
20 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Breaking down monoliths with Microservices and DevOps: an industrial experience report / Pianini, Danilo;
Neri, Alessandro. - ELETTRONICO. - (2021), pp. 505-514. (Intervento presentato al convegno IEEE
International Conference on Software Maintenance and Evolution tenutosi a Luxembourg nel September
27 - October 1, 2021) [10.1109/ICSME52107.2021.00051].

Published Version:

Breaking down monoliths with Microservices and DevOps: an industrial experience report

Published:
DOI: http://doi.org/10.1109/ICSME52107.2021.00051

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/849830 since: 2022-01-31

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/ICSME52107.2021.00051
https://hdl.handle.net/11585/849830

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

D. Pianini and A. Neri, "Breaking down monoliths with Microservices and DevOps:
an industrial experience report," 2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Luxembourg, 2021, pp. 505-514

The final published version is available online at

https://dx.doi.org/10.1109/ICSME52107.2021.00051

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/ICSME52107.2021.00051

Breaking down monoliths with Microservices and
DevOps: an industrial experience report

Danilo Pianini
Alma Mater Studiorum—Università di Bologna

Cesena, Italy
danilo.pianini@unibo.it – 0000-0002-8392-5409

Alessandro Neri
Maggioli S.p.A.

Santarcangelo di Romagna, Italy
alessandro.neri@maggioli.it – 0000-0002-9649-8880

Abstract—Recent trends in software production fostered the
adoption of microservice architectures, where a product is the
result of the coordinated execution of several loosely coupled
autonomous services, thus promoting modularity, scalability, and
integration of legacy products by wrapping. This architectural
style also promotes parallel development, as different teams can
be in charge of different services; however, this parallelization is
at first sight at odds with the established practice of continuous
integration: a change to a single service may cause cascading
effects that the local testing cannot capture, and the overall
functionality may thus get compromised even though all services
apparently work. In this paper, we report an experience of a
successful and thorough implementation of DevOps techniques
into a large business, carried out by a relatively small team.
We discuss the steps taken to build a continuous integration
pipeline performing system-wide quality assurance, the develop-
ment practices that enable such a pipeline to be effective, and the
lessons learned by applying these practices in a digital publishing
industry setting.

Index Terms—Microservice architectures, DevOps, Continuous
Integration, Parallel development, Distributed testing, Continu-
ous delivery, Experience report

I. INTRODUCTION AND BACKGROUND

The evolving world of Internet-based services provided by
enterprises is pushing towards architectures that favor compos-
ability, scalability, and isolation. Microservice architectures,
where applications are decomposed into small-sized, (semi-
)autonomous, and isolated (usually containerized) services
are a quickly rising trend, being adopted not just by large
software enterprises, but also by smaller players [8], [14],
[27]. There are several reasons behind the growing success
of microservice architectures. First, microservices can “wrap”
existing services, and thus provide a way to a gradual modern-
ization of existing services. Second, as their name suggests,
they foster the decomposition of monolithic applications into
multiple isolated and coordinated services, promoting the
architectural application of the Single Responsibility Principle
(SRP). Third, they allow for higher scalability and resilience,
as microservices can usually be deployed in multiple copies
with a relatively small effort, and can be configured to scale
horizontally as requests increase, and be restarted in case of
failure. Fourth, the maintenance and evolution of many small
services are radically different from the one of a large software
monolith: components may be evolved separately, adopting
agile development techniques.

The trend towards microservice architectures harmonically
intertwines with the growing interest in the DevOps philos-
ophy. The DevOps philosophy challenges the traditional way
systems are developed, promoting shared responsibilities and
communication across teams, usually instead organized verti-
cally (in so-called silos); starting from the separation between
development and operations [9]. Several slightly different
definitions of DevOps are found in the literature [15]; yet, they
agree on the goals and on the means to be used to pursue these
goals: DevOps is meant to reduce the time between a change
in the codebase and its actual reification in the production
environment, without any loss (actually, with an increment)
in quality [28]; this is achieved through four principles [16]:
collaboration, automation [9], measurement, and monitoring.
DevOps practices originated in the agile community and
are often seen as an evolution of agile practices [11], [17],
focusing on automation and on keeping the software always
in a working state by continuous integration [25]. There is
evidence in the literature that these techniques improve the
software quality [20], increase collaboration [7], and raise the
perceived job satisfaction [12].

Of course, microservice architectures and DevOps philos-
ophy work rather well together: in principle, an application
could be microservice-ified even with a traditional develop-
ment process, and DevOps techniques can be applied to mono-
lithic software products; however, the peculiar traits of the two
shine when combined [4]. In fact, on the one hand, DevOps
practices simplify microservice-ification and maintenance of
microservice-based systems; on the other hand, the complex
orchestration of such services generates an elaborate sequence
of building, verification, and deployment tasks, which fully
highlights the benefits of the DevOps approach.

In this work, we report an experience of microservice-
ification of an existing industrial software product, with a
strong focus on the DevOps practices that enabled the trans-
formation, and their effect on the quality of software and
the process. The remainder of this paper is structured as
follows: Section II introduces the original software system and
the development practices that were applied before the docu-
mented action; Section III discusses how the initial monolithic
software got partitioned into microservices, the new DevOps
workflow the related automated procedures, and the project’s
timeline; Section IV measures the impact of the adoption of

Editors Users

persist

Editors UI
(Delphi)

Publishing
platform

DB

nightly
export

Fig. 1. Original architecture of sisred.

microservices and DevOps, drawing lessons for the future;
finally, Section V concludes the work.

II. LEGACY SYSTEM ANALYSIS AND REQUIREMENTS

This manuscript summarizes the experience gained by
evolving an existing system’s architecture to be microservice-
based and the related adoption of DevOps practices. The
target system is an editorial management platform codenamed
sisred (a shorthand for the Italian “Sistema Redazionale”—
roughly equivalent to “editorial system”), developed and main-
tained at Maggioli S.p.A.1, a large multinational editorial com-
pany based in Italy, counting about 2000 active collaborators
at the time of writing2.

A. Original architecture and implementation

The original software was a classic client-server applica-
tion geared towards professionals in law. Editors are domain
experts paid by Maggioli that act as information sources
and are provided a local installation of a graphical client
allowing them to add editorial products to a central database.
Typical editorial products are national or regional laws, legally
binding documents from public institutions (e.g., ministries),
and judicial sentences. Changes are then propagated towards
end destinations, usually WordPress-based websites or search
engines, portals for which Maggioli requires paid access.
Propagation can be triggered manually by editors but is usually
left to a nightly cronjob. The reference architecture is depicted
in Figure 1. Implementation of the graphical client is in Delphi,
while the export logic is written in Windows batch files.

B. Organization and operations

In this section, we report the results of an interview per-
formed before the transition to microservices and DevOps,
regarding several aspects of the development process: team
structure, versioning, parallel development, testing, delivery,
and issue tracking.

The operations and maintenance team of sisred counted
just five members: one project lead, one quality assurance
manager, and three developers (one senior backend developer,
one full-stack developer, and one frontend developer). The
project lead was responsible for organizing all the activities
revolving around the project. There was no archive of ac-
tivities, no shared platform for task listing and assignment,
and no formal way for developers to contribute bottom-up
to the definition or evolution of development priorities. All

1https://www.maggioli.it/
2https://archive.is/bPuaZ

activities were organized manually by the team lead, and
they came from two main sources: direct email requests and
tickets reported via a third-party service3, which were then
transcripted to emails. There was no direct correspondence
between issues/emails and changes in the codebase. Despite
the process being improvable, none of the team members
complained specifically about the team organization practices;
team members identified as the reason the good commu-
nication, favored by the small team size and the shared
physical workplace. A minor complaint was the company-
wise mandatory use of Skype as the only authorized remote
communication tool, but the directive was removed as part of
the COVID-19 pandemic reorganization response.

The application was partially versioned. The Delphi client
was versioned inside a Subversion (SVN) repository [22],
with no branching policy: all developers worked in parallel
on the trunk branch. There was no commit message policy,
and version numbers were assigned incrementally (a single
version number, increasing at each commit). The team clarified
that the original versioning system was not used in reality
as a versioning system, but rather as a source code backup.
Parallel work was a source of issues, as a few days of
local development could require several hours of integration
work. Changes to the database schema were not included in
versioning; once written, they were manually exercised into
a testing environment and, if found to be working, reified in
production.

Local development happens with two main tools: the Delphi
IDE for the development and (manual) testing of the user
interface, and Microsoft SQL Server Management Studio for
managing a local instance of SQL Server 2000. By inter-
viewing the development team, we discovered that there was
a history of compatibility issues between specific version
combinations of Microsoft SQL Server and the Windows oper-
ating system, that hindered development on several occasions:
different operating system versions may show inconsistent
behavior, making issues hard to reproduce or, worse, fail to
intercept issues that may get into production.

All testing was performed manually, in the aforementioned
local instance of SQL Server 2000: changes to the database
architecture or stored procedures were implemented locally
and, in case of manual testing success, replicated in pro-
duction. There was no form of test automation, neither for
the user interface nor for the operations on the database,
use cases and manual testing procedures were not formalized
in any way and depended on the developer in charge of
the testing procedure; moreover, the team also did not track
past issues and did not perform regression testing. Testing
perceived as potentially disruptive was performed on a copy
of the production environment (staging environment). In this
case, the team was required to go through a procedure that
required external interaction: a ticket must be opened to the
IT/operations team, and the latter usually provided an instance
of Microsoft Windows Server and Microsoft SQL Server in a

3https://osticket.com/

https://www.maggioli.it/
https://archive.is/bPuaZ
https://osticket.com/

few days. A clear dissatisfaction with the overall procedure
emerged from the interview; most complaints were related to
communication issues and misunderstandings that resulted in
avoidable waste of time, which caused the staging environment
creation to be considered a bottleneck in the development
process.

The delivery protocol, although formalized, was largely
manual: (i) changes were first committed on the SVN repos-
itory; (ii) an executable file was created from the IDE and
assigned a version number manually; (iii) the database on the
staging environment was manually updated (schema and stored
procedures); (iv) the export logic was manually updated on
the testing environment; (v) a manual test procedure was per-
formed on the staging environment, including export logic and
user interface functionality checks; (vi) once everything was
deemed working, the external operations team was contacted
to move staging into production; (vii) once production was
ready, updates to the desktop application were delivered to
editors via email. The general feeling on the process was that
much time was wasted in repetitive operations; in particular,
sending updates via email was perceived as cumbersome.
The most critical aspect was the interaction with an external
operations team, which can be a bottleneck and slow down
the delivery process.

C. Desiderata and constraints

Requirements for the system refactoring were gathered by
interviewing editors and company managers. The two cate-
gories of stakeholders expressed different concerns.

Company managers were mainly interested in lowering the
time-to-market of updates and novel features. Another concern
that emerged is a reduction in the service downtime: in its
original state, the system was not available while performing
nightly exports towards target publishing platforms, which
translated into a downtime of about 30 minutes every night.
The problem was perceived as minor, as the system only tar-
geted the Italian internal market (which does not span multiple
time zones), and can thus tolerate service interruptions during
non-working hours. However, downtimes critically interfered
with the mid-term company goal to evolve sisred into a
stand-alone product to be sold to other companies. Under this
point of view, two further optional requirements emerged: first,
the system should be able to scale out and be adaptable to
different loads; second, the system or part of it should be
deployable on external services (cloud-ified), for better elas-
ticity and cost control. Company managers also imposed some
technological constraints; source control must remain entirely
internal, and must not be sent to external servers; requests for
cloud services must be satisfied through an existing Microsoft
Azure subscription; any new technology should preferably be
open source and free to use.

Editors had a primary concern that they made very clear:
they needed the entire feature set of the original product,
with no regressions. Changes that implied a period (even
transitory) in which the system was working sub-par were not
welcome. From a non-functional point of view, they expressed

Service Implementation status Technologies
Web Client to be developed by the

team
HTML, Javascript, Angu-
larJS

API Gateway to be developed by the
team

Java, Spring Boot, Azure
SQL, Elasticsearch, Azure
Blob Storage

IDP existing as service, to be
integrated

Keycloak Server

OCR existing as service, to be
integrated

Apache Tika Server,
Tesseract 4

NLP to be developed by the
team

Java, Spring Boot, Apache
OpenNIP

DC existing, to be converted
to service and integrated

Java, Spring Boot

Pdf2Html existing, to be converted
to service and integrated

Python, C, pdf2htmlEX

TABLE I
SUMMARY OF THE SERVICES COMPOSING THE MICROSERVICE-IFIED

VERSION OF SISRED . THE FINAL DISTRIBUTED APPLICATION IS LARGELY
OBTAINED BY INTEGRATING EXISTING SERVICES.

the desire for the system to be accessible from devices other
than personal computers and operating systems other than
Microsoft Windows. Most other requirements were related
to functional aspects of the system, which can be summa-
rized as follows: immediate publishing of novel contents,
without nightly synchronization; automatic classification of
documents; automatic retrieval of publicly available contents
(e.g., from the Italian “Gazzetta Ufficiale,” where laws are
officially published); support for multimedia files; a search
function that does not require to pre-filter the content kind;
an optical text recognition system allowing for automatic
import of printed documents; a referencing system allowing
to hyperlink documents; and support for anonymization of
documents containing sensitive data.

III. MICROSERVICE-IFICATION AND DEVOPS

The team approached the problem by applying a set of
techniques known with the name of Domain-Driven Design
(DDD) [10], which has been reported to be particularly suc-
cessful in building microservice architectures [18], [21], [23].
Very succinctly, DDD mandates software architects to under-
stand the domain at hand, reify such domain into software
entities, and design the software around these. Understanding
the domain model requires interaction with a domain expert.
In the case we are presenting, the team team discussed and
collaborated with two editors with over a decade of experience.

A. Rethinking the architecture with microservices

Crucially, following the identification of the core domain
and sub-domains, a strategic pattern in DDD suggested iden-
tifying logic boundaries among sub-contexts, the so-called
bounded contexts. We found bounded contexts to be key in
decomposing the old monolithic system into several small-
sized and encapsulated services, as they provide a natural
segmentation of the original domain, which in turn provide
reasonable boundaries for encapsulating services and exposing
clean APIs for inter-service coordination, easing the reification
of the single responsibility principle. From the analysis, the

Fig. 2. Microservice-ified architecture of sisred.

following services emerged as a reasonable segmentation of
the original domain model:

• Web Client: replaces the Delphi client as the frontend
for editors;

• API Gateway: a single access point to the backend,
meant to work as a broker, dispatching frontend requests
to the appropriate implementing backend service;

• Identity Provider (IDP): a stateful service responsible
for authentication and session persistence of users;

• OCR: translates images with text into editable docu-
ments;

• NLP: Natural Language Processing service, scanning text
document in search of potential references (e.g., to laws)
and sensitive data (e.g., emails, names, social security
codes, etc.);

• Document Categorization (DC): classifies text docu-
ments based on their content, proposing a categorization;

• Pdf2Html: creates an HTML representation of a PDF
document, preserving contents and look.

Among these services, Web Client, API Gateway, and NLP
needed to be implemented from scratch by the team; IDP must
reuse the existing authentication service implemented by Mag-
gioli; while the remainder of services had been developed in
the past within the company, and needed to be integrated with
the new system. Table I summarizes the services, their initial
status (whether they needed to be developed from scratch,
existed as a stand-alone application, or existed as a service
but needed integration), and the main technologies involved.
Figure 2 shows the final architecture of the system: editors
access a web frontend, and all backend services communicate
through a shared bus.

B. Agile Workflow

Along with the new shape of the software, the team also
reshaped workflow and roles. The main goal of the reorganiza-
tion was to enable each team member to effectively operate on
any of the system components, consistently with the “no silos”
philosophy at the base of DevOps [7]. Reorganization followed
agile practices, which are considered to be foundational in
DevOps approaches [17].

The team worked with two-week sprints, at the end of which
a meeting with domain experts was held; internally, the team
agreed to have a stand-up meeting every two days. A good

agile workflow is usually supported by tools that allow the
implementation of progression tracking for tasks, bug fixes,
and new features. This tracking should ideally be linked to
the actual progression of code, whose development is meant
to be carried out in parallel, and whose progresses should be
assessed via code review. For these reasons, and following
recent trends in modern version control [2], [6], the team
ditched Subversion in favor of a distributed version control
system, the specific tool of choice was git [26]. By itself,
git does not provide any first-level abstraction for tasks or
issues, nor does it provide direct support for code reviewing.
These operations are usually provided upon git by repository
management tools, such as GitHub and Gitlab. Since the
company already had internal experience with the latter, it
was selected as the repository management tool.

Within a single sprint, developers can self-assign tasks and
assume the role of activity manager for a specific task, bug
fix, or feature, for which they will be in charge of performing
a code review screening contributions made by all team
members. Preferential means of intra-team communication
are direct oral communication for information that does not
require persistence, and Slack for written, persistent, or remote
communication. This horizontal organization requires intense
communication to be effective, and it thus well fits small-sized
and geographically co-located teams, while it is unclear how it
would perform on larger or geographically widespread teams.

C. Branching model

One issue with the previous organization of the system
concerns the relationship between the current state of the code
on the repository, the environment where the system running
at that version was deployed, and the missing correspondence
between the two. As the first step towards a DevOps approach
to development, the team decided that it was paramount to
have a clear binding between the code state and its target
environment. The team identified four key environments.

1) Local: the configuration of each development machine.
This environment has cardinality at least equal to the
number of developers. In this environment, the focus
is on finding a good trade-off between management
complexity (installation, maintenance, performance, etc.)
and similarity to the actual production environment.

2) Feature Review: a sandboxed environment for integra-
tion testing. New features may impact multiple services
at once, and thus they require a sandboxed copy of
the production environment. There should be one such
environment for each feature under active development.
This kind of environment is also to be leveraged for
producing agile demos of novel features, to be showcased
to people other than team members.

3) Staging: pre-production environment, that should repli-
cate the production environment as closely as possible. It
is the last step before a new version of the system enters
production. There should be a single copy of such an
environment.

Master

Hot�x

Test

Develop

Feature

2.0.0 2.0.1 2.1.0

Fig. 3. A pictorial representation of the selected branching model. Solid
horizontal lines depict “living” branches; master, test, and develop are
always alive, while hotfix/ and feature/ branches are ephemeral.

4) Production: the working system, where editors can log
in and use the provided services. There should be a single
instance of this environment.

These environments got mapped to different branches in the
git repository. In particular, the team adopted a customized
version of the well-known “git-flow” branching model4, with
three long-lived branches (master, develop, and test)
and two kinds of short-lived branches (feature/ and
hotfix/). master always hosts the latest stable version,
and its code is in execution in the production environment.
test is similar to release branches in classic git-flow, but
instead of being a class of short-lived branches is a single
long-lived branch, whose current state is reified into the
staging environment; releases are created by merging the code
from test into master. The develop branch represents
ongoing development, and is not mapped to any environment;
when code on develop is in a good state, it gets merged
into test. The hotfix/ branches are ephemeral branches
meant to fix severe bugs that hit production; they originate
from master and, once the bug is solved, get merged into
both master (creating a new release) and develop. Finally,
the feature/ branches host most of the actual development
activity, they originate from develop and get merged into
the same branch once development is complete; crucially, for
every feature/ branch, there is a corresponding feature
review environment that hosts a running instance of the feature
code.

Figure 3 depicts the selected branching model. Opera-
tionally, every activity tracked by the repository management
system is reified as a feature/ branch. Once an activity
is complete, a code review round is required before merging
the corresponding feature/ on develop; the operation is
performed via a Gitlab merge request (equivalent to a pull
request in other repository management systems), where the
activity manager’s positive review is required for the merge to
happen. A similar process would apply to other merges: from
develop to test, and from test to master. However, the
team decided that a single code review phase was sufficient,
and the merges mentioned above are thus performed without

4https://archive.vn/tQ8wp

a merge request; further checks could be introduced in the
future.

An important choice the team had to make was whether to
have a single repository with the code of all services or split
the system into multiple repositories Since every microservice
is autonomous and may use different technologies, the most
natural solution is to have one repository per microservice.
However, this approach comes with some downsides: changes
to a service’s API may require adaptation of other coordinated
services, and in a multi-repository setup this leads to time
frames in which the development lines of different products
are inconsistent. Also, a single repository makes it easier to
organize a single consistent continuous integration pipeline
(see the next section), particularly for the implementation
of automated end-to-end testing procedures, which require
elaborate environment setup operations. There is a hybrid
solution that was not explored between the two options: one
repository per microservice, and a single main repository
importing all the others as submodules. Submodules are a
git feature that allows repositories to be imported as part
of other repositories, and can express recursive dependency
relationships among repositories [1]. Such a solution has great
potential, but slightly complicates the repository management;
the team thus decided to use a single repository for the whole
sisred, at least for the moment: the solution is known
and might be adopted in the future, should for instance the
evolution of some modules outpace the rest of the product, or
should some services be required in multiple projects.

D. Automated pipeline

One pillar of DevOps is automation [9], [16], namely
the ability to minimize repetitive operations. Automation in
DevOps is usually applied throughout the software lifecycle:
dependency resolution and retrieval, compilation, static code
analysis, packaging, API documentation generation, testing,
containerization, delivery, and deployment are all (to varying
degrees) subject to automation. A good DevOps system should
feature an automated pipeline that, for each change in the
codebase, performs all the automatic checks, ideally up to the
deployment of a copy of the whole system. One goal of the
development team is to keep the production and development
versions of the software always “in the green,” namely, pass-
ing all quality assurance and deployment requirements. An
automated pipeline is a de facto enabler for the practice of
continuous integration [25], namely the practice to merge the
work of all developers frequently. For this practice to apply
successfully, in fact, all integrations need to be verified, and
such a verification needs to be performed automatically.

In our reference project, considering the team size, de-
velopers cannot be in charge of manually maintaining the
correspondence between branches and environments defined
in Section III-C: the operation needs to be automatic to be
sustainable. The pipeline realized by the team, depicted in Fig-
ure 4, is triggered by pushes to the main copy of the repository
or by the opening or update of merge requests. It considers
the whole repository and for each service, it prepares a job to

https://archive.vn/tQ8wp

TriggerGit push

Dev

Publish to

Deploy

Pull images
from

KubernetesGitlab (git) CICD Pipeline

Container registry

Fig. 4. A pictorial representation of the automated CI/CD pipeline
.

be executed on an isolated worker instance, which builds the
service, performs quality assurance (static code analysis and
unit testing), and creates a containerized version of the service,
which is then delivered to an internal container registry. Once
all microservices are ready and delivered, the pipeline relies
on Infrastructure as Code (IaC) [13] (specifically, Terraform5)
to prepare a deployment infrastructure. IaC is the practice of
managing infrastructural resource provisioning automatically
through declarative specifications, that can thus be versioned
and be part of the DevOps automation infrastructure [3]. In our
case, the IaC tool is instructed to instance all infrastructural
components (databases, Azure Service Bus, Azure Monitor...)
and inject credentials into a Kubernetes-managed cluster on
which the microservices will run once deployed. Once the
infrastruture is set up, the actual deployment is perfomed.
Notably, the entire operation requires no human intervention
at all. Once a new commit reaches the reference copy of the
repository, a running version of the system is deployed in the
appropriate environment in minutes—unless the system fails
quality control, in which case developers are alerted that the
system needs intervention.

E. Multiphase Automated Quality Assurance

In the previous section, we mentioned quality assurance
several times, as part of the automated pipeline leading from
a development act (push of a commit or change – including
creation – of a merge request) to a deployed version of the
system. In this section, we summarize the discussion the team
had regarding quality assurance, and the consequent decisions,
as well as their implementation.

First and foremost, quality assurance in software (intended
at large, not just in microservices) embraces multiple phases
of the software production lifecycle: static analysis can be
performed on source code and (for compiled languages) on
binaries; testing happens on runtime at different scales and
degrees of integration (unit, architecture, integration, end-to-
end); monitoring systems in production allows to assess their
health, quality of service, and intercept issues that involve the
infrastructure; finally, security is a cross-cutting concern, that
should be considered in each of the aforementioned phases.
Of course, comprehensive quality assurance requires time, and

5https://www.terraform.io/

it is, in general, a repetitive operation; as such, it is a suitable
target for DevOps tools and automation [24].

1) Static Analysis: is performed first, immediately after
a successful compilation phase. Failures in this phase pre-
vent subsequent phases (including runtime testing), such a
policy was created to avoid wasting resources for verifying
the runtime behavior of software that would not end up in
production in any case. Static analysis checks were classified
into three domains: maintainability, reliability, and security.
Maintainability checks primarily intercept code smells, style
issues, and architectural coherence. Code smells may be a
source of reliability or performance issues, and they hinder
the understandability of code, potentially inducing developers
to introduce further code smells. Similarly, a consistent style
helps readability, understandability, improves the quality of
differential code comparisons, and overall promotes quicker
and more frequent merges [29]. Architectural coherence stati-
cally verifies that architectural rules are not violated, e.g., that
there are no references to namespaces that should be hidden.
Reliability checks scan for bugs and suspicious practices
on specific languages by detecting well-known technology-
specific programming anti-patterns (for instance, performing
string comparison using the == operator in Java, which fails
when the compared strings are equal but not internalized).
Security controls are classified into two categories: vulner-
abilities, which are detected by searching for well-known
patterns, cause a failure of the check, and mandate a fix; and
hotspots, which are security-sensitive pieces of that, although
not matching any vulnerability pattern, require human review
and explicit approval.

2) Runtime testing: is performed if static analysis succeeds.
It is organized into three levels: unit testing, integration testing,
and end-to-end (E2E) testing. Unit testing is the first to be
executed after static analysis, and its scope is a single feature
of a single microservice. Integration tests have a larger scope,
may involve more than a single service, and focus on verifying
that interaction features work as expected. E2E tests validate
the application in its entirety, by simulating the interaction of
a user with the product, implementing the use case directly.
To do so, they must execute after deployment, as they require
the entire system to be up and running. For sisred, the team
picked Cypress6 as E2E enabler.

3) Monitoring: is the inspection of the system at runtime,
through collection and analysis of telemetry data, to intercept
and tackle issues affecting the infrastructure before they can
propagate to business-critical processes [9]. To this end, the
team of sisred exploited an existing monitoring system
(Azure Monitoring), hooking it with the running instance of
sisred during the reification of the infrastructure operated
in the IaC phase. The monitoring system features two main
components: a dashboard, showing real-time updates on the
system status; and an automatic alert system, notifying the
developer when unexpected and potentially disruptive events
occur (e.g., in the case a container terminates unexpectedly

6https://www.cypress.io/

https://www.terraform.io/
https://www.cypress.io/

and gets restarted). The team identified two severity levels
for alerts, resulting respectively in a notification on the shared
workspace (low severity) or in an email to every team member
(high severity).

4) DevSecOps: is a recent trend that promotes security in
every phase of DevOps [19]. In the context of sisred, secu-
rity is indeed considered in multiple phases of the automated
pipeline. As mentioned before, the static analysis includes vul-
nerability checks and hotspot detection. Another critical source
of potential security issues is relative to containerization: since
microservices in sisred are deployed as containers, security
issues with container images may well affect the deployed
application. To intercept these issues, the team adopted a
tool named Trivy7, a vulnerability scanner for containers, and
integrated it into the continuous integration pipeline.

F. Organization and timeline

The project lead, acting as DevOps engineering head, had
a crucial role in the group: their responsibility included re-
searching and evaluating novel tools and practices and training
teammates. The project lead thus progressively learned and
experimented with new tools and techniques, discussing the
novelties with the remainder of the team once they were
considered suitable for integration in sisred. A crucial
part of the discussion included detailed explanations of the
expected benefits of adopting a novel practice or tool. A
plenary training session conducted by the project lead followed
the discussion to make every member of the team sufficiently
proficient with the novel tool at hand: since the beginning, the
team shared the goal to make everyone able to understand and
improve the novel process. In case of need (for instance, if a
team member was required a more profound knowledge of
some technology), further one-to-one sessions were organized
involving one team member and the lead. The team operated
with considerable autonomy.

Overall, the project took several years, from the initial
conception in late 2016 to the first production release in July
2020. The timeline depicted in Figure 5 shows that an extended
period (about two years) spaced out the decision to begin
the endeavor and the first commit. The first year included
the propedeutic organization (e.g., assembling the team) and
an activity of explanation of the expected benefits of the
transition. Initially, non-technical figures, especially domain
experts (editors with years of experience), were reluctant to
change as the benefits to the end-user were unclear and the
existing workflow was substantially unchanged since fifteen
years. Their opinion began to change once they were showed
some sketch-ups of the renewed user interface, but what
really sparked interest and enthusiasm (resulting in improved
feedback and commitment) were initial prototypes of the web-
based user interface with AI-assisted tagging. The second
year was then primarily spent on understanding the principles
of DevOps, DDD, and microservice architectures. No team
member was full-time on the project during the initial phases.

7https://github.com/aquasecurity/trivy

Metric Unit Prev. Cur. Change
Release Frequency releases/day 0.071 2.7 +3700%
Commit-to-release
time

hours 8/24 0.19 -97.6%/-99.2%

Commits per day commit/day 2 7.1 +255%
Mean Time To Re-
covery (MTTR)

hours 36 0.5 -98.6%

Support tickets
frequency

tickets/months 40 19 -52.5%

Issue resolution
time

days 4 3 -25%

Nightly downtime minutes/night 30 0 -100%
Dev. env. setup minutes 120 9 -92.5%
Prod. env. setup working hours 16 0.35 -97.8%

TABLE II
SUMMARY OF THE METRICS CONSIDERED FOR EVALUATING THE IMPACT
OF ADOPTING A MICROSERVICE ARCHITECTURE AND RELATED DEVOPS

PRACTICES, TECHNIQUES, AND TOOLS.

The evolution of the project picked up rather quickly once the
core of the development methodology was ironed out. The
2019 Coronavirus pandemic imposed a further acceleration
to the project: editors began working at home (entirely or
partially); thus, they asked for a version of sisred portable
on mobile devices and personal PCs and that did not require
a time-consuming procedure for installation or update.

IV. RESULTS AND DISCUSSION

In this section, we present an evaluation of the process
of architectural refactoring and adoption of DevOps for the
development of sisred.

A. Measurable improvements

Before beginning the refactoring, we collected several met-
rics that we believed could be useful to assess the efficiency of
the software development process. Metrics for the original sys-
tem and development process were obtained by interviewing
the development team. Where applicable, these values were
computed during the interview: release frequency (obtained
by counting how many update emails were sent out in a time
frame); commits per day (obtained by the SVN logs); new
support tickets and issue resolution time (obtained from the
OSTicket statistics); development and production environment
setup time were directly measured by respectively asking a
developer to set up a pristine laptop (which took about two
hours), and ordering to the operations team a new server
VM (delivered in one and a half working days) and letting
a developer set it up (which took about four working hours).
Other metrics are instead estimates made by developers as
many activities were not formally tracked and it was not
possible to obtain objective measures: Commit-to-release time,
MTTR, and nightly downtime suffer from this bias. Values
for the renewed system were all measured, as the required
information was provided by the pipeline and repository
management analytics.

Table II summarizes the results. The new architecture and
practices impacted dramatically on almost all metrics. The im-
pact is particularly prominent for those activities that required
interaction with external teams, such as creating a production
environment. In contrast, activities whose bottlenecks are

https://github.com/aquasecurity/trivy

Dec 2016
Apr 2017

Aug 2017
Dec 2017

Apr 2018
Aug 2018

Dec 2018
Apr 2019

Aug 2019
Dec 2019

Apr 2020
Aug 2020

Dec 2020
Apr 2021

Modernization approved as strategic for the company

Measurement of the initial metrics

Analysis, preliminary design

Work on the microservice-ified version begins

First git commit

Branching model

Gitlab

Initial design of the pipeline

Embryonic pipeline on every microservice

Switch to Azure cloud

Containerization begins

Switch to Kubernetes complete

First production version

Static analysis and container scanning in place

Initial IaC study

IaC included in the pipeline

E2E Cypress-based testing in place

Alert and monitoring operational

Measurement of the final metrics

sisred microservice-ification timeline

Fig. 5. Original architecture of sisred.

usually bound to local development and debug time (such as
the mean issue resolution time) were less affected. None of
the metrics regressed.

The release frequency mostly benefits from the complete
automatization of the procedure. Version release was consid-
ered an expensive operation in the past, consuming overall one
person-day, and thus performed on average only once every
two weeks. Automatization was the driving factor behind the
measured improvement.

The commit-to-release time, improves due to the complete
removal of email-mediate interaction between developers:
commits pushed on the appropriate branch cause a new release
with no further intervention; also, only microservices that
actually changed are re-deployed, shortening the time further.

Commits per day grow as a consequence of the changed
role of the version control system: it was previously used as
a backup system, and thus received commits towards the end
of the day; currently, any self-contained change gets pushed.

The MTTR drops significantly as a combined effect of the
cloud-based deployment, which removes most of the issues
related to hardware failures and recovery of in-house servers,
and introduces tools enabling fast recovery (e.g., almost in-
stant database restoration); recovery time in case of disaster
scenarios requiring the whole environment to be re-created
benefit from the automated environment setup (see production
environment setup time evolution).

The support ticket frequency is reduced as a consequence
of two factors: first, the quality assurance performed in the
pipeline intercepts most of the issues introduced with the
usual development; second, the monitoring system promotes
proactivity, as developers often intercept anomalies before the
end-user is affected.

The issue resolution time remains similar: although there is
some support from the novel infrastructure, most of the time is
spent in the actual development of a resolution, which remains

essentially unaffected by the novel practices.
The new system has no scheduled nightly downtime, the

value drops to zero.
Both the production and development environment setup

time are reduced significantly. The latter is set up by cloning
the repository and issuing docker-compose up, with
no external intervention, with the operation being currently
network-limited (we measured the setup time for a new
machine with an uninitialized cache, the time is consistently
shorter in case the environment is simply restored). The former
is more complicated, as it involves the creation of the actual
infrastructure in the IaC phase, the release of all microservices,
and the E2E testing—yet, since all operations are automated
and there is no human intervention, the overall setup is orders
of magnitude faster than the original one.

B. Opinion of the development team

After a few months after the new version of sisred was
operational, we interviewed the team to understand better
how the change in the product impacted the workflow, the
service maintenance time, and the overall satisfaction with the
changes.

The interviewees identified the most notable difference
to the previous state in the rarity of intervention requests
from operators external to the team. The only condition
where intervention from another team is required (that never
happened up to the time of writing) is a disaster recovery
procedure mandating access to the backups for restoration.
Although the development team has more responsibilities than
previously, the change is perceived as positive overall, as
problem resolution is vastly simplified and streamlined.

When asked about the time spent for service maintenance,
the development team appeared to be in difficulty in quanti-
fying the improvement in terms of person-hours saved; they
instead insisted that the time is now invested differently,

and it is hard (or even meaningless) to compare the two
workflows in these terms. They explained that, with the old
infrastructure, most of the time spent on maintenance was not
caused by software evolution but rather by operational issues:
maintenance was intended as “keeping the system in nominal
conditions.” Most of the logic was concentrated client-side,
which was rarely updated, and the dominant source of concern
was the server-side: the system was deployed on a non-
replicated Windows Server system which was a single point of
failure. Interviewees reported that the following issues, which
were a primary concern with the previous system, disappeared
entirely with the new architecture:

• failures due to operating system updates, including both
failures at applying updates and newly introduced incom-
patibilities;

• sporadic downtimes due to local blackouts or to scheduled
maintenance of the local energy infrastructure;

• sporadic downtimes caused by absent Internet connectiv-
ity due to internal network configuration errors, scheduled
maintenance and update of the local infrastructure, or
external network failures;

• restoration from backup due to company-wide ran-
somware attacks via cryptolockers [5] (reportedly hap-
pened more than once);

• critical failures caused by human error, mostly due to
stored procedures tested directly on the production envi-
ronment, leading to data corruption or deletion, and thus
requiring restoration from backup.

On the other hand, the new architecture introduced new
maintenance activities that need to be performed:

• application or verification (when automatically applied)
of software updates (mostly dependency updates);

• security audits;
• maintenance and update of the pipeline;
• experimentation with the pipeline (novel tool, novel prac-

tices, fine-tuning);
• infrastructure benchmarking and optimization (allocation

of CPUs and memory, number of replicas, scaling).
The team quantified the time spent in these new activities in
about one person-day per week, but they stressed that these
maintenance operations are fundamentally different from the
“old” maintenance operations. For example, they mentioned
that dependency updates, testing, and bug fixes were con-
sidered development activities in the past, but most are now
considered part of maintenance. We note that the change in
the workflow induced a shift in the perceived meaning of
maintenance in the team: the focus moved from maintaining
a single instance of the product to maintaining (and evolving)
the entire process of construction and verification of product
instances.

C. Lessons learned

Given the results summarized in Section IV-A, the first
obvious lesson learned is that adopting DevOps and converting
legacy applications to microservices can be hugely beneficial.

Converting the architecture to microservices requires the do-
main to be partitionable into bounded contexts, and the benefits
of a DevOps approach to development are more pronounced
for those activities where communication and interaction are
a bottleneck.

One relevant lesson is to make the transition a coordinated
effort shared with the entirety of the team. The case presented
here largely benefited from the small size of the development
team and the motivation to renew practices perceived as
time-consuming, repetitive, cumbersome, and obsolete. Larger
teams would likely include members that would benefit less
from the change: in these cases, we believe that it is key to
communicate and shed awareness of potential benefits on all
members. Along the same line, there is a delicate balance
between the benefits that applying a state-of-the-art practice
introduces and the cost of its introduction and application,
which includes the learning curve and adaptation to new work
modes. Sometimes, picking a simpler solution, even if tech-
nically not optimal, may produce similar benefits at a lower
cost. In our experience, this was the case for the repository
configuration, which was set up as a single repository rather
than multiple repositories to be imported using submodules.

“Anticipation of change” is a well-established software engi-
neering principle, and we believe it applies to the development
process too. Extensive knowledge of the existing techniques
and some experimentation with existing tools allows for
building awareness of what is doable today, estimating the
costs of implementing a practice, and predict how techniques
and tools will evolve. This could be leveraged to achieve
two results: first, reach the aforementioned balance between
benefits and complexity/cost; second, be prepared to update
and upgrade the practices in use to react effectively to changes
in the development structure (e.g., the acquisition of new team
members).

From the opinions gathered in Section IV-B, we learn that
adopting DevOps practices radically changes the perception of
the processes related to software production and maintenance.
In particular, the latter is no longer intended to simply guaran-
tee service continuity to end-users but evolves into providing
a stable and reliable environment for developers: the product’s
final quality is primarily a consequence of the quality of
the process. We also note that, although the time spent on
maintenance intended in classic terms (having an instance
of the system working as expected) is reduced considerably,
new activities that could be classified as “maintenance of the
process” get introduced. It is thus pretty difficult to estimate
improvements in terms of “person-hours saved,” as the time
is spent differently, with bottlenecks and repetitive operations
replaced by novel activities requiring human intervention,
resulting in improved overall quality of the product and the
development process.

V. CONCLUSION

In this experience report, we documented the process that
led a small team of a large company to refactor a monolithic
software product and its development process, by decomposing

it into microservices and switching to the DevOps philosophy.
In doing so, we analyzed the previous state, performing inter-
views with the team, understanding the previous architecture
and practices, and measured several process performance in-
dices. We then discussed the architectural changes introduced
to decompose the system, the DevOps workflow designed to
improve the software evolution process, the branching policy
and its relationship with runtime environments, the automated
pipeline supporting the development process, and finally the
automated quality assurance practices applied throughout such
pipeline. We finally compared the renewed system and de-
velopment process metrics with the previous one’s, drawing
useful lessons. We found that leveraging DevOps practices
has enormous potential for improving the software production
process; and that decomposition of existing monoliths into
small-size, isolated, and coordinated services plays very well
with the aforementioned practices.

REFERENCES

[1] Abildskov, J.: Additional git features. In: Practical Git, pp. 139–161.
Apress (2020). https://doi.org/10.1007/978-1-4842-6270-2_8, https://doi.
org/10.1007/978-1-4842-6270-2_8

[2] de Alwis, B., Sillito, J.: Why are software projects moving from
centralized to decentralized version control systems? In: 2009 ICSE
Workshop on Cooperative and Human Aspects on Software Engineering.
IEEE (2009). https://doi.org/10.1109/chase.2009.5071408, https://doi.
org/10.1109/chase.2009.5071408

[3] Artac, M., Borovssak, T., Nitto, E.D., Guerriero, M., Tamburri, D.A.:
DevOps: Introducing infrastructure-as-code. In: 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-
C). IEEE (May 2017). https://doi.org/10.1109/icse-c.2017.162, https://
doi.org/10.1109/icse-c.2017.162

[4] Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture
enables devops: Migration to a cloud-native architecture. IEEE Software
33(3), 42–52 (2016). https://doi.org/10.1109/MS.2016.64

[5] Brewer, R.: Ransomware attacks: detection, prevention and cure. Net-
work Security 2016(9), 5–9 (Sep 2016). https://doi.org/10.1016/s1353-
4858(16)30086-1, https://doi.org/10.1016/s1353-4858(16)30086-1

[6] Clemencic, M., Couturier, B., Closier, J., Cattaneo, M.: LHCb migration
from subversion to git. Journal of Physics: Conference Series 898,
072024 (oct 2017). https://doi.org/10.1088/1742-6596/898/7/072024,
https://doi.org/10.1088/1742-6596/898/7/072024

[7] Colavita, F.: DevOps movement of enterprise agile breakdown silos,
create collaboration, increase quality, and application speed. In: Pro-
ceedings of 4th International Conference in Software Engineering for
Defence Applications, pp. 203–213. Springer International Publish-
ing (2016). https://doi.org/10.1007/978-3-319-27896-4_17, https://doi.
org/10.1007/978-3-319-27896-4_17

[8] Di Francesco, P., Lago, P., Malavolta, I.: Migrating towards microser-
vice architectures: An industrial survey. In: 2018 IEEE International
Conference on Software Architecture (ICSA). pp. 29–2909 (2018).
https://doi.org/10.1109/ICSA.2018.00012

[9] Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: Devops. IEEE
Software 33(3), 94–100 (2016). https://doi.org/10.1109/MS.2016.68

[10] Evans: Domain-Driven Design: Tacking Complexity In the Heart of
Software. Addison-Wesley Longman Publishing Co., Inc., USA (2003)

[11] Hemon, A., Lyonnet, B., Rowe, F., Fitzgerald, B.: From agile to
DevOps: Smart skills and collaborations. Information Systems Frontiers
22(4), 927–945 (Mar 2019). https://doi.org/10.1007/s10796-019-09905-
1, https://doi.org/10.1007/s10796-019-09905-1

[12] Hemon-Hildgen, A., Rowe, F., Monnier-Senicourt, L.: Orches-
trating automation and sharing in DevOps teams: a revela-
tory case of job satisfaction factors, risk and work conditions.
European Journal of Information Systems 29(5), 474–499 (Jul
2020). https://doi.org/10.1080/0960085x.2020.1782276, https://doi.org/
10.1080/0960085x.2020.1782276

[13] Hüttermann, M.: Infrastructure as code. In: DevOps for Developers, pp.
135–156. Apress (2012). https://doi.org/10.1007/978-1-4302-4570-4_9,
https://doi.org/10.1007/978-1-4302-4570-4_9

[14] Knoche, H., Hasselbring, W.: Drivers and barriers for microservice adop-
tion – a survey among professionals in germany. Enterprise Modelling
and Information Systems Architectures (EMISAJ) p. Vol 14 (2019)
(2019). https://doi.org/10.18417/EMISA.14.1, https://emisa-journal.org/
emisa/article/view/164

[15] Leite, L., Rocha, C., Kon, F., Milojicic, D., Meirelles, P.: A survey of
devops concepts and challenges. ACM Comput. Surv. 52(6) (Nov 2019).
https://doi.org/10.1145/3359981, https://doi.org/10.1145/3359981

[16] Lwakatare, L.E., Kuvaja, P., Oivo, M.: Dimensions of DevOps. In:
Lecture Notes in Business Information Processing, pp. 212–217.
Springer International Publishing (2015). https://doi.org/10.1007/978-3-
319-18612-2_19, https://doi.org/10.1007/978-3-319-18612-2_19

[17] Lwakatare, L.E., Kuvaja, P., Oivo, M.: Relationship of DevOps to
agile, lean and continuous deployment. In: Product-Focused Software
Process Improvement, pp. 399–415. Springer International Publish-
ing (2016). https://doi.org/10.1007/978-3-319-49094-6_27, https://doi.
org/10.1007/978-3-319-49094-6_27

[18] Merson, P., Yoder, J.: Modeling microservices with DDD. In: 2020 IEEE
International Conference on Software Architecture Companion (ICSA-
C). IEEE (Mar 2020). https://doi.org/10.1109/icsa-c50368.2020.00010,
https://doi.org/10.1109/icsa-c50368.2020.00010

[19] Myrbakken, H., Colomo-Palacios, R.: DevSecOps: A multivo-
cal literature review. In: Communications in Computer and In-
formation Science, pp. 17–29. Springer International Publishing
(2017). https://doi.org/10.1007/978-3-319-67383-7_2, https://doi.org/10.
1007/978-3-319-67383-7_2

[20] Perera, P., Silva, R., Perera, I.: Improve software quality through
practicing DevOps. In: 2017 Seventeenth International Conference on
Advances in ICT for Emerging Regions (ICTer). IEEE (Sep 2017).
https://doi.org/10.1109/icter.2017.8257807, https://doi.org/10.1109/icter.
2017.8257807

[21] Petrasch, R.: Model-based engineering for microservice architec-
tures using enterprise integration patterns for inter-service commu-
nication. In: 2017 14th International Joint Conference on Com-
puter Science and Software Engineering (JCSSE). IEEE (Jul
2017). https://doi.org/10.1109/jcsse.2017.8025912, https://doi.org/10.
1109/jcsse.2017.8025912

[22] Pilato, C., Collins-Sussman, B., Fitzpatrick, B.: Version Control with
Subversion. O’Reilly Media, Inc., 2 edn. (2008)

[23] Rademacher, F., Sorgalla, J., Sachweh, S.: Challenges of domain-driven
microservice design: A model-driven perspective. IEEE Software 35(3),
36–43 (May 2018). https://doi.org/10.1109/ms.2018.2141028, https://
doi.org/10.1109/ms.2018.2141028

[24] Roche, J.: Adopting DevOps practices in quality assurance.
Communications of the ACM 56(11), 38–43 (Nov 2013).
https://doi.org/10.1145/2524713.2524721, https://doi.org/10.1145/
2524713.2524721

[25] Schaefer, A., Reichenbach, M., Fey, D.: Continuous integration and
automation for devops. In: Lecture Notes in Electrical Engineering, pp.
345–358. Springer Netherlands (Sep 2012). https://doi.org/10.1007/978-
94-007-4786-9_28, https://doi.org/10.1007/978-94-007-4786-9_28

[26] Spinellis, D.: Git. IEEE Software 29(3), 100–101 (May 2012).
https://doi.org/10.1109/ms.2012.61, https://doi.org/10.1109/ms.2012.61

[27] Viggiato, M., Terra, R., Rocha, H., Valente, M.T., Figueiredo, E.: Mi-
croservices in practice: A survey study. CoRR abs/1808.04836 (2018),
http://arxiv.org/abs/1808.04836

[28] Zhu, L., Bass, L., Champlin-Scharff, G.: Devops and its practices. IEEE
Software 33(3), 32–34 (2016). https://doi.org/10.1109/MS.2016.81

[29] Zou, W., Xuan, J., Xie, X., Chen, Z., Xu, B.: How does code style
inconsistency affect pull request integration? an exploratory study on
117 GitHub projects. Empirical Software Engineering 24(6), 3871–3903
(Jun 2019). https://doi.org/10.1007/s10664-019-09720-x, https://doi.org/
10.1007/s10664-019-09720-x

https://doi.org/10.1007/978-1-4842-6270-2_8
https://doi.org/10.1007/978-1-4842-6270-2_8
https://doi.org/10.1109/chase.2009.5071408
https://doi.org/10.1109/chase.2009.5071408
https://doi.org/10.1109/icse-c.2017.162
https://doi.org/10.1109/icse-c.2017.162
https://doi.org/10.1016/s1353-4858(16)30086-1
https://doi.org/10.1088/1742-6596/898/7/072024
https://doi.org/10.1007/978-3-319-27896-4_17
https://doi.org/10.1007/978-3-319-27896-4_17
https://doi.org/10.1007/s10796-019-09905-1
https://doi.org/10.1080/0960085x.2020.1782276
https://doi.org/10.1080/0960085x.2020.1782276
https://doi.org/10.1007/978-1-4302-4570-4_9
https://emisa-journal.org/emisa/article/view/164
https://emisa-journal.org/emisa/article/view/164
https://doi.org/10.1145/3359981
https://doi.org/10.1007/978-3-319-18612-2_19
https://doi.org/10.1007/978-3-319-49094-6_27
https://doi.org/10.1007/978-3-319-49094-6_27
https://doi.org/10.1109/icsa-c50368.2020.00010
https://doi.org/10.1007/978-3-319-67383-7_2
https://doi.org/10.1007/978-3-319-67383-7_2
https://doi.org/10.1109/icter.2017.8257807
https://doi.org/10.1109/icter.2017.8257807
https://doi.org/10.1109/jcsse.2017.8025912
https://doi.org/10.1109/jcsse.2017.8025912
https://doi.org/10.1109/ms.2018.2141028
https://doi.org/10.1109/ms.2018.2141028
https://doi.org/10.1145/2524713.2524721
https://doi.org/10.1145/2524713.2524721
https://doi.org/10.1007/978-94-007-4786-9_28
https://doi.org/10.1109/ms.2012.61
http://arxiv.org/abs/1808.04836
https://doi.org/10.1007/s10664-019-09720-x
https://doi.org/10.1007/s10664-019-09720-x

