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Abstract: We present a global interpretation of Higgs, diboson, and top quark production
and decay measurements from the LHC in the framework of the Standard Model Effective
Field Theory (SMEFT) at dimension six. We constrain simultaneously 36 independent
directions in its parameter space, and compare the outcome of the global analysis with that
from individual and two-parameter fits. Our results are obtained by means of state-of-the-art
theoretical calculations for the SM and the EFT cross-sections, and account for both linear
and quadratic corrections in the 1/Λ2 expansion. We demonstrate how the inclusion of
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NLO QCD and O
(
Λ−4) effects is instrumental to accurately map the posterior distributions

associated to the fitted Wilson coefficients. We assess the interplay and complementarity
between the top quark, Higgs, and diboson measurements, deploy a variety of statistical
estimators to quantify the impact of each dataset in the parameter space, and carry out fits
in BSM-inspired scenarios such as the top-philic model. Our results represent a stepping
stone in the ongoing program of model-independent searches at the LHC from precision
measurements, and pave the way towards yet more global SMEFT interpretations extended
to other high-pT processes as well as to low-energy observables.
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1 Introduction

A powerful, model-independent framework to constrain, identify, and parametrise potential
deviations with respect to the predictions of the Standard Model (SM) is provided by
the Standard Model Effective Field Theory (SMEFT) [1–3], see also [4] for a review. A
particularly attractive feature of the SMEFT is its capability to systematically correlate
deviations from the SM between different processes, for example between Higgs and top
quark cross-sections, or between high-pT and flavor observables.

A direct consequence of this model independence is the high dimensionality of the
parameter space spanned by the relevant higher-dimensional EFT operators. Indeed, the
number of Wilson coefficients constrained in typical SMEFT analyses can vary between
just a few up to the several tens or even hundreds, depending on the specific assumptions
adopted concerning the flavour, family (non-)universality of the couplings, and CP-symmetry
structure (among others) of the UV-complete theory. For this reason, the full exploitation
of the SMEFT potential for indirect New Physics searches from precision measurements
requires combining the information provided by the broadest possible dataset.

The phenomenology of the SMEFT has attracted significant attention, with most
analyses focusing on specific sectors of the parameter space and groups of processes.
Some of these recent studies have targeted the top quark properties [5–8], the Higgs
and electroweak gauge sector [9–11], single and double gauge boson production [12–15],
vector-boson scattering [14, 16, 17], and flavour and low-energy observables [18–20], among
several others. Furthermore, analyses that combine the constraints of different groups
of processes in the EFT parameter space, such as the Higgs and electroweak sector with
the top quark one [21] or top quark data with B-meson observables [22, 23], have also
been presented. These and related studies demonstrate that a global interpretation of the
SMEFT is unavoidable and makes possible benefiting from hitherto unexpected connections,
such as the correlation of the LHCb flavour anomalies [24, 25] at the B-meson scale with
the high-pT tails at the LHC [15, 26].

With the ultimate motivation of performing a truly global EFT interpretation of particle
physics data, the SMEFiT fitting framework was developed in [7] and applied to the analysis
of the top quark properties at the LHC as a proof-of-concept. This novel EFT fitting
methodology, inspired by techniques deployed by the NNPDF Collaboration to determine
the proton’s parton distribution functions (PDFs) [27–31], made possible constraining the
Wilson coefficients associated to 34 independent dimension-six operators that modify the
production cross-sections of top quarks. Our results improved over existing bounds [32] for
the wide majority of directions in the SMEFT parameter space and in several cases the
associated Wilson coefficients were constrained for the first time. Subsequently, SMEFiT
was extended with the Bayesian reweighting method [33] developed for PDFs [34, 35] which
allows one constraining the EFT parameter space a posteriori with novel measurements
without requiring a dedicated fit. SMEFiT has also been recently applied for the first SMEFT
interpretation of vector boson scattering data [14] from the full Run II dataset.

In this work, we complement and extend the SMEFiT analysis framework of [7] in several
directions. First and foremost, we extend the dimension-six EFT operator basis in order to
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simultaneously describe top-quark measurements together with Higgs boson production
and decay cross-sections, as well as with weak gauge boson pair production from LEP and
the LHC. Specifically, we consider Higgs signal strengths, differential distributions, and
simplified template cross-section (STXS) measurements from ATLAS and CMS taken at
Runs I and II. Furthermore, we account for the most recent top-quark observables from the
Run II dataset, such as updated measurements of four-top, top quark pair in association
with a Z boson, and differential single-top and top quark pair production. We also include
the differential distributions in gauge boson pair production from LEP and the LHC, which
constrain complementary directions in the EFT space. In addition, we account in an indirect
manner for the information provided by electroweak precision observables (EWPO) from
LEP [36] by means of imposing restrictions on specific combinations of the EFT coefficients.

A second improvement as compared to [7] concerns the fitting methodology. On the
one hand, the Monte Carlo replica fitting method has been upgraded by means of more
efficient optimizers and the imposition of post-fit quality selection criteria for the replicas.
On the other hand, we have implemented a novel, independent approach to constrain the
parameter space based on Nested Sampling (NS) by means of the MultiNest algorithm [37].
As opposed to the replica fitting method, which is an optimisation problem, NS aims to
reconstruct the posterior probability distribution given the model and the data by means
of Bayesian inference. We have cross-validated the performance of the two methods and
demonstrated that they lead to equivalent results. The availability of two orthogonal fitting
strategies strengthens the robustness of SMEFiT and facilitates the combined interpretation
of data from different processes.

From the combination of the improved fitting framework and the extensive input
dataset, we derive individual, two-dimensional, and global (marginalised) bounds for 36
independent directions (and 14 dependent ones) in the EFT parameter space. The EFT
cross-sections used in this analysis account for either only the linear or for both linear and
quadratic effects, O

(
Λ−2) and O(Λ−4) respectively, and include NLO QCD corrections

whenever available. We demonstrate in detail how the inclusion of NLO QCD and O
(
Λ−4)

corrections in the EFT calculations is instrumental in order to accurately pin down the
posterior distributions associated to the fitted Wilson coefficients.

By means of information geometry and principal component analysis techniques, we
quantify the sensitivity of each of the input datasets to the various Wilson coefficients. We
validate these statistical diagnosis tools by means of a series of fits restricted to subsets
of processes, such as Higgs-only and top-only EFT analyses. Specifically, we quantify the
interplay between the top-quark and Higgs measurements in the determination of EFT
degrees of freedom sensitive to both processes, such as the modifications of the top Yukawa
coupling. Furthermore, we explore how the EFT fit results are modified when additional,
UV-inspired theory restrictions are imposed in the parameter space, and present results for
the case of a top-philic model.

The paper is organised as follows. First of all, section 2 discusses the operator basis,
flavour assumptions, the fitted degrees of freedom, and the top-philic scenario. Then
section 3 describes the top-quark, Higgs, and diboson datasets that are used as input to the
analysis together with the corresponding SM and EFT calculations. The methodological
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improvements in SMEFiT, together with the description of the fit settings, are presented in
section 4. The main results of this work, namely the combined SMEFT interpretation of
top-quark, Higgs, and diboson measurements at the LHC, are presented and discussed in
section 5. Finally, in section 6 we summarise and discuss future steps in this project.

Supplementary information is provided in three appendices. In appendix A we present
the comparison between the SM and SMEFT theory predictions with the experimental
datasets used as input to the fit; in appendix B we describe the implementation of the
Higgs signal strength measurements; in appendix C we present the correlation matrices for
the complete set of operators considered in the analysis; and then in appendix D we discuss
how the results of this work are rendered publicly available and provide usage instruction.

2 EFT description of the top, Higgs, and electroweak sectors

In this section we collect the definitions and conventions that will be used to construct
the dimension-six operators and the associated degrees of freedom (DoFs) relevant for the
theoretical description of the processes considered in this analysis. These are operators
that modify the production and decay of Higgs bosons and top quarks at hadron colliders,
precision electroweak measurements from LEP/SLC, and gauge-boson pair production
cross-sections both at LEP2 and at the LHC.

First of all, we provide explicit definitions for the operators and for the physical EFT
coefficients adopted in this work, as well as the corresponding notational conventions.
Following the recommendation of the LHC Top Quark Working Group [32] as well as the
strategy of our previous work [7], in the top-quark sector we fit specific degrees of freedom
closely related to the experimental measurements, instead of directly using the Warsaw-
basis operator coefficients. Our degrees of freedom are therefore linear combinations of the
Warsaw-basis operator coefficients, which appear in the interference with SM amplitudes,
and represent interactions of physical fields after electroweak symmetry breaking. These
combinations are then aligned with physically relevant directions of the parameter space,
and thus have a more transparent physical interpretation. They also represent the maximal
information that can be extracted from measuring a certain process.

We will then discuss how the constraints provided by the electroweak precision observ-
ables (EWPOs) from LEP/SLC can be approximately accounted for by means of a series of
restrictions on the EFT parameter space. We also discuss theoretical constraints on the
operator coefficients following a more restrictive assumption about the UV-complete theory,
namely the so-called top-philic scenario. Finally, we discuss several theoretical relations
that must be satisfied by the EFT cross-sections following the requirement that physical
cross-sections are positive-definite quantities.

2.1 Operator basis and degrees of freedom

Conventions. Let us start by summarizing the notation and conventions that are adopted
in this work concerning the relevant dimension-six SMEFT operators. Here we follow the
notation of the Warsaw basis presented in [3]. In this notation, flavour indices are labelled
by i, j, k and l; left-handed quark and lepton fermion SU(2)L doublets are denoted by qi, `i;
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the right-handed quark singlets by ui, di, while the right-handed lepton singlets are denoted
by e, µ, τ without using flavor index. Given the special role of the top-quark in this work,
we use Q and t to denote the left-handed top-bottom doublet and the right-handed top
singlet, instead of using q3 and u3. The Higgs doublet is denoted by ϕ; the antisymmetric
SU(2) tensor by ε ≡ iτ2; ϕ̃ = εϕ∗; and we define

(ϕ†i←→D µϕ) ≡ ϕ†(iDµϕ)− (iDµϕ
†)ϕ , (ϕ†i←→D I

µϕ) ≡ ϕ†τ I(iDµϕ)− (iDµϕ
†)τ Iϕ , (2.1)

where τ I are the Pauli matrices. In the following, GAµν , W I
µν , and Bµν stand for the SU(3)

strong and SU(2)L and U(1)Y weak gauge field strengths respectively, and the covariant
derivatives include all the relevant interaction terms. For instance, the gluon field strength
tensor is given by

GAµν = ∂µG
A
ν − ∂νGAµ + gsf

ABCGBµG
C
ν , (2.2)

where GAµ is the gluon field, A,B,C are color indices in the adjoint representation, gs is the
strong coupling and fABC are the structure constants of SU(3). Similar definitions hold for
the electroweak Wµν

I and Bµν field strength tensors, for instance one has

W I
µν = ∂µW

I
ν − ∂νW I

µ + gwε
I
JKW

J
µW

K
µ , (2.3)

where gw is the SU(2)L coupling constant.

Flavour assumptions. The number of independent dimension-six operators can be
unfeasibly large, if all three generations of the SM fermions are taken into account: there
are 2499 in total [38], with 572 four-fermion operators that are in principle relevant for
top-quark physics [39]. In this analysis, we follow closely the strategy which we adopted in
our previous top-quark sector study [7] and that has been documented in the LHC Top
Quark Working Group note [32]: we implement the Minimal Flavour Violation (MFV)
hypothesis [40] in the quark sector as the baseline scenario. A slight difference is that
instead of a U(2)q ×U(2)u ×U(2)d flavour symmetry among the first two generations, we
now impose the U(2)q ×U(2)u ×U(3)d symmetry, under the assumption that the Yukawa
couplings are nonzero only for the top quark. This flavour assumption is consistent with
the SMEFT@NLO model [41], the implementation of automated one-loop calculation in the
SMEFT which we will use to the provide theoretical inputs for our global fit, as discussed
in the next section.

As a result of the different flavour assumption, the EFT parameter space is further
reduced compared to [7]. In particular, the coefficients of operators with right-handed
bottom quarks are either set to zero or set equal to the corresponding down-quark ones.
Furthermore, we then slightly relax our assumptions by keeping the bottom and charm
quark Yukawa operators in our fit, to account for the current LHC sensitivity to these
parameters. All other light quark Yukawa operators are set to zero, since we do not expect
to have any sensitivity on their coefficients.

Concerning the leptonic sector, the adopted flavour symmetry is (U(1)` × U(1)e)3, also
following [32]. This assumption sets all the lepton masses as well as their Yukawa couplings
to zero in the SM, while leaving independent parameters for each lepton-antilepton pair of
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Operator Coefficient Definition

OϕG cϕG
(
ϕ†ϕ

)
GµνA GA

µν

OϕB cϕB
(
ϕ†ϕ

)
Bµν Bµν

OϕW cϕW
(
ϕ†ϕ

)
Wµν

I W I
µν

OϕWB cϕWB (ϕ†τIϕ)BµνW I
µν

Oϕd cϕd ∂µ(ϕ†ϕ)∂µ(ϕ†ϕ)

OϕD cϕD (ϕ†Dµϕ)†(ϕ†Dµϕ)

OW cWWW εIJKW
I
µνW

J,νρWK,µ
ρ

Table 1. Purely bosonic dimension-six operators that modify the production and decay of Higgs
bosons and the interactions of the electroweak gauge bosons. For each operator, we indicate its
definition in terms of the SM fields, and the notational conventions that will be used both for the
operator and for the Wilson coefficient. The operators OϕW B and OϕD are severely constrained by
the EWPOs together with several of the two-fermion operators from table 2.

a given generation. This is then relaxed by including the τ Yukawa operator, to account
for the expected LHC sensitivity arising from dedicated measurements. In practice, the
lepton flavor assumptions do not have implications for the EFT fit given the constraints
from Z-pole measurements at LEP and SLC, see the discussion below.

Purely bosonic operators. Table 1 reports the purely bosonic dimension-six operators
that modify the production and decay of Higgs bosons as well as the interactions of the
electroweak gauge bosons. For each operator, we indicate its definition in terms of the
SM fields and the notation that we will use both for the operators and for the Wilson
coefficients. These operators modify several important Higgs boson production and decay
processes that are (or will become) accessible at the LHC, as well as the production of
gauge boson pairs both in electron-positron and in proton-proton collisions.

One can comment on some interesting features of the operators defined in table 1. To
begin with, the operators OϕWB and OϕD are the ones often identified as the S and T

oblique parameters, though this identification is basis-dependent and is not strictly correct
in the Warsaw basis. Together with several of the two-fermion operators listed in table 2,
they are severely constrained by the Z-pole and W -pole measurements available from LEP
and SLC, but with 2 linear combinations left unconstrained. These two combinations in
turn modify the electroweak triple gauge boson (TGC) couplings and the Higgs-electroweak
interactions. They are thus constrained mainly by the diboson measurements at the LEP2
and the LHC, as well as the Higgs measurements at the LHC. We will discuss this property
in more detail in the following section. The operator OW generates a TGC coupling
modification which is purely transversal and is hence constrained only by diboson data.

The rest of the bosonic operators listed in table 1 modify only the Higgs boson
couplings, and represent degrees of freedom that are accessible only with Higgs data. First,
the operators OϕW and OϕB modify the interaction between Higgs bosons and electroweak
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gauge bosons. At the LHC, they can be probed for example by means of the Higgs decays
into weak vector bosons, h→ ZZ∗ and h→W+W−, as well as in the vector-boson-fusion
(VBF) process and in associated production with vector bosons, hW and hZ. In addition,
the OϕG operator is similar but introduces a direct coupling between the Higgs boson and
gluons. It therefore enters the Higgs total width and branching ratios, the production cross
section in gluon fusion channel, as well as the associated production channel tt̄h. Finally,
the Oϕd operator generates a wavefunction correction to the Higgs boson, which rescales all
the Higgs boson couplings in a universal manner.

In principle, one could also include in table 1 the triple-gluon operator OG, which
contributes to tt̄(V ) and Higgs+jets production. However this operator is already tightly
constrained by multi-jet production measurements at the LHC [42], as discussed also in [7].
It is found that the bounds on the coefficient cG obtained from multijet data are very
stringent and beyond the sensitivity achievable via either top quark or Higgs production
measurements at the LHC. For this reason, OG is not considered in the present analysis.

Two-fermion operators. Table 2 collects, using the same format as in table 1, the
relevant Warsaw-basis operators that contain two fermion fields, either quarks or leptons,
plus a single four-lepton operator. From top to bottom, we list the two-fermion operators
involving 3rd generation quarks, those involving 1st and 2nd generation quarks, and
operators containing two leptonic fields (of any generation). We also include in this list the
four-lepton operator O``.

The operators that involve a top-quark field, either Q (left-handed doublet) or t
(right-handed singlet), are crucial for the interpretation of LHC top-quark measurements.
Interestingly, all of them involve at least one Higgs-boson field, which introduces an interplay
between the top and Higgs sectors of the SMEFT. For example, the chromo-magnetic dipole
operator OtG and the dimension-six Yukawa operator Otϕ are constrained by both top quark
measurements, such as tt̄h associated production, as well as Higgs measurements, such as
Higgs production through gluon fusion. Furthermore, the electroweak-dipole operators,
OtW and OtB, as well as the current operators, O(3)

ϕQ and Oϕt, can be constrained by the
associated production of single top-quarks and Higgs bosons, as well as by the loop-induced
Higgs decays into a Zγ final state.

In table 2 we also list operators that contain light quark (1st and 2nd generation) and
leptonic fields (of any generation). The light quark operators enter the Higgs production
through the V h and VBF channels, as well as the diboson processes. These operators also
modify the Higgs boson width and branching ratios. For example, the Higgs decay width
to qq̄`+`− becomes modified by operators that induce an effective Zhqq̄ vertex, such as
Oϕu. The leptonic operators are relevant for the same reason, once we account for the
leptonic decays of the Higgs and gauge bosons. In addition, indirect contributions arise from
the O(3)

ϕ`1
, O(3)

ϕ`2
, and O`` operators, which modify the measurement of the Fermi constant,

GF , and this affects the extracted SM parameters. They therefore introduce a universal
contribution to all electroweak interactions, and are relevant for V h, VBF, and for the
diboson channels.
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Operator Coefficient Definition
3rd generation quarks

O(1)
ϕQ c

(1)
ϕQ (*) i

(
ϕ†
↔
Dµ ϕ

)(
Q̄ γµQ

)
O(3)
ϕQ c

(3)
ϕQ i

(
ϕ†
↔
Dµ τIϕ

)(
Q̄ γµ τ IQ

)
Oϕt cϕt i

(
ϕ†
↔
Dµ ϕ

)(
t̄ γµ t

)
OtW ctW i

(
Q̄τµν τI t

)
ϕ̃W I

µν + h.c.

OtB ctB (*) i
(
Q̄τµν t

)
ϕ̃ Bµν + h.c.

OtG ctG igS
(
Q̄τµν TA t

)
ϕ̃ GAµν + h.c.

Otϕ ctϕ
(
ϕ†ϕ

)
Q̄ t ϕ̃+ h.c.

Obϕ cbϕ
(
ϕ†ϕ

)
Q̄ b ϕ+ h.c.

1st, 2nd generation quarks

O(1)
ϕq c

(1)
ϕq (*) ∑

i=1,2
i
(
ϕ†
↔
Dµ ϕ

)(
q̄i γ

µ qi
)

O(3)
ϕq c

(3)
ϕq

∑
i=1,2

i
(
ϕ†
↔
Dµ τIϕ

)(
q̄i γ

µ τ Iqi
)

Oϕui cϕui
∑

i=1,2,3
i
(
ϕ†
↔
Dµ ϕ

)(
ūi γ

µ ui
)

Oϕdi cϕdi
∑

i=1,2,3
i
(
ϕ†
↔
Dµ ϕ

)(
d̄i γ

µ di
)

Ocϕ ccϕ
(
ϕ†ϕ

)
q̄2 c ϕ̃+ h.c.

two-leptons

O(1)
ϕ`i

c
(1)
ϕ`i

i
(
ϕ†
↔
Dµ ϕ

)(¯̀
i γ

µ `i
)

O(3)
ϕ`i

c
(3)
ϕ`i

i
(
ϕ†
↔
Dµ τIϕ

)(¯̀
i γ

µ τ I`i
)

Oϕe cϕe i
(
ϕ†
↔
Dµ ϕ

)(
ē γµ e

)
Oϕµ cϕµ i

(
ϕ†
↔
Dµ ϕ

)(
µ̄ γµ µ

)
Oϕτ cϕτ i

(
ϕ†
↔
Dµ ϕ

)(
τ̄ γµ τ

)
Oτϕ cτϕ

(
ϕ†ϕ

)
¯̀3 τ ϕ+ h.c.

four-lepton

O`` c``
(

¯̀1γµ`2
)(

¯̀2γ
µ`1
)

Table 2. Same as table 1 for the operators containing two fermion fields, either quarks or leptons, as
well as the four-lepton operator O``. The flavor index i runs from 1 to 3. The coefficients indicated
with (*) in the second column do not correspond to physical degrees of freedom in the fit, but are
rather replaced by c(−)

ϕqi , c
(−)
ϕQi

, and ctZ defined in table 3.
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DoF Definition

c
(−)
ϕQ c

(1)
ϕQ − c

(3)
ϕQ

ctZ − sin θW ctB + cos θW ctW
c

(−)
ϕq c

(1)
ϕq − c(3)

ϕq

Table 3. Additional degrees of freedom defined from linear combinations of the two-fermion
operators listed in table 2. The first two DoFs modify the tt̄Z couplings, while the third combination
is introduced for consistency with the first one. These are the DoFs that enter at the fit level,
replacing those marked with (*) in table 2.

We point out that most of the operator coefficients defined in table 2 correspond directly
to degrees of freedom used in the fit, except for three of them, which are indicated with a
(*) in the second column. Instead, following ref. [32], three additional degrees of freedom
are defined from the linear combinations indicated in table 3. These are the DoFs that
enter at the fit level, replacing those marked with a (*) in table 2.

Finally, we note that, as mentioned above, here flavour universality in the leptonic
sector is not imposed, and thus the coefficients of the operators involving bilinears in
the electron, muon, and tau lepton fields are in principle independent. In total we have
23 independent fit parameters, defined from two-fermion operators, plus in addition the
four-lepton operator c``. However, in practice, this flexibility will not be relevant for the
present fit due to the constraints from the EWPOs, to be discussed next.

The role of electroweak precision observables. At this point, one should note that a
subset of the dimension-six operators defined in tables 1 and 2 are already well constrained
by the electroweak precision observables (EWPO) [43] measured at the Z-pole [36] and
the W -pole at the LEP and SLC electron-position colliders. Given in particular the high
accuracy of these LEP measurements, these constraints are known to dominate in many cases
when compared to those provided by the LHC cross-sections. Specifically, the operators
sensitive to the EWPO are the following (with definitions presented in tables 1 and 2)

OϕWB,OϕD,O(1)
ϕq ,O(3)

ϕq ,Oϕui,Oϕdi,O
(3)
ϕ`i
,O(1)

ϕ`i
,Oϕe/µ/τ ,O`` . (2.4)

Note that, with i = 1, 2, 3, these add up to 16 operators, rather than the 10 which would
correspond to the flavour universal configuration in the leptonic sector.

Fourteen linear combinations of the coefficients associated to these 16 operators are
constrained by the LEP EWPOs [44], leaving therefore only two linear combinations
unconstrained. These two remaining unconstrained directions can be determined from the
information contained in diboson production cross-sections [38, 45, 46] as well as by the
Higgs production and decay measurements. For completeness, the 14 linear combinations of
bosonic and two-fermion Wilson coefficients which are constrained by the EWPOs measured

– 8 –



J
H
E
P
1
1
(
2
0
2
1
)
0
8
9

at LEP are the following [46]:

δgliV = δḡZ ḡ
li
V +Qliδs2

θ + ∆li
V = 0 , i = 1, 2, 3 ,

δgliA = δḡZ ḡ
li
A + ∆li

A = 0 , i = 1, 2, 3 ,
δguV = δḡZ ḡ

u
V +Quδs2

θ + ∆u
V = 0 ,

δguA = δḡZ ḡ
u
A + ∆u

A = 0 ,
δgdV = δḡZ ḡ

d
V +Qdδs2

θ + ∆d
V = 0 , (2.5)

δgdA = δḡZ ḡ
d
A + ∆d

A = 0 ,

δgW,liV =
cll + 2c(3)

ϕ`i
− c(3)

ϕ`1
− c(3)

ϕ`2

4
√

2GF
= 0 , i = 1, 2, 3 ,

δgW,qV =
cll + c

(3)
ϕq − c(3)

ϕ`1
− c(3)

ϕ`2

4
√

2GF
= 0 ,

where g1 and gw are the corresponding electroweak couplings, ḡfV = T3/2−Qf s̄2
θ, ḡ

f
A = T3/2

and

∆`i
V =− 1

4
√

2ĜF

(
c

(1)
ϕ`i

+c(3)
ϕ`i

+cϕei
)

∆`i
A =− 1

4
√

2ĜF

(
c

(1)
ϕ`i

+c(3)
ϕ`i
−cϕei

)
∆u
V =− 1

4
√

2ĜF

(
c(1)
ϕq −c(3)

ϕq +cϕui
)

∆u
A =− 1

4
√

2ĜF

(
c(1)
ϕq −c(3)

ϕq −cϕui
)

∆d
V =− 1

4
√

2ĜF

(
c(1)
ϕq +c(3)

ϕq +cϕdi
)

∆d
A =− 1

4
√

2ĜF

(
c(1)
ϕq +c(3)

ϕq −cϕdi
)

δgZ =− 1
4
√

2ĜF

(
cϕD+2c(3)

ϕ`1
+2c(3)

ϕ`2
−2cll

)
δs2
θ = m̂2

W

2
√

2ĜF m̂2
Z

(
cϕD+

√
m̂2
Z

m̂2
W

−1cϕWB

)
,

where we have used the notation of ref. [46]. We note that the modifications of the W
and Z couplings in eq. (2.5) are given in the (mW ,mZ , GF ) scheme. Similar expressions
in the (aew,mZ , GF ) scheme can be found in appendix A of [47]. In a flavour universal
scenario, the Z- and W -pole observables used to constrain these couplings are those listed
in table 1 of [44]. These constrain 8 out of 10 linear combinations of the Warsaw operators
which are present in the flavour universal scenario. Our assumption in this work is stronger,
as we assume that there are enough observables to constrain all but 2 degrees of freedom
of eq. (2.4). In order to achieve this, one would need to go beyond the standard EWPO
observables e.g. beyond those of table 1 of [44], in particular by including more data
which will allow one to constrain more degrees of freedom which appear in our non-flavour
universal scenario. For example, we distinguish between leptons of different generations,
and therefore a setup like the one of [48] would be more appropriate. Our assumption is
that these observables are precise enough to constrain all but two linear combinations. This
is supported for example by ref. [48] which suggests that even with less restrictive flavour
assumptions, the constraints on these Wilson coefficients remain relatively stringent.

While in this work we do not explicitly include any EWPO data in the present fit,
we still need to account for the information that they provide on the SMEFT parameter
space. As motivated above, this is achieved by assuming that the EWPOs are precise
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enough to allow us to set the 14 linear combinations of eq. (2.5) to zero in our fit. In other
words, one can derive constraints in the SMEFT parameter space, eq. (2.6) below, that
emulate the information contained in the EWPOs by setting all quantities in eq. (2.5) to
zero. The remaining two degrees of freedom can be parametrized by, say, cϕWB and cϕD, if
the following replacements are made



c(3)
ϕ`i

c(1)
ϕ`i

cϕe/µ/τ

c
(−)
ϕq

c
(3)
ϕq

cϕu
cϕd
c``


=



− 1
tW

− 1
4t2W

0 −1
4

0 −1
2

1
tW

1
4s2
W
− 1

6

− 1
tW

− 1
4t2W

0 1
3

0 −1
6

0 0



(
cϕWB

cϕD

)
. (2.6)

These relations will emulate the impact of LEP EWPOs in the fit, and allow us to produce
a consistent fit without explicitly including the EWPOs.

We note that there is one additional combination of Wilson coefficients that could be
constrained by the EWPOs, namely

c
(1)
ϕQ + c

(3)
ϕQ = c

(−)
ϕQ + 2c(3)

ϕQ , (2.7)

which modifies the left-handed coupling of the Z boson to bottom quarks. However, in
this work we prefer to constrain this combination directly from top quark production
measurements rather than from the EWPOs. Therefore we have kept both c(−)

ϕQ and c(3)
ϕQ in

our fit to be able to assess how well top measurements can constrain these two degrees of
freedom. As a cross-check, we have verified that the global fit results for other operators
are essentially unchanged if eq. (2.7) is assumed to be constrained by LEP rather than by
top quark data in the fit, whilst bounds on c(−)

ϕQ would improve by about a factor of two
had we applied this constraint in the fit.

Thanks to these 14 constraints, the 7 and 24 operators listed in tables 1 and 2 respectively
are then reduced to 17 independent degrees of freedom to be constrained by the LHC
experimental data and the LEP diboson cross-sections. This allows us to set bounds on all
operator coefficients listed in tables 1 and 2. Of course, the bounds on the 16 operators
of eq. (2.4) will be highly correlated as indicated by eq. (2.6). When presenting results
for the independent DoFs, for example when evaluating the Fisher Information matrix or
the principal components, we will select cϕWB and cϕD, with the understanding that the
replacements of eq. (2.6) have been made. Note that it has been argued that the diboson
channels at the LHC can in principle compete with EWPO [49, 50], which indicates that in
an accurate fit one should always include the full set of EWPO constraints explicitly, as
has been done, for example, in the combined Higgs/electroweak fits of [10, 21]. We however
leave this option to future work.
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Four-fermion top quark operators. We finally discuss the four-quark operators which
involve the top quark fields and thus modify the production of top quarks at hadron colliders.
The dimension-six four-fermion operators sensitive to top quarks can be classified into two
categories: operators composed by four heavy quark fields (top and/or bottom quarks)
and operators composed by two light and two heavy quark fields. The physical degrees of
freedom corresponding to four-heavy and two-light-two-heavy interactions that we use in
the present analysis are constructed in terms of suitable linear combinations of the four
fermion coefficients in the Warsaw basis, whose corresponding operators are defined as

O1(ijkl)
qq = (q̄iγµqj)(q̄kγµql),
O3(ijkl)
qq = (q̄iγµτ Iqj)(q̄kγµτ Iql),
O1(ijkl)
qu = (q̄iγµqj)(ūkγµul),
O8(ijkl)
qu = (q̄iγµTAqj)(ūkγµTAul),

O1(ijkl)
qd = (q̄iγµqj)(d̄kγµdl),

O8(ijkl)
qd = (q̄iγµTAqj)(d̄kγµTAdl), (2.8)

O(ijkl)
uu = (ūiγµuj)(ūkγµul),

O1(ijkl)
ud = (ūiγµuj)(d̄kγµdl),

O8(ijkl)
ud = (ūiγµTAuj)(d̄kγµTAdl) ,

where recall that i, j, k, l are fermion generation indices. In table 4 we provide the definition
of all degrees of freedom that enter the fit in terms of the coefficients of Warsaw basis
operators of eq. (2.8). Within our flavour assumptions, the coefficients associated to different
values of the generation indices i (i = 1, 2) or j (j = 1, 2, 3) will be the same.

Comparing with our previous EFT analysis of the top quark sector, in this work due
to the different flavor assumptions several degrees of freedom that were used there as
independent fit parameters are now absent. The reason is that here we assume U(2)q ×
U(2)u×U(3)d as compared to U(2)q×U(2)u×U(2)d in [7]. The difference is that right-handed
bottom quarks are now treated on the same footing as the right-handed down-type quarks
of the first two generations. Furthermore, this flavour assumption forbids quark bilinears
such as the chirality-flipping Q̄b and the right-handed charged current t̄b. These modified
flavor assumptions have two main consequences. First of all, the coefficients c1

QtQb and
c8
QtQb are set to zero. In addition, four-heavy operators that involve right-handed bottom
quarks are not free parameters anymore. The correspondence between these four-heavy
degrees of freedom from [7] and those of the present work is

c1
Qb = c1

Qd , c8
Qb = c8

Qd , c1
tb = c1

td , c8
tb = c8

td . (2.9)

Furthermore, we do not have c1,8
Qb,tb in the present fit anymore. These considerations explain

why the 11 four-heavy operators of our previous study are now reduced to the 5 listed
in table 4.

All in all, in total we end up with 5 degrees of freedom involving four heavy quark
fields and 14 involving two light and two heavy quark fields, for a total of 19 independent
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DoF Definition (in Warsaw basis notation)

c1
QQ 2c1(3333)

qq − 2
3c

3(3333)
qq

c8
QQ 8c3(3333)

qq

c1
Qt c

1(3333)
qu

c8
Qt c

8(3333)
qu

c1
tt c

(3333)
uu

c1,8
Qq c

1(i33i)
qq + 3c3(i33i)

qq

c1,1
Qq c

1(ii33)
qq + 1

6c
1(i33i)
qq + 1

2c
3(i33i)
qq

c3,8
Qq c

1(i33i)
qq − c3(i33i)

qq

c3,1
Qq c

3(ii33)
qq + 1

6(c1(i33i)
qq − c3(i33i)

qq )

c8
tq c

8(ii33)
qu

c1
tq c

1(ii33)
qu

c8
tu 2c(i33i)

uu

c1
tu c

(ii33)
uu + 1

3c
(i33i)
uu

c8
Qu c

8(33ii)
qu

c1
Qu c

1(33ii)
qu

c8
td c

8(33jj)
ud

c1
td c

1(33jj)
ud

c8
Qd c

8(33jj)
qd

c1
Qd c

1(33jj)
qd

Table 4. Definition of the four-fermion degrees of freedom that enter into the fit in terms of the
coefficients of Warsaw basis operators of eq. (2.8). These DoFs are classified into four-heavy (upper)
and two-light-two-heavy (bottom part) operators. The flavor index i is either 1 or 2, and j is either
1, 2 or 3: with our flavor assumptions, these coefficients will be the same regardless of the specific
values that i and j take.

parameters at the fit level associated to four-quark operators. The more stringent flavour
assumptions restricting the four-heavy operators imply that the constraints that we will
obtain in the present fit for the four-fermion operators will be superior, thanks to these
new constraints as well as the addition of the latest top production measurements from
Run II of the LHC.

One should also mention that the flavour assumptions adopted in this work allow in
principle for the presence of additional four-fermion operators that do not involve the top
quark. One example would be operators containing four bottom quarks. These operators are
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however not directly constrained by any of the measurements that we consider in this work,
and hence we do not take them into account. Future work with an extended dataset e.g. with
LHC dijet and multijet measurements [9, 51], Drell-Yan production [52], and low-energy
measurements [20] will allow directly constraining such light four-fermion operators.

Overview of the degrees of freedom. We summarise in table 5 the degrees of freedom
considered in the present work. These are associated either to the Wilson coefficients of
Warsaw-basis operators or to linear combinations of those. We categorize the DoFs into
five disjoint classes, from top to bottom: four-quark (two-light-two-heavy), four-quark
(four-heavy), four-lepton, two-fermion, and purely bosonic DoFs. We end up with 50 EFT
coefficients that enter the theory predictions associated to the processes input to the fit, of
which 36 are independent. The 16 DoFs displayed in the last columns are subject to the 14
constraints from the EWPOs listed in eq. (2.6), leaving only 2 independent combinations to
be constrained by the fit. When presenting results for the independent DoFs, for example
when evaluating the Fisher Information matrix, we will select cϕWB and cϕD, for illustration
purposes. Then in table 6 we indicate the notation that will be used to indicate the EFT
coefficients listed in table 5 in the subsequent sections, as well as in the released output
files with the results of the global analysis, where again only two of the 16 EFT coefficients
labelled in blue are independent fit parameters.

2.2 The top-philic scenario

The four-fermion operators defined in the previous section and listed in table 4 correspond
to a specific set of assumptions concerning the flavour structure of the UV-completion
of the Standard Model. However, there exist well-motivated BSM scenarios that suggest
further restrictions in the SMEFT parameter space spanned by these four-fermion operators.
Therefore, phenomenological explorations of the SMEFT would benefit from comparing
results obtained in different scenarios concerning the possible UV completion, from more
restrictive to more general.

With this motivation, we have implemented a new feature in the SMEFiT analysis
framework which allows one to implement arbitrary restrictions in the EFT parameter
space, for example those motivated by specific BSM scenarios or existing constraints such
as those from EWPO, as discussed in the previous section. As a proof of concept, here
we will present results for the top-philic scenario introduced in [32]. This scenario is
not constructed by imposing a specific flavour symmetry, but rather by assuming that
new physics couples predominantly to the third-generation left-handed doublet, the third-
generation right-handed up-type quark singlet, the gauge bosons, and the Higgs boson. In
other words, that new physics interacts mostly with the top and bottom quarks as well as
with the bosonic sector. The top-philic scenario satisfies the flavour assumptions that we
are imposing in this work, but is based on a more restrictive theoretical assumption.

The restrictions in the EFT parameter space introduced by the top-philic assumption
lead to a number of relations between the DoFs listed in table 5. These relations are
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Class Ndof Independent DOFs DoF in EWPOs

four-quark
14

c1,8
Qq, c

1,1
Qq, c

3,8
Qq,

(two-light-two-heavy)

c3,1
Qq, c8

tq, c1
tq,

c8
tu, c1

tu, c8
Qu,

c1
Qu, c8

td, c1
td,

c8
Qd, c1

Qd

four-quark
5

c1
QQ, c8

QQ, c1
Qt,

(four-heavy) c8
Qt, c1

tt

four-lepton 1 c``

two-fermion
23

ctϕ, ctG, cbϕ, c
(1)
ϕ`1

, c(3)
ϕ`1

, c(1)
ϕ`2

(+ bosonic fields)

ccϕ, cτϕ, ctW , c
(3)
ϕ`2

, c(1)
ϕ`3

, c(3)
ϕ`3

,

ctZ , c(3)
ϕQ, c

(−)
ϕQ , cϕe, cϕµ, cϕτ ,

cϕt c
(3)
ϕq , c(−)

ϕq ,

cϕui, cϕdi

Purely bosonic 7
cϕG, cϕB, cϕW , cϕWB, cϕD
cϕd, cWWW

Total 50 (36 independent) 34 16 (2 independent)

Table 5. Summary of the degrees of freedom considered in the present work. We categorize these
DoFs into five disjoint classes: four-quark (two-light-two-heavy), four-quark (four-heavy), four-lepton,
two-fermion, and purely bosonic DoFs. The 16 DoFs displayed in the last columns are subject to 14
constraints from the EWPOs, leaving only 2 independent combinations to be constrained by the fit.

the following:

cQDW = c3,1
Qq ,

cQDB = 6c1,1
Qq = 3

2c
1
Qu = −3c1

Qd ,

ctDB = 6c1
tq = 3

2c
1
tu = −3c1

td , (2.10)

cQDG = c1,8
Qq = c8

Qu = c8
Qd ,

ctDG = c8
tq = c8

tu = c8
td ,

c3,8
Qq = 0 ,

which can be implemented as an additional restriction at the fitting level. Therefore, we
now have 9 equations that relate a subset of the 14 two-heavy-two-light degrees of freedom
listed in table 5 among them, which leave 5 independent two-heavy-two-light degrees of
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Class DoF Notation

four-quark

c1,8
Qq, c

1,1
Qq, c

3,8
Qq, c81qq, c11qq, c83qq,

(two-light-two-heavy)

c3,1
Qq, c8

tq, c1
tq, c13qq, c8qt, c1qt,

c8
tu, c1

tu, c8
Qu, c8ut, c1ut, c8qu,

c1
Qu, c8

td, c1
td, c1qu, c8dt, c1dt,

c8
Qd, c1

Qd c8qd, c1qd

four-quark c1
QQ, c8

QQ, c1
Qt, cQQ1, cQQ8, cQt1,

(four-heavy) c8
Qt, c1

tt cQt8, ctt1

four-lepton c`` cll

two-fermion

ctϕ, ctG, cbϕ, ctp, ctG, cbp,

(+ bosonic fields)

ccϕ, cτϕ, ctW , ccp, ctap, ctW,

ctZ , c(3)
ϕQ, c

(−)
ϕQ , ctZ, c3pQ3, cpQM,

cϕt, c(1)
ϕ`1

, c(3)
ϕ`1

, cpt, cpl1, c3pl1,

c
(1)
ϕ`2

, c(3)
ϕ`2

, c(1)
ϕ`3

, cpl2, c3pl2, cpl3,

c
(3)
ϕ`3

, cϕe, cϕµ, c3pl3, cpe, cpmu,

cϕτ , c(3)
ϕq , c(−)

ϕq , cpta,c3pq, cpqMi,

cϕui, cϕdi cpui, cpdi

Purely bosonic

cϕG, cϕB, cϕW , cpG, cpB, cpW,

cϕd, cϕWB, cϕD, cpd, cpWB, cpD,

cWWW cWWW

Table 6. The notation that will be used to indicate the EFT coefficients listed in table 5 in the
subsequent sections, as well as in the released output files with the results of the global analysis.
Only two of the 16 EFT coefficients labelled in blue are independent fit parameters.

freedom. The number of operators coupling the top quark with gauge bosons, as well as
that of the four-heavy operators, is not modified. By comparing with table 5, we see that
in the top-philic scenario the EFT fit will constrain 41 DoFs, of which 27 are independent.

In principle, the top-philic assumption also implies non-trivial correlations between the
light-fermion couplings to the gauge and Higgs bosons. However, following our strategy to
include the EWPO, most of them are already set to zero, while the two remaining degrees of
freedom are not affected. The same assumptions also imply that the light fermion Yukawa
operator coefficients are proportional to the SM Yukawa couplings. As will be shown in
section 5, imposing the additional relations of the top-philic scenario leads to more stringent
bounds on all the relevant Wilson coefficients, due to the fact that the same amount of exper-
imental information is now used to constrain a significantly more limited parameter space.
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2.3 Cross-section positivity

The constraint that physical cross-sections are (semi-)positive definite quantities can also
be accounted for in global SMEFT analyses. This positivity requirement has different
implications depending on whether the EFT expansion is considered up to either the linear
or quadratic level.

The expansion up to linear terms, O(Λ−2), does not automatically lead to positive-
definite cross sections, as in this case the new physics terms are generated by interference
with the SM amplitudes, and their sign and size directly depend on the Wilson coefficients ci.
Imposing the positivity of the cross sections will therefore set (possibly one-sided) bounds
on the Wilson coefficients. This can be easily implemented in the fitting procedure if helpful.
In fact, we do not find the need to do so, since the fitted experimental data already leads
to positive-definite cross-sections.

The expansion up to quadratic terms, O(Λ−4), i.e. specifically those coming from
squaring the linearly expanded amplitudes, obviously automatically leads to positive definite
cross sections. No constraints on the Wilson coefficients can therefore be obtained or need to
be imposed. On the other hand, verifying the positivity of the cross section at the quadratic
level provides a sanity check that the theoretical calculation of the various contributions
is correctly performed, also taking into account the MC generation uncertainties. The
conditions that have to be met are simple to obtain. Consider the SMEFT Lagrangian

L = LSM +
nop∑
i=1

ci
Λ2Oi , (2.11)

where Oi stand for dimension-six operators and ci are the corresponding Wilson coefficients,
which we assume to be real. Any observable calculated using this Lagrangian can be written
as a quadratic form

Σ = c2
0Σ00

+ c0c1Σ01 + c1c0Σ10 + c0c2Σ02 + . . .

+ c2
1Σ11 + c1c2Σ12 + c1c3Σ13 + . . .

= cT ·Σ · c. (2.12)

The first line corresponds to the SM contribution, where c0 is an auxiliary coefficient that
can be set to unity at the end. The second line corresponds to the linear O(Λ−2) EFT
contributions, while the third line to the O(Λ−4) contributions. Σ is by construction a
symmetric matrix.1

Given that a physical cross-section must be either positive or null, the matrix Σ must
be semi-positive-definite. We can therefore use the Sylvester criterion that states that a
symmetric matrix is semi-positive-definite if and only if all principal minors are greater or
equal to zero. As a simple example, the constraints coming from the 2× 2 minors are:(

ΣiiΣjj − Σ2
ij

)
≥ 0 , i, j = 0, . . . nop . (2.13)

1Note that with respect to the convention where σ = σSM +
∑nop

i=1 ciσi+
∑nop

i<j
cicjσij , one has to account

for factors of 2, e.g., σi = 2Σi0 and σij = 2Σij for i 6= j.
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We have verified that the Sylvester criterion, and eq. (2.13) in particular, are satisfied by
the EFT calculations used as input to the present analysis.

3 Experimental data and theoretical calculations

In this section we present the experimental measurements and the theoretical computations
used to constrain the SMEFT operators introduced in section 2. We focus in turn on each
of the three groups of LHC processes that we consider in the current analysis: top quark,
Higgs boson, and gauge boson pair production.

3.1 Top-quark production data

The top-quark production measurements included in this analysis belong to four different
categories: inclusive top-quark pair production, top-quark pair production in association
with vector bosons or heavy quarks, inclusive single top-quark production, and single
top-quark production in association with vector bosons. In the following we present the
datasets that belong to each of these categories. Top-quark pair production in association
with a Higgs boson is discussed in section 3.2.

Inclusive top-quark pair production. The experimental measurements of inclusive
top-quark pair production included in this analysis are summarised in table 7. For each of
them, we indicate the dataset label, the center of mass energy

√
s, the integrated luminosity

L, the final state or the specific production mechanism, the physical observable, the number
of data points ndat, and the publication reference. Measurements indicated with a (*) were
not included in our earlier analysis [7].

The bulk of the measurements correspond to datasets already included in [7]: at 8TeV,
the ATLAS top-quark pair invariant mass distribution [53] and the CMS top-quark pair
normalized invariant rapidity distribution [54], both in the lepton+jets final state, the CMS
top-quark pair normalized invariant mass and rapidity two-dimensional distribution in the
dilepton final state [55], and the ATLAS and CMS W helicity fractions [56, 57]; at 13TeV,
the CMS top-quark pair invariant mass distributions in the lepton+jets and dilepton final
states based on integrated luminosities of up to L = 35.8 fb−1 [58–60]. In addition to
these, we now consider further top-quark pair invariant mass distributions: at 8TeV, the
ATLAS measurement in the dilepton final state [61]; at 13TeV, and the ATLAS and CMS
measurements, respectively in the lepton+jets and dilepton final states, corresponding to
an integrated luminosity of L = 35.8 fb−1 [62, 63]. We also include top-quark pair charge
asymmetry measurements: the ATLAS and CMS combined dataset at 8TeV [64], and the
ATLAS dataset at 13TeV [65].

Although several distributions differential in various kinematic variables are available
for the measurements presented in [54, 55, 58–63], only one of them can typically be
included in the fit at a time. The reason is that experimental correlations between pairs of
distributions are unknown: including more than one distribution at a time will therefore
result in a double counting. An exception to this state of affairs is represented by the ATLAS
measurement of [53], which is provided with the correlations among differential distributions.
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Dataset
√
s, L Info Observables ndat Ref.

ATLAS_tt_8TeV_ljets 8TeV, 20.3 fb−1 lepton+jets dσ/dmtt̄ 7 [53]

CMS_tt_8TeV_ljets 8TeV, 20.3 fb−1 lepton+jets 1/σdσ/dytt̄ 10 [54]

CMS_tt2D_8TeV_dilep 8TeV, 20.3 fb−1 dileptons 1/σd2σ/dytt̄dmtt̄ 16 [55]

ATLAS_tt_8TeV_dilep (*) 8TeV, 20.3 fb−1 dileptons dσ/dmtt̄ 6 [61]

CMS_tt_13TeV_ljets_2015 13TeV, 2.3 fb−1 lepton+jets dσ/dmtt̄ 8 [58]

CMS_tt_13TeV_dilep_2015 13TeV, 2.1 fb−1 dileptons dσ/dmtt̄ 6 [60]

CMS_tt_13TeV_ljets_2016 13TeV, 35.8 fb−1 lepton+jets dσ/dmtt̄ 10 [59]

CMS_tt_13TeV_dilep_2016 (*) 13TeV, 35.8 fb−1 dileptons dσ/dmtt̄ 7 [63]

ATLAS_tt_13TeV_ljets_2016 (*) 13TeV, 35.8 fb−1 lepton+jets dσ/dmtt̄ 9 [62]

ATLAS_WhelF_8TeV 8TeV, 20.3 fb−1 W hel. fract F0, FL, FR 3 [56]

CMS_WhelF_8TeV 8TeV, 20.3 fb−1 W hel. fract F0, FL, FR 3 [57]

ATLAS_CMS_tt_AC_8TeV (*) 8TeV, 20.3 fb−1 charge asymmetry AC 6 [64]

ATLAS_tt_AC_13TeV (*) 13TeV, 139 fb−1 charge asymmetry AC 5 [65]

Table 7. The experimental measurements of inclusive top-quark pair production at the LHC
considered in the present analysis. For each dataset we indicate the label, the center of mass energy√
s, the integrated luminosity L, the final state or the specific production mechanism, the physical

observable, the number of data points ndat, and the publication reference. Measurements indicated
with (*) were not included in [7]. We also include in this category the W helicity fractions from top
quark decay and the charge asymmetries.

Unfortunately, they significantly deteriorate the fit quality when an analysis of all the
available distributions is attempted, a fact that questions their reliability (see also [66, 67]).
We therefore include only one distribution also in this case. In general, we include the
invariant mass distribution mtt̄, whose high-energy tail is known to be particularly sensitive
to deviations from the SM expectations. For [54] we include instead the invariant rapidity
distribution as in our earlier analysis [7], due to difficulties in achieving an acceptable fit
quality to mtt̄.

The additional top-quark pair measurements considered in this work do not expand the
kinematic coverage in the EFT parameter space in comparison to those already included in [7].
Nevertheless, they provide additional weight for the inclusive top-quark pair differential
distributions in the global fit, which are known to provide the dominant constraints on several
of the EFT coefficients. All in all, we end up with ndat = 94 data points in this category.

Additional sensitivity to EFT effects could be achieved by means of LHC Run-II
measurements with an extended coverage in the invariant mass or transverse momentum.
However, differential distributions based on luminosities larger than L ' 36 fb−1 are not
available yet: the statistical precision of the data, and consequently their constraining
power, remain therefore limited. For instance, the ATLAS fully hadronic final state measure-
ment [68] is available, but it exhibits larger uncertainties than in the cleaner lepton+jets and
dilepton final states. Furthermore, some measurements are not reconstructed at the parton
level, as required in our analysis. This is the case of the ATLAS and CMS measurements at
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high top-quark transverse momentum [68, 69], that are based on reconstructing boosted
topologies, and of the dilepton distributions from ATLAS [70], that are restricted to the
particle level.

Concerning theoretical calculations, the SM cross-sections are evaluated at NLO using
MadGraph5_aMC@NLO [71] and supplemented with NNLO K-factors [72, 73]. The input PDF
set is NNPDF3.1NNLO no-top [74], to avoid possible contamination between PDF and EFT
effects.2 The EFT cross-sections are evaluated with MadGraph5_aMC@NLO [71] combined
with the SMEFT@NLO model [41]. Unless otherwise specified, the same EFT settings will be
used also for the other processes considered in this analysis. Specifically, NLO QCD effects
to the EFT corrections are accounted systematically whenever available.

Associated top-quark pair production. Table 8 lists, in the same format as table 7, the
experimental measurements for top quark pair production in association with heavy quarks
or weak vector bosons. The dataset considered in [7] consisted of the CMS measurements
of total cross-sections for tt̄tt̄ and bb̄bb̄ at 13TeV [77, 78], and in the ATLAS and CMS
measurements of inclusive tW and tZ production at 8TeV and 13TeV [79–82]. In the
present analysis, we augment this dataset with the most updated measurements of total
cross-sections for tt̄tt̄ and tt̄bb̄ production at 13TeV: for tt̄bb̄, with the ATLAS and CMS
measurements based on L = 137 fb−1 [83, 84]; for σtot(tt̄bb̄), with the ATLAS and CMS
measurements based on L = 36 fb−1 [85, 86]. These measurements are comparatively more
precise than the measurements already included in [7] thanks to the increased luminosity.

Concerning top-quark pair production in association with an electroweak gauge boson,
we include here the ATLAS total cross-section measurements of tt̄W and tt̄Z based on
L = 36 fb−1 [87], as well as the CMS differential measurements of dσ(tt̄Z)/dpZT based on
L = 78 fb−1 [88], which is the first differential measurement of tt̄V associated production
presented at the LHC. We do not include the still preliminary ATLAS measurement of
σtot(tt̄Z) based on L = 139 fb−1 [89]. The tt̄V measurements are especially useful to
constrain EFT effects that modify the electroweak couplings of the top-quark. In total, we
include ndat = 20 data points in the category of tt̄ associated production with heavy quark
pairs or weak vector bosons.

Theoretical predictions are computed at NLO both in the SM and in the EFT. We
use MCFM for the SM cross-sections and SMEFT@NLO for the EFT corrections, with NLO
QCD effects accounted for exactly for the 2-fermion operators. The exception is the pZT
distribution in tt̄Z events, for which MadGraph5_aMC@NLO is used instead to evaluate the
SM cross-section at NLO.

Inclusive single top-quark production. We now move to consider the inclusive pro-
duction of single top-quarks, both in the t-channel and in the s-channel (tW associated
production is discussed separately below). Table 9 displays the information on the experi-
mental data for these processes that is being considered in the present analysis. The dataset
in this category that was already included in our previous analysis [7] consisted, at 8TeV,
of the t-channel total cross-sections and in the top-quark rapidity differential distributions

2See [75, 76] for a detailed discussion of the interplay between PDF and EFT fits.
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Dataset
√
s,L Info Observables Ndat Ref.

CMS_ttbb_13TeV 13TeV, 2.3 fb−1 total xsec σtot(tt̄bb̄) 1 [77]

CMS_ttbb_13TeV_2016 (*) 13TeV, 35.9 fb−1 total xsec σtot(tt̄bb̄) 1 [86]

ATLAS_ttbb_13TeV_2016 (*) 13TeV, 35.9 fb−1 total xsec σtot(tt̄bb̄) 1 [85]

CMS_tttt_13TeV 13TeV, 35.9 fb−1 total xsec σtot(tt̄tt̄) 1 [78]

CMS_tttt_13TeV_run2 (*) 13TeV, 137 fb−1 total xsec σtot(tt̄tt̄) 1 [83]

ATLAS_tttt_13TeV_run2 (*) 13TeV, 137 fb−1 total xsec σtot(tt̄tt̄) 1 [84]

CMS_ttZ_8TeV 8TeV, 19.5 fb−1 total xsec σtot(tt̄Z) 1 [79]

CMS_ttZ_13TeV 13TeV, 35.9 fb−1 total xsec σtot(tt̄Z) 1 [80]

CMS_ttZ_ptZ_13TeV (*) 13TeV, 77.5 fb−1 total xsec dσ(tt̄Z)/dpZT 4 [88]

ATLAS_ttZ_8TeV 8TeV, 20.3 fb−1 total xsec σtot(tt̄Z) 1 [81]

ATLAS_ttZ_13TeV 13TeV, 3.2 fb−1 total xsec σtot(tt̄Z) 1 [82]

ATLAS_ttZ_13TeV_2016 (*) 13TeV, 36 fb−1 total xsec σtot(tt̄Z) 1 [87]

CMS_ttW_8_TeV 8TeV, 19.5 fb−1 total xsec σtot(tt̄W ) 1 [79]

CMS_ttW_13TeV 13TeV, 35.9 fb−1 total xsec σtot(tt̄W ) 1 [80]

ATLAS_ttW_8TeV 8TeV, 20.3 fb−1 total xsec σtot(tt̄W ) 1 [81]

ATLAS_ttW_13TeV 13TeV, 3.2 fb−1 total xsec σtot(tt̄W ) 1 [82]

ATLAS_ttW_13TeV_2016 (*) 13TeV, 36 fb−1 total xsec σtot(tt̄W ) 1 [87]

Table 8. Same as table 7, now for the production of top quark pairs in association with heavy
quarks and with weak vector bosons.

from CMS [90, 91] and from ATLAS [92], and in the s-channel total cross-sections from
ATLAS [93] and CMS [94]; at 13TeV, in the t-channel total cross-sections and top-quark
rapidity differential distributions from ATLAS [95] and CMS [96, 97].

Here we augment this dataset with one additional measurement, namely the CMS top-
quark rapidity differential cross-section for t-channel single top-quark production at 13TeV
based on L = 35.9 fb−1 [98]. As customary, we consider the distribution reconstructed at
parton level for consistency with the theoretical predictions. No differential measurements of
single top-quark production based on the Run II dataset have been presented by ATLAS so
far. Furthermore, while the ATLAS and CMS combination of total cross-sections for single
top-quark production at 7TeV and 8TeV has been presented in [99], here we include instead
the original individual measurements. We end up with ndat = 27 data points in this category.

The calculation of the SM and EFT cross-sections has been carried out with the same
settings as for inclusive tt̄ production. Note that for single top we work with a 5-flavour
number scheme (5FNS) where the bottom quark is considered as massless, and thus enters
the initial state of the reaction, see [100] for details. The NNLO QCD K-factors in the
5FNS are obtained from the calculation of [101].
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Dataset
√
s,L Info Observables Ndat Ref.

CMS_t_tch_8TeV_inc 8TeV, 19.7 fb−1 t-channel σtot(t), σtot(t̄) 2 [90]

ATLAS_t_tch_8TeV 8TeV, 20.2 fb−1 t-channel dσ(tq)/dyt 4 [92]

CMS_t_tch_8TeV_dif 8TeV, 19.7 fb−1 t-channel dσ/d|y(t+t̄)| 6 [91]

CMS_t_sch_8TeV 8TeV, 19.7 fb−1 s-channel σtot(t+ t̄) 1 [94]

ATLAS_t_sch_8TeV 8TeV, 20.3 fb−1 s-channel σtot(t+ t̄) 1 [93]

ATLAS_t_tch_13TeV 13TeV, 3.2 fb−1 t-channel σtot(t), σtot(t̄) 2 [95]

CMS_t_tch_13TeV_inc 13TeV, 2.2 fb−1 t-channel σtot(t), σtot(t̄) 2 [97]

CMS_t_tch_13TeV_dif 13TeV, 2.3 fb−1 t-channel dσ/d|y(t+t̄)| 4 [96]

CMS_t_tch_13TeV_2016 (*) 13TeV, 35.9 fb−1 t-channel dσ/d|y(t)| 5 [98]

Table 9. Same as table 7, now for inclusive single t production both in the t- and the s-channels.

Dataset
√
s,L Info Observables Ndat Ref.

ATLAS_tW_8TeV_inc 8TeV, 20.2 fb−1
inclusive

σtot(tW )
1

[102]
(dilepton)

ATLAS_tW_inc_slep_8TeV (*) 8TeV, 20.2 fb−1
inclusive

σtot(tW )
1

[108]
(single lepton)

CMS_tW_8TeV_inc 8TeV, 19.7 fb−1 inclusive σtot(tW ) 1 [103]

ATLAS_tW_inc_13TeV 13TeV, 3.2 fb−1 inclusive σtot(tW ) 1 [104]

CMS_tW_13TeV_inc 13TeV, 35.9 fb−1 inclusive σtot(tW ) 1 [105]

ATLAS_tZ_13TeV_inc 13TeV, 36.1 fb−1 inclusive σtot(tZq) 1 [107]

ATLAS_tZ_13TeV_run2_inc (*) 13TeV, 139.1 fb−1 inclusive σfid(t`+`−q) 1 [109]

CMS_tZ_13TeV_inc 13TeV, 35.9 fb−1 inclusive σfid(Wb`+`−q) 1 [106]

CMS_tZ_13TeV_2016_inc (*) 13TeV, 77.4 fb−1 inclusive σfid(t`+`−q) 1 [110]

Table 10. Same as table 7, now for single top quark production in association with electroweak
gauge bosons.

Associated single top-quark production with weak bosons. Finally, in table 10 we
consider the experimental measurements on the associated production of single top-quarks
together with a weak gauge boson V . The dataset in this category that was already part of
our original analysis [7] consisted of the total inclusive cross-sections for tW production by
ATLAS and CMS at 8TeV [102, 103] and at 13TeV [104, 105], as well as in the ATLAS
and CMS measurements of the tZ total cross-sections at 13TeV [106, 107], in the latter
case restricted to the fiducial region in the Wb`+`−q final state.

In addition to these datasets, we include here several new measurements of tW and
tZ production. First of all, we include a new total cross-section measurement of tW
production by ATLAS at 8TeV [108]. This measurement is carried out in the single lepton
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channel, and thus does not overlap with [102], which instead was obtained in the two leptons
with one central b-jet channel. Then we include the ATLAS measurement of the fiducial
cross-section for tZ production [109] using the t`+`−q final state (in the tri-lepton channel)
based on the full Run II luminosity of L = 139 fb−1. In this analysis, the cross-section
measurement differs from the background-only hypothesis (dominated by tt̄Z and dibosons)
by more than five sigma and thus corresponds to an observation of this process. We also
consider the corresponding measurement from CMS, where the observation of tZ associated
production is reported by reconstructing the t`+`−q final state [110] based on a luminosity
of L = 77.4 fb−1. No differential distributions for tZ have been reported so far. The settings
of the theoretical calculations for these ndat = 9 data points are the same as of [7].

In addition to these measurements, both ATLAS and CMS have measured differential
distributions in tW production at 13TeV based on a luminosity of L = 35.9 fb−1 [111, 112].
However, these measurements are reported at the particle rather than at the parton level,
and therefore they are not suitable for inclusion in the present analysis, which is restricted to
top-quark level observables. We also note that CMS has reported on the EFT interpretation
of the associated production of top-quarks, including with vector bosons, in an analysis
based on a luminosity of L = 41.5 fb−1 [113].

Combining the four categories discussed above, the present analysis contains ndat = 150
top-quark cross-sections, to be compared with ndat = 103 in [7]. In section 5.3 we will
quantify the impact of the new top-quark measurements by comparing two fits, one based
on the dataset of [7] and one based on the extended top-quark dataset included here.

3.2 Higgs production and decay

We now turn to the Higgs boson production and decay measurements. We consider first
inclusive cross-section measurements, presented as signal strengths normalised to the SM
predictions, and then differential distributions and STXS measurements.

Signal strengths. First of all, we consider the inclusive Higgs boson production signal
strengths µfi measured by ATLAS and CMS from LHC Run I and Run II. These signal
strengths are defined for each combination of production and decay channels in terms of
cross-section σi and the branching fraction Bf as

µfi ≡
σi ×Bf

(σi)SM × (Bf )SM
= µi · µf =

(
σi

(σi)SM

)(
Bf

(Bf )SM

)
, (3.1)

that is, as the ratio of the experimentally measured production cross-sections in specific
decay channels to the corresponding (state-of-the-art) SM predictions. These inclusive
signal strengths can also be expressed as

µfi =
(

σi
(σi)SM

)(
Γ(h→ f)

Γ(h→ f)
∣∣
SM

)(
Γ(h→ all)

Γ(h→ all)
∣∣
SM

)−1

, (3.2)

in terms of the partial and total decay widths. The measurements of signal strengths that
we consider in the present analysis are collected in table 11. In contrast to the differential
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Dataset
√
s, L Info Observables ndat Ref.

ATLAS_CMS_SSinc_RunI (*) 7+8TeV, 20 fb−1 Incl. µfi
ggF, VBF, V h, tt̄h

20 [114]
h→ γγ, V V, ττ, bb̄

ATLAS_SSinc_RunI (*) 8TeV, 20 fb−1 Incl. µfi h→ Zγ, µµ 2 [115]

ATLAS_SSinc_RunII (*) 13TeV, 80 fb−1 Incl. µfi
ggF, VBF, V h, tt̄h

16 [116]
h→ γγ,WW,ZZ, ττ, bb̄

CMS_SSinc_RunII (*) 13TeV, 36.9 fb−1 Incl. µfi
ggF, VBF, Wh, Zh tt̄h

24 [117]
h→ γγ,WW,ZZ, ττ, bb̄

Table 11. Same as table 7 now for the measurements of the inclusive signal strenghts, eq. (3.2), in
Higgs production and decay from the LHC Run I and Run II.

distributions and STXS discussed below, these signal strengths are typically extrapolated
to the full phase space and do not include selection or acceptance cuts.

For the LHC Run I, we take into account the inclusive measurements of Higgs boson
production and decay rates from the ATLAS and CMS combination based on the full 7
and 8TeV datasets [114]. Specifically, we include the 20 measurements presented in table 8
of [114]. These measurements correspond to five different production channels (ggF, VBF,
Wh, Zh, tth) for five final states (γγ, ZZ, WW , ττ , bb̄), excluding those combinations that
are either not measured with a meaningful precision or not measured at all. We account for
the experimental correlations between the measured signal strengths using the information
provided in [114]. In addition to these ATLAS+CMS combination results from Run I,
we also include two more signal strengths measurements from Run I, namely the ATLAS
constraints on the Zγ and µµ decays from [115].

For the LHC Run II, we consider the ATLAS measurement of signal strengths cor-
responding to an integrated luminosity of L = 80 fb−1 [116], and the CMS measurement
corresponding to an integrated luminosity of L = 35.9 fb−1 [117]. As in the case of the Run
I signal strengths, we keep into account correlations between the various production and
final state combinations. The ATLAS combination contains 16 signal strengths for the ggF,
VBF, V h and tt̄h production channels and the γγ, ZZ, WW , ττ and bb̄ final states. As
in the case of Run I, measurements are sometimes not available for all final states for a
given production channel, for example the h→ bb̄ decay is not available for ggF while ττ is
not provided in the case of V h associate production. The CMS analysis contains 24 signal
strengths measurements in the ggF, VBF, Wh, Zh, and tt̄h production channels for the
same final states as in the ATLAS case. Results for the WW , ZZ andγγ final states are
available for all production channels, while for the other final states, µµ, ττ , and bb̄, signal
strength measurements are only available for specific production channels. In total, we have
ndat = 62 measurements of Higgs inclusive signal strengths from Runs I and II.

Concerning the theoretical calculations corresponding to these measurements, the
SM production cross-sections and decay branching fractions are obtained from the asso-
ciated experimental publications. In turn, these represent the most updated available
predictions, and are provided in the LHC Higgs Cross-Section Working Group (HXSWG)
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Dataset
√
s,L Info Observables Ndat Ref.

CMS_H_13TeV_2015 (*) 13TeV, 35.9 fb−1 ggF, VBF, V h, tt̄h
dσ/dphT 9 [121]

h→ ZZ, γγ, bb̄

ATLAS_ggF_13TeV_2015 (*) 13TeV, 36.1 fb−1 ggF, VBF, V h, tt̄h
dσ/dphT 9 [122]

h→ ZZ(→ 4l)

ATLAS_Vh_hbb_13TeV (*) 13TeV, 79.8 fb−1 Wh, Zh
dσ(fid)/dpWT 2

[123]
dσ(fid)/dpZT 3

ATLAS_ggF_ZZ_13TeV (*) 13TeV, 79.8 fb−1 ggF, h→ ZZ σggF(phT , Njets) 6 [116]

CMS_ggF_aa_13TeV (*) 13TeV, 77.4 fb−1 ggF, h→ γγ σggF(phT , Njets) 6 [124]

Table 12. Same as table 7 for differential distributions and STXS for Higgs production and decay.

reports [118–120]. As in the case of top-quark production processes, EFT calculations are
obtained at NLO QCD using MadGraph5_aMC@NLO [71] with the SMEFT@NLO model. Addi-
tional details about the implementation of EFT corrections to the Higgs signal strengths
are provided in appendix B.

Differential distributions and STXS. Table 12 summarizes the experimental mea-
surements of differential distributions and STXS for Higgs boson production and decay at
the LHC considered in the present analysis. Whenever one has a potential double counting
between a signal strength measurement and the corresponding differential distribution or
STXS measurement, we always select the latter, which provides more information on the
EFT parameter space due to its enhanced kinematical sensitivity.

To being with, we consider the ATLAS and CMS differential distributions in the Higgs
boson kinematic variables obtained from the combination of the h→ γγ, h→ ZZ, and (in
the CMS case) h→ bb̄ final states at 13TeV based on L = 36 fb−1 [121, 122]. Specifically,
we consider the differential distributions in the Higgs boson transverse momentum phT .
These distributions are particularly sensitive probes of new physics, for instance through
new particles circulating in the gluon-fusion loop.

We also include the ATLAS measurement of the associated production of Higgs bosons,
V h, in the h→ bb̄ final state at 13TeV [123]. These measurements, performed in kinematic
fiducial volumes defined in the simplified template cross-section framework, correspond to an
integrated luminosity of L = 79.8 fb−1. Specifically, here we include the data corresponding
to the 5-POI (parameters of interest) category, which refers to three cross-sections for Zh
production in the bins 75 < pZT < 150GeV, 150 < pZT < 250GeV, and pZT > 250GeV, and
two cross-sections for Wh production, one for 150 < pWT < 250GeV and the other for
pWT > 250GeV. Gauge bosons are reconstructed by means of their leptonic decays.

Then we also include selected differential measurements presented in the ATLAS Run
II Higgs combination paper [116]. Specifically, we include the measurements of Higgs
production in gluon fusion, gg → h, in different bins of phT and in the number of jets in
the event. These measurements are presented as σi ×BZZ/B(SM)

ZZ , since the ZZ branching
fraction is used to normalise the data. We include the 0-jet cross-section, the 1-jet cross-
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section for phT < 60GeV, 60 ≤ phT ≤ 120GeV, and 120 ≤ phT ≤ 200GeV, and the ≤ 1 jet and
≤ 2 jet cross-sections for phT ≥ 200GeV and phT < 200GeV respectively.

Furthermore, we consider the differential Higgs boson production measurements pre-
sented by CMS at 13TeV based on an integrated luminosity of L = 77.4 fb−1 and correspond-
ing to the final state γγ [124]. The STXS measurements associated to different final-state
topologies and kinematic values such as phT are presented. These inclusive measurements
are dominated by the gluon-fusion production channel. Note that the CMS diphoton
measurement of [124] supersedes [125], which was based on the 2016 dataset only.

Whenever available, the information on the experimental correlated systematic uncer-
tainties is included. As mentioned above, the SM theoretical predictions are taken from
the HXSWG reports [118–120]. In total, we include ndat = 35 measurements of differential
cross-sections and STXS on Higgs production and decay from the LHC Run II.

We note that additional Higgs production and decay measurements have been recently
presented by ATLAS and CMS based on the full Run II luminosity of L = 139 fb−1. Two
examples of these are the CMS measurement of the phT distribution in the h → WW

fully leptonic final state [126] and the updated ATLAS measurement of V h associated
production in the bb̄ final state [127]. These measurements are however not expected to
modify significantly the results of the present analysis, since the constraints they provide on
the EFT parameter space are already covered by other measurements, and their inclusion
is left for future work.

3.3 Diboson production from LEP and the LHC

We complement the constraints provided by the Higgs data with those provided by diboson
production cross-sections measured by LEP and the LHC. The dataset is summarised
in table 13. To begin with, we consider the LEP-2 legacy measurements of WW produc-
tion [128]. Specifically, we include the cross-sections differential in cos θW in four different
bins in the center of mass energy, from

√
s = 182GeV up to

√
s = 206GeV. Here θW is

defined as the polar angle of the produced W− boson with respect to the incoming electron
beam direction. Each set of bins with a different center-of-mass energy correspond to a
different integrated luminosity, ranging between L = 163.9 pb−1 and 630.5 pb−1. For each
value of

√
s, there are 10 bins in cos θW , adding up to a total of ndat = 40 data points. The

theoretical calculations of the SM predictions, which include higher-order electroweak but
not NLO QCD corrections, are also taken from [128]. For this process, the squared terms
in the EFT proportional to cicj/Λ−4 are small and will be neglected.

Concerning the LHC datasets, we include measurements of the differential distributions
for W±Z production at 13TeV from ATLAS [132] and CMS [131] based on a luminosity
of L = 36.1 fb−1. In both cases, the two gauge bosons are reconstructed by means of the
fully leptonic final state, whereby events of the type WZ → `+`−`(

′)± are selected. The
different leptonic final states are then combined into an inclusive measurement. For the
ATLAS measurement three fiducial distributions are presented, respectively differential in
pWT , pZT and mWZ

T . As indicated in table 13, in this analysis, our baseline choice will be to
include the mWZ

T distribution, which extends up to transverse masses of mWZ
T = 600GeV.
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√
s, L Info Observables Ndat Ref.

LEP2_WW_diff (*) [182, 296] GeV LEP-2 comb d2σ(WW )/dEcmd cos θW 40 [128]

ATLAS_WZ_13TeV_2016 (*) 13TeV, 36.1 fb−1 fully leptonic dσ(fid)/dmWZ
T 6 [129]

ATLAS_WW_13TeV_2016 (*) 13TeV, 36.1 fb−1 fully leptonic dσ(fid)/dmeµ 13 [130]

CMS_WZ_13TeV_2016 (*) 13TeV, 35.9 fb−1 fully leptonic dσ(fid)/dpZT 11 [131]

Table 13. Same as table 7 for the differential distributions of gauge boson pair production from
LEP-2 and the LHC.

In the case of the corresponding CMS measurement, normalised differential distributions in
pZT , mWZ , pWT , and pjet,lead

T are available. Here the baseline will be the pZT distribution.
In addition to these measurements, we also consider the differential distributions for

WWproduction from ATLAS at 13TeV based on a luminosity of L = 36.1 fb−1 [130]. Events
are selected by requiring one electron and one muon in the final state, corresponding to the
decay mode WW → e±νµ±ν. Several differential distributions in the fiducial region are
provided, including meµ, peµT and |yeµ|. Here our baseline choice will be the meµ distribution,
the invariant mass of the dilepton system, which reaches values of up to meµ ' 1TeV. The
total number of data points in the LHC diboson category is ndat = 30.

Other diboson measurements from the LHC have been presented but their EFT
interpretation is left for future work. For instance, the data for the CMS differential
distributions of WW production at 13TeV based on L = 36.1 fb−1 [133] is still preliminary.
ATLAS has presented recent measurements of the differential cross-sections in four-lepton
events in 13TeV based on L = 139 fb−1 [134], though here the measured distributions
receive contributions from single Z and Higgs boson production, in addition to those from
ZZ production.

The theoretical predictions for the SM cross-sections of these LHC diboson processes
are accurate to NNLO QCD and were computed with MATRIX [135]. The EFT contributions
for this process include NLO QCD corrections and take into account the constraints from
eq. (2.5) to express the calculation in terms of only three Wilson coefficients, one being
the triple-gauge operator cWWW and the other two the purely bosonic coefficients cϕD
and cϕWB. This choice is ultimately arbitrary and has no physical implications; any other
two coefficients out of eq. (2.4) would lead to the same results. Its only motivation is to
facilitate the event generation of the diboson processes.

3.4 Dataset and theory overview and EFT sensitivity

We conclude this section by presenting an overview of the datasets considered (and of
the corresponding theoretical calculations), summarizing their dependence on the EFT
coefficients defined in section 2, and quantifying the sensitivity that each process has on
these coefficients by means of information geometry.

Dataset overview. In table 14 we summarise the number of data points in our baseline
dataset for each of the data categories and processes considered in this analysis, as well
as the total per category and the overall total. We include 150, 97, and 70 cross-sections
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Category Processes ndat

Top quark production

tt̄ (inclusive) 94
tt̄Z, tt̄W 14

single top (inclusive) 27
tZ, tW 9
tt̄tt̄, tt̄bb̄ 6
Total 150

Higgs production

Run I signal strengths 22

and decay
Run II signal strengths 40

Run II, differential distributions & STXS 35
Total 97

Diboson production
LEP-2 40
LHC 30
Total 70

Baseline dataset Total 317

Table 14. The number of data points ndat in our baseline dataset for each of the categories of
processes considered here.

from top-quark production, Higgs boson production and decay, and diboson production
cross-sections from LEP and the LHC respectively in the baseline dataset, for a total of 317
cross-section measurements.

Overview of theoretical calculations. Table 15 displays a summary of the theoretical
calculations used for the description various datasets included in the present analysis. We in-
dicate, for both the SM and the SMEFT contributions to the cross-sections, the perturbative
accuracy and the codes used to produce the corresponding theoretical predictions.

Electroweak scheme. The theoretical calculations presented in this work are based on
the (GF ,mZ ,mW ) electroweak scheme, which is the default in the SMEFTatNLO model. The
corresponding values of the SM parameters are set to be the following:

mW = 80.352 GeV, ΓW = 2.084 GeV, mt = 172.5 GeV,
mZ = 91.1535 GeV, ΓZ = 2.4943 GeV, Γt = 1.37758 GeV,
mH = 125.0 GeV, ΓH = 4.07468× 10−3 GeV, Gµ = 1.166378× 10−5 GeV−2.

(3.3)

Dependence on the EFT coefficients. In order to interpret the results of the global
EFT analyses which will be presented in section 5, it is useful to collect the dependence
of the various datasets described in this section with respect to the degrees of freedom
defined in section 2. Table 16 indicates which EFT coefficients contribute to the theoretical
description of each of the processes considered in this analysis. Recall that the 16 coefficients
listed in eq. (2.4) are related among them by the EWPO relations, and that only two of
them are independent.
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Category Process SM Code/Ref SMEFT

Top quark

tt̄ (incl) NNLO QCD
MG5_aMC NLO

NLO QCD

production

+ NNLO K-fact

tt̄+ V NLO QCD MG5_aMC NLO
LO QCD

+ NLO SM K-fact

single-t (incl) NNLO QCD
MG5_aMC NLO

NLO QCD
+ NNLO K-fact

t+ V NLO QCD MG5_aMC NLO
LO QCD

+ NLO SM K-fact

tt̄tt̄, tb̄tb̄ NLO QCD MG5_aMC NLO
LO QCD

+ NLO SM K-fact

Higgs production

gg → h
NNLO QCD +

HXSWG NLO QCD

and decay

NLO EW

VBF
NNLO QCD +

HXSWG LO QCD
NLO EW

h+ V
NNLO QCD +

HXSWG NLO QCD
NLO EW

htt̄
NNLO QCD +

HXSWG NLO QCD
NLO EW

h→ X
NNLO QCD +

HXSWG
NLO QCD (X = bb̄)

NLO EW LO QCD (X 6= bb̄)

Diboson

e+e− →W+W−
NNLO QCD +

LEP EWWG LO QCD

production

NLO EW

pp→ V V ′ NNLO QCD MATRIX NLO QCD

Table 15. Summary of the theoretical calculations used for the description various datasets included
in the present analysis. We indicate, for both the SM and the SMEFT contributions to the cross-
sections, the perturbative accuracy and the codes used to produce the corresponding theoretical
predictions. In all cases, the EFT cross-sections are evaluated with MG5_aMC interfaced to SMEFT@NLO.
See the text for more details and the corresponding references.
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In table 16 we display from top to bottom the coefficients associated to the two-light-two-
heavy, four-heavy, four-lepton, two-fermion plus bosonic, and purely bosonic dimension-six
operators. The Higgs measurements are separated between the Run I and Run II datasets,
and in the latter case also between signal strengths and differential distributions and
STXS. A check mark outside (inside) brackets indicates that a given process constrains
the corresponding coefficients starting at O(Λ−2) (O(Λ−4)) at LO. Entries labelled with
(b) indicate that the sensitivity to the associated coefficients enters via bottom-initiated
processes, which arise due to contributions from the b-PDF in the 5FNS adopted here.

Several observations can be drawn from this table. First of all, we observe that the
four-heavy coefficients are constrained only by the tt̄QQ̄ production data, either tt̄tt̄ or
tt̄bb̄. Such measurements also depend on the 2-light-2-heavy operators, as well as on ctG,
although in practice this correlation is small. Furthermore, the four-heavy coefficients are
essentially left undetermined at O

(
Λ−2), and can only be meaningfully constrained only

the quadratic corrections are accounted for. One can also note how the two-light-two-heavy
operators are constrained by top-quark pair production (inclusive and in association with
vector bosons) as well as by the tt̄h production measurements. As will be shown below, by
far the dominant constraints on these coefficients arise from the differential distributions in
inclusive top quark pair production.

Concerning the two-fermion operators, most of them are constrained both by top and
by Higgs production process. Recall that the top and Higgs sectors are connected, among
others, by means of the gluon-fusion production process (with its virtual top-quark loop)
as well as by tt̄h associated production. In particular, we note that ctϕ, which modifies
the top Yukawa coupling, is constrained by these Higgs production measurements. The
purely bosonic operators exhibit sensitivity only to Higgs and diboson processes, since these
do not affect the properties of top quarks. The diboson data is uniquely sensitive to the
triple-gauge coefficient cWWW , which modifies the triple (and quartic) electroweak gauge
couplings, as well as to cϕD and cϕWB, which are also constrained by Higgs data.

The Fisher matrix and information geometry. The information presented in table 16
does not allow one to compare the sensitivity brought in by different datasets on a given EFT
coefficient. To achieve this, here we adopt the ideas underlying information geometry [136]
and define the Fisher information matrix Iij as

Iij(c) = −E
[
∂2 ln f(σexp|c)

∂ci∂cj

]
, i, j = 1, . . . , nop , (3.4)

where E[ ] indicates the expectation value and f(σexp|c) indicates the relation between a
set of experimental measurements and the assumed true values of the EFT coefficients c.
The covariance matrix in the EFT parameter space, Cij(c), is then bounded by the Fisher
information matrix:

Cij ≥
(
I−1

)
ij
, (3.5)

which is known as the Cramer-Rao bound. The diagonal entries of the Cramer-Rao bound
are Cii = (δci)2 ≥

(
I−1)

ii and indicate that the smallest possible uncertainty achievable on
the coefficient ci given the input data is δci|(best) =

√
(I−1)ii.
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Class DoF tt̄ tt̄V t tV tt̄QQ̄ h (µfi ,
Run-I)

h (µfi ,
Run-II)

h (STXS,
Run-II)

V V

2-heavy-

c1,8
Qq X X X X X X

2-light

c1,1
Qq (X) (X) X (X) (X) (X)

c3,8
Qq X X (X) (X) X X X X

c3,1
Qq (X) (X) X X X (X) (X) (X)

c8
tq X X X X X X

c1
tq (X) (X) X (X) (X) (X)

c8
tu X X X X X X

c1
tu (X) (X) X (X) (X) (X)
c8
Qu X X X X X X

c1
Qu (X) (X) X (X) (X) (X)

c8
td X X X X X X

c1
td (X) (X) X (X) (X) (X)
c8
Qd X X X X X X

c1
Qd (X) (X) X (X) (X) (X)

4-heavy

c1
QQ X

c8
QQ X

c1
Qt X

c8
Qt X

c1
tt X

4-lepton cll X X X X X X

2-fermion

ctϕ X X X

+bosonic

ctG X X X X X X

cbϕ X X X(b)
ccϕ X X

cτϕ X X

ctW X X X X X
ctZ X X X X

c
(3)
ϕQ X(b) X X X(b) X(b) X(b)

c
(−)
ϕQ X X X X X(b)
cϕt X X X X

c
(1)
ϕli

X X X

c
(3)
ϕli

X X X X X X

cϕe X X X

cϕµ X X

cϕτ X X

c
(3)
ϕq X X X X X X X

c
(−)
ϕq X X X X X X

cϕu X X X X X X

cϕd X X X X X X

purely

cϕG X X X

bosonic

cϕB X X X

cϕW X X X

cϕd X X X

cϕD X X X X X X X

cϕWB X X X X X X X

cWWW X

Table 16. Overview indicating which EFT coefficients contribute to the theoretical description of
each of the processes considered in this global analysis.
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For a given set of EFT coefficients, comparing the values of Iij between different
datasets highlights those which provide the highest information. The larger the entries of
the Fisher matrix, the better (smaller uncertainty) that these coefficients can be constrained
by the data considered. The Fisher information matrix can also be understood as a metric
in model space. If one has two sets of coefficients ca and cb, corresponding to two different
points in the EFT parameter space, then the local distance between them is defined as

dloc(ca, cb) =

∑
i,j

(ca − cb)iIij(ca)(ca − cb)j

1/2

, (3.6)

a feature which provides a robust method to quantify how (di)similar are two points in this
model space.

If one has ndat experimental measurements σ(exp)
m whose theoretical predictions depend

on nop coefficients c, assuming that these measurements are Gaussianly distributed, one has

f(σexp)|c) =
ndat∏
m=1

1√
2πδ2

exp,m
exp

−
(
σ

(exp)
m − σ(th)

m (c)
)2

2δ2
exp,m

 , (3.7)

where δexp,m stands for the total experimental uncertainty associated to this cross-section
measurement. Here we neglect for simplicity the point-by-point correlations, the extension
to the full correlation covariance matrix is straightforward. The theoretical predictions that
enter eq. (3.7) include the SM contribution as well as the terms linear and quadratic on the
Wilson coefficients,

σ(th)
m (c) = σ(sm)

m +
nop∑
i=1

ciσ
(eft)
m,i +

nop∑
i<j

cicjσ
(eft)
m,ij , (3.8)

where we assume Λ = 1TeV, so that one can write

−lnf(σexp|c) =
ndat∑
m=1

1
2δ2

exp,m

(σ(exp)
m −σ(sm)

m

)
−
nop∑
i=1

ciσ
(eft)
m,i −

nop∑
i<j

cicjσ
(eft)
m,ij

2

+A, (3.9)

where A is a constant that does not depend on the value of the coefficients, and thus the
Fisher information matrix can be evaluated using eq. (3.4) to yield

Iij = E
[
ndat∑
m=1

1
δ2

exp,m

(
σm,ij

(
σ(th)
m −σ(exp)

m

)
+
(
σ

(eft)
m,i +

nop∑
l=1

clσ
(eft)
m,il

)(
σ

(eft)
m,j +

nop∑
l′=1

cl′σm,jl′

))]
,

(3.10)
where this expectation value can be evaluated by averaging over the Nrep replicas (or Nspl
samples) that provide a sampling of the probability density in the space of coefficients
within our approach, see also section 4.

The Fisher information matrix becomes specially simple if we restrict ourselves to the
linear approximation [10], i.e. σm,ij = 0, since in this case

Iij =
ndat∑
m=1

σ
(eft)
m,i σ

(eft)
m,j

δ2
exp,m

, (3.11)
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which is independent of the values of the coefficients c and therefore of the actual fit results.
The diagonal entries of the Fisher matrix Iii are then given by the sum over a given dataset (or
group of processes) of the square of the linear EFT cross-sections over the total experimental
uncertainty. In the specific case of one-parameter fits, the Cramer-Rao bound reads

δci ≥

ndat∑
m=1

σ
(eft)
m,i σ

(eft)
m,j

δ2
exp,m

−1/2

, i = 1, . . . , nop , (3.12)

which, provided that the sum is over the global dataset, can be used to cross-check the
results of individual (one-parameter) fits.

One should emphasize that the absolute size of the entries of the Fisher matrix does
not contain physical information: one is always allowed to redefine the overall normalisation
of an operator such that ciσ(eft)

m,i = c′iσ
′(eft)
m,i , with c′i = Bici and σ(eft)

m,i = σ
′(eft)
m,i /Bi with Bi

being arbitrary constants. However, for a given operator the relative value of Iii between
two groups of processes is independent of this choice of normalisation and thus conveys
meaningful information. For this reason, in the following we present results for the Fisher
information matrix normalised such that the sum of the diagonal entries associated to a
given EFT coefficient adds up to a fixed reference value which is taken to be 100.

Figure 1 displays the values of the diagonal entries of the Fisher information matrix,
eq. (3.10), evaluated for the same groups of processes as in table 16. The normalisation is
such that the sum of the entries associated to each coefficients adds up to 100. We show
results for the Fisher information both at the linear level, eq. (3.11), and with the quadratic
corrections included, eq. (3.10), in the left and right panels respectively. The entries in blue
indicate those groups of processes which provide more than 75% of the information on the
corresponding EFT coefficient. Entries in grey indicate relative contributions of less than
10%. As mentioned above, the sum of the entries over columns does not contain a physical
interpretation.

The information contained in figure 1 is consistent with that of table 16, but now we can
identify, for each coefficient, which datasets provide the dominant constraints. For instance,
one observes that the two-light-two-heavy operators are overwhelmingly constrained by
inclusive top quark pair production data, except for c3,1

Qq for which single top is the most
important set of processes. At the linear level, the information on the two-light-two-heavy
coefficients provided by the differential distributions and by the charge asymmetry AC
data is comparable, while the latter is less important in the quadratic fits. In the case
of the two-fermion operators, the leading constraints typically arise from Higgs data, in
particular from the Run II signal strengths measurements, and then to a lesser extent
from the Run I data and the Run II differential distributions. Two exceptions are cϕt,
which at the linear level (but not at the quadratic one) is dominated by tt̄V , and the
chromo-magnetic operator ctG, for which inclusive tt̄ production is most important. Also
for the purely bosonic operators the Higgs data provides most of the information, except for
cWWW , as expected since this operator is only accessible in diboson processes. Furthermore,
one observes that the O

(
Λ−4) corrections induce in most cases a moderate change in the

Fisher information matrix, but in others they can significantly alter the balance between
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Figure 1. The values of the diagonal entries of the Fisher information matrix, eq. (3.10), evaluated
for the same groups of processes as in table 16 (except with the charge asymmetry AC data considered
separately). The normalisation here is such that the sum of the entries associated to each EFT
coefficient adds up to 100. We show results for the Fisher information matrix both at the linear level,
eq. (3.11), and with the quadratic corrections included, left and right panels respectively. For entries
in the heat map larger than 10, we also indicate the corresponding numerical values. The quadratic
Fisher information matrix (right panel) is evaluated using the best-fit values of the corresponding
global baseline fit, to be presented in section 5.
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processes. As a representative example, the two-fermion operators such as cϕt and c
(3)
ϕQ

become dominated by the Higgs data only once quadratic corrections are accounted for.
Another relevant application of the Fisher information matrix is the determination of

optimal directions in the EFT parameter space by means of principal component analysis
(PCA), and in particular the assessment of whether or not the coefficients basis adopted for
the fit contains flat directions. We will discuss this related application in the section 4.5.

4 Fitting methodology

In this section we describe the fitting methodology that is used in this work to map the
EFT parameter space spanned by the Higgs, diboson, and top quark data. In addition to
results obtained with the Monte Carlo replica fitting (MCfit) method presented in ref. [7],
now we also determine the posterior probability distributions in the parameter space using
the MultiNest Nested Sampling (NS) algorithm [37, 137], a robust sampling procedure
that is completely orthogonal to the MCfit method and that is based on Bayesian inference.

We begin with a brief discussion of the log-likelihood function and the treatment
of uncertainties that is adopted in the fit. We then present the individual χ2 profiles
associated to each EFT coefficient in the quadratic fits and discuss the eventual presence of
(quasi-)degenerate minima. Subsequently, the main features of the NS and MCFit strategies
used in the global fit are summarized, including several improvements that have been
implemented in the latter technique. The results obtained with the two methods are also
benchmarked. Finally, we carry out a principal component analysis (PCA) to determine
the linear combinations of parameters that have the highest and lowest variabilities given
our global dataset and assess the possible presence of flat directions.

4.1 Log-likelihood

The overall fit quality is quantified by the log-likelihood, or χ2 function, defined as

χ2(c) ≡ 1
ndat

ndat∑
i,j=1

(
σ

(th)
i (c)− σ(exp)

i

)
(cov−1)ij

(
σ

(th)
j (c)− σ(exp)

j

)
, (4.1)

where σ(exp)
i and σ(th)

i (c) are the central experimental data and corresponding theoretical
predictions for the i-th cross-section, respectively. The total covariance matrix, covij , should
contain all relevant sources of experimental and theoretical uncertainties. Assuming the
latter are normally distributed, and that they are uncorrelated with the experimental
uncertainties, this total covariance matrix can be expressed as a sum of the separate
experimental and theoretical covariance matrices [138, 139],

covij = cov(exp)
ij + cov(th)

ij . (4.2)

As usual, the experimental covariance matrix is constructed from all sources of statistical
and systematic uncertainties that are made available by the experiments (as discussed in
section 3). Moreover, the correlated multiplicative uncertainties are treated via the ‘t0’
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prescription [140] in the fit, while the standard experimental definition is used to quote the
resulting χ2 values.

Concerning the theoretical covariance matrix, cov(th), its contributions depend on
the specific type of processes considered. In the case of the top quark and LHC diboson
production cross-sections, we compute the SM predictions using the best possible theoretical
accuracy. In doing so, we also evaluate the uncertainty associated to the input PDFs
and their correlations, as discussed in ref. [7]. These computations are based on the
NNPDF3.1 no-top fit [74], a global PDF determination based on a dataset that excludes all
measurements that are used in the present SMEFT analysis.

For the Higgs production and decay measurements, we take instead the SM predictions
from the experimental publications, which in turn are collected from the HXSWG reports.
In such a case, the total theory uncertainty is available, which includes both PDF errors
and missing higher order uncertainties (MHOUs). The total theory uncertainty for Higgs
measurements is therefore included in the fit covariance matrix by means of the correlation
prescription provided in the corresponding ATLAS and CMS publications.

4.2 Individual fits from the χ2 profiles

Individual (one-parameter) fits correspond to varying a single EFT coefficient while keeping
the rest fixed to their SM values. While such fits neglect the correlations between the
different coefficients, they provide a useful baseline for the global analysis, since there the
CL intervals will be by construction looser (or at best, similar) as compared to those of the
one-parameters fits. They are also computationally inexpensive, as they can be carried out
analytically from a scan of the χ2 profile without resorting to numerical methods. Another
benefit is that they facilitate the comparison between different EFT analyses, which may
adopt different fitting bases but whose individual bounds should be similar provided they
are based on comparable data sets and theoretical calculations.

In the scenario where a single EFT coefficient, cj , is allowed to vary while the rest are
set to zero, the theoretical cross-section (for Λ = 1TeV) given by eq. (3.8) simplifies to

σ(th)
m (cj) = σ(sm)

m + cjσ
(eft)
m,j + c2

jσ
(eft)
m,jj , (4.3)

which results in a quartic polynomial form for the χ2 when inserted into eq. (4.1), namely

χ2(cj) =
4∑

k=0
ak(cj)k . (4.4)

Restricting the analysis to the linear order in the EFT expansion further simplifies eq. (4.4)
to a parabolic form,

χ2(cj) =
2∑

k=0
ak(cj)k = χ2

0 + b(cj − cj,0)2 , (4.5)

where cj,0 is the value of cj at the minimum of the parabola, and in this case linear error
propagation (Gaussian statistics) is applicable.

To determine the values of the quartic polynomial coefficients ak in eq. (4.4), it is
sufficient to fit this functional form to a scan of the χ2 profile obtained by varying the EFT
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coefficient cj when all other coefficients are set to their SM value. The associated 95% CL
interval to the coefficient cj can then be determined by imposing the condition

χ2(cj)− χ2(cj,0) ≡ ∆χ2 ≤ 5.991 . (4.6)

We note that if the size of the quadratic O
(
Λ−4) corrections is sizable, there will be more

than one solution for cj,0 and one might end up with pairwise disjoint CL intervals.
Figures 2 and 3 display the results of quartic polynomial fits to the χ2 profiles obtained

in the one-parameter scans of each EFT coefficient, based on the ndat = 317 data points
of the global dataset and the baseline theory settings (where higher-order QCD and EFT
corrections are accounted for). Here the absolute χ2 is evaluated with the t0 prescription,
and we also display the corresponding 95% CL ranges (vertical line) and the SM expectation
(horizontal line). We show the 34 profiles associated to the independent EFT coefficients in
table 5 which are not constrained by the EWPOs. These profiles are shown in the following
order: four-heavy, two-light-two-heavy, two-fermion, and purely bosonic coefficients.

From the χ2 profiles displayed in figures 2 and 3 one can observe, on the one hand,
how for several of the coefficients the parabolic approximation performs reasonably well,
indicating the dominance of the linear EFT corrections. On the other hand, other coefficients
deviate from the parabolic behaviour in a striking manner, including several degrees of
freedom that exhibit two quasi-degenerate solutions, one being “SM-like” and the other
distinctly non-zero. It is important to identify in particular which coefficients display such
degenerate solutions in the one-parameter fits, since these might lead to a multi-modal
posterior distributions in the case of the global analysis.

From the inspection of these χ2 profiles, one can identify three categories of EFT
coefficients whose individual profiles are poorly described by the parabolic approximation.
First of all, one has the case of coefficients such as the four-heavy operators, for which a
quartic profile with two quasi-degenerate solutions distributed symmetrically around the
SM value is observed. Secondly, there are coefficients such as ctZ which display a second
solution far from the SM-like one but which corresponds to higher values of the χ2, and
hence does not modify the calculation of the CL intervals (at least within these 1D fits). In
both cases, the resulting CL intervals remain non-disjoint. Thirdly, one finds coefficients
that exhibit quasi-degenerate solutions leading to disjoint CL intervals, where again one
solution is SM-like and the other is far from the SM value. Examples of this category are the
operators that modify the bottom and tau lepton Yukawa interactions, cϕb and cϕτ , and the
purely bosonic operators cϕB and cϕW . Such degenerate solutions are likely to propagate to
the global fit where all operators are simultaneously varied, and indeed as will be discussed
in section 5 the presence of these quasi-degenerate minima on the one-parameter fits has
consequences at the level of posterior probability distributions in the global case.

Another useful application of the parameter bounds obtained from these individual
fits is to help defining in an automated manner the suitable initial sampling ranges for
each EFT coefficient in the global fits based on the MCfit and NS approaches. With this
motivation, the individual bounds corresponding to a given input dataset and settings of
the theoretical calculations are evaluated by default before each fitting run. Let us also
mention that the bounds on the EFT coefficients obtained with the method presented here
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Figure 2. Results of quartic polynomial fits to the χ2 profiles obtained in one-parameter scans
for each EFT coefficient, with all others set to their SM values. We show the absolute χ2 for the
ndat = 317 data points of the global dataset calculated with the t0 prescription, with the horizontal
(vertical) line indicating the corresponding 95% CL ranges (the SM prediction).
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Figure 3. Figure 2 continued.
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for the one-parameter analyses (quartic fits to the χ2 profiles) are found to be in agreement
with the corresponding results obtained the NS and MCfit approaches.

4.3 Nested Sampling

The main approach that is adopted in this work to constrain the EFT parameter space is
Nested Sampling (NS), specifically the version implemented in the MultiNest algorithm [37].
In comparison to MCfit, which is an optimisation problem aimed to determine the best-fit
values for each of the replicas, NS is based on sampling the figure of merit χ2 to determine its
dependence on the Wilson coefficients and locate the region of maximum likelihood. Since NS
is completely independent from the MCfit procedure, its availability makes possible validating
the robustness of the resulting bounds in EFT parameter space via two orthogonal methods.

The starting point of NS is Bayes’ theorem, which allows one to evaluate the probability
distribution of a set of parameters c associated to a modelM(c) given a set of experimental
measurements D,

P (c|D,M) = P (D|M, c)P (c|M)
P (D|M) . (4.7)

Here P (c|D,M) represents the posterior probability of the model parameters given the
assumed model and the observed experimental data, P (D|M, c) = L(c) is the likelihood
(conditional probability) of the experimental measurements given the model and a specific
choice of parameters, and P (c|M) = π(c) is the prior distribution for the model parameters.
The denominator in eq. (4.7), P (D|M) = Z, is known as the Bayesian evidence and ensures
the normalisation of the posterior distribution,

Z =
∫
L(c)π(c)dc , (4.8)

where the integration is carried out over the domain of the model parameters c.
The key ingredient of Nested Sampling is to utilise the ideas underlying Bayesian

inference to map the n-dimensional integral over the prior density in model parameter
space π(c)dc, where n represents the dimensionality of c, into a one-dimensional function
of the form

X(λ) =
∫
{c:L(c)>λ}

π(c)dc . (4.9)

In this expression, the prior mass X(λ) corresponds to the (normalised) volume of the prior
density π(c)dc associated with values of the model parameters that lead to a likelihood
L(c) greater than the parameter λ. Note that by construction, the prior mass X decreases
monotonically from the limiting value X = 1 to X = 0 as λ is increased. The integration of
X(λ) extends over the regions in the model parameter space contained within the fixed-
likelihood contour defined by the condition L(c) = λ. This property allows the evidence to
be expressed as,

Z =
∫ 1

0
L(X)dX , (4.10)

where L(X) is defined as the inverse function of X(λ), which always exists provided the
likelihood is a continuous and smooth function of the model parameters. Therefore, the
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transformation from c to X in eq. (4.9) achieves a mapping of the prior distribution into
infinitesimal elements, sorted by their associated likelihood L(c).

The next step of the NS algorithm is to define a decreasing sequence of values in the
prior volume, that is now parameterised by the prior mass X. In other words, one slices
the prior volume into a large number of small regions

1 = X0 > X1 > . . .X∞ = 0 , (4.11)

and then evaluates the likelihood at each of these values, L = L(Xi). This way, all of the Li
values can be summed in order to evaluate the integral for the Bayesian evidence, eq. (4.10).

Since in general the likelihood L(c) exhibits a complex dependence on the model
parameters c, the summation in eq. (4.10) must be evaluated numerically using e.g. Monte
Carlo integration methods. In practice, one draws Nlive points from the parameter prior
volume π(c), known as live points, and orders the likelihood values from smallest to largest,
including the starting value of the prior mass at X0 = 1. As samples are drawn from the
prior volume, the live point with the lowest likelihood Li is removed from the set and
replaced by another live point drawn from the same prior distribution but now under the
constraint that its likelihood is larger than Li. This sampling process is repeated until the
entire hyper-volume π(c) of the prior parameter space has been covered, with ellipsoids of
constrained likelihood being assigned to the live-points as the prior volume is scanned.

While the end result of the NS procedure is the estimation of the Bayesian evidence Z,
as a byproduct one also obtains a sampling of the posterior distribution associated to the
EFT coefficients expressed as

{c(k)} , k = 1, . . . , Nspl , (4.12)

with Nspl indicating the number of samples drawn by the final NS iteration. One can
then compute expectation values, variances, and correlations of the model parameters by
evaluating the MC sum over these posterior samples together with their associated weights,
in the same manner as averages are carried out over the Nrep replicas in the MCfit method.

Prior volume. An important input for NS is the choice of prior volume π(c) in the model
parameter space. In this analysis, we adopt flat priors defined by ranges in parameter space
for the coefficients c. A suitable choice of prior volume where the sampling takes place is
important to speed up the NS algorithm: a range too wide will make the optimisation less
efficient, while a range too narrow might bias the results by cutting specific regions of the
parameter space that are relevant. Furthermore, using a common range for all parameters
should be avoided, since the range of intrinsic variation will be rather different for each of
the EFT coefficients, as illustrated also by the one-parameter fits reported in figures 2 and 3.

Taking these considerations into account, we adopt here the following strategy. First,
a single model parameter ci is allowed to vary while all others are set to their SM value,
cj = 0 for j 6= i. The χ2(ci) is then scanned in this direction to determine the values c(min)

i

and c
(max)
i satisfying the condition χ2/ndat = 4. We then repeat this procedure for all

parameters and end up with a hyper-volume defined by pairs of values

π(c) =
[(
c

(min)
i , c

(max)
i

)
, i = 1, . . . , nop

]
, (4.13)
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which then defines the initial prior volume. At this point, one performs an initial exploratory
NS global analysis using this volume to study the posterior probability distribution for
each EFT coefficient. Our final analysis is then obtained by manually adjusting the initial
sampling ranges until the full posterior distributions are captured for the chosen prior
volume. For parameters that are essentially unconstrained in the global fit, such as the
four-heavy operators in the case of linear EFT calculations, a hard boundary of (−50, 50)
is imposed (for Λ = 1TeV).

Performance. In order to increase the efficiency of the posterior probability estimation
by NS, we enable the “constant efficiency mode” in MultiNest, which adjusts the total
volume of ellipsoids spanning the live points so that the sampling efficiency is close to its
associated hyperparameter set by the user. With 24 cpu cores, we are able to achieve an
accurate posterior for the linear EFT fits in around 30 minutes using 500 live points, a
target efficiency of 0.05, and an evidence tolerance of 0.5, which results in Nspl ' 5000
posterior samples. To ensure the stability of our final results, we chose 1000 live points
and a target efficiency of 0.005, which yields '1.5× 104 samples for the linear analysis and
'104 samples for an analysis that includes also the quadratic EFT corrections. With these
settings, our final global analyses containing the simultaneous determination of nop ' 36
coefficients take ∼ 3.5 hours running in 24 cpu cores, with a similar performance for linear
and quadratic EFT fits.

The NS method is especially suitable to tackle parameter spaces of moderate dimen-
sionality. Being based purely on sampling, it is not affected by limitations in minimisation
methods such as ending up in local minima. It is also more robust upon the presence of
fluctuations, and does not require specifying certain hyperparameters such as the learning
rates which are used in MCfit. The main limitation of NS is that, as in all sampling
methods, the execution times grows exponentially with nop, the dimensionality of the model
parameter space. For parameter spaces of dimensionality greater than around 50, the
current NS implementation that we use becomes unpractically slow and MCfit becomes the
most suitable strategy available.

4.4 The Monte Carlo replica method revisited

The SMEFiT analysis of ref. [7] was based on the Monte Carlo replica approach (MCfit),
which in turn was inspired by the NNPDF analysis of the quark and gluon substructure of
protons. The MCfit method aims to construct a sampling of the probability distribution in
the space of the experimental data, which then translates into a sampling of the probability
distribution in the space of the EFT coefficients through an optimisation procedure where
the best-fit values of the coefficients for each replica, c(k), are determined.

Given an experimental measurement of a hard-scattering cross-section, denoted by
σ

(exp)
i , with total uncorrelated uncertainty δ(stat)

i and nsys correlated systematic uncertainties
δ

(sys)
i,α , the Nrep artificial MC replicas of the experimental data are generated as

σ
(art)(k)
i = σ

(exp)
i

(
1 + r

(k)
i δ

(stat)
i +

nsys∑
α=1

r
(k)
i,αδ

(sys)
i,α

)
, k = 1, . . . , Nrep , (4.14)
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where the index i runs from 1 to ndat and r(k)
i , r(k)

i,α are univariate Gaussian random numbers.
Correlations between data points induced by systematic uncertainties are accounted for by
ensuring that r(k)

i,α = r
(k)
i′,α. It can be show that central values, variances, and covariances eval-

uated by averaging over the MC replicas reproduce the corresponding experimental values.
A fit to the nop degrees of freedom c/Λ is then performed for each of the MC replicas

generated by eq. (4.14). These best-fit values are determined from the minimisation of the
cost function

E(k)(c) ≡ 1
ndat

ndat∑
i,j=1

(
σ

(th)
i

(
c(k)

)
− σ(art)(k)

i

)
(cov−1)ij

(
σ

(th)
j

(
c(k)

)
− σ(art)(k)

j

)
, (4.15)

where σ(th)
i (c(k)) indicates the theoretical prediction for the i-th cross-section evaluated with

the k-th set of EFT coefficients. This process results in a collection of c(k) best-fit coefficient
values from which estimators such as expectation values, variances, and correlations are
evaluated. The overall fit quality is then evaluated using eq. (4.1), where the central
experimental values are compared to the mean theoretical prediction computed by the
resulting fit replicas.

As mentioned in section 4.1, various theoretical uncertainties are also included in the
χ2 definition for some datasets. A consistent treatment of theoretical uncertainties in the
fitting procedure means that these are not only included in the fit via the covariance matrix
in eqs. (4.15), but also in the corresponding replica generation. In other words, the replicas
are sampled according to a multi-Gaussian distribution defined by the total covariance
matrix eq. (4.2) which receives contributions both of experimental and of theoretical origin.
We therefore account for such errors in the generation of Monte Carlo replicas [138] using
eq. (4.14).

There are numerous advantages of using the MCfit method for global EFT analyses.
First, it does not require specific assumptions about the underlying probability distribution
of the fit parameters, and in particular does not rely on the Gaussian approximation.
Secondly, the computational cost scales in a much milder way with the number of operators
nop included in the fit as compared to NS. Thirdly, it can be used to assess the impact of
new datasets in the fit a posteriori with the Bayesian reweighting formalism.

In comparison with [7], several improvements have been implemented to increase the
efficiency and accuracy of the MCfit procedure used in this analysis:

Optimisation. In the top quark sector analysis of [7], the minimisation of eq. (4.15) was
achieved by a gradient descent method which relies on local variations of the error function.
This choice is advantageous since E(k) is at most a quartic form of the fit parameters, see
eq. (4.4) and its generalisation to multiple operators, and therefore evaluating its gradient
is computationally efficient.

Since in the present analysis our parameter space is more complex, the optimiser that
we use now to determine the best-fit values of the degrees of freedom c(k) within MCfit is
a trust-region algorithm trust-constr available in the SciPy package. An advantage of
using trust-constr in this context is that it allows one to provide the optimiser with any
combination of constraints on the coefficients, including existing bounds. This is a rather
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useful feature, since in many cases of interest one would like to restrict the EFT parameter
space based on theoretical considerations, such as when accounting for the LEP EWPOs or
in the top-philic scenario discussed in section 2.

Initial sampling range and bounds. For each MC replica fit, the initial values of the
fit coefficients c(k) are initialised at random within a pre-defined range. This sampling
range, as well as the boundaries imposed on the minimisation procedure for the poorly
constrained parameters, are taken to be the same as those used in the NC procedure. That
is, the sampling ranges for the global fits are derived from a one-parameter χ2 scanning
procedure subsequently inflated to cover a sufficiently large parameter hyper-volume.

Cross-validation. Given the large dimensionality of the considered EFT parameter space,
it is conceivable that the optimiser algorithm ends up fitting the statistical fluctuations of
the experimental data rather than the underlying physical law. One way to prevent the
minimiser from over-fitting the data is to use look-back cross-validation stopping. In this
method, each replica dataset is randomly split with equal probability into two disjoint sets,
known as the training and validation sets. Only the data points in the training set are then
used to compute the figure of merit being minimised, eq. (4.15), while the data points in the
validation set are monitored alongside the fit. The random assignment of the data points
to the training or validation sets is different for each MC replica, and the splitting only
occurs for experiments that contain more than 5 bins in the distribution. The fit is run for
a fixed large number of iterations, and then the optimal stopping point of the fit is then
determined as the iteration for which the figure of merit evaluated on the validation set,
E

(k)
val , exhibits a global minimum. All in all, it is found that the risk of over-fitting is small

and that MCfit results with and without cross-validation applied are reasonably similar.

Quality selection criteria. One disadvantage of optimisation strategies such as MCfit
is that as the parameter space is increased, the minimiser might sometimes converge on a
local, rather than on the global, minimum. This is specially problematic in the quadratic
EFT fits which often display quasi-degenerate minima, as illustrated by the χ2 profiles of
figures 2 and 3. For this reason, it is important to implement post-fit quality selection
criteria that indicate when a fitted replica should be kept and when it should be discarded.
Here, a MC replica is kept if the total error function of the replica dataset, E(k)

tot , satisfies
E

(k)
tot ≤ 3.

Benchmarking. Figure 4 compares the outcome of global fits obtained with either the
NS or MCfit method, all other settings identical. Specifically, here we show the best-fit
values and 95% CL intervals for global fits based on linear EFT calculations. We provide
the results corresponding to the 50 coefficients listed in table 5 (except for c``, which is set
to zero by the EWPOs) of which 36 are independent fit parameters. We will further discuss
the physical interpretation of these results in section 5, here we only aim to establish that
the two methods indeed lead to equivalent results.

The comparison of figure 4 demonstrates that in general the two methods are in excellent
agreement, both in terms of best-fit values and of the corresponding uncertainties. This
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Figure 4. The best-fit values and 95% CL intervals for a global fit based on linear EFT calculations,
comparing the outcome of the NS and MCfit methods. We display the results corresponding to the
50 coefficients listed in table 5 (except for c`` = 0), of which 36 are independent fit parameters. The
bottom panel displays the magnitude of the 95% CL intervals.

said, for specific coefficients one observes small differences, with MCfit in general tending to
provide somewhat looser bounds. The reason for this behaviour is that optimisation-based
methods such as MCfit can be distorted by fitting inefficiencies, such as when the optimiser
finds a local, rather than global, minimum. This phenomenon is further illustrated in
figure 5, which compares the χ2 distributions evaluated over replicas and posterior samples
in the MCfit and NC methods respectively. We observe that the MCfit distribution exhibits
broader tails, implying that the bounds obtained this way might in some cases be slightly
over-conservative.

Figure 4, as well as the corresponding benchmark comparison for fits based on quadratic
EFT calculations, demonstrates that results obtained with either NS or MCfit are statistically
equivalent. In the rest of this work, we will adopt NS as the baseline method, since its not
affected by potential inefficiencies in the minimisation procedure and, as discussed above,
can produce global fits within a reasonable execution time.
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Figure 5. Comparison of the χ2 distributions evaluated over replicas and posterior samples in
global linear EFT fits based on the MCfit and NC methods, respectively. The corresponding 95%
CL intervals on the EFT coefficients are displayed in figure 4.

4.5 Principal Component Analysis

Principal Component Analysis (PCA) represents a valuable tool to identify the combinations
of degrees of freedom that exhibit the largest and smallest variabilities in a linear algebra
problem. This identification has many applications, for instance, a large gap in variability
suggests that the effective dimensionality of the problem is smaller than the nominal one, and
thus dimensional reduction methods are advantageous to simplify the solution. Furthermore,
directions in the parameter space with very small variability are difficult to constrain from
data and are identified with flat directions. Such flat directions might compromise the
reliability of the obtained results i.e. in Hessian EFT fits.3

Here we apply the PCA technique combined with Singular Value Decomposition (SVD)
to global fits based on linear EFT calculations. The goal is to ascertain the presence of
possible flat directions, identify large gaps in variability between the principal components,
and determine the relation between the physical fitting basis and these principal components.
The starting point is the expression for the cross-section as a function of the EFT coefficients,
eq. (3.8), truncated at the linear order,

σ(th)
m (c) = σ(sm)

m +
nop∑
i=1

ciσ
(eft)
m,i , m = 1 . . . , ndat , (4.16)

where recall that we have set Λ = 1TeV. We then define a matrix K of dimensions
ndat × nop and (dimensionless) components Kmi = σ

(eft)
m,i /δexp,m, where δexp,m is the same

3The PCA method can also be exploited to efficiently carry out linear SMEFT fits [141].
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Figure 6. The distribution of singular values λi (the elements of the diagonal of the matrix W ), for
the principal components evaluated for the global fit settings summarised in tables 5 and 14. In the
linear EFT approximation where the PCA analysis is carried out, there exist three flat directions
(with vanishing singular values) associated to the four-heavy operators.

total experimental error that appears in the evaluation of the Fisher information matrix
eq. (3.10). By means of SVD, we can decompose this matrix K as

K = UWV † , (4.17)

where U (V ) is a ndat × ndat (nop × nop) unitary matrix and W is an ndat × nop diagonal
matrix with semi-positive real entries, called the singular values, which are ordered by
decreasing magnitude. The larger a singular value, the higher the variability of its principal
component and the higher the likelihood that this component will be well constrained from
the fit.

The elements of the symmetric matrix V in eq. (4.17) contain the principal components
associated to each of the nop singular values. These correspond to a linear superposition of
the original coefficients, that is, we have that

PCk =
nop∑
i=1

akici , k = 1, . . . , nop ,

( nop∑
i=1

a2
ki = 1 ∀k

)
(4.18)

where the larger the value of the squared coefficient a2
kl, the larger the relative weight of

the associated EFT coefficient in this specific (normalised) principal component. By means
of the matrix V (and its inverse), one can rotate between the original fitting basis and the
one defined by the principal components.

Figure 6 displays the singular values λi, that is, the elements of the diagonal matrix
W in the decomposition of eq. (4.17), for the nop = 36 principal components associated to
the global fit settings summarised in tables 5 and 14. From the definition of the matrix
K, a singular value λi ' 1 corresponds to a direction in the parameter space where the
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Figure 7. Heat map displaying the values of the squared coefficients a2
ki that relate the original

fitting basis to the principal components, eq. (4.18), whose associated singular values were reported
in figure 6. For the entries with a2

ki ≥ 0.1 we also indicate the corresponding numerical value.

magnitude of the (linear) EFT corrections is of the same size as the associated experimental
uncertainties. We observe that there are three flat directions (principal components with
vanishing singular value), which as shown below can be associated to linear combinations of
the four-heavy operators. Except for these three flat directions, there are no large hierarchies
in the distribution of singular values, indicating that the physical dimensionality of our
problem coincides with that of the chosen fitting basis. The principal component with
the highest singular value is dominated by the bosonic operator cϕD, which modifies the
Higgs-gauge interactions and is well constrained by the EWPOs.

Then figure 7 displays a heat map with the values of the (squared) coefficients a2
ki

that relate the original fitting basis to the principal components, eq. (4.18), and whose
associated eigenvalues are displayed in the upper panel. For those entries with a2

ki ≥ 0.1
we also indicate the corresponding numerical value. Since the principal components are
normalised, the sum of the entries associated to a given row in the heat map adds up to
unity. Note also that in this table we have chosen the purely bosonic coefficients cϕWB and
cϕD to represent the two directions that are left unconstrained by the EWPOs, see the
discussion in section 2.1.
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From figure 7 one can observe that some principal components (PCk) are dominated
by a single EFT coefficient from the fitting basis. Examples of this are cϕD (for k = 1), cϕG
(k = 2), cϕB (k = 3), ctG (k = 4), and c3,1

Qq (k = 7). These PCs have associated reasonably
large singular values, λk & 10, and therefore one expects that the corresponding coefficients
will be well constrained from the fit. Other principal components are instead composed
by a superposition of two or at most three coefficients, for instance cϕWB and c

(3)
ϕQ are

combined into PC14 and PC15 with similar weight each. On the other hand, several PCs
arise instead from the combination of a large number of EFT coefficients without any of
them dominating. This is the case e.g. for PCs associated to combinations involving of the
two-light-two-heavy operators, such k = 22, 23 and 25, where no single squared coefficient
a2
ki is larger than 0.4.

The three flat directions (vanishing singular values) observed in figure 6 can be
traced back to linear combinations for four-heavy operators, specifically to the following
combinations:

PC34 = 0.91c1
QQ − 0.42c1

tt ,

PC35 = 0.62c1
Qt − 0.56c8

Qt + 0.49c8
QQ , (4.19)

PC36 = 0.78c1
Qt − 0.50c8

QQ + 0.38c8
tQ ,

where we don’t indicate the contributions with a2
ki < 0.1. This implies that, in a linear EFT

fit, one can only constrain two directions out of the five four-heavy operators considered.
These flat directions disappear only once we consider the quadratic corrections to the tt̄tt̄
and tt̄bb̄ cross-sections.

The results of this PCA indicate that our choice of fitting basis, summarised in table 5,
represents a sensible option for which well-defined constraints will be obtained from the
fit, up to the previous caveat concerning the four-heavy operators. Therefore, in our case
there is no advantage in carrying out the fit in the rotated basis spanned by the principal
components eq. (4.18) rather than in the original one. Furthermore, the lack of large
hierarchies in the distribution of singular values reflects the fact that the true dimensionality
of the problem coincides with that of the original basis.

While for the global dataset genuine flat directions are either absent or removed by
quadratic corrections, this might not be in general the case if we consider fits to reduced
datasets. In such scenario, one could consider deploying the PCA method to reduce
the dimensionality of the EFT parameter space by removing the directions with singular
values below some threshold before inverting back to the physical basis. We note that a
similar strategy has been successfully applied to construct compressed Hessian PDF sets
in [142, 143]. However, in this work we use PCA as a diagnosis tool to guide the selection
of the fitting basis, and postpone to future work its application to carry out EFT fits in the
PC rotated basis.

5 Results

We now present the main results of this work: the determination of the best-fit values,
confidence level intervals, and posterior probability distributions associated to the nop = 50
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EFT coefficients (of which 36 are independent) listed in table 5 from the global interpretation
of Higgs, top quark, and diboson cross-section measurements. As motivated in section 4,
the results shown here have been obtained with the NS approach, and we have verified that
equivalent results are obtained with the MCfit method.

First of all, we discuss the quality of the fit, both for the total and for individual
datasets. Second, we present the bounds and posterior probability distributions for the
various EFT coefficients, assess their consistency with the SM hypothesis, and determine
their pattern of cross-correlations. Third, we study the dependence of our results on the
choice of input dataset, in particular with fits based only on top or Higgs data, as well as
on that of the theory settings, where the impact of the NLO QCD corrections to the EFT
cross-sections is quantified. Finally, we present EFT fits in the top-philic scenario, where
the parameter space is restricted by constraints motivated by specific UV-complete models.
The comparison between SM and SMEFT theory predictions with the experimental dataset
used as input to the fit is then collected in appendix A.

5.1 Fit quality

To begin with, we investigate the quality of the fit in terms of the χ2 values for the individual
datasets as well as for the global one. The values that will be provided here correspond to
a modified version of eq. (4.1), specifically

χ2 ≡ 1
ndat

ndat∑
i,j=1

(〈
σ

(th)
i

(
c(k)

)〉
− σ(exp)

i

)
(cov−1)ij

(〈
σ

(th)
j

(
c(k)

)〉
− σ(exp)

j

)
, (5.1)

where the average over the theory predictions is evaluated over the Nspl samples provided by
NS, and the covariance matrix is evaluated with the experimental definition [144]. Note that
in general the average over theory predictions does not correspond to the theory prediction
evaluated using the average value of the Wilson coefficients,〈

σ
(th)
i

(
c(k)

)〉
6= σ

(th)
i

(〈
c(k)

〉)
, (5.2)

due to the presence of the quadratic corrections to the EFT cross-sections.
With the figure of merit defined in eq. (5.1), we collect in tables 17 and 18 the values

of the χ2 per data point corresponding to the baseline settings of our analysis. We display
both the values based on the SM theory predictions as well as the best-fit SMEFT results
obtained with O

(
Λ−2) and O(Λ−4) calculations. Note that, for ease of reference, in these

tables each dataset has associated a hyperlink pointing to the original publication. For
those datasets for which more than one differential distribution is available, we indicate
the specific one used in the fit. Then table 19 presents the summary of these χ2 values
now indicating the total values for each group of processes as well as for the global dataset.
Furthermore, the results of tables 17 and 18 are graphically represented in figure 8.

Let us discuss first the χ2 results evaluated in terms of the groups of processes, listed in
table 19. One can observe that the global χ2 per data point decreases from 1.05 when using
SM theory to 0.98 (linear) and 1.04 (quadratic) once SMEFT corrections are accounted for.
Considering the fit quality to the various groups of processes, we find that the description of
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Dataset ndat χ2
SM

χ2
EFT χ2

EFT

O
(
Λ−2) O

(
Λ−4)

ATLAS_tt_8TeV_ljets_mtt (*) 7 2.95 2.46 2.71
ATLAS_tt_8TeV_dilep_mtt 6 0.09 0.12 0.12
CMS_tt_8TeV_ljets_ytt 10 0.91 1.19 1.05
CMS_tt2D_8TeV_dilep_mttytt 16 1.63 1.01 1.12
CMS_tt_13TeV_ljets_2015_mtt 8 0.94 0.72 0.97
CMS_tt_13TeV_dilep_2015_mtt 6 1.30 1.42 1.52
CMS_tt_13TeV_ljets_2016_mtt (*) 10 1.99 1.70 2.22
CMS_tt_13TeV_dilep_2016_mtt (*) 7 2.28 1.96 2.52
ATLAS_tt_13TeV_ljets_2016_mtt 7 0.99 1.81 1.02
ATLAS_CMS_tt_AC_8TeV 6 0.86 0.70 0.86
ATLAS_tt_AC_13TeV 5 0.03 0.32 0.26
ATLAS_WhelF_8TeV (*) 3 1.97 1.30 1.38
CMS_WhelF_8TeV 3 0.30 0.64 0.58
ATLAS_ttZ_8TeV 1 1.31 0.76 1.24
ATLAS_ttZ_13TeV 1 0.01 0.12 0.05
ATLAS_ttZ_13TeV_2016 1 0.001 0.35 0.10
CMS_ttZ_8TeV 1 0.04 0.19 0.05
CMS_ttZ_13TeV 1 0.90 0.17 0.41
CMS_ttZ_13TeV_pTZ 4 0.73 0.69 0.91
ATLAS_ttW_8TeV 1 1.33 0.47 1.22
ATLAS_ttW_13TeV 1 0.83 0.56 0.81
ATLAS_ttW_13TeV_2016 1 0.23 0.14 0.00
CMS_ttW_8TeV 1 1.54 0.68 1.43
CMS_ttW_13TeV 1 0.03 0.57 0.14
CMS_ttbb_13TeV (*) 1 4.96 2.65 6.66
CMS_ttbb_13TeV_2016 1 1.75 0.35 3.09
ATLAS_ttbb_13TeV_2016 1 0.91 1.68 0.55
CMS_tttt_13TeV 1 0.05 0.02 0.08
CMS_tttt_13TeV_run2 1 0.05 1.15 2.04
ATLAS_tttt_13TeV_run2 (*) 1 2.35 0.70 0.30

Table 17. The values of the χ2 per data point corresponding to the baseline settings of our analysis.
We indicate the results for the tt̄ datasets, both in inclusive production and in association with
vector bosons or heavy quarks. We display the SM values and then the best-fit SMEFT results
obtained in analyses based on theory predictions at either O

(
Λ−2) or O

(
Λ−4) accuracy. Each

dataset has a hyperlink pointing to the original publication. For those datasets for which more
than one differential distribution is available, we indicate the specific ones used in the fit. Datasets
indicated with (*) are excluded from the “conservative” EFT fit to be discussed in section 5.3.
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Dataset ndat χ2
SM/ndat

χ2
EFT/ndat χ2

EFT/ndat

O
(
Λ−2) O

(
Λ−4)

CMS_t_tch_8TeV_inc 2 0.29 0.17 0.21
ATLAS_t_tch_8TeV 4 0.89 0.71 0.66
CMS_t_tch_8TeV_diff_Yt 6 0.20 0.11 0.16
CMS_t_sch_8TeV 1 1.26 0.94 1.16
ATLAS_t_sch_8TeV 1 0.08 0.90 0.25
ATLAS_t_tch_13TeV 2 0.01 0.06 0.02
CMS_t_tch_13TeV_inc 2 0.35 0.24 0.35
CMS_t_tch_13TeV_diff_Yt 4 0.52 0.47 0.47
CMS_t_tch_13TeV_2016_diff_Yt 5 0.60 0.59 0.59
ATLAS_tZ_13TeV_inc 1 0.00 0.04 0.00
ATLAS_tZ_13TeV_run2_inc 1 0.05 0.07 0.01
CMS_tZ_13TeV_inc 1 0.66 0.36 0.64
CMS_tZ_13TeV_2016_inc 1 1.23 0.33 1.16
ATLAS_tW_8TeV_inc 1 0.02 0.01 0.05
ATLAS_tW_slep_8TeV_inc 1 0.13 0.15 0.11
CMS_tW_8TeV_inc 1 0.00 0.00 0.00
ATLAS_tW_13TeV_inc 1 0.52 0.55 0.47
CMS_tW_13TeV_inc (*) 1 3.79 3.49 4.33
ATLAS_CMS_SSinc_RunI 22 0.86 0.86 0.89
ATLAS_SSinc_RunII 16 0.54 0.55 0.54
CMS_SSinc_RunII 24 0.77 0.70 0.68
ATLAS_ggF_ZZ_13TeV 6 0.96 0.84 0.81
CMS_ggF_aa_13TeV 6 1.05 1.04 1.05
ATLAS_H_13TeV_2015_pTH 9 1.11 1.10 1.08
CMS_H_13TeV_2015_pTH 9 0.80 0.78 0.78
ATLAS_WH_Hbb_13TeV 2 0.10 0.07 0.15
ATLAS_ZH_Hbb_13TeV 3 0.50 0.41 0.30
ATLAS_WW_13TeV_2016_memu 13 1.64 1.64 1.67
ATLAS_WZ_13TeV_2016_mTWZ 6 0.81 0.81 0.80
CMS_WZ_13TeV_2016_pTZ 11 1.46 1.44 1.39
LEP_eeWW_182GeV 10 1.38 1.38 1.38
LEP_eeWW_189GeV 10 0.88 0.88 0.89
LEP_eeWW_198GeV 10 1.61 1.61 1.61
LEP_eeWW_206GeV 10 1.09 1.08 1.08

Table 18. Same as table 17 now for the single top datasets (inclusive and in association with
gauge bosons), the Higgs production and decay measurements (signal streghts and differential
distributions), and the LEP and LHC diboson cross-sections.
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Dataset ndat χ2
SM

χ2
EFT χ2

EFT

O
(
Λ−2) O

(
Λ−4)

tt̄ inclusive 83 1.46 1.32 1.42
tt̄ charge asymmetry 11 0.60 0.39 0.59
tt̄+ V 14 0.65 0.48 0.65
single-top inclusive 27 0.43 0.44 0.41
single-top +V 9 0.71 0.55 0.75
tt̄bb̄ & tt̄tt̄ 6 1.68 1.09 2.12
Higgs signal strenghts (Run I) 22 0.86 0.85 0.90
Higgs signal strenghts (Run II) 40 0.67 0.64 0.63
Higgs differential & STXS 35 0.88 0.85 0.83
Diboson (LEP+LHC) 70 1.31 1.31 1.30
Total 317 1.05 0.98 1.04

Table 19. Summary of the χ2 results listed in tables 17 and 18. We indicate the total values for
each group of processes as well as for the global dataset.
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Figure 8. Graphical representation of the results of tables 17 and 18, displaying the values of the
χ2 per data point, eq. (5.1) for the all datasets used as input in the fit. The χ2 values are shown
for the SM and for the two global SMEFT baseline fits, based on theory calculations at either the
linear O

(
Λ−2) or quadratic O(Λ−4) order in the EFT expansion.
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the inclusive top-quark pair cross-sections (without the AC data), composed by ndat = 83
data points, is improved once EFT corrections are accounted for with χ2 = 1.46 in the SM
decreasing to 1.32 and 1.42 in the linear and quadratic EFT fits respectively. For the rest
of the datasets, and in particular for the Higgs and diboson measurements, the overall EFT
fit quality is similar to that obtained using SM calculations.

Inspection of the χ2 values associated to individual datasets reported in tables 17
and 18, as well as their graphical representation from figure 8, reveals that in some cases the
agreement between the prior SM theoretical calculations and the data is poor. This is the
case, in particular, for some of the inclusive tt̄ datasets such as ATLAS_tt_8TeV_ljets_mtt
and CMS_tt_13TeV_dilep_2016_mtt, binned in terms of the top-quark pair invariant mass
distribution mtt̄, with χ2 = 2.95 and 2.28 for ndat = 7 points each. Such relatively high
values of the χ2 do not necessarily imply the need for some New Physics effects, but could
also be explained by issues with the modelling of the experimental systematic correlations in
differential distributions, as discussed for the ATLAS 8TeV lepton+jets data in [66, 73, 145].
Nevertheless, when all the inclusive tt̄ datasets are considered collectively, a value of
χ2

SM = 1.46 for the ndat = 83 data points in the fit is obtained. In section 5.3 we will assess
the stability of the global fit results by presenting fit variants with the individual datasets
that lead to a poor χ2 removed. We will also study variants where distributions sensitive to
the high energy behaviour of the EFT, such as mtt̄ in top quark pair production, have their
bins with mtt̄ & 1TeV removed from the fit.

Beyond the inclusive tt̄ datasets, there are some other instances of a sub-optimal
agreement between SM theory and data. In all cases, there exist comparable measurements
of the same process, either from the same experiment at a different center-of-mass energy√
s or from a different experiment at the same value of

√
s, for which the χ2 reveals good

consistency with the SM. These include CMS_ttbb_13TeV, when comparing with the same
measurement based on the full 2016 luminosity, and CMS_tW_13TeV_inc, where again the
ATLAS measurement at the same

√
s exhibit as good χ2. All in all, one finds a reasonable

description of the global input dataset when using SM cross-sections which is further
improved in the EFT fit.

For the rest of this section, when presenting the results of fits corresponding to variations
of the baseline settings, such as fits based on reduced datasets, we will only indicate the χ2

values associated to groups of processes using the same format as table 19, rather than to
individual datasets, and comment when required on the results for the latter.

5.2 Constraints on the EFT parameter space

Following this assessment of the fit quality, we move to present the constraints on the
SMEFT parameter space that can be derived from the present global fit. We will present
results for the nop = 50 Wilson coefficients listed in table 5, with the understanding that
only 36 of them are linearly independent.4 Specifically, we provide the 95% confidence level
intervals for each EFT coefficients, study their posterior probability distributions, evaluate

4We note that the EWPO constraints of eq. (2.6) set the four-lepton operator to zero, c`` = 0, and hence
we exclude this coefficient from the plots and tables of this section.
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Figure 9. The normalised posterior probability distributions associated to each of the nop = 50 fit
coefficients considered in the present analysis, for both the linear and quadratic EFT fits. Note that
the x-axis range is different in each case. From top to bottom and from left to right, we display
the four-heavy, two-light-two-heavy, two-fermion, and purely bosonic coefficients. Only 36 of these
coefficients are independent as indicated in table 5.

the pattern of their correlations, and compare the marginalised bounds with those obtained
in individual fits where only one coefficient is varied at a time. We will also assess the
overall consistency of the fit results with respect to the Standard Model hypothesis. The
results discussed here correspond to the global dataset with the baseline theory settings
for both O

(
Λ−2) and O(Λ−4) theory calculations. Fits based on either reduced datasets or

alternative theory settings are then discussed in sections 5.3 and 5.4 respectively.

Posterior distributions. Figure 9 displays the normalised posterior probability distribu-
tions associated to each of the nop = 50 fit coefficients considered in the present analysis, for
the linear (blue) and quadratic (orange) EFT fits. As discussed in section 4.3, the NS prior
sampling volumes have been optimised to ensure that the posterior distribution associated
to each coefficient is fully contained within them. One can observe how in general the
O
(
Λ−4) corrections modify significantly the distributions that is obtained from the linear

fits, for instance by shifting its median or by decreasing its variance. For several coefficients,
the posterior distributions would be poorly described in the Gaussian approximation, and
in some cases one finds multi-modal distributions such as for the Yukawa operators cϕc, cϕb,
and cϕτ . Such double-humped distributions can be traced back to the (quasi)-degenerate
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Figure 10. The best-fit (median) value of the EFT coefficients ci/Λ2 and their associated 95% CL
intervals for the global fits based on either linear or quadratic EFT calculations, whose posterior
distributions are represented in figure 9. The dashed horizontal line indicates the SM expectation.

minima in the individual χ2 profiles reported in figures 2 and 3. We can also observe
how the four-heavy coefficients can only be meaningfully constrained in the quadratic fit.
All in all, inclusion of the quadratic EFT corrections modifies in a significant manner the
posterior distributions associated to most of the fit coefficients as compared to the linear
approximation.

Confidence level intervals. From the posterior probability distributions displayed in
figure 9, one can derive the marginalised 95% CL intervals on the EFT coefficients both for
the linear and quadratic fits. These results are collected in table 20 (for Λ = 1TeV) and
represented graphically in figure 10. In addition, table 20 also includes the corresponding
obtained in individual NS fits, where only one operator is varied at a time and the rest are
set to their SM values (recall the χ2 profiles from figures 2 and 3). We will further discuss
the outcome of these individual fits below.

From the marginalised bounds displayed in figure 10, one can observe how the un-
certainties associated to the fit coefficients are in all cases reduced in the quadratic fit in
comparison to the linear one. The 95% CL interval is disjoint for the Yukawa coefficients cbϕ
and cτϕ in the quadratic fit, with both a SM-like solution and a second one far from the SM.
For the linear fit, we find that all EFT coefficients agree with the SM expectation at the 95%
CL level. For the quadratic fit instead, this is not the case only for the chromo-magnetic
operator ctG. We will trace back below the origin of this discrepancy, here we only point
out that at the level of individual fits ctG exhibits the same trend but there agrees with the
SM at the 95% CL as indicated in figure 3. We note that for unconstrained operators, such
as the four-heavy operators in the linear fit, the best-fit value (median) should be ignored
since the underlying posterior is essentially flat.
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Class DoF
95% CL bounds, O

(
Λ−2

)
95% CL bounds, O

(
Λ−4

)
,

Individual Marginalised Individual Marginalised

4H

cQQ1 [-6.132,23.281] [-190,189] [-2.229,2.019] [-2.995,3.706]
cQQ8 [-26.471,57.778] [-190,170] [-6.812,5.834] [-11.177,8.170]
cQt1 [-195,159] [-190,189] [-1.830,1.862] [-1.391,1.251]
cQt8 [-5.722,20.105] [-190,162] [-4.213,3.346] [-3.040,2.202]
ctt1 [-2.782,12.114] [-115,153] [-1.151,1.025] [-0.791,0.714]

2L2H

c81qq [-0.273,0.509] [-2.258,4.822] [-0.373,0.309] [-0.555,0.236]
c11qq [-3.603,0.307] [-8.047,9.400] [-0.303,0.225] [-0.354,0.249]
c83qq [-1.813,0.625] [-3.014,7.365] [-0.470,0.439] [-0.462,0.497]
c13qq [-0.099,0.155] [-0.163,0.296] [-0.088,0.166] [-0.167,0.197]
c8qt [-0.396,0.612] [-4.035,4.394] [-0.483,0.393] [-0.687,0.186]
c1qt [-0.784,2.771] [-12.382,6.626] [-0.205,0.271] [-0.222,0.226]
c8ut [-0.774,0.607] [-16.952,0.368] [-0.911,0.347] [-1.118,0.260]
c1ut [-6.046,0.424] [-15.565,15.379] [-0.380,0.293] [-0.383,0.331]
c8qu [-1.508,1.022] [-12.745,13.758] [-1.007,0.521] [-1.002,0.312]
c1qu [-0.938,2.462] [-16.996,1.072] [-0.281,0.371] [-0.207,0.339]
c8dt [-1.458,1.365] [-5.494,25.358] [-1.308,0.638] [-1.329,0.643]
c1dt [-9.504,-0.086] [-27.673,11.356] [-0.449,0.371] [-0.474,0.347]
c8qd [-2.393,2.042] [-24.479,11.233] [-1.615,0.888] [-1.256,0.715]
c1qd [-0.889,6.459] [-3.239,34.632] [-0.332,0.436] [-0.370,0.384]

2FB

ctp [-1.331,0.355] [-5.739,3.435] [-1.286,0.348] [-2.319,2.797]
ctG [0.007,0.111] [-0.127,0.403] [0.006,0.107] [0.062,0.243]
cbp [-0.006,0.040] [-0.033,0.105] [-0.007,0.035]∪ [-0.403,-0.360] [-0.035,0.047]∪ [-0.430,-0.338]
ccp [-0.025,0.117] [-0.316,0.134] [-0.004,0.370] [-0.096,0.484]
ctap [-0.026,0.035] [-0.027,0.044] [-0.027,0.040]∪ [0.395,0.462] [-0.019,0.037]∪ [0.389,0.480]
ctW [-0.093,0.026] [-0.313,0.123] [-0.084,0.029] [-0.241,0.086]
ctZ [-0.039,0.099] [-15.869,5.636] [-0.044,0.094] [-1.129,0.856]
cpl1 [-0.664,1.016] [-0.244,0.375] [-0.281,0.343] [-0.106,0.129]
c3pl1 [-0.472,0.080] [-0.098,0.120] [-0.432,0.062] [-0.209,0.046]
cpl2 [-0.664,1.016] [-0.244,0.375] [-0.281,0.343] [-0.106,0.129]
c3pl2 [-0.472,0.080] [-0.098,0.120] [-0.432,0.062] [-0.209,0.046]
cpl3 [-0.664,1.016] [-0.244,0.375] [-0.281,0.343] [-0.106,0.129]
c3pl3 [-0.472,0.080] [-0.098,0.120] [-0.432,0.062] [-0.209,0.046]
cpe [-1.329,2.033] [-0.487,0.749] [-0.562,0.687] [-0.213,0.258]
cpmu [-1.329,2.033] [-0.487,0.749] [-0.562,0.687] [-0.213,0.258]
cpta [-1.329,2.033] [-0.487,0.749] [-0.562,0.687] [-0.213,0.258]
c3pq [-0.472,0.080] [-0.098,0.120] [-0.432,0.062] [-0.209,0.046]
c3pQ3 [-0.350,0.353] [-1.145,0.740] [-0.375,0.344] [-0.615,0.481]
cpqMi [-2.905,0.490] [-0.171,0.106] [-2.659,0.381] [-0.060,0.216]
cpQM [-0.998,1.441] [-1.690,11.569] [-1.147,1.585] [-2.250,2.855]
cpui [-1.355,0.886] [-0.499,0.325] [-0.458,0.375] [-0.172,0.142]
cpdi [-0.443,0.678] [-0.162,0.250] [-0.187,0.229] [-0.071,0.086]
cpt [-2.087,2.463] [-3.270,18.267] [-3.028,2.195] [-13.260,3.955]

B

cpG [-0.002,0.005] [-0.043,0.012] [-0.002,0.005] [-0.019,0.003]
cpB [-0.005,0.002] [-0.739,0.289] [-0.005,0.002]∪ [0.085,0.092] [-0.114,0.108]
cpW [-0.018,0.007] [-0.592,0.677] [-0.016,0.007]∪ [0.281,0.305] [-0.145,0.303]
cpWB [-2.905,0.490] [-0.462,0.694] [-2.659,0.381] [-0.170,0.273]
cpd [-0.428,1.214] [-2.002,3.693] [-0.404,1.199]∪ [-34.04,-32.61] [-1.523,1.482]
cpD [-4.066,2.657] [-1.498,0.974] [-1.374,1.124] [-0.516,0.425]
cWWW [-1.057,1.318] [-1.049,1.459] [-0.208,0.236] [-0.182,0.222]

Table 20. The 95% CL bounds for all the EFT coefficients considered in this analysis, for both
individual and global (marginalised) fits obtained using either linear or quadratic EFT calculations.
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Figure 11. The magnitude of the 95% CL intervals (top) and the value of the 68% CL residuals
compared to the SM hypothesis (bottom panel) corresponding to the global fit results displayed in
figure 10. In the upper plot, the dashed horizontal line indicates the maximum prior volume used
for the sampling of unconstrained coefficients.

The global fit results of figure 10 are further scrutinized in figure 11, which displays
both the magnitude of the 95% CL intervals and the 68% CL residuals compared to
the SM hypothesis associated to the linear and quadratic EFT fits. In the upper panel,
the horizontal line indicates the boundaries of the sampling volume used for the poorly-
constrained coefficients as explained in section 4.3. From these comparisons, one can observe
how the inclusion of quadratic corrections leads to markedly more stringent bounds for most
of the fit coefficients, a trend which is specially significant for the four-heavy (unconstrained
in the linear fit) and two-light-two-heavy operators which modify the properties of the top
quark. The only exception is the charm Yukawa coefficient cϕc, since there the quadratic
corrections introduce a second degenerate solution thus enlarging the magnitude of the
CL interval.
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Figure 12. The (normalised) distribution of the fit residuals shown in the bottom panel of figure 11.

The 68% CL residuals displayed in the bottom panel of figure 11 are defined by

R(ci) ≡
(ci|EFT − ci|SM)

δci
, i = 1, . . . , nop , (5.3)

with ci|EFT being the median of the posterior distribution from the EFT fit, ci|SM = 0,
and δci is the total fit uncertainty for this parameter. We can observe that |R(ci)| . 1 for
most of the fit coefficients, both for the linear and quadratic cases. The only exception
is ctG, where a residual of R(ctG) ' 3.5 is found in the quadratic fit. Nevertheless, for a
large enough number of EFT coefficients one would expect a fraction of these residuals to
be larger than unity, even if the SM is the underlying theory. Figure 12 then displays the
normalised distribution of these fit residuals. While these coefficients are correlated among
them (see the following discussion) and thus cannot be treated as independent variables,
the shapes of these distributions are reasonably close to a Gaussian, specially for the linear
fit, highlighting again the overall consistency of the fit results with the SM expectations.

Correlations. The correlation coefficient between any two fit coefficients ci and cj can
be evaluated as follows,

ρ(ci, cj) =

(
1

Nspl

∑Nspl
k=1 c

(k)
i c

(k)
j

)
− 〈ci〉〈cj〉

δciδcj
, i, j = 1, . . . , nop , (5.4)

where Nspl denotes the number of samples produced by NS, 〈ci〉 indicates the mean value of
this coefficient, and, as in eq. (5.3), δci is the corresponding uncertainty (standard deviation).
The values of eq. (5.4) are displayed in figure 13 separately for the linear and quadratic fits.
We display only the numerical values for the pair-wise coefficient combinations for which
the correlation coefficient is numerically significant, |ρ(ci, cj)| ≥ 0.5. The pairs (ci, cj) that
do not appear in figure 13 have a correlation coefficient below this threshold.
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Figure 13. The correlation coefficients ρ(ci, cj) between the EFT coefficients in the linear (left)
and quadratic (right panel) fits. We only display the entries with significant (anti)-correlation,
|ρ| ≥ 0.5. Pairs of coefficients (ci, cj) that do not displayed here have a correlation coefficient below
this threshold.

We observe how the majority of the fit coefficients are loosely correlated among them,
that is, their correlations being |ρ| ≤ 0.5. One also finds that while several of the two-light-
two-heavy coefficients turn out to be strongly correlated at the linear EFT level, this pattern
disappears once the quadratic corrections are accounted for. Concerning the two-fermion
operators, the correlation patterns present at the linear level are also often reduced in the
quadratic fits. For instance, ctZ displays a strong correlation with cϕB at the linear level
which is then washed out by the quadratic effects. The purely bosonic operators exhibit in
general more stable correlations, for example cϕWB is strongly anti-correlated with cϕD in
a manner which is similar in the linear and the quadratic fits. Furthermore, we do not find
any pair of fit coefficients where the quadratic corrections flip the sign of their correlation.

In general, from figure 13 one can conclude that only a moderate subset of Wilson
coefficients end up being strongly (anti-)correlated among them after the fit, specially so
once quadratic EFT corrections are taken into account. This finding is partially explained
by our wide input dataset, which makes possible constraining independently most if not all
the EFT degrees of freedom.

For completeness, appendix C provides the correlation matrices for the complete set of
operators considered in this analysis.

Individual fits. As motivated in section 4.2, individual (one-parameter) fits have several
useful applications. These include representing a benchmark reference for the global fit
results, where the obtained bounds can only loosen as compared to one-parameter fits.
The 95% CL bounds associated to the one-parameter linear and quadratic EFT fits were
reported in table 20, and the corresponding graphical comparison with the marginalised
global fit results is displayed in figure 14. While the expectation is that individual bounds
are comparable or more stringent than the marginalised ones, this property does not
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Figure 14. Comparison of the magnitude of 95% CL intervals in the global (marginalised) and
individual fits at the linear (top) and quadratic (bottom) level, see also table 20.

necessarily hold for the coefficients constrained by the EWPOs, for which an individual fit
is not meaningful. Indeed, one-parameter fits are ill-defined in the case of the coefficients
constrained by EWPOs since these coefficients cannot be determined independently from
each other. Hence the comparison between marginalised and individual bounds is only
meaningul for the 34 independent coefficients listed in table 5.

Considering first the results of the linear analysis, one can observe how for the fitted
degrees of freedom the individual bounds are tighter (or at most comparable) than the
marginalised ones by a large amount, around a factor ten or more in most cases. These
differences are particularly striking for some of the two-fermion operators, in particular
for ctZ , as well as for bosonic operators such as cϕB and cϕW , for which the differences
between the individual and marginalised results can be as large as two orders of magnitude.
Specifically, in the cases of ctZ and cϕB, the 95% CL intervals found in the linear EFT
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analysis are increased as follows when going from the individual to the marginalised fits:

ctZ : [−0.04, 0.10] (individual) vs [−17, 5.6] (marginalised) ,
cϕB : [−0.005, 0.002] (individual) vs [−0.7, 0.3] (marginalised) .

This effect clearly emphasizes the importance of adopting a fitting basis as wide as possible,
in order to avoid obtaining artificially stringent bounds simply because one is being blind
to other relevant directions of the parameter space. One important exception of this rule
would be those cases where one is guided by specific UV-complete models, which motivate
the reduction in the parameter space to a subset of operators. We also note that the triple
gauge operator cW is one of the few coefficients whose individual and marginalised bounds
are identical: this can be traced back to the fact that this operator is very weakly correlated
with other coefficients (see also figure 13), being constrained exclusively by the diboson data.

Inspection of the corresponding results from the quadratic fits, bottom panel of figure 14,
reveals that the differences between individual and marginalised bounds are in general
smaller as compared to the linear case. This effect is particularly visible for the two-
light-two-heavy and the four-heavy operators, for which one finds that the individual fits
underestimate the magnitude of the 95% CL interval by around a factor two on average,
rather than by a factor 10 as in the linear case. The situation is instead similar to the
linear fits for the two-fermion and the purely bosonic operators, and for example now also
for ctZ , cϕB and cϕW one finds large differences between marginalised and individual fits.
One should point out, however, that even on those cases where the magnitude of the bound
does not vary much, the central best-fit values can still shift in a non-negligible manner.

Two-parameter fits. To complement the insights provided by individual fits, it can also
be instructive to carry out two-parameter fits, specially to investigate the relative interplay
between specific pairs of EFT coefficients. In such fits, two coefficients are allowed to
vary simultaneously while the rest are set to zero. To illustrate the information that can
be provided by such two-parameter fits, figure 15 displays representative results for fits
performed at the linear order. We display the 95% CL ellipses obtained when different
subsets of data are used as input, as well as for the complete dataset, labelled as “All Data
(2D)”. For reference, we also show here the marginalised bounds obtained from the global fit.

To begin with, the upper panels of figure 15 display two-parameter fits for the three
possible pair-wise combinations of the ctϕ, ctG, and cϕG coefficients, which connect Higgs
production in gluon fusion with top quark pair production, see also the Fisher information
table of figure 1. These comparisons illustrate the relative impact of the various dataset
in constraining each coefficient. For example, from the (ctϕ, ctG) fit we see that the
sensitivity of ctG is driven by tt̄ data, while the Higgs differential measurements have a flat
direction resulting in a elongated ellipse. The overlap between tt̄ data and Higgs differential
measurements results in similar constraints as compared to those provided by the Higgs
signal strengths alone. Note that, as in the case of the individual fits reported in figure 14,
also for two-parameter fits the obtained bounds are more stringent as compared to the
global marginalised results. Similar considerations apply to the (cϕG, ctG) fit, while from
the (cϕG, ctϕ) one learns that the sensitivity is still dominated by the Higgs signal strengths
rather than by the differential cross-section measurements.
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Figure 15. Representative results for two-parameter fits carried out at linear order in the EFT.
We display the 95% CL ellipses obtained for different data subsets and for the complete dataset,
labelled as “All Data (2D)”. For reference, we also show the marginalised bounds obtained in the
global fit. The black square in the center of the plot indicates the SM value.

Then the bottom panels of figure 15 display two-parameter fits involving the two-light-
two-heavy coefficients c1,8

Qq, c
3,8
Qq, c8

tu, c8
td, and c8

tq, all of which are constrained mostly from
top quark pair differential distributions as indicated by the Fisher information matrix. Here
the scope is to illustrate the relative sensitivity provided by some of the tt̄ datasets that
enter the fit: single-inclusive mtt̄ distributions, the double-differential (mtt̄, ytt̄) distributions,
and tt̄V measurements. The results confirm both that the mtt̄ distributions completely
dominate the fit of these coefficients, and that the marginalised CL ellipses are rather
broader than for the two-dimensional fits. The latter is again in agreement with the results
of the individual linear fits, reported in the upper panel of figure 14.

5.3 Dataset dependence

The discussion so far has focused on the output of the global fits obtained for the baseline
dataset summarised in tables 7 to 10. Here we aim to assess the dependence of these results
with respect to the choice of input dataset. With this purpose, we consider here fits for the
following variations:

• A fit which includes only top quark measurements. This fit makes possible quantifying
the interplay between the top and the Higgs data in the global fit.

– 62 –



J
H
E
P
1
1
(
2
0
2
1
)
0
8
9

• A fit which includes only Higgs boson production and decay data, which provides
complementary information as compared to the top-only fit.

• A fit which includes only top quark measurements, but now restricted to the same
dataset as in our original study from [7]. This comparison allows one to assess the
impact in the top-only EFT fit of the new LHC top quark measurements that have
become available in the last two years.

• A fit where the diboson data is removed, to determine how much weight the diboson
cross-sections carry in the global fit results.

• A fit where all high-energy bins, defined as those bins probing the region E & 1TeV,
are removed. The motivation for such a fit is to study how important are the
constraints provided by the high-energy region in the global fit results, which in turn
is an important input to establish the validity of the EFT approximation.

• A fit where those datasets displaying poor agreement with the SM cross-sections
are removed. Specifically, here one removes the datasets whose χ2 differs by more
than 3σ from their statistical expectation assuming the SM hypothesis. While such
disagreements between data and SM theory could very well indicate hints of BSM
physics, they can also be explained by for example issues with the experimental
correlation models. Hence, this fit allows us to verify to which extent the baseline
results are driven from the datasets that disagree the most with the SM predictions.
The datasets indicated with (*) in tables 17 and 18 are those excluded from this
“conservative” EFT fit.

Note that, as explained in section 3, for the purposes of categorisation into datasets the tt̄h
cross-sections are considered part of the Higgs measurements. Furthermore, we note that
all these fits are based on quadratic EFT calculations and that the constraints provided by
the EWPOs on the EFT parameter space are always accounted for.

To begin with, table 21 collects the values of the χ2 per data points for EFT fits obtained
from variations of the input dataset. We list the results of the various fits described above:
including only top quark measurements (either from the current or the 2018 dataset); with a
Higgs-only dataset; without the diboson cross-sections; with the high-energy bins excluded;
and with the datasets with a poor χ2

sm excluded. The numbers in parentheses indicate the
number of data points, in the case that these are different from those of the baseline settings
listed in the second column. We observe how the description of the Higgs cross-sections is
essentially unaffected in these fits with reduced datasets. Concerning the total χ2 for the
top data, we see that it is stable in the fit where the high-energy bins are removed, but that
is markedly improved (from 1.10 to 0.82) in the fit where the datasets with poor χ2

sm are
excluded and the number of top-quark points in the fit decreases from ndat = 150 to 123.

Then in figure 16 we compare the magnitude of the 95% CL bounds, same as in
the upper panel of figure 11, between the global fit results with those obtained in the
top-only and Higgs-only fits. As mentioned above, these fits allow us to assess the interplay
between the top and the Higgs data in the global analysis, in other words, to identify
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Dataset ndat χ2
SM

χ2
eft

baseline top-only top-only Higgs-only diboson high-E poor χ2
sm

(2021) (2018) excluded excluded excluded

tt̄ incl. 83 1.46 1.42 1.44 1.52 (63) — 1.42 1.40 (67) 0.95 (67)

tt̄ charge asym. 11 0.60 0.59 0.58 — — 0.60 0.58 0.56

tt̄V 14 0.65 0.65 0.69 0.64 (8) — 0.65 0.72 0.68

single-t incl. 27 0.43 0.41 0.40 0.36 (22) — 0.41 0.41 0.46

tV 9 0.71 0.75 0.65 0.76 (6) — 0.75 0.80 0.31 (8)

tt̄QQ̄ 6 1.68 2.12 2.29 4.73 (2) — 2.12 2.40 1.54 (4)

Top total 150 1.10 1.09 1.10 1.22 (101) — 1.09 1.06 (134) 0.82 (123)

Higgs µfi (RI) 22 0.86 0.90 — — 0.90 0.89 0.89 0.89

Higgs µfi (RII) 40 0.67 0.63 — — 0.63 0.62 0.63 0.62

Higgs STXS 35 0.88 0.83 — — 0.82 0.83 0.83 0.83

Higgs total 97 0.78 0.76 — — 0.76 0.76 0.76 0.76

Diboson 70 1.31 1.30 — — — — 1.31 1.30

Total ndat 317 317 317 150 101 97 247 301 287

Total χ2 — 1.05 1.04 1.10 1.22 0.75 0.96 1.02 0.89

Table 21. Same as table 19 for EFT fits obtained from variations of the baseline dataset. We list
the results of the following fits: including only top quark measurements (either for the 2018 or the
current dataset); a Higgs-only dataset; without the diboson cross-sections; with the high-energy
bins excluded; and with the datasets with a poor χ2

sm excluded. In all cases, the quadratic EFT
corrections are accounted for. The numbers in parentheses indicate the number of data points, in
the case that these are different from those of the baseline settings (listed in the second column).

what are the main benefits of the simultaneous mapping of the EFT parameter space as
compared to carrying out separate fits to each group of processes. First of all, we note
that the global fit bounds are more stringent for all the EFT coefficients than in either
the top-only or Higgs-only fit, highlighting the overall consistency of the two datasets.
Secondly, the cross-talk of the top and Higgs data is found to be most relevant for the
two-fermion coefficients cϕt and c(−)

ϕQ , whose bounds are improved by around a factor 2 in
the global fit as compared to the top-only fit. Another operator that benefits from the
global fit is cϕG, which is unconstrained in the top-only fit but whose bound in the global
fit is clearly improved as compared to the Higgs-only fit. These comparisons show how by
breaking degeneracies one gains information in the global fit as compared to the partial
ones, sometimes in unexpected directions in the parameter space such as for cϕG in this
case. The bottom panel of figure 16 also indicates that in a Higgs-only fit a large number
of EFT coefficients are poorly constrained, in particular those involving fermion bilinears.

Next, figure 17 displays a similar comparison as in figure 16 now comparing first the
outcome of the global fit with that of a fit where the diboson cross-sections have been
removed, and second comparing two top-only fits, namely the fit displayed in the upper
panel of figure 16 with a fit based on the same dataset as our previous study from [7].
The fit without diboson data demonstrates that the constraints provided by the diboson
cross-sections are negligible in comparison with those provided by the Higgs data (and the
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Figure 16. Same as upper panel of figure 11 now comparing the global fit results with those
obtained in a top-only (upper) and Higgs-only (lower panel) fits.

EWPOs) for all coefficients considered in the fit, except for the triple gauge operator cW .
This result is consistent with the Fisher information analysis of figure 1, and indicates that,
apart from cW , the diboson data does not provide competitive information on the EFT
parameter space in the context of a global fit.

The comparison of the two top-only fits in the bottom panel of figure 17 illustrates how
for all coefficients the bounds are improved thanks to the more recent LHC measurements.5
The improvement is consistent across the board, quantifies the additional information
brought in by the new top-quark cross-section measurements (see table 21), and confirms
that the broader and more diverse the input dataset is, the more stringent the resulting
constraints on the EFT parameter space that will be obtained.

To continue with this discussion of the dataset dependence of our results, we consider
now the outcome of two more fits: first, one where the datasets exhibiting poor agreement
with the SM predictions are excluded, and second, another where all bins sensitive to the

5Recall that now we consider the top Yukawa coefficient ctϕ as part of the Higgs dataset.
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Figure 17. Same as figure 16, now comparing the global fit with a no-diboson fit (upper) and the
two top-only fits with different datasets (lower panel).

high-energy region, defined as E & 1TeV, are removed. The best-fit values and 95% CL
intervals of these two fits are compared with the baseline results in figure 18. As indicated in
table 21, in the fit where those datasets with poor χ2

sm have been removed, one is essentially
cutting away 27 points from top quark production, mostly from the inclusive tt̄ category.
The only coefficients that are affected by this reduction in the dataset are some of the
two-light-two-heavy operators, whose bounds are mildly enlarged consistently with the
loss of experimental information. This comparison highlights the stability of the global fit
results, whose outcome is unchanged when potentially problematic datasets with high χ2

sm
are excluded from the fit. Concerning the outcome of the fit without the high-energy bins,
as expected the only differences are observed again for the two-light-two-heavy coefficients,
with a similar outcome as in the previous fit. From this analysis, one can conclude that
the global fit is not dominated by the high-energy regions where the EFT validity could be
questioned, and hence that results are stable upon removal of these high-energy bins.
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Figure 18. Same as figure 10 comparing the global fit results with those of the fit excluding datasets
with poor χ2

sm (upper) and with the fit where the bins with E & 1TeV are removed (bottom panel).

Finally, we show in figure 19 a comparison of the outcome of quadratic EFT fits
with and without the CMS top-quark pair double-differential (mtt̄, ytt̄) distributions. We
have identified this dataset as the one being responsible for driving upwards the fit value
of the chromo-magnetic operator ctG. Indeed, one can observe how once this dataset is
removed then ctG agrees with the SM at the 95% CL. Given that both in the global
linear and the individual quadratic fits ctG also agrees with the SM (even in fits where
CMS_tt2D_8TeV_dilep_mttytt is included), the pull found in the global quadratic case
must arise from a non-trivial interplay between different EFT degrees of freedom. Further
studies are required to elucidate why this specific dataset has such as strong pull on ctG in
the quadratic fits.

5.4 Impact of NLO QCD corrections in the EFT cross-sections

In addition to the choice of input dataset, another important factor that determines the
outcome of a global analysis such as the present one is the accuracy of the EFT theoretical
calculations. Here we assess the role played at the level of the fit results by the inclusion of
NLO QCD corrections to the EFT cross-sections, both in the linear and in the quadratic
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Figure 19. The outcome of quadratic EFT fits with and without the CMS top-quark pair double-
differential (mtt̄, ytt̄) distributions.

fits. As indicated in table 15, our baseline fit includes these NLO corrections to the EFT
calculations whenever available, so now we switch them off deliberately to quantify how
much they affect the fit outcome.6 In the following, the theoretical predictions for the SM
cross-sections, based on the state-of-the-art calculations, remain unchanged, and only the
EFT ones are modified as compared to the baseline settings. First of all, table 22 compares
the values of the χ2 for the various groups of processes in quadratic fits with and without
NLO QCD corrections to the EFT cross-sections, as well as for the associated SM results.
One can observe how the overall fit quality is similar whether or not NLO QCD effects are
not accounted for. Nevertheless, as will be discussed next, this does not imply that the fit
posterior distributions are likewise unchanged.

Figures 20 and 21 then display the posterior probability distributions and the corre-
sponding 95% CL intervals for the Wilson coefficients, comparing the results of linear and
quadratic fits respectively with and without NLO corrections to the EFT cross-sections.
Scrutinizing first the linear fit results collected in figure 20, one can observe that these
posterior distributions can be severely distorted when LO EFT calculations are used as
compared to the baseline, for instance in terms of a shift in the best-fit values and/or
due to an increase in the width of the Gaussian distributions. Also in the LO linear fit,
all considered coefficients agree with the SM expectation at the 95% CL. Note that the
two-light-two-heavy singlet operators do not interfere with the SM at LO, and hence the
corresponding coefficients turn out to be unconstrained in the linear LO fit. Remarkably,
for several fit coefficients such as ctZ , cϕB, and cW , one finds that a marked improvement
in the obtained bounds is achieved upon the inclusion of the NLO QCD corrections to the
EFT cross-sections. One would conclude that, at least in the global linear EFT fit, the
inclusion of NLO QCD corrections is of clear importance to obtain both more accurate and
more precise results for the Wilson coefficients. Alternatively, one could account for the
missing higher-order uncertainties (MHOUs) in the EFT cross-sections, which are usually

6This study is also motivated by the fact that many EFT fits rely on LO QCD for the EFT cross-sections.
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Figure 20. Top: comparison of the posterior probability distributions of the Wilson coefficients
between linear fits with and without NLO QCD corrections to the EFT cross-sections. Bottom: the
corresponding 95% CL intervals, compared to the SM expectation.

– 69 –



J
H
E
P
1
1
(
2
0
2
1
)
0
8
9

−5 0 5

cQQ1

−20 0

cQQ8

−2 0 2

cQt1

−5 0 5

cQt8

−1 0 1

ctt1

−1 0

c81qq

−0.5 0.0 0.5

c11qq

−1 0

c83qq

−0.25 0.00 0.25

c13qq

−1 0

c8qt

−0.5 0.0 0.5

c1qt

−1 0

c8ut

−0.5 0.0 0.5

c1ut

−1 0 1

c8qu

−0.5 0.0 0.5

c1qu

−2 0

c8dt

−0.5 0.0 0.5

c1dt

−2 0

c8qd

−0.5 0.0 0.5

c1qd

−5 0 5

ctp

0.0 0.2 0.4

ctG

−0.50 −0.25 0.00

cbp

0.0 0.5

ccp

0.00 0.25 0.50

ctap

−0.25 0.00 0.25

ctW

−2 0 2

ctZ

−0.2 0.0 0.2

cpl1

cpl2

cpl3

−0.2 0.0

c3pl1

c3pl2

c3pl3

−0.25 0.00 0.25

cpe

cpmu

cpta

−0.2 0.0

c3pq

−1 0 1

c3pQ3

0.0 0.2

cpqMi

0 5

cpQM

−0.2 0.0 0.2

cpui

−2cpdi

−20 −10 0

cpt

−0.02 0.00

cpG

−0.2 0.0 0.2

cpB

−0.25 0.00 0.25

cpW

−0.25 0.00 0.25

cpWB

−2.5 0.0 2.5

cpd

−0.5 0.0 0.5

cpD

−0.25 0.00 0.25

cWWW

Top + Higgs + VV, Quadratic NLO EFT Top + Higgs + VV, Quadratic LO EFT

cQ
Q

1
cQ

Q
8

cQ
t1

cQ
t8

ct
t1

c8
1q

q
c1

1q
q

c8
3q

q
c1

3q
q

c8
qt

c1
qt

c8
ut

c1
ut

c8
qu

c1
qu

c8
dt

c1
dt

c8
qd

c1
qd ct

p
ct

G
cb

p
cc

p
ct

ap ct
W ct
Z

cp
l1

c3
pl

1
cp

l2
c3

pl
2

cp
l3

c3
pl

3
cp

e
cp

m
u

cp
ta

c3
pq

c3
pQ

3
cp

qM
i

cp
Q

M
cp

ui
cp

di cp
t

cp
G

cp
B

cp
W

cp
W

B
cp

d
cp

D
cW

W
W

−100

−10

−1

−0.1

0

0.1

1

10

100

c i
/Λ

2
(T

eV
−2

)

Top + Higgs + VV, Quadratic NLO EFT

Top + Higgs + VV, Quadratic LO EFT

Figure 21. Same as figure 20 for the quadratic EFT fits.
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Dataset ndat
χ2

SM χ2
EFT χ2

EFT χ2
EFT

(baseline) (LO QCD in EFT) (top-philic)

tt̄ inclusive 83 1.46 1.42 1.39 1.41

tt̄ AC 11 0.60 0.59 0.57 0.60

tt̄V 14 0.65 0.65 0.54 0.68

single top inclusive 27 0.43 0.41 0.42 0.41

tV 9 0.71 0.75 0.68 0.78

tt̄QQ̄ 6 1.68 2.12 2.24 2.16

Top quark total 150 1.10 1.09 1.06 1.09

Higgs µfi (Run I) 22 0.86 0.90 0.95 0.90

Higgs µfi (Run II) 40 0.67 0.63 0.67 0.63

Higgs differential & STXS 35 0.88 0.83 0.78 0.83

Higgs total 97 0.78 0.76 0.77 0.76

Diboson 70 1.31 1.30 1.32 1.30

Global dataset 317 1.05 1.04 1.03 1.04

Table 22. Same as table 19 now for fits based on variations of the theory settings as compared to the
baseline ones. Specifically, we provide the results of a fit where the EFT cross-sections are evaluated
at LO in the QCD expansion, as well as those of the top-philic scenario where the parameter
space has been restricted as described in section 2.2. In both cases, quadratic EFT corrections are
being included. Note that the SM cross-sections are always evaluated using state-of-the-art theory
calculations.

neglected, using for instance the approach advocated in [138, 139]. Implementing MHOUs
systematically is expected to further improve the overall compatibility of EFT fits performed
with and without NLO QCD corrections.

Moving to the associated comparisons in the case of the quadratic fits summarised in
figure 21, also here we find that the parameter distributions can be modified in a marked way
depending on whether or not NLO QCD calculations are adopted. As an illustration, the
operator that modifies the charm Yukawa interaction, ccϕ, exhibits a bimodal distribution
once NLO effects are accounted for, while the dominant solution for the cϕt coefficient is far
from the SM in the LO fit but SM-like in the NLO case (though the 95% CL interval itself
remains stable). As opposed to the case of the linear fits, in the quadratic case one finds
that the addition of NLO corrections does not in general reduce the uncertainties on the
fit coefficients, but rather distorts the posterior distributions and shifts the central values.
As an illustration, if NLO QCD corrections are removed, the posterior distribution for the
two-light-two-heavy coefficient c3,8

Qq is shifted such that it does not agree anymore with the
SM at the 95% CL.

In the specific case of the cϕt coefficient, one can verify that the corresponding individual
χ2 profile (analog of figure 3 for LO fits) does not exhibit this second solution, and hence
it must be induced by the cross-talk with other coefficients in the fit. To validate this
hypothesis, figure 22 displays the outcome of two-parameter quadratic fits for (cϕt, ctZ) and
(cϕt, cϕW ) comparing the results of the LO EFT fit with its NLO counterpart. In both
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Figure 22. Same as figure 15 for the two-parameter quadratic fits of (cϕt, ctZ) (upper) and (cϕt, cϕW )
(lower panels) comparing the results of the LO EFT fit (left) with its NLO counterpart (right panels).

cases, the LO two-parameter fits based on the full dataset favour the solution far from
the SM, while the NLO ones instead favour the SM-like one. The explanation for this
behaviour can be traced back to the fact that the non-SM solution is disfavored by the NLO
EFT corrections to hZ associated production, in particular those related to gluon-induced
contributions.

Another remarkable effect of the NLO QCD corrections to the EFT cross-sections can
be observed in the modified correlation patterns. Figure 23 displays the same correlations
maps as in figure 13 now for global fits based on LO EFT calculations at the linear and
quadratic level. Specially for the linear fits, we observe that correlations become more
sizable in general for the two-fermion and purely bosonic operators, while these are reduced
once NLO corrections are accounted for. This feature demonstrates how NLO QCD effects
may reduce parameter correlations by introducing additional sensitivity to the fit coefficients
for the same input dataset.
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Figure 23. Same as figure 13 for LO EFT calculations in linear (left) and quadratic (right) fits.

5.5 The top-philic scenario

To conclude this section, we present results for a global EFT fit carried out in the top-philic
scenario defined in section 2.2. In this scenario, we have the 9 equations of eq. (2.10) that
relate a subset of the 14 two-heavy-two-light coefficients listed in table 5 among them,
leaving 5 independent parameters to be constrained in the fit. Given the more constraining
assumptions associated to the top-philic scenario, one expects to find an improvement in
the bounds of the two-light-two-heavy EFT operators due to the fact that the parameter
space is being restricted by theoretical considerations, rather than by data in this case.

The values of the χ2 for each group of datasets in the top-philic scenario were reported
in table 22, where we see that the fit quality is very similar to the fit with the baseline
settings. Figure 24 then displays the 95% CL intervals for the EFT coefficients comparing
the global fit results with those of the top-philic scenario. The only operators that are
affected in a significant manner turn out to be the two-light-two-heavy operators, with
the bounds in several of them such as c1

td, c
1,1
Qq, and c1

tq improving by almost an order
of magnitude. The fact that only the bounds on the two-light-two-heavy operators are
modified is consistent with the top-philic scenario, given that only this specific group of
EFT coefficients is being constrained by its model assumptions.

It is worth emphasizing at this point that, from the technical point of view, carrying
out global EFT fits with specific restrictions in the parameter space motivated by UV-
completions, such as those arising in the top-philic scenario and leading to figure 24, is
relatively straightforward. Indeed, the most efficient fitting strategy would be to start from
the broadest possible parameter space, and once the corresponding fit has been performed,
introduce model assumptions relating EFT coefficients in a systematic manner. This way
one can connect with specific models for UV-completions of the SM, which typically result
in a rather smaller number of EFT coefficients to be constrained from data.
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Figure 24. Same as figure 9 comparing the global fit results with the same fit in the top-philic
scenario defined by the relations in eq. (2.10).

6 Summary and outlook

In this work we have presented an extensive interpretation of Higgs, diboson, and top quark
measurements from the LHC in the framework of the Standard Model Effective Field Theory.
By combining the most updated experimental data with state-of-the-art theory calculations,
both in the SM and in the EFT, we have provided bounds on 50 directions in the SMEFT
parameter space of which 36 correspond to independent parameters. We have quantified
in detail the relative impact that the different types of processes have in the results of
this global EFT analysis, both in terms of fits with dataset variations and by means of
statistical diagnosis tools such as information geometry techniques and principal component
analysis. Our analysis highlights the overall complementarity of the various input processes,
further motivating the need for a global interpretation of LHC measurements. We have
also demonstrated how, within such a global EFT analysis, genuinely flat directions are
essentially absent since each process and each kinematic bin of a distribution constrains
separate combinations of the fit parameters. The robustness of our fitting methodology has
been cross-validated by deploying two completely independent methods, MCfit and NS, for
mapping the EFT parameter space.

We have also extensively quantified the role played in the global analysis by the inclusion
of NLO QCD corrections to the EFT cross-sections, whose automation has been recently
achieved. We find that the posterior probability distributions of the fit parameters can be
modified in non-trivial ways by these NLO QCD effects, shifting the best-fit value, modifying
the magnitude of the 95% CL intervals, and even inducing multi-modal distributions. These
findings demonstrate that available LHC data is already sensitive to NLO effects in the EFT
cross-sections, further highlighting the importance of accounting for them in a systematic
manner to achieve both accurate and precise results.
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One could consider several directions in which the present study could be extended. To
begin with, one would like to include directly the constraints provided by LEP’s electroweak
precision observables, rather than in an approximate manner as done in the present work.
Furthermore, it would be beneficial to add to the global analysis new high-pT observables
providing complementary information on the Higgs and gauge sectors of the SMEFT, such
as for instance vector boson scattering (VBS), Z production in vector boson fusion (VBF),
or high-mass Drell-Yan production, all of them constraining the electroweak interactions.
Other processes that one might consider in this context are single-inclusive jet, dijet, and
multijet production, which are sensitive to several directions in the parameter space not
covered by other processes, specifically to a large number of four-fermion operators.

From the point of view of theoretical calculations, it would be important to systematize
the study of higher-order terms in the EFT expansion, considering in particular double
insertions of dimension-six operators and representative subsets of dimension-eight operators.
We point out that, within our fitting methodology, accounting for these higher order terms
is technically straightforward. Along the same lines, one could extend the fitting formalism
to account for all sources of theoretical uncertainties and their correlations in a systematic
manner, both for the SM and for the EFT calculations, something which is done only partially
here. In addition, it should be interesting to develop statistically optimal observables for EFT
analyses, such as those based on deep learning [146–148], making possible complementing
the constraints obtained at the level of unfolded cross-sections with those extracted directly
at the detector level.

Another promising research direction is that of combining the global EFT interpretation
of high-pT observables at the LHC presented here with that of flavour data from LHCb
and from other B-factories such as Belle. The urgency of a simultaneous EFT analyses of
high-pT and flavour data has been further highlighted by the recent evidence reported by
the LHCb experiment for the violation of lepton flavour universality (LFU) in B-meson
decays [25]. These findings demand exploiting the flexibility of the EFT framework in
order to comprehensively map the allowed signatures of eventual LFU violation in high-pT
cross-sections at the LHC and elsewhere.

Likewise, it would be important to account for the constraints provided by low energy
processes in the SMEFT parameter space, from neutrino data and electric dipole moment
measurements to the anomalous magnetic moment of the muon. In the latter case, a 4.1σ
deviation with respect to the SM expectation has recently been reported [149], confirming
and strengthening one of the most puzzling anomalies in particle physics. Indeed, the
ultimate goal of our program would be a truly global EFT interpretation including all
processes sensitive to the sought-for UV completion of the SM, making sure no stone is left
unturned in the ongoing quest to unravel the new particles and interactions that lie beyond
the Standard Model.
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A Comparison with experimental data

In this appendix, we present a systematic comparison between the experimental data used
as input to the fit with the corresponding theoretical cross-sections based both on the
SM and on the best-fit SMEFT results, either at linear O

(
Λ−2) or at quadratic O(Λ−4)

accuracy. In these comparisons, the experimental measurements will be presented both in
terms of unshifted central values, where the error band represents the total uncertainty, and
once the best-fit systematic shifts have been subtracted, such that the error band contains
only the statistical component. Note that the evaluation of the shifted data is only possible
whenever the full breakup of the experimental systematic uncertainties is made available by
in HepData. If this is not the case, for example when only the full experimental correlation
matrix is provided or no information on correlations is released, we will display only the
unshifted data.

To begin with, figure 25 displays the comparison between experimental data and the
best-fit EFT theory predictions (for linear and quadratic fits) in the case of representative
differential top quark pair and single top quark production datasets. Both the data and the
EFT fit results are normalised to the central value of the SM theory prediction. This implies
that the more the fit results deviate from unity, the larger the best-fit EFT effects are for
this specific observable. Furthermore, the error band in the EFT prediction indicates the
associated 95% CL interval evaluated over the Nspl samples produced by the NS method,
that is, the 95% interval of the corresponding marginalised posterior distributions shown
in figure 9.
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Figure 25. Comparison between experimental data and best-fit EFT theory predictions (both for
the linear and the quadratic fits) for representative differential top quark pair and single top quark
production datasets. Both the data and the EFT fit results are normalised to the central value of the
SM cross-section. The data is presented both with unshifted central values (where the band represents
the total experimental error) and once the best-fit systematic shifts have been subtracted (so that
the error band contains only the statistical component). The error band in the EFT prediction
indicates the 95% CL interval evaluated over the Nspl samples produced by the NS method.
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Figure 26. Same as figure 25 now for the W helicity fractions, the single-top s-channel and tV
total cross-sections, the four-heavy quark fiducial measurements, the LHC diboson differential
distributions at 13TeV, and the LEP diboson cross-sections at different center of mass energies.

From these comparisons, one can observe how for some datasets the best-fit EFT results
move in the direction of the experimental data, for instance in the case of themtt̄ distributions
at large invariant masses for inclusive tt̄ production. This is an important kinematic region
in the fit, since energy-growing effects increase the EFT sensitivity. Interestingly, in the
highest mtt̄ bins for some of the 13TeV top datasets the 95% CL interval associated to
the EFT prediction does not include the SM expectation. In the case of the single-top
t-channel differential cross-sections, the EFT fit results are very close to the SM predictions,
indicating that EFT effects are well constrained for this process at the scale of the present
experimental uncertainties. We also note that the uncertainty band associated to the
EFT prediction can turn out to be rather different in the O

(
Λ−2) fits as compared to the

O
(
Λ−4) ones, with the latter in general being more precise than the former for the processes

considered here. We note that the CMS tt̄ double differential distributions at 8TeV (upper
right plot in figure 25) are provided in bins of both mtt̄ and ytt̄, and hence there is more
than one data point for each mtt̄ bin.

Then figure 26 displays the same comparison between data and the SM and EFT
predictions as in figure 25 now for the W helicity fractions, the single-top s-channel and
tV total cross-sections, the four-heavy-quark fiducial measurements, the LHC diboson
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differential distributions at 13TeV, and the LEP diboson cross-sections at different center-
of-mass energies. Note that contrary to the rest of the datasets, the comparison for the
W helicity fraction is carried out at the absolute rather than at the normalised level.
Concerning the single top measurements, the best-fit EFT predictions tend to move towards
the experimental data, which in most cases is somewhat higher than the SM prediction. For
some datasets, such as single-top s-channel cross-section at 8TeV and the tW cross-sections
at 13TeV, the agreement between ATLAS and CMS is at best marginal and thus the EFT
fit interpolates between the two measurements. A similar behaviour is observed for the
tt̄tt̄ cross-sections at 13TeV. Furthermore, as was the case for the processes considered in
figure 25, the EFT fit uncertainties appear to be reduced in the quadratic case.

Moving to the LEP and LHC diboson datasets, one finds that for electron-positron
collisions the EFT fit result is very close to the SM cross-section with a vanishing uncertainty.
This result is likely to be related to the constraints imposed by the EWPOs as well as by
the LHC diboson data. Nevertheless, the SM predictions are in good agreement with the
LEP data for all four center-of-mass energies considered to begin with. In the case of the
LHC measurements, for the ATLAS meµ and mWZ

T distributions in the W+W− and WZ

final states, respectively, the data is in good agreement with the SM and the net effect of
the EFT corrections is small, except perhaps for the highest-energy bin of the meµ and
mWZ
T distribution. Similar considerations apply for the CMS 13TeV WZ dataset, where

we observe good agreement between theory and data also for the high pZT region.
Concerning the comparison between experimental data and theory calculations for

the Higgs production and decay measurements, figures 27 and 29 display representative
Higgs measurements from ATLAS and CMS at

√
s = 13TeV, namely the pT,H distributions

inclusive over all production modes and final states, and the Simplified Template Cross-
Section measurements corresponding to the ZZ and the γγ final states for ATLAS and CMS
respectively. Then figure 28 summarizes the results corresponding to Higgs boson signal
strengths for different production mechanisms and decay channels. Specifically, we show
the ATLAS+CMS Run I combination and the ATLAS and CMS Run II measurements at
13TeV. Note that, by construction, in the signal strengths the SM predictions correspond
to µ(f)

i = 1, see the discussion of appendix B for more details.
In the case of the differential Higgs distributions, we can observe the good agreement

both the SM and the EFT predictions within the relatively large experimental uncertainties.
For these distributions, the EFT effects can reach a magnitude of up to a few percent in
the global fit. For instance, for the CMS pT,H distribution in the quadratic fit, the best-fit
results are ' 15% higher than the SM for the pT,H = 1TeV bin. For the case of the signal
strengths, also a fair agreement is found, though for some combinations of production
channel and decay mode the experimental uncertainties still remain rather large.

B Implementation of Higgs signal strengths

In this appendix, we describe how the Higgs signal strengths have been implemented in
the present analysis. For a generic Higgs production and decay cross-section, denoted as
σ(pp→ h→ X), the experimentally measured signal strength is defined as the product of
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Figure 27. Same as figure 25 for representative Higgs measurements from ATLAS and CMS
at
√
s = 13TeV, namely the pT,H distributions summing over all production modes and final

states (upper panels), and the Simplified Template Cross-Section measurements (bottom panels)
corresponding to the ZZ (left) and the γγ final states (right panel).

the production cross-section times the corresponding branching ratio, normalised to the
Standard Model predictions:

µ
(exp)
pp→h→X = σ(exp)(pp→ h→ X)

σ(sm)(pp→ h→ X)
= σ(exp)(pp→ h→ X)
σ(sm)(pp→ h)× BR(sm)(h→ X)

, (B.1)

which in turn can be expressed as

µ
(exp)
pp→h→X = σ(exp)(pp→ h→ X)

σ(sm)(pp→ h→ X)
= σ(exp)(pp→ h→ X)
σ(sm)(pp→ h)×

(
Γ(sm)
X /Γ(sm)

tot

) , (B.2)

where Γtot indicates the total Higgs width and ΓX is the partial width for the decay into
the specific final state X. In this work, we assume that the Higgs boson decays only to
known particles and hence set to zero its branching ratio to invisible final states. The
theoretical prediction corresponding to the measurement of the signal strengths eq. (B.2) in
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Figure 28. Same as figure 25 for the Higgs boson signal strengths corresponding to different
production mechanisms and decay channels. From top to bottom we show the ATLAS+CMS Run I
combination and the ATLAS and CMS Run II measurements at 13TeV. Note that by the definition
of the signal strengths the SM predictions correspond to µ(f)

i = 1 in all cases, see also appendix B.
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Figure 29. Same as figure 25 for the Higgs boson associated production STXS from the ATLAS
V H measurement at 13TeV.

the SMEFT is given by

µ
(th)
pp→h→X(c) =

σ(EFT)(pp→ h)(c)×
(
Γ(EFT)
X (c)/Γ(EFT)

tot (c)
)

σ(sm)(pp→ h)×
(
Γ(sm)
X /Γ(sm)

tot

)
 . (B.3)

At any order in the EFT expansion, we can express eq. (B.3) as

µ
(th)
pp→h→X(c) =

(
σ(EFT)(pp→ h)(c)
σ(sm)(pp→ h)

)
×
(

Γ(EFT)
X (c)
Γ(sm)
X

)
×
(

Γ(EFT)
tot (c)
Γ(sm)

tot

)−1

, (B.4)

where the total width is evaluated as the sum of all relevant partial decay widths,

µ
(th)
pp→h→X(c) =

(
σ(EFT)(pp→ h)(c)
σ(sm)(pp→ h)

)
×
(

Γ(EFT)
X (c)
Γ(sm)
X

)
×
(∑

Y Γ(EFT)
Y (c)∑
Z Γ(sm)

Z

)−1

, (B.5)

where X, Y , and Z indicate possible (SM) final states in which the Higgs boson can decay.
Assuming now that Λ = 1TeV and working at linear order in the EFT expansion one has

σ(EFT)(pp→ h)(c) = σ(sm)(pp→ h) +
n∑
i=1

ciκσ,i , (B.6)

Γ(EFT)
X (c) = Γ(sm)

X +
n∑
i=1

ciκγx,i , (B.7)

where n is the number of independent dimension-6 operators in the fitting basis and {κσ,i}
and {κγx,i}, are the (absolute) EFT corrections associated to the production cross section
and partial width, respectively, corresponding to the operator ci.
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Inserting now the linear EFT expansion into eq. (B.5), one gets

µ
(th)
pp→h→X(c) =

(
σ(sm) +∑n

i=1 ciκσ,i
σ(sm)

)
×

Γ(sm)
X +∑n

j=1 cjκγx,i

Γ(sm)
X


×

∑Y

(
Γ(sm)
Y +∑n

k=1 ckκγy ,i
)

∑
Z Γ(sm)

Z

−1

(B.8)

=
(

1 +
n∑
i=1

ci
κσ,i
σ(sm)

)
×

1 +
n∑
j=1

cj
κγx,j

Γ(sm)
X

(∑
Y

(
Γ(sm)
Y

Γ(sm)
tot

+
n∑
k=1

ck
κγy ,k

Γ(sm)
tot

))−1

,

which can be further simplified to

µ
(th)
pp→h→X(c) =

(
1 +

n∑
i=1

ci
κσ,i
σ(sm)

)
×

1 +
n∑
j=1

cj
κγx,j

Γ(sm)
X

× (1 +
∑
Y

(
n∑
k=1

ck
κγy ,k

Γ(sm)
tot

))−1

.

(B.9)
If we Taylor expand the last term at O

(
Λ−2), we obtain the required expression for the

theoretical prediction of the Higgs signal strengths at linear order in the EFT,

µ
(th)
pp→h→X(c) = 1 +

n∑
i=1

ci

[
κσ,i
σ(sm) + κγx,i

Γ(sm)
X

−
∑
Y

(
κγy ,i

Γ(sm)
tot

)]
. (B.10)

For simplicity, we can replace the total Higgs decay width in the SM with the corresponding
branching fractions,

BR(sm)
X ≡ Γ(sm)

X

Γ(sm)
tot

→ 1
Γ(sm)

tot
= BR(sm)

X

Γ(sm)
X

, (B.11)

which allows us to express eq. (B.10) as

µ
(th)
pp→h→X(c) = 1 +

n∑
i=1

ci

[
κσ,i
σ(sm) + κγx,i

Γ(sm)
X

−
∑
Y

(
κγy ,i

Γ(sm)
Y

BR(sm)
Y

)]
. (B.12)

Hence we find that we can evaluate the Higgs signal strengths in the EFT as

µ
(th)
pp→h→X(c) = 1 +

n∑
i=1

ciβpp→h→X,i , (B.13)

where we have defined

βpp→h→X,i ≡
κσ,i
σ(sm) + κγx,i

Γ(sm)
X

−
∑
Y

(
κγy ,i

Γ(sm)
Y

BR(sm)
Y

)
. (B.14)

Note that in this notation we use β to indicate relative EFT corrections while the κ
always indicate instead absolute corrections. A similar expression, although somewhat more
cumbersome, can be derived to account for the quadratic EFT contributions to the Higgs
signal strengths.
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C Correlation matrices in EFT space

In section 5 we have presented results for the correlation coefficients associated to a
specific subset of operators that define our EFT parameter space, in particular those pairs
exhibiting large absolute correlations, |ρ(ci, cj)| ≥ 0.5. For completeness, we display here
the full correlations matrices in the EFT parameter space. Figure 30 shows the correlation
coefficients ρ(ci, cj) for the complete set of EFT coefficients that enters the present global
analysis. We present the results corresponding to both the linear (left panels) and quadratic
(right panels) fits, for the case where the EFT cross-sections include NLO QCD corrections
(top panels) and where they do not (bottom panels).

Inspection of figure 30 confirms two main findings of section 5 concerning the correlation
patterns of the global EFT fit. First of all, how quadratic corrections decrease the correlation
between fit parameters. Second, though perhaps a less marked effect, how NLO QCD
corrections also lead to a decrease in the absolute value of these correlations coefficients.
In both cases, as previously mentioned, the decrease in the values of |ρ(ci, cj)| arises from
the additional sensitivity to new directions in the SMEFT parameter space introduced by
the quadratic corrections and by the NLO QCD corrections to the EFT hard-scattering
cross-sections.

D Usage of SMEFiT results

The results of this work are made available via the website of the SMEFiT project:

https://lhcfitnikhef.github.io/SMEFT/

as well as via the corresponding public GitHub repository:

https://github.com/LHCfitNikhef/SMEFiT/

Specifically, we provide the full set of Nspl samples corresponding to the NS fits presented
in this work for the nop = 50 Wilson coefficients. We recall that not all of these coefficients
are associated to independent degrees of freedom, and that 14 of them are constrained by
the EWPO relations as discussed in section 2.

These Nspl samples provide a representation of the probability density associated to
the EFT coefficients. From these samples, it is easy to evaluate statistical estimators such
as means, standard deviations, and correlations, e.g.,

〈ci〉 = 1
Nspl

Nspl∑
k=1

c
(k)
i , i = 1, . . . , nop , (D.1)

σci =

 1
Nspl − 1

Nspl∑
k=1

(
c

(k)
i − 〈ci〉

)2
1/2

, i = 1, . . . , nop , (D.2)

ρ(ci, cj) =

 1
Nspl

Nspl∑
k=1

c
(k)
i c

(k)
j − 〈ci〉〈cj〉

/σciσck , i, j = 1, . . . , nop , (D.3)
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Figure 30. The correlation coefficients ρ(ci, cj) for the full set of EFT coefficients that enters the
present global analysis. We show the results corresponding to the linear (left panels) and quadratic
(right panels) fits, both for the case where the EFT cross-sections include NLO QCD corrections
(top panels) and where they do not (bottom panels).

as well as other estimators such as confidence level intervals and higher moments beyond
the quadratic approximation. One should emphasize that, as discussed in section 5, the
Gaussian approximation is in general not reliable for most of the EFT parameters in the
case that the quadratic O

(
Λ−4) corrections are accounted for.

These samples spanning the probability density in the space of EFT Wilson coefficients
could also be used to quantify a posteriori the impact in the fit of new measurements by
means of the Bayesian reweighting method presented in [33].

To facilitate the usage of the results presented in this work, we also make available via
the GitHub repository a Python analysis code that takes as input the samples corresponding
to a specific EFT fit and then evaluates means, correlations, and 95% CL intervals, as well
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as produces most of the plots and statistical estimators displayed in section 5. In a future
installment of our global EFT analysis, we plan to release the full smefit fitting code and
the associated theoretical and experimental inputs, together with a complete documentation
and user-friendly examples.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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