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Abstract: Musculoskeletal models and computational simulations are increasingly employed in
clinical and research settings, as they provide insights into human biomechanics by estimating
quantities that cannot be easily measured in vivo (e.g., joint contact forces). However, their clinical
application remains limited by the lack of standardized protocols for developing personalized models,
which in turn heavily rely on the modeler’s expertise and require task-specific validation. While
motor tasks like walking and cycling have been widely studied, simulating a maximal knee extensor
dynamometry test remains unexplored, despite its relevance in rehabilitation. This study aims
to fill this gap by investigating the minimum amount of experimental data required to accurately
reproduce a maximal voluntary contraction test in silico. For nine healthy young females, four
different subject-specific musculoskeletal models with increasing levels of personalization were
developed by incorporating muscle volume data from medical images and electromyographic signal
envelopes to adjust, respectively, muscle maximal isometric force and tetanic activation limits. At
each step of personalization, simulation outcomes were compared to experimental data. Our findings
suggest that to reproduce in silico accurately the isometric dynamometry test requires information
from both medical imaging and electromyography, even when dealing with healthy subjects.

Keywords: computational simulations; knee joint in extension; maximum voluntary isometric
contraction test; musculoskeletal modeling; personalized muscle properties

1. Introduction

Over the last two decades, the use of musculoskeletal (MSK) dynamics models has
increased enormously [1] in their ability to estimate biomechanical quantities that may not
be readily measured in vivo (e.g., joint contact forces [2,3]) and supporting clinical-decision
making [4,5]. MSK models, often referred to as digital twins, have been generated to simu-
late various human movements and predict clinical outcomes, e.g., to address orthopedic
research questions [6,7], design personalized therapy regimens and rehabilitation pro-
grams [8], or enhance athletic performance [9]. Despite their promising applications, their
actual clinical application is rarely reported [4,10], because several challenges hinder the
widespread adoption of MSK models in clinical practice. For instance, despite the availabil-
ity of software and workflows to streamline and standardize model development [11,12],
the process to generate a personalized MSK model remains time-consuming (i.e., hours—or
even days—are required particularly for the segmentation of the bone/muscle geometries
instead of few minutes to scale a generic model) and requires a large volume of data,
including medical imaging for each subject. Moreover, a unified approach to develop
personalized models is lacking, resulting in large variability in terms of MSK model per-
sonalization among centers/groups, which is tightly linked to the amount of available
experimental data (or lack thereof)—especially in clinical settings. Such variability likely
leads to inconsistencies that can affect the reliability and reproducibility of the models and
their estimates [13,14].
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Numerous studies indicate that generic models fail to adequately represent both
skeletal and muscular properties of individual subjects, even when scaled to the dimensions
of the subject under study, leading to inaccurate predictions [15–18]. Subject-specific
features (e.g., characteristic angles or rotations) are not captured to the point that generic-
scaled bones do not well approximate the real bones [19]. In addition, the muscle properties
do not scale linearly with the bones [20]. However, since the absence of a standardized
procedure, model personalization is left to the modeler’s expertise, which does not build
trust in the methodology itself [14,21,22]. One notable example is the variety of methods
employed to define maximal isometric force [23–25], the choice of which strongly influences
the percentage of successful simulations [26].

Another crucial step before a model can be trusted and considered reliable is its vali-
dation, which must be performed for the specific motor task being simulated. Validation
requires an appropriate number of samples and involves comparing the results of the simu-
lated task with experimental data (from relevant gold standard measures). Additionally,
a sensitivity analysis should be conducted to strengthen the validation, ensuring model
robustness and reliability. MSK models have been used to simulate the most disparate
locomotor tasks, from overground or level walking [22,27] to running [28,29], cycling
movements [30,31], or other sports (e.g., rugby [32]). However, to the best of the authors’
knowledge, the maximal voluntary isometric contraction (MVIC) test, commonly used to
assess quadriceps muscle strength, has seldom been replicated in silico [33,34]. This gap in
the literature highlights the need for a standardized approach to simulate accurately such
tests, which are essential for assessing muscle strength and functionality.

The aim of the present study was twofold: (1) to develop a robust pipeline for simulat-
ing an MVIC of the knee extensors with the future prospect of validation, and (2) to identify
the minimum amount of information required to obtain physiologically plausible estimates
of the MVIC torque, with a predictive error lower than the intrinsic error of the experimen-
tal measurements [35–37]. The main hypothesis was that the measurements extracted from
medical images alone would have been sufficient to achieve an acceptable prediction error,
for a cohort of healthy subjects, even without informing the model/simulation with the
muscle activation levels (computed from the electromyography, EMG, recordings). The
results of this work highlighted that both the muscle volumes and activation are necessary
to accurately reproduce in silico an MVIC test of the knee extensors. Moreover, to mini-
mize the modeler’s influence, the generation of the personalized MSK models followed
previously defined and validated model generation steps, and a sensitivity analysis was
conducted to account for the uncertainties associated with the only input dependent on the
modeler’s expertise (i.e., muscle segmentation).

2. Materials and Methods

For this study, both anatomical and experimental data were acquired from ten healthy
female adults (Table 1; age—30.7 ± 5.3 years; height—162 ± 4.9 cm; weight—54 ± 5 kg;
BMI—20.6 ± 1.7 kg/m2). All the volunteers signed informed consent before participat-
ing in the study, in accordance with the local Ethical Committee approval (CE AVEC:
216/2020/Sper/IOR, Clinical Trials ID: NCT05091502). The experimental data include full
lower limb MRI data, dynamometry, and surface EMG data recorded during an MVIC test
with the hip and knee flexed at 90◦.

Data from one of the participants (Female 10) were not considered for the analysis as
the subject did not perform maximal contractions due to the fear of getting hurt.



Appl. Sci. 2024, 14, 8678 3 of 14

Table 1. Subjects data: age, height, mass, body mass index (BMI), and physical activity. * Participant
excluded from the study.

Subject Age
(Years)

Height
(cm)

Mass
(kg)

BMI
(kg/m2)

Physical
Activity
Level 1

Female 1 27 170 56 19 3
Female 2 26 158 52 21 2
Female 3 39 167 53 19 3
Female 4 38 166 66 23 3
Female 5 33 155 50 21 3
Female 6 28 158 55 22 3
Female 7 29 160 50 20 3
Female 8 26 165 49 18 3
Female 9 25 158 52 21 3

Female 10 * 36 163 57 21 2
1 1—sedentary; 2—some physical activity; 3—regular physical activity and training; 4—regular hard physical
training for competition sports.

2.1. MRI Acquisition and Processing

T1-weighted axial MRI scans, from the L3 vertebra to the toes, were acquired on a
Discovery TM MR750w 3.0T scanner (GE Healthcare, Chicago, IL, USA) with the following
parameters: scanning sequence—proprietary Dixon sequence, slice thickness—3.94 mm,
slice increment—2.0 mm, pixel size—0.4688 mm. Depending on the height of each subject,
four or five different sections were acquired, with an overlap of at least 40 slices between
consecutive sections. The MRI acquisition lasted around 20/30 min. The selected scan
allowed for a reduction in the acquisition time minimizing the motion artifacts while
maintaining high-quality images essential for enabling semi-automatic segmentation. The
images were imported into Mimics v25 (Mimics Innovation Suite, Materialise, Leuven,
Belgium) and merged to obtain the entire volume of interest (full lower limbs) in a single
file. Within Mimics, a single expert operator manually or semi-automatically segmented
bones, muscles, and soft tissues. In particular, the lower limb muscles were segmented
employing an atlas-based approach, namely the muscle segmentation tool (MST), that
takes in input masks including the whole muscle tissue of a specific section (i.e., upper or
lower leg) and gives as output individual muscle masks. A final manual post-processing
was performed to refine the 3D volume reconstructions, with particular attention to the
knee extensor muscles (i.e., rectus femoris (RF), vastus intermedius (VI), vastus lateralis
(VL), and vastus medialis (VM)), which were primarily responsible for the experimentally
measured maximal torque.

2.2. Experimental Laboratory Protocol

The experimental protocol (Figure 1) was performed a week after the MRI acquisition,
in the morning. The whole procedure consisted of a warm-up followed by the MVIC tests.
In line with the literature [38–40], the warm-up exercises included a 10-min cycling session
on an ergometer, a sit-to-stand-to-sit task, a 10-m walk back and forth, and 8 submaximal
MVIC tasks. All MVIC tests were performed with the participant’s dominant leg using the
COR1 dynamometer chair (OT Bioelettronica, Torino, Italy). The participants were seated
on the dynamometer and strapped to the chair to minimize movement of the trunk and leg
beside the knee joint with their arms across their chest (Figure 2).
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identifying and placing the electrodes for the EMG recording, (2) a warm-up on a cycle ergometer 13 
and some motor tasks (e.g., 10-meter walk), and (3) the MVIC test of the knee flexors and extensors. 14 

The MVIC protocol consisted of the subjects performing three extension contractions, 15 
with the knee flexed at 90°. These maximal contractions were to be sustained for approx- 16 
imately 6 s and were separated by 120 s of rest to recover. If the third contraction was 17 
higher than the first two, the subject was asked to perform a fourth contraction. During 18 
each task, verbal encouragement by the operators and real-time visual feedback of the 19 
torque achieved were provided to elicit maximal contractions. 20 
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Figure 2. The representation of the experimental setup of the MVIC test of the knee extensors. The
subject was placed in a sitting position with the ankle blocked to ensure an isometric position and
with each hand on the opposite shoulder throughout the whole test.

The MVIC protocol consisted of the subjects performing three extension contractions,
with the knee flexed at 90◦. These maximal contractions were to be sustained for approxi-
mately 6 s and were separated by 120 s of rest to recover. If the third contraction was higher
than the first two, the subject was asked to perform a fourth contraction. During each
task, verbal encouragement by the operators and real-time visual feedback of the torque
achieved were provided to elicit maximal contractions.

All participants had previously familiarized themselves with the tasks. During the
whole protocol, except for the cycle ergometer, EMG signals of eight muscles were regis-
tered. In total, the experimental procedure lasted two and a half hours (placement of the
EMG electrodes included). In a preliminary study, both the repeatability and reproducibility
of the instrumentation were evaluated.

2.3. EMG Recording and Processing

The activity of eight muscles (i.e., rectus femoris, vastus medialis, vastus lateralis,
biceps femoris, semitendinosus, and gastrocnemius lateralis of the dominant leg and vastus
lateralis and biceps femoris of the contralateral leg) was recorded through bipolar electrodes
(Kendall Arbo, servoprax GmbH, Wesel, Germany, 24 mm diameter) connected to a wired
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EMG system (Sessantaquattro, OT Bioelettronica, Torino, Italy, at 2000 Hz). An expert
operator placed the electrodes following SENIAM recommendations [41]. Due to the nature
of the performed test (i.e., MVIC test), the primary focus was on the knee extensors of the
tested (and dominant) leg. EMG signals were recorded from the rectus femoris, vastus
lateralis, and vastus medialis. As surface EMG was used, it was not possible to record
signals from the vastus intermedius. To assess potential co-contraction of the antagonists,
EMG signals from the hamstrings (i.e., biceps femoris and semitendinosus) were also
recorded. Additionally, the signals from the gastrocnemius of the dominant leg and the
vastus lateralis of the non-dominant leg were also recorded to monitor the activity of
muscles not directly involved in the test.

The EMG signals were initially filtered using a zero-lag 4th order Butterworth band-
pass filter with 20–500 Hz cut-off frequencies [42] and rectified. Then, the root mean
squared (RMS) envelopes were extracted using a 500-ms window [43]. Finally, the EMG
signals were normalized for each muscle to the maximal value observed across different
tasks (i.e., sit-to-stand and MVIC tasks).

2.4. Torque Acquisition and Processing

Dynamometry data were collected by a load cell (TF03, Benewake, Beijing, China:
sensitivity—2 mV/V, full scale—100 kg) embedded in the dynamometer. The torque signals
were filtered using a zero-lag 4th order Butterworth low pass filter with a 5 Hz cut-off
frequency [44]. In order to find the MVIC torques, the 1st derivative of the torque data
was computed and the 1000-ms plateau region [45] with the highest mean was defined
as the MVIC torque. The plateau was defined as a sequence of 2000 consecutive samples
(1000 ms) where the derivative was equal to 0 (±0.5).

2.5. Subject-Specific Model Generation

From the segmented geometries (i.e., bones, soft tissues, muscles), a single leg subject-
specific MSK dynamics model for each participant was developed following the pipeline
proposed by Modenese and colleagues [26].

The models, built with the nmsBuilder software (v.2.1) [11], included seven bone
complexes linked by idealized joints (i.e., hip, knee, patellofemoral, ankle, subtalar, and
metatarsophalangeal joints) for a total of 13 degrees-of-freedom. Joint centers and axes of
the reference systems were identified by fitting analytical shapes (i.e., spheres and cylinders)
to the articular surfaces, in MeshLab [46]. The patellofemoral joint was defined as in [27].
The inertial properties of each segment (e.g., thigh) were computed from the segmented
volumes, assuming the densities of bones and soft tissues to be 1.42 g/cm3 and 1.02 g/cm3,
respectively [47,48]. Muscle origin and insertion points were taken from a generic atlas
(Full Body Model [27]) and mapped onto the subject-specific bony geometries through
affine transformations. Wrapping geometries were included to ensure physiological muscle
behavior (e.g., to avoid in-bone penetrations) and the line of action of each muscle was
checked to fall inside the scanned muscle volume. Minimal manual adjustments were
performed where deemed necessary. Each muscle-tendon unit was modeled as a Hill-
type actuator [49], described by Millard et al. [50]. The optimal fiber length (OFL) and
tendon slack length (TSL) parameters were extracted from the generic Full Body Model and
anthropometrically scaled [51]; the maximal isometric force (MIF) values of each muscle
were recalculated using the physiological cross-sectional area (PCSA), as per (1) and (2):

PCSAi = Vi
mcos θ/lo, (1)

MIFi = σPCSAi, (2)

where Vm is the i-th muscle volume, θ is the pennation angle, lo the OFL, and σ the specific
tension, set at 60 N/cm2 and in line with literature data [23].
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2.6. Muscle Properties Personalization

The base (i.e., less personalized) model, henceforth MgenPCSA, featured generic MIF
values scaled with volumes derived from the linear regression proposed in [23], using the
height and mass of the subjects under study.

Lately, by progressively adding the data experimentally collected and processed,
three additional models were generated: (1) the MssPCSA model, which differs from the
base model for the MIF values that were defined using subject-specific muscle volumes,
segmented from the MRI; (2) the MssPCSAssEMG, an evolution of the MssPCSA model, where
the maximal control for the quadriceps muscles (i.e., RF, VI, VL, and VM) was adjusted (from
the default value of 1) based on the EMG data; and (3) the MgenPCSAssEMG model, based
on the MgenPCSA model, with EMG-based maximal activations (as in the MssPCSAssEMG
model). In the last two models, the maximal value of the normalized RMS envelopes of
the knee extensors was used to control the activation level of the quadriceps to reflect
the experimental data. The activity of the VI muscle, for which experimental data were
unavailable, was derived from the VL and VM activations [52,53] as the mean value of their
activations. This choice was supported by scientific evidence showing that the three vastii
activate similarly and synchronously [54–57]. The difference in the personalization level of
the MSK models is summarized in Table 2.

Table 2. Summary of the different personalization steps of the models (ss = subject-specific).

Subject ss Bones ss Muscle
Volume/Force

ss Muscle Activation
Level

MgenPCSA V X X
MssPCSA V V X

MssPCSAssEMG V V V
MgenPCSAssEMG V X V

2.7. Simulation Environment

All models were placed in a sitting position, with the hip and knee flexed at 90◦, to
mimic the position of the subject on the dynamometer during the MVIC test (Figure 3).
Furthermore, to ensure the dynamic consistency of each model, the pelvis motion and the
hip coordinates were locked.
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of hip and knee flexion), while the pelvis and the hip flexion coordinates were locked; the external
torque was applied directly at the knee joint.

In OpenSim [58], computer simulations of the MVIC test were performed (1) imposing
static kinematics (i.e., the degrees of freedoms in the model were kept constant throughout
the whole simulation) and (2) applying constant flexion torque at the knee joint (Figure 3).
The external torque was iteratively increased by 1Nm until the forces generated by the
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muscles in the model, determined through a static optimization approach that minimized
the sum of squared activations (i.e., hypothesizing optimal control), were insufficient to
balance them. The last torque value before failure was considered the model’s MVIC
torque.

2.8. Simulation Framework

The above step/simulation was executed several times, according to the framework
described below.

• Initially, the digital twin was informed with average PCSA values, based on healthy
adult data (MgenPCSA). Optimal control was assumed, muscles were allowed to reach
a tetanic contraction (maximal activation level equal to 1), and the MVIC torque was
predicted.

• If the predicted MVIC torque was much larger than the measured value, the same
simulation is performed on the MssPCSA model, thus accounting for subject-specific
PCSA values.

• If, even with the inclusion of patient-specific PCSA values, the digital twin predictions
were higher than the experimental values, EMG data collected during the MVIC
test were employed to account for non-pathological submaximal activation levels
(MssPCSAssEMG).

The MgenPCSAssEMG model was finally generated to test whether including personal-
ized muscle activation levels (i.e., without using subject-specific muscle volume segmenta-
tions) was enough to simulate the experimental MVIC torque.

2.9. Data Analysis

A Monte Carlo analysis was performed to take into account uncertainties introduced
by muscle volume segmentation [59,60], which directly impact the MIF values assigned to
the modeled muscles and, in turn, affect the model predictions. Each muscle volume was
assumed to be normally distributed, with distinct means and standard deviation. These
distributions were calculated to reflect a 5% variability from the reference value determined
by the expert operator. An inverse cumulative distribution function was utilized to sample
the variables from their respective distributions. Overall, 9000 models (one thousand per
subject) were generated, varying the maximal isometric force of each muscle, and employed
to perform the in silico MVIC test. The maximal torque obtained simulating the MVIC test
with all the models was then compared with the experimental data, to quantify the effect of
the uncertainties of the input on the predictions.

As statistical analysis, Pearson correlation and Friedman tests have been performed.
The non-parametric statistical Friedman test [61,62] was conducted despite the limited
sample size to determine whether the differences in results across various models were
statistically significant.

3. Results

Using the base model (MgenPCSA) resulted in a mean relative error of around 25%
(Figure 4). The error was substantially reduced (approximately 15%) when a second level
of personalization was introduced (exploiting the MRI or EMG data), with no particular
distinctions between the MssPCSA and the MgenPCSAssEMG models. A greater relative error
reduction (to 5%) was observed when both anthropometric measurements and subject-
specific muscle activations were used (the MssPCSAssEMG).
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At a subject level (Figure 5), the MgenPCSA model approximated the experimental data
only for one out of nine subjects (Figure 5a, subject 7). Using segmented muscle volumes
to further tune the MIF values resulted in a more apparent reduction in the simulated
extension torque, which more closely approximated the measured values. The above was
not true for subjects 6 and 8, for whom the MssPCSA model predicted an MVIC torque
further from the experimental data than the MgenPCSA (Figure 5b). The additional use
of EMG data (MssPCSAssEMG), more specifically to limit the maximum activation levels
of quadriceps muscle, enabled to improve the predictions, which well approximated the
experimental values: for all the nine subjects, the MssPCSAssEMG model was able to predict
the experimental MVIC torque within 6%.
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Last, using MgenPCSAssEMG models, the error remained high. Only the models of four
out of nine subjects predicted a maximal torque with a predictive error within 10% of the
corresponding real data.

Data Analysis

The Monte Carlo analysis showed that the model estimates are not significantly
affected by segmentation errors in the order of 5% (of the total muscle volume). For all
subjects but two, the predicted maximal torques always fell within the set acceptable
error range (±10% of experimental data) (Figure 6). Of note, for subjects three and five,
only a minimal portion of the 1000 outputs (less than 0.5%) could not be considered
accurate enough.
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There was a significant correlation only between the MssPCSAssEMG and MssPCSA
(r = 0.87). On the contrary, for all the other models the Pearson correlation coefficient
was lower than 0.8 (with minimum correlation coefficient—r = 0.41—between MssPCSA and
MgenPCSAssEMG). Finally, given a significance level of 0.05, the p-value of 0.014 demonstrates
statistical significance between the MSK models with increasing levels of personalization.

4. Discussion

The purpose of this study was (1) to develop a modeling and simulation framework
to replicate/conduct an MVIC test in silico by using a combination of experimental data
(i.e., EMG recordings, dynamometry data, and medical images) and computational tools
(i.e., personalized MSK models) and (2) to identify the minimum level of personalization
required to achieve sufficiently accurate predictions (within 10% from the experimentally
measured values) in healthy female subjects. To minimize the influence of the modeler in
the generation of the personalized MSK model, established procedures, already developed,
tested, and validated, were adopted [11,63–66]. In addition, a sensitivity analysis was
performed to account for uncertainties of the only personalized input highly influenced by
the modeler’s expertise (i.e., the segmentations of the muscles).

Four MSK models with varying levels of personalization were built from MRI data
for nine healthy young females. The muscle properties were adjusted based on generic
muscle volumes representative of an age-matched population (i.e., MgenPCSA), PCSAs from
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medical imaging data (MssPCSA), the muscle maximum activation level (MgenPCSAssEMG),
or both the PCSAs and the muscle maximum activation level (MssPCSAssEMG).

Our results showed that (1) digital twins are able to predict maximal knee extension
torques close to the experimental MVIC torque values observed in vivo in a healthy female
cohort, and (2) muscle volumes derived from medical images (i.e., segmented muscle
volumes to compute MIF values) are not sufficient alone to achieve acceptable results (i.e.,
prediction error < 10%). Personalized muscle activation levels may be necessary (i.e., the
MssPCSAssEMG). Moreover, the sensitivity analysis highlighted that the predicted outcomes
are not influenced by the uncertainties that affect the muscle segmentation and, thus, the
maximal isometric force of each muscle.

The MVIC torques at 90◦ of knee extension experimentally acquired were in line with
the literature for an age-matched population [67–69], as well as the predicted maximal
torque while using all four different models. However, when population data was used to
scale the PCSAs of the models, the models tended to overestimate the experimental values,
and the prediction error was acceptable only for one of the subjects, thus suggesting that
the MgenPCSA models lacked subject specificity.

When personalized information from MRI data was employed to tune the MIF values
(MssPCSA), the error was reduced in general, and for three out of nine subjects, it was within
the pre-defined threshold value of 10%. This aligns with previous work showing the need
for subject-specific information from medical imaging data [16,70]. Nonetheless, only the
combined personalization of both MIF values and maximal activation levels (extracted
from experimental EMG data) achieved low errors for all participants, contrary to previous
findings [33]. When only the EMG data were employed to personalize the models, the
prediction error was comparable to the results of the MssPCSA models.

This study has some limitations. The lack of kinematic data to accurately describe
the knee joint motion throughout the execution of the MVIC test forced us to set a static
pose. The isometric nature of the test justified the choice, although it is not ideal since the
subject moves during the execution of the test, altering the knee flexion angle and causing
misalignment between the joint and the dynamometer axes of rotation [71,72]. Moreover,
the personalization of the muscle parameters (i.e., OFL and TSL) was limited, potentially
impacting the model’s behavior by the difficulty of measuring these values in vivo [73] or
the need for additional experimental data (e.g., 3D ultrasound [74] or DTI [33]). However,
such parameters were optimized to adjust the generic parameters, ensuring that the force-
length-velocity relationships of the generic Full Body Model and the ratio between the
optimal fiber length and the tendon slack length were maintained [51]. Finally, the selection
of the cohort, which included only female subjects, was dictated by the limitations of
the instrumentation used (i.e., dynamometer). A preliminary study revealed that the
dynamometer provided repeatable measurements for knee extensor maximal torque below
250 Nm, a threshold that male adults can easily exceed.

5. Conclusions

In conclusion, the present study represents the first step in validating MSK models for
reproducing the MVIC test of knee extensors in silico. The minimum amount of information
required to achieve a one-to-one match between model predictions and experimental data
was identified in both the muscle volumes and the activation level scaled based on the EMG
signal. To ensure comprehensive validation, two additional steps are necessary: expanding
the sample size, including both sexes and employing an isokinetic dynamometer, the gold
standard for MVIC testing. Therefore, further analyses and a larger dataset are needed to
confirm these preliminary results.
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