12
2R3, — 8t3R3, + 2taRyr)v + ((—16R3,) — 242 Ry, + 8

t3R2 )% + (8RY, + 16ta R4, + St3R3,)VP) (S54)
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Fyo(Ry) = —(V Ry +tav/2Ryv — Ryr + to(27
ty — 3mtiR%, + (—27toR3;) + 6712 R3, + 6
T3 Ry v + (AmtyRY, + 3mtaR3,)
V2 + ((613R3; + Sto Ry )W + (1263 Ry + 1265R5, — 4
taR3 v — 6t3R3, + 4t3) sin ™ ((Ryv — Ryy)/(ta +
Ru))) + (((=87m) — ) t3R3, + ((—167) — 4)t2R3, — 8nty
RV 4 (((—=87) — 2)taRyr + (4 — 8m)t3R3, + (87 + 6)13
R3, + 8mto Ry v — 2mta Ry, — 263R3, + 4
TSR3, + 25 Ry — 2mt3) ) ((—2t5 Ray) + 4t3
R, — 2R%, + (10R%, + 8ta Ry, — 12t2R3, — 8t3R3, + 213
Ruy)v + ((—16R3,) — 24t Ry, + St3R3,)v* + (8R3, + 16t

R}, + 8t2R3 )1 (S55)

F3.(Ry) = (VRm +ta/2Ryv — Ry + to(2r
t3 — 3mtiR3, + ((—27taR3,) + 6713 R, + 6
T3 Ry v + (Anty Ry, + 3mtaR3,)
V2 + ((6t3R%, + 8toR3,)v? + (1263 Ry + 12t3R%, — 4
toR3 v — 6t3R3, + 4t3) sin Y ((Ryv — Rag)/(ta +
Ryv))) + (=83 R}y) — 1662 Ry, — 8R3 )V + (((—=8) — 12)13
R3, + ((—167) — 4)t3R3; + (24 — 8m)ta Ry, + 16R3)v? + (((—87) — 4)
taRar 4+ (12 — 8m)t3R3, 4 (87 + 18)t3R3, + (87 — 8)to
Ry — 10RS,))v + 2R3, — 2nta Ry, — 6t3R3, + 4n
tSR3, + 4t5 Ry — 2mt3) /((—2t3Rpy) + 43R5, — 2
Ry, + (10R3, + 8ty Ry, — 1262R3, — 8t3R3, + 2t3Ryy)
v+ ((=16R5;) — 24to R4 + 8t3R3,)v? + (8R3, + 16to Ry, + 8

t3R3)v°) (856)
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On the other hand, for Ry;(2v — 1) +t2 < 0, the functions Fj, ,(Ras) are:

Fio(Ry) = —(VRu +ta/(—2Ryv) + Ry — to((—2i
Ttsty) + (2imtoty — imt?)
R3, + (2imt Ry, + (2imt? — 4im
tot1)R3; — 6imtaty Ryr)v + (((—4i
Ttoty) — imt?)R3, — dimty
RV + (((—17) — 4tat1) RYy — 461 Ry )2 + (615
tyRar) + (267 — dtaty)RY; + 201 RY, v + (2t
t1 —t3)R3, — 263t1) log(Rasv + t2) + (85 + 4
tot1)R3, 4 4t R3,)v? + (613t Ry + (4t

t — 23R, — 261 R3,)v + (3 — 2tot1) R, + 2

t3t1)log(v/Rar + tan/(—2Ryv) + Ry — to +
Ryv — Rup))) + ((2tat] — dmtsty) Ry, + (2

t2 — 8mtoty )R, — dmt Ry, + ((t5

t1 — dmtat)) Ry + ((—2tat3) — drtsty)

R2, + (4rtoty — 313)R3, + 4wt Ray)v —

mt Ry, + 2R3, + 2ntat RS, — 13

iRy — 7taty)/((—taRar) + 2t5RY, — Ry, + (5
R}y + 462 Ry — 613RY, — 465R3, + tyRy)v + ((—8

RY) — 12t9RY, + 463 R3 )% + (4R, + 8t2 Ry, + 43R V%) (S57)
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Fyo(Ry) = —(V/Rur +ta/(—2Ryw) + Rap — to((—2i
mty) + JimtaRa, + (2inta Ry, — 6
inta R, — 6imts Rar)v + ((—4i
mtaR3,) — JimtsRa, )2 + (((—3t3R3,) — 4
toR3 )V + ((—6t3Ryy) — 6t2R3, + 2t9R3,)v + 3
2R3, — 2t3) log(Rav + t2) + ((3t3R3, + 4t

R3O + (6t3 Ry + 613R3, — 2t R3 v — 313

R2, + 2t log((v/Ras + t2n/(—2Rpv) + Ray — to +

Ryv — Rup))) + (((=4m) = 2)13R%, + ((—87) — 2)t3R}, — 4
Tt Ry + (((—47) — D3Ry + (2 — 4n)t3R2, + (4

7+ 3) 2R3, + Anty Ry, v — mta R, —

3R, + 2mty R, + ta Ry — 7t5) /(5

Ru) 4+ 263R3, — Ry, + (5R3, + 4taRY, — 6t3R3, — 43

R2, +t3Ruy)v + ((—8R3,) — 12ta Ry, + 4t3R% )% + (4

R3, + 8tyRY, + 4t3R3,)1%) (S58)
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Fso(Ry) = (VRm +ta/(=2Rpv) + Ry — ta((—2i
mty) + 3imt3Ra, + (2inta Ry, — 6
int3 R, — 6imtsRar)v + ((—4i
mtaRy,) — Jimts Ra, )V + (((—3t3R3,) — 4
ta RV + ((—6t3Rps) — 63R2, + 2t R3,)v + 3
t3R3, — 2t3) log(Rav + t2) + ((3t3R3, + 4t

Ry + (6t3 Ry + 613R3, — 2t RS, )v — 313

R2, + 2t log((v/Ras + t2v/(—2Rpv) + Ray — to +

Ryv — Ryy))) + ((—4t2R3,) — 8taR3; — AR5,V + (((—4

7) — 6)t5R3, + ((—87) — 2)t3R3; + (12 — 47)ta R}, + 8R3))
V2 4 (((—4m) — 2)taRyr + (6 — 4n)t3R3, + (47 + 9)t3R3, + (4
7 —4)ta Ry, — 5R3,)v + RY, — wta Ry, — 33

R3, +2mt3R3, + 264 Ry — t5) /((—taRyr) + 2

2R3, — Ry, + (BRY, + 4o R3; — 6t2R3, — A3 R%, +

t3Ra)v + ((—8R3,) — 12t R4, + 463 R2 )v? + (4R35, + 8

ta Ry + 43RS )V) (S59)

Notice that Egs. S57-S59 have been solved in the complex space so that, for example, the logarithmic
functions are applied to negative numbers. However, we have checked that the imaginary part of
all the expressions is zero. Finally, the integral averages < Fj(R) >p over a Gaussian (shown in

Eq. S52) are numerically calculated with the Simpson’s rule by using 10 points.

S10 SAXS amplitude of 3-electron density levels of CP bilayers

with smooth transitions

The excess ED profile of 3 specular layers of EDs with smooth transitions along the z direction

perpendicular to the layers, representing the k-th nano-crystal region of CP (see Fig. 3, panels C
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and D), is?
3
0pr(2) = Y (ki — Pri-1)E(2, 2, ki) (S60)
i=1
where pcp g is the average CP ED, according to

3
Zizl VCP,iPCP,i
3
Zi:1 VCP,i

Pro = (S61)

In this equation, vcp; and pcp; are the molecular volume and the ED of the carboxyl group
(¢ = 1), the middle (i = 2) and the terminal (i = 3) chains of the CP molecules, respectively. The
z levels are z; = Zf,:l Ok, and oy, is the smoothness parameter on going from the i-layer to the

(¢ — 1)-layer. A representative plot of dpi(z) is shown in Fig. S5. The one-dimensional Fourier

transform of Eq. S60 reads

3 .
sin(qz;) _g252
Aak(g) =2 zilpri = pric1) q(z. i) g /2 (S62)
=1 ¢

P1-Po

0Pk (2)

P2-Po

P3-Po

Figure S5: Excess ED calculated with Eq. S60.

Electron densities p;; and thicknesses d;; are calculated according to the physical-chemical
characteristics of the groups forming the CP molecule, shown in Table 2. Explicit equations are
reported in the Sect. S11.3.1, Egs. S85, S86, S90, S91, S92, S93, S94, S96, S97, S98, S99, S100 and
S101.
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S11 Volumetric constraints and calculation of electron densities

S11.1 Water and thermal expansivities

The relative mass density of bulk water is calculated as a function of T" with the following expression
—Qwat (T_TO)_BWat (T_T0)2/2 (863)

dwat =e€ ’

where the thermal expansivity of water at T, and its first derivative are ayat = 2.5 - 1074 K~! and
Bwat = 9.8 - 1076 K=2, respectively®. Conversely, the temperature dependency of the relative mass
density of both CP and P80 molecules is expressed as a function of the thermal expansivity ou;, of

lipids, according to
dyyp = e~ w(T=To), (S64)

ayip being considered an adjustable parameter.

The bulk water electron density is

P0 = €H,0/ (Vgat/dwat ) (S65)

S11.2 End-capped cylindrical micelles

The molecular volume of the hydrophobic region of P80 is
vpgo,hyd = (14vcn, + 2ven + ven, )/ diip- (566)
The molecular volume of the dry polar region of P80 is written as
VP80, poldry = ((2vcH, + V—0-)20 + v>c= + 2v_o— + vo= + 2vcH, + 4vcn + 3von)/diip.  (S67)

The number of water molecules per molecule of P80 in (k = 1) domain (see Eq. S12, here
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referred to as 1-domain) of the end-cap region of the micelle is derived by the following equation

3 2
T'wat,cap — (25capVP80,hyd+6R2,cap6capVP80,hyd
3hd; 6123 capd
F9M0capP8O,hyd + 0415 ¢apOcap’P80,hyd
3
JF6h-R2,cap(scapVPSO,hyd - 2f€2,cap7/13‘807p01,dry
—3hR3 + h? )/
2,capP80,pol,dry VPg0,pol,dry

((h+ R2ycap)2(2R2,cap - h)’/;)vat/dwat/czwat,cap) (568)

The number of water molecules per molecule of P80 in 1-domain of the cylinder region of the micelle

is derived by the following equation

2 2 2
5capVP80,hyd + 2RQ,Cap(ScapVP80,hyd - RQ,CapVP8O,pol,dry +h VPg0,pol,dry
(Rz,cap = 1) (h + Racap)Vigar / dwat / dwat eyl

(S69)

T'wat,cyl =

Accordingly, the electron densities of the 1-domain of the end-cap and of the cylinder regions of

the micelle are

preap = ((2ech, +e-0-)20+esc=

+2e_o— + eo= + 2ecH, + 4ecH + 3eoH + T'wat,cap€H,0)

/(VP80,pol,dry + T'wat,capVwat/ Awat/ CZwat,cap) (S70)
preyl = ((2ech, +e—0-)20 +esc=

+2e_o— + eo= + 2ecH, + 4ecH + 3e0H + Twat,cyl€H,0)

/(VP8O,pol,dry + rwat,cylyxc;)vat/dwat/dwat,cyl) (871)

In Eqgs. S68-S71, (fwamap and ciwat,cyl represent the relative mass density of water molecules embed-
ded in the 1-domain of the end cap and the cylinder regions, respectively.

The electron density of the hydrophobic domain of the P80 molecule is

ppso2 = (14ech, + 2ecuH + ecHs;)/VPso,hyd (S72)

This ED corresponds to the ED of the 2-domain of both end-cap and cylinder regions of the micelle,

p2,cap and po ey, respectively (see Eq. S12). The hydration of the 1-domain is calculated by the
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ratio between the volume occupied by water and the total volume of the 1-domain, in both regions

X . Twat,capl/é)vat/dwat/dwat,cap (S?3)
cap — =
VP80,pol,dry + Twat,capy\?vat/dwat/dwat,cap
R R
rwat,cylywat / dwat / dwat,cyl
Xeyl = (S74)

VP80,pol,dry + Twat,cylV\?vat/dwat/dwat,cyl

The area that each P80 molecule faces towards the water in the end-cap and the cylinder region

can be calculated by the following expressions

VP80,hyd ) 2 1+ gt
apP80,ec,cap,l — 37[1) o <1 + Rcap > 2 3 (875)
2,cap 2,cap 1+ %R h _ % (R h )
2,cap 2,cap
VP80, hyd eyl
apgo,ec,cyl,l = 27}/ <1 + cy> (876)
R2,cy1 RQ,cyl

We can also calculate the corresponding areas at the interface between 1-domain and 2-domain in

both regions. They are

VpPg0,hyd L+ th
) ,cap
apP80,ec,cap,1,2 — 3 3 (877)
R2,cap 1+ 3_h _ 1 h
2 R2,cap 2 R2,cap
VPg0,hyd
apg0,ec,cyl, 1,2 = QT (S78)
2,cyl

S11.3 Platelets

The molecular volume of CP, seen as a function of T, in the amorphous region (disordered chains,

a) is

VCP,o = (29VCH2 +2vcH; + Vsc= FV_0- + I/o:)/dhp. (879)

In the lamellar phases (ordered chains, (), the volume becomes

vep,g = (29vcH, Ben, + 2veH, BeH, + vso= + v_o— + vo=)/diip, (S80)

where (cn, and Scn, are, respectively, the reduction factors of volumes of the groups CHy and

CHs in the ordered chains relative to the values they have in disordered chains.
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S11.3.1 Lamellar domains

The number of CHy groups of CP that are considered to be part of the i = 1 domain (see
Eq. S60, shortly referred to as 1-domain) of each of the two lamellar phases are Nc, cP pol,1
and NcH,,cP,pol,2, respectively.

The fractions of CHs and CHjs that occupy the i = 2 domain (see Eq. S60, shortly referred
to as 2-domain) of the first lamellar phase are xcp,ch,,1 and xcp,cH,,1, respectively, where the
fractions of CHy and CHj3 that occupies the 2-domain of the second lamellar phase are xcp,cH,,2
and xcp,cH,, 2, respectively.

The number of correlated bilayers of the first and the second lamellar phase are Ncp,; and
Ncp 2, respectively, and the corresponding distortion factors are gcp,1 and gcp, 2, respectively.

The areas associated with each CP molecule in the two lamellar phases are acp,1 and acp,2,
respectively. These values allow us to calculate the repetition distance of two lamellar phases

according to

di = wvcpg/acpa (S81)

dy = wvcpg/acpp. (582)

The volumes of the 1-domain of the CP molecule in the first and the second lamellar phase are,

verag = (1/dip)(vsc= + v—o— + vo= + NcH,,CP pol,1 VCH, BCH, ) (S83)

veppn = (1/dip)(vsc= 4+ v—o— + vo= + NcH,,CP pol,2V/CH, BCH, ) (S84)

and the two corresponding thicknesses are

i1 = wvepii/ace (S85)

d21 = wvcpai/acpz2 (586)

The total volume of the CHy groups in both the 2-domain and the 3-domain of the CP in the

first and in the second lamellar phases are

VCP,1,CH223 = (29— NcH,,CP pol,1)VCH, BcH, / diip (S87)

VCP2,CH:23 = (29 — NCH,,CP pol,2)VCH, BcH, / diip (S88)
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The total volume occupied by the CHj3 groups in the CP molecule is

VCP,CH; = 2VCH;BcH,/ diip (589)

The thicknesses of the 2-domain the CP molecule in the first and in the second lamellar phase

are

d12 = (VCP1,CHy,2,3TCP,CHa,1 + VCP,CHs £CP,CHs,1)/ACP 1 (590)

d22 = (VCP2,CH,,2,3TCP,CH,,2 + VCP,CH3 £CP,CH3,2)/ACP 2 (S91)

The thicknesses of the 3-domain the CP molecule in the first and in the second lamellar phase

are

013 = (Vep1,CcHs2,3(1 — 2P cHa1) + vop,cHs (1 — Zop,cH,,1))/acP 1 (992)
d23 = (vcp2,cHe23(1 —2ep,cH,,2) + vop,cHy (1 — Zop,cHs,2))/acp 2 (S93)
The average electron density of the CP molecule is

ec + 2eo + 29ecH, + 2ecH,
VCP,3

pcp,o = , (594)

where we have introduced the mean molecular volume of CP for ordered and disordered regions of

the inner part of the platelet,

Ucp3 = Ysvcp,a + (1 — y3)vep g (595)

The electron densities of the 1-domain of the first and the second lamellar phase are

pcpi1 = (ec +2eo0 + ecu, NcH,,CPpol,1)/VCP,1,1 (596)

pcp21 = (ec +2eo + ecH, NcH,,cP pol2)/VCP 2,1 (897)
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The electron densities of the 2-domain of the first and the second lamellar phase are

) TCP,CH,,1(29 — NCH,,CP,pol,1)€CH, + £CP,CH;,12€CH; (398)
CP,12 =
VCP,1,CH,,2,3CCP,CH,,1 + VCP,CH3XCP,CH3,1

) TCP,CH,,2(29 — NCH,,CP,pol,2)€CH, + LCP,CH;,22€CH; (99)
CP22 =
VCP,2,CH,,2,3LCP,CH,,2 T VOP,CH; LCP,CH3,2

The electron densities of the 3-domain of the first and the second lamellar phase are

(1 —zcp,cH,,1)(29 — NcH,,CP pol,1)€CH, + (1 — ZcP,cH,,1)2€CH,
popis = (S100)
VCP,1,CH,,2,3(1 — Zcp,cH,,1) + vop,cHs (1 — Zop,cHs, 1)

(1 —zcp,cH,,2)(29 — NcH,,CP pol,2)€CH, + (1 — Zcp,cH,,2)2€CH,

pPCP2,3 = S101
VCP,2,CHs,2,3(1 — Zop,cH,,2) + Vep,cHs (1 — Zep,cHs 2) ( )

S11.3.2 Entire platelet

The nominal w/v concentration (in g/L) of nanoparticles, corresponding to both CP and P80
molecules in the sample, is indicated as c;np and the nominal molar ratio between CP and P80

molecules as rcp pgy. To each of these two parameters, we associate two correction factors, k¢, \p

and k Hence, the w/v concentration of CP in the sample is

TCP,P80°

B kepxpciNpMop
Mcp + Mpso/ (krep psoTCP,P80)

ccp (S102)

The mass balance of CP and P80 is combined with the structural parameters of the platelet as
follows. By referring to Fig. 3, the volumes of the platelet’s core and the second (or intermediate)

platelet’s shell (labeled with 7 = 2,3 and f = 2,3) are related to the number of CP and P80

molecules in the platelet (Ncp p1 and Npgg p1, respectively) using

3 3

S Vi o= 2m(t+ta)(R+ 1)’
F=2j—2
= Ncp pivcp + Npgo plVP8o,hyd (S103)

where Ucp is the average molecular volume of CP in the platelet’s core and the second platelet’s
shell. The number of P80 in the platelet can be expressed as a function of the fraction of P80

molecules embedded into the platelet, ypgg, and the nominal molar ratio between CP and P80
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molecules, rcp pso (a parameter known by the composition of the sample),

Ncp,p1
Npgo,pl = ypso—p- (S104)
TCP,P80Krcp pso
Combining Eqgs. S103-S104, we find Ncp p1
27 (t +to)(R + ta)?
NCP,Pl = UP80,hyd YP80 (8105)

17
cp + TcP,P80Krop pso

The average value of Ncp 1 over both the radial distribution p(R) (Eq. 13) and the distribution of
the half-thickness p;(t) (Eq. S28) is
27 (to + t2) (RG(1 4 £F) + 2t2Ro + £3)

VP80,hyd P80
TcP,P80krap pso

<Ncpp1 >=

- (S106)
vcp +
Moreover, by considering only the volume of the second (intermediate) shell of the platelet, the one
that contains the hydrophobic domain of P80 molecules embedded in the CP region (represented
in cyan in Fig. 3 panel B), we can write
3 5—f
SO <Vii> = 2m(to + b)) (RA(L + €3) + 2t5Ro + 13) — 2mto RA(1 + €3)

=2 j=2
= < Npgopi> (VPso,hyd + T'CP,PoCP) (S107)

where 7cp pgo represents the average number of CP molecules per P80 molecule in the second
platelet shell. This definition allows to calculate the average molecular volume of CP in the whole

platelet,

YP80TCP,P80 (

VCP,a — UCP3) (S108)
TCP,P80Krcp pso

vcp = VUcpgs+t

where we have assumed that in the second platelet’s shell, all CP molecules are in the amorphous
configuration. Combining Eqgs. S103-5108 it is easy to analytically find out 7cp pgy as well as

< Ngp pl >, <Npgopi > and vcp. We can also calculate both the overall volume fraction of CP and
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the volume fraction of CP in the inner part of the platelets, according to,

Naccpvcp
b = Nacorler (S109)
CP
YPg0TCP,P8OVCP,
¢cp3 = ¢cp <1 — = - ) (5110)
VCPTCP,PSO]{TCP,PSO

The average area of the platelet associated with each P80 molecule can be calculated by referring
to the second layer of the platelet and considering the ratio between the sum of the volume occupied
by the hydrophobic domain of P80 and the one occupied by 7cppgop molecules of CP and the

thickness of this layer,

VP80,hyd + TCP,PSOVCP,a
to

apggjpl = (Slll)

To note, by assuming an average hexagonal displacement of the P80 molecules on the platelet

surface, the average distance between the nearest neighbor P80 molecules is

dpso,pso = \/ 2apso.pl/V3 (S112)

We also consider the number of water molecules associated with each P80 molecule occupying the
first layer region of the platelet (shown in green in Fig. 3), indicated with 7yat pso. On the other
hand, the thickness of the first layer of the platelet can be calculated by taking into account the
volume occupied by the polar head of P80 and the one due to 7yat,pgo Water molecules, supposed

to have a relative mass density Ciwat7p1 in respect to the bulk water mass density

o
Vwat

VP80,pol,dry T+ Twat,P80 T s
t1 = 2 (S113)
apgo,pl

Therefore, we can calculate the fraction of the platelet surface occupied by the polar head of P80

VP80,pol,dr
¢spsy = ——t (S114)
t1apgo,pl
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The electron density of the 1-domain of the platelet results,

pr1 = (ec+2e0 +29%cH, + 2ecH; + Twat,PROCH,0)

VO

/ (VP80 pol.dry + Twat,pgo—-—2—) (S115)
wat,pldwat

The electron density of the 2-domain of the platelet results,

pPr2 = (14ecn, + 2ecu + ecu, + TCP,P80 (ec + 2e0 + 29ecH, + 2ecH;))

/(VPso hyd + TP psovcp) (S116)

Finally, the third ED values correspond to the average electron density of the CP molecule, given

in Eq. S94.

Pf3 = PCP,0 (S117)

S11.3.3 Barrels with shells

The average volume of the region between two subsequent platelets (represented in white in Fig. 3

panel B) is

Vo = 2rAHRE(1+ER) + 13 +13 + 2Ro(ta + 1) + 2tat] (S118)

The average volume of the first shell region of platelets (represented in green in Fig. 3 panel B) is

Vi= = 27Tt1[R(2)(1 + 5}23) + t2(2R0 + t2) + (to + i+ tl)(QRO + 2t9 + tl)] (8119)

The average volume of the second shell region of platelets (represented in cyan in Fig. 3 panel B)

is

Vo = 2mty[Rg(1+£R) + (to + t2)(2Ro + t2))] (S120)

The average volume of the core region of platelets (represented in blue in Fig. 3 panel B) is

Vs = 2mtoR:i(1+£%) (S121)
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The average ED of barrels is

pwat‘/() + pf,l‘/l + pf,QVQ + pf’3‘/3

_ S122
Porl Vo+ Vi+ Voot Vi (5122)
The average number density of barrels is
- Nyccp
' Mcp <Ncgp,p1> Ne
ocp
= S123
vop <Ncpp1> Ne ( )
The volume fractions of CP, P80 and water in the barrel are
< Ncppl > Vcp
Pbri,cp = —E (S124)
< Npsgo,p1 > (VP80,hyd + VP80, pol,dr
Pripso = p> ( l’)y ol dry) (S125)
< Npgo.pl > T'w d VoS /d
Goriwat = (< Npgop1 > 1 at,Pso/D wat,pl T V0)Viat/ dwat ($126)
where
D = (<Npgopl> Twat,Ps0/ dwat.pl + Vo) Vot / dwat
+ < Npgo,p1 > (VP8o,hyd + VP80,poldry)+ < NP pl > Vcp (S127)

S11.3.4 Average surface of the barrel

The surface of a barrel with height H, major and minor radii vRj; and Ry, respectively, results

Sp = 2wR3,(v+2)f(e,v) (S128)

where e = 2R);/H and the function f(e,v), corresponds to the following integral

fley) = 1/01 PRt \/1+E%2(1_V)2d¢ (S129)

£ 1—¢2

that can be easily derived in the framework of the revolution solid theory. We have solved numer-
ically the integral in Eq. S129 in a two-dimensional grid of € and v in the corresponding ranges

% <e<5and 0 <v < 1. Subsequently, we have expanded the results in power series of v up to
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b(),j bl,j CLj b27j CQJ‘ bgyj 6373'
0.5382 -0.0739 0.1724 -2.9555 6.0253 1.3475 2.3820
0.8831 0.3803 -0.6286 2.3728 -9.8397 -8.1622 -3.6075
-0.8858 -0.6223 -0.2495 -0.2482 -0.3393 -0.0033 -0.3686
.2566 -0.5802 1.1276 -1.1853 0.4495
-12.0772 -11.3033 -5.5527 -4.6906 -5.6968 -4.7512 -6.1686

3.5727 0.9426 0.2049 1.0701 3.0945 7.7301 0.9234
-3.6432 -3.0487 -1.2873 -0.2511 -0.5396 -0.2639 -0.5900

S U W N OS>
e
[y
(@]
~
(@}
=
N
0]
©
(08}
o
o

Table S1: Expansion coefficients according to Eqgs. S130 and S131.

the 6 degree
6 .
flev) = ) aje)! (S130)
§=0

We have then approximated the coefficients a;(e) with a combination of three exponential functions

over a background,

3

a;j(e) =boj+ Y by ek (S131)
k=1

Best fitting parameters are shown in Table S1 The comparison between the integrals and their
approximations due to Eqgs. S130 and S131 is shown in Fig. S6. The double expansion allows an
analytical calculation of the mean barrel surface, according to Gaussian distributions of both Ry,

and e,

<Spn> = 2m <R3, >R, (v+2) <fle,v)>:. (S132)
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Figure S6: Best fit of the integral expressed in Eq. S129 according to Eqs. S130 and S131.
The first average is given by
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2
+ RMub

2R ub — V2R max
+\/7€2§RM 5RJ\/[ Mmax <\/7€RMRMmaX fC (\/> M ,ub \/> M, >
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where Zpg,, is calculated with Eq. S22. The second average depends on the mean value of e,

g0 = 2Rnr0/Ho, and its variance o2 = €53+ €30%1/(4R%\470) where 07, = Hjox, + 4§ N2tg. To

notice, Ry, is the average maximum circular cross-section radius of the barrel, according to

R

1 R,ub _ _ 2/090¢2 P2
RMQ (RM R]\Lmax) /(2§RM RJ\/I de)
ZRy,

Rarb
Gy
ZRy,
\/%SRI\/[R?WJH&X
1 *221 22R1g2”0 221 +22R1g21b
_56 SRar 2Ry, M, max rgRMRMmaX SRy %Ry, PR max

IV
2R x— V2R 2 N
erfc <\/> M ma \f MJb) - 2§RM RM max© gRM M max >

2§RM RM,max
2 2
1 1 R ub R ub 1, Ry, ub
T 2¢2 2¢2, R2 £, R / 262 267 ¢
— 56 Ryr Rjp; " M,max Qé‘%M R?M max® Rj -"M,max + 27T€R]u R%\l max® Rps Ry 1\1 max
bl b

erfc (ﬁRM,ub - \/ERM,maX>> (8134)

2§RM RM,max

As a result, we have obtained the following analytical expression for the average < f(e,v)>.

6
<fle,v)> =~ Z<aj ) > 1

1

0.2
<a](€) >€ = Z 6 60) /(2 s)dg
- ck,j(0tcr,;02/2)
= bojt 2Z Zbk eS0TI
i - ‘ B L
x |erf (50 6\1;5; Ck’JUE> —erf <€O E%j Ck’]%)] (S135)

€ub

e_(E_EO)Q/(2O-§)d€

N
I
T~

€lb

() o (352

N |

where the two integral bounds are e}, = max{1/5,e9 — po.} and e,, = min{5, g + po.}.
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S12 SAXS amplitude of N, layers of electron densities with smooth

transitions

The excess ED profile of Ny layers with smooth transition in respect to the bulk water ED pq is

N,
1 < 2 — Zjbrl
Spoei(2) = 5 (pis1pr — pjpn) |1+ erf | =22= (5137)
24 2120 1
_]:O Js
where zjpn = i:l Tkbrl is the z coordinate of the plane that separates the (j + 1)-layer (with

ED pji11) and the j-layer (with ED pjy,1) with the assumption 2g 1 = 0, 7 b is the thickness
of the k-layer, oy is the smooth parameter between (j 4 1)-layer and the j-layer and with the
assumption pg 1 = po. To note, in the case of Ny = 0, there is only a smooth transition between

O-layer (bulk) and 1-layer (overall barrel). The Fourier transform of Eq. S137 is
i s
5 .
Abrl(q) = — Z(pj-f—Lbrl — pj7br1)€_§(q0'j,brl) £4%5,brl (8138)
q

J=0

To note, in the case Ny = 0 and for o py1 = 0 we have |Apn(q)|> = ¢ 2(p1,11— p0)?, which, combined

with Eq. 20, leads to the typical ¢~* Porod behaviour.

S35



Time from preparation < Rpy > ERy

(days) (A)
0 939+6  0.29£0.02
2 988+8  0.32£0.02
6 9637  0.31+0.02
15 938+9  0.2940.02
30 959+5  0.2840.01

Table S2: Mean hydrodynamic radius of the LNS and associated dispersion obtained from the
analysis of the second-order autocorrelation functions measured by DLS.
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Table S3: Common fitting parameters obtained by the analysis of SAXS curves as recorded at
the Austrian SAXS beamline at ELETTRA. The unit of length is A. Validity ranges of fitting
parameters: * [—1000, 1000] (kJ/mol); ® [-50, 50] (kJ/mol); € [12.0, 15.0]; 4 [11.0, 14.0]; © [14.0, 17.0];
£114.0,17.0]; & [19.8,23.0]; ' [26.2,27.5]; | [48.0,54.0]; § [29.8,30.0]; * [0.95,1.00]; ! [0.95,1.00]; ™
[7.1,7.8] (10~* K~1); » [0.97,1.15]; © [0.97, 1.15]; P [0.97, 1.15]

A a 34843

) b 24.740.2
oo o © 13.040.1
Ve d 12.0£0.1
o o © 15.540.2
Vdu b 14.0£0.1
vy & 20.440.2
Ve, b 26.540.3
Vo, { 50.140.5
ZA 29.840.3
BcH, k 0.97+40.01
Ben, ! 0.97+0.01
ip mo7.2240.07

dyateyt ™ 1.1240.01

dyateap ©  1.0140.01

~

dyatpt P 0.9940.01

S13 SAXS analysis of the data recorded at ELETTRA
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Figure S7: Synchrotron SAXS curves recorded the Austrian SAXS beamline of ELETTRA of P80
(panels A-B) and LNP (panels C-D) samples reported in semi-logarithmic plot (panels A, C) and
in logarithmic plots (panels B and D), respectively. For a better visualization, curves have been
stacked by multiplying for a factor 10™~!, m being the index of the row from the bottom. In panels
A-B, data refer to 13.3 g/L P80 concentration. Green and blue points in panels C-D refer to 80.0
and 40.0 g/L LNP concentration, respectively. Solid black lines are the best fits obtained with the
global-fit method.
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Figure S8: Second-class fitting parameters (panels A-F) and derived fitting parameters (panels G-
O) obtained by the analysis of SAXS data recorded at the Austrian SAXS beamline at ELETTRA
of P80 shown in Fig. S7 (panels A-B). Points refer to 13.3 g/L P80 concentration. The validity
ranges of the fit parameters shown in the panels are: A) [6,30] A; B) [-30,30] A; C) [6,50] A; D)

202530 35 40

g (A)

J (kJ/mol)

d(A)

78

76

74

90

85

80

4.5

202530 35 40

Twat,cap

700

85

n wat,cyl
o]
o

20 25 30 35 40

G
o
I
S
x
H
=
B
x
| o
<
S
«
Q
o
5]
o
@
a
©

temperature (°C)

[0,100] A; E) [0,500] kJ/mol; F) [0.1,10] A.

S39

0.96

0.94

0.92

0.9

0.63

0.62

0.61

0.6

0.59

©
©
o

©
o}
o

2025 30 35 40

J  ~
(3]
<L
<
=
g
[s}
o
o
=<}
o
@
K (\l’-\
<
&
S
@
S
o
o
o
@
o
I\
L
<
N—
=
g
o
o
(=3
«©
o
Y

195

190

185

135

132

N
©

[+
n

o

20 25 30 35 40



110 A 5.8 mF 4.6 — K 21 — P 2.6 — MU
L N —_ —~ o«
8 105 - 1 = 56 < 44 9 @ o %
b= = 54 1 % 3 2 % T 25t % 4
E 0k 3 d 4 s2l 5 3 | £ 4213 1 o B;;. %
95 | | | | 5 | | | | 4 | | 2 2.4 | |
320 T — B 2600 NG 222 ML 43 T T 1Q 6.2 VvV
< i B
. % % % = L 216 | 1 < af % % {1 5
2 szl 1 Eoesop§ $ I .5 $ - % < 67% % i
S 24 | % % R &5 Mk i B
ac © S
304 2400 204 L1 1 40 58 L1 L
16 T T T 1 C 300 — 1 1 1 T]H 1.4 M 47 — 1R 44 — 1 1T W
< & %
NI . - n B
) £ - 12F g o] B o~ =
s F & 45 R 3 42t R
@ S
15 290 - 1 44 [ 1
0.3 D 5 —| 0.38 N 238 T in; —S 40 T — 11X
o B i
029 | 3] L 49 % % % 037 |- 4 - % % =z
S 3 z 48} S % % % = < s92| i
0.28 | b E Z .70 | 0.36 | E ©
X4
0.27 R 46 0.35 2.6 38.4
6.3 nE 0.34 nJ 0.66 ale) 95 nT . 33 ny
<
6 R <
=3 o o 32| _
< s7f s > % 064 | % % {1 = g 9 ;
Iz o 31} a
54F o 0] — 2
| | | | | 0.32 | | | | | 0.62 L | | | | 9 | | | | | © 30 | | | | |
20 25 30 35 40 20 25 30 35 40 20 25 30 35 40 20 25 30 35 40 20 25 30 35 40

temperature (°C)

Figure S9: Second-class fitting parameters (panels A, B, C, D, F, G, H, I, J, K, L, M, N, O, Q, R,
S, T, U, V) and derived fitting parameters (panels E, P, W, X, Y) obtained by analyzing SAXS
data recorded at the Austrian SAXS beamline at ELETTRA of LNP shown in Fig. 3 (panels C-D).
Green and blue points refer to 80.0 and 40.0 g/L LNP concentration, respectively. The validity
ranges of the fit parameters shown in the panels are: A) [35,500]; B) [10,500]; C) [2,100]; D) [0,2];
F) [4,20] A; G) [600,3000] A; H) [100,400] A; I) [0,5]; J) [0,1]; K) [3,40] A; L) [0,10); M) [0,30] A;
N) [0,1}; O) [0,1}; Q) [30,65] AQ? R) [30,65] A23 S) [1,20]; T) [1,20]; U) [0,1]; V) [0,1].
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Figure S10: Probability densities of the circular cross-section barrel radius (panel A), of the total
thickness of the platelets (panel B), of the barrel height (panel C) and of the center-to-border
distance (panel D) obtained by the analysis of SAXS data recorded at the Austrian SAXS beamline
of ELETTRA. Green and blue lines refer to 80.0 and 40.0 g/L LNP concentration. Solid, dotted,
and dashed lines refer to the temperature of 20, 25, and 37 °C. In all panels, the dark-gray vertical
lines indicate the median at 80.0 g/L and 20 °C, and the shaded area indicates the corresponding
range between 1% and 3" quartile.
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Figure S11: Size distribution of a cylinder with spherical end-caps micelle resulting from the fit of
SAXS data recorded at the ID02 beamline at ESRF on P80 samples.
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Figure S12: Size distribution of a cylinder with spherical end-caps micelle resulting from the fit of
SAXS data recorded at the Austrian SAXS beamline of ELETTRA on P80 samples.
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Figure S13: Concentration of free P80 molecules in solution as a function of the total concentration
of the molecules calculated on the basis of the fitting parameters of SAXS curves. Linear fittings
at the beginning and the end of the curve allow us to calculate the cmc of P80.
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