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Leveraged and inverse exchange-traded funds seek daily returns equal to fixed multiples of indexes’
returns, but the ensuing rebalancing costs create a tension between a high correlation with the index
and a low average deviation from the leveraged index’ performance. With proportional trading costs,
we find that the optimal replication policy is robust to the index’ dynamics and obtain a sufficient
statistic for index replication performance, the implied spread, which is insensitive to risk-premia
and enables comparisons of funds tracking different factors of an index. Overall, the impact of
trading costs on replication performance is comparable to or higher than the effect of management
fees.
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1. Introduction

Leveraged and inverse exchange-traded funds (LIETFs) aim
to deliver daily returns that scale an index’ return by a con-
stant factor. Introduced in the United States in 2006, the 12
funds available at the end of that year barely held $2 bil-
lion. Since then, new funds have become available for equity
indexes specific to countries and industry sectors, bonds, com-
modities, currencies, and real estate. At the end of 2022,
over 240 leveraged or inverse funds held over $65 billion in
assets, almost all of them managed by two firms, Profunds and
Direxion.†

Typical factors for these funds range from −3 for inverse
funds to +3 for leveraged ones, which may lead to large losses
in turbulent markets, thereby raising regulators’ concerns—
and doubts. In 2015, an SEC proposal sought to cap leverage
to 150%, but was not implemented. In 2017, the SEC ini-
tially approved the listing of funds with factors of ±4, only
to later reconsider its decision.‡ Overall, LIETFs appear to
have grown faster than their research.

∗Corresponding author. Email: paolo.guasoni@dcu.ie
† These figures exclude other leveraged and inverse exchange-traded
products such as exchange-traded notes, which have significantly
different characteristics.
‡ See https://www.sec.gov/news/pressrelease/2015-276.html and
https://www.wsj.com/articles/sec-reconsidering-staff-approval-of-
first-quadruple-leveraged-etf-1494970106.

Despite the ostensible simplicity of LIETFs, even the deter-
minants of their returns are not fully understood. For example,
since inception in 2006 to the end of 2022, the ProShares
Ultra S&P500 (SSO), which doubles the daily return of the
S&P 500 index, had a cumulative return of 396%. How-
ever, compounding the daily returns of its benchmark strategy
would imply a gross (i.e. before management fees) theoreti-
cal return of 594%. Net of such fees, the return would have
been 486%, which still leaves an unexplained gap of 1.01%
per year.

Such deviations of LIETF returns from their benchmarks
are economically significant, and of the same order of mag-
nitude as management fees. They are also systematic, and
call for sharper analytical tools to understand and evaluate
the performance of these funds, which this paper aims to
provide.

LIETFs represent shares of ownership of an asset pool,
managed so that its exposure to the underlying index matches
approximately the target factor of the fund. In practice, for
leveraged funds on indexes with liquid constituents such as
the S&P 500, a fraction of the exposure is achieved by
investing in the index’ components. The remainder of the
exposure—for inverse funds, all of the exposure—is obtained
through over-the-counter index swap contracts collateralized
by the fund’s assets, the bulk of which is in cash instru-
ments. The funds’ holdings and net asset value are published
daily.

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
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The mechanism that keeps the shares of such funds aligned
with their net asset value is the activity of authorized par-
ticipants (typically market makers and broker dealers), who
exchange blocks of funds’ shares (creation units) for the
underlying basket of securities at their net asset value (minus
a transaction fee of approximately 0.10%). As a result, autho-
rized participants quickly exploit arbitrage opportunities cre-
ated by minimal departures of the market price of the fund’s
shares from its net asset value, thereby ensuring that the
former closely tracks the latter.

Keeping a constant leverage ratio requires rebalancing the
portfolio daily, as to keep the amount of index exposure near
the target multiple of the fund’s value: both leveraged and
inverse funds buy the index when it increases and sell it
when it decreases (Cheng and Madhavan 2009). Rebalancing
requires a significant amount of trading: for example, a typical
1% daily return (one standard deviation, for an annual volatil-
ity of 16%) implies a daily turnover of 2% for a fund with
factor +2 or −1, 6% with factors +3 or −2, and a remarkable
12% with factor −3.† Such trading volume generates sub-
stantial trading costs, especially for funds with high leverage
ratios and for indexes with high volatility and low liquidity.
While funds managers seek to mitigate trading frictions using
swaps and derivatives, the question is to what extent the trad-
ing costs generated by frequent rebalancing are responsible
for the observed underperformance of LIETFs.

The tradeoff between correlation and underperformance
underlies the two main metrics used to evaluate passive
investment funds, which focus on the difference between the
index’ multiple and the fund’s daily returns. The tracking
error (TrE), the annualized standard deviation of such differ-
ence, reflects the precision with which the fund mimics its
target at a daily frequency. The tracking difference (TrD), the
annualized average of such difference, measures the system-
atic gap between the benchmark index and the fund. Tracking
error and tracking difference are the main indicators used
by academics (Charteris and McCullough 2020), practitioners
(Frino and Gallagher 2001, Johnson et al. 2013), and regula-
tors (ESMA 2014) to evaluate the performance of ETFs.‡

This tension raises two central problems for managers and
investors. Fund managers need to trade as efficiently as pos-
sible to achieve the desired tracking error while minimizing
the deviation from the leveraged index. Investors compare
competing funds that differ in leverage ratios, tracking error,
and tracking difference, and need performance measures that
control for such differences. The contribution of this paper is
to answer these questions in a model with arbitrary volatility
dynamics, continuous trading, and trading costs proportional
to volume, leading to two main results for managers and
investors.

A manager’s optimal replication policy is independent of
volatility, while it depends only on the trading cost ε, the tar-
get factor �, and the desired tradeoff between tracking error
and tracking difference, summarized by a positive parameter
γ , which captures investors’ aversion to tracking error. The

† A fund with factor � generates a daily turnover of �(� − 1) times
the index return (Cheng and Madhavan 2009).
‡ The website https://www.trackingdifferences.com/ publishes the
tracking differences of ETFs listed in several exchanges.

manager should keep the fund’s index exposure, as a multiple
of the fund’s assets, within the approximate thresholds

� ±
(

3

4γ
�2(� − 1)2

)1/3

ε1/3

by minimally increasing and decreasing the fund’s exposure
as it reaches the lower and upper levels, respectively. In this
formula, higher values of the parameter γ lead to a nar-
rower no-trade region, which results in lower tracking error,
higher trading costs, and consequently a more negative track-
ing difference. The formula is similar to the optimal trading
boundaries arising in problems of optimal portfolio choice
with transaction costs, with one crucial difference: here the
approximate policy is insensitive to the index price dynamics,
both volatility and expected return.§ Even as these boundaries
remain constant, in more volatile times rebalancing is higher
as the index position is more volatile, and boundaries reached
more frequently.

The robust replication of leveraged funds has some analo-
gies with the robust hedging of variance swaps, devel-
oped by Dupire (1993), Neuberger (1994), and Carr and
Madan (2001): if the underlying index follows a continuous
process, the optimal replication policy does not depend on the
particular volatility dynamics, and in the absence of frictions
the replication is perfect. In the present context, such robust-
ness remains valid in the presence of trading frictions, though
the optimal strategy’s performance does depend on realized
volatility.

The optimal replication policy under frictions explains the
underexposure puzzle observed by Tang and Xu (2013), who
report that average exposures of both leveraged and inverse
funds in US markets are significantly smaller than their target
factor. We confirm this effect in recent data on US funds and
show that it is consistent with the model’s predictions: though
the optimal rebalancing boundaries are symmetric (at the first
order) around the target factor, the fund’s volatility is lower
when its exposure is closer to zero, which increases the time
spent at such smaller exposures and generates a bias towards
zero for the average exposure. The effect is stronger for larger
factors and more volatile indexes.

The main implication for investors is that a summary of
a fund’s overall tracking performance is the implied spread,
defined as

ε̃ := 12√
3

(− TrD) · TrE

σ 3�2(1 − �)2
. (1)

This quantity estimates the hypothetical bid-ask spread that
would make the investor indifferent between using the fund
or replicating the index by trading with such a spread.

Formula (1) offers a tool for comparing the performance of
funds with different factors and tracking errors: the implied
spread combines the tracking difference (TrD) and tracking
error (TrE) in a single number, measuring the fund’s per-
formance after controlling for the factor � and the index’

§ See Magill and Constantinides (1976), Constantinides (1986),
Taksar et al. (1988), Davis and Norman (1990), Dumas and
Luciano (1991), and the asymptotic results in Shreve and
Soner (1994), Rogers (2004), Gerhold et al. (2014), Kallsen and
Muhle-Karbe (2017), and Melnyk and Seifried (2018).
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average volatility σ , which otherwise magnify the effect of
trading frictions. The formula implies that, holding the factor
constant, an optimally managed fund that seeks to halve its
(negative) tracking difference should be prepared to approxi-
mately double its tracking error. In addition, the formula does
not depend on the index’ risk premium, which is notoriously
hard to estimate with precision.

Most implied spreads in US funds range between 2 and 20
basis points, with smaller spreads for funds with larger fac-
tors, implying that more volatile funds offer a better tradeoff
between tracking difference and tracking error. An expla-
nation for this phenomenon lies in the management fees
charged by leveraged funds, which are nearly the same for
funds with different factors, making funds with larger factors
comparatively cheaper in their unit cost of exposure.

These findings shed new light on the growing literature
on leveraged funds. Tang and Xu (2013) report that lever-
aged funds deviate significantly from their benchmarks even
after management fees, and separate tracking error into a
compounding component, due to the convexity of leveraged
returns, and a rebalancing component, due to trading fric-
tions† . Wagalath (2014) derives an asymptotic expression
for the slippage that results from rebalancing at fixed inter-
vals. Anderson et al. (2012) note the sensitivity to trading
frictions of risk-parity strategies, a popular class of leveraged
strategies, and Anderson et al. (2014) propose a leveraged
performance attribution formula that emphasizes, in addition
to transaction costs, the comovement between portfolio expo-
sure and index return. The recent work of Dai et al. (2022)
studies the problem of continuous intraday replication of
leveraged ETFs with quadratic transaction costs.

The paper is organized as follows: section 2 introduces
the model and the optimization problem. Section 3 contains
the main results on optimal leverage replication and perfor-
mance evaluation ( theorem 3.1). Section 4 describes how
the replication of LIETFs takes place in practice, providing
a quantitative analysis of the trading costs associated to rebal-
ancing. With such context, section 5 investigates the paper’s
implications empirically, focusing on families of leveraged
and inverse ETFs traded in US markets. Section 6 discusses
the robustness of the paper’s results to risk-premia propor-
tional to return variance, finite horizons, and discrete trading.
Section 7 concludes. All proofs are in the appendix.

2. Model

The market has a safe asset earning an interest rate rt and a
risky asset (the index) with ask (buying) price St, where

dSt

St
= (rt + μt) dt + σt dBt, S0 ≥ 0,

and with the index’ bid (selling) price (1 − ε)St, which
implies a constant relative bid-ask spread of ε > 0, or, equiva-
lently, constant proportional transaction costs. Here (Bt)t≥0 is
a standard Brownian motion on a filtered probability space

† Cf. Cheng and Madhavan (2009), Jarrow (2010), Avellaneda and
Zhang (2010), and Lu et al. (2012).

(�, (Ft)t≥0,F , P), while (rt)t≥0 is an adapted process such
that

∫ T
0 |rt| dt < ∞ a.s. Volatility is integrable and stationary:

Assumption 2.1 The process (σt)t≥0 satisfies E[
∫ T

0 σ 2
t dt] <

∞ for all T > 0 and is weakly ergodic with stationary vari-
ance σ 2 > 0, i.e. limT→∞ 1

T

∫ T
0 σ 2

t dt = σ 2
P − a.s.

Thus the dynamics of the safe rate and volatility are essen-
tially arbitrary, though volatility should neither explode nor
vanish: as in Melnyk and Seifried (2018), this ergodicity
condition ensures that average volatility is finite, hence the
problem is well posed.

The baseline model in this section focuses on the case of
a zero risk premium, i.e. μt = 0, while section 6 extends the
analysis to include a nonzero risk premium proportional to
return variance and finds that it has only a second-order effect
on the main results. In addition, the assumption of a zero risk
premium is substantively appropriate for the optimal tracking
problem at hand, as it removes a manager’s incentive to gen-
erate positive tracking difference by systematically deviating
from the target’s exposure to earn a risk premium. Such hypo-
thetical deviation would be counterfactual, as it would imply
a positive bias for both leveraged and inverse funds. On the
contrary, the ‘underexposure puzzle’ of Tang and Xu (2013)
documents negative bias for leveraged funds and positive bias
for inverse funds.

A manager’s trading strategy is described by the number
of shares ϕt of the index held at time t. The corresponding
fund’s value Ft = Xt + Yt at time t is the sum of the index
position Yt = ϕtSt and the safe position Xt, which follows the
dynamics‡

dXt = rtXt dt − St dϕ
↑
t + (1 − ε)St dϕ

↓
t , (2)

where ϕ↑ and ϕ↓ are the minimal increasing functions that
satisfy ϕt = ϕ

↑
t − ϕ

↓
t and represent the cumulative number of

shares purchased and sold, respectively. Furthermore, a strat-
egy is required to be solvent, in that its corresponding wealth
Ft is strictly positive at all times. (Admissible strategies are
formally described in Definition A.1 below.)

Thus the fund value Ft satisfies the dynamics

dFt

Ft
− rt dt = πt

(
dSt

St
− rt dt

)
− επt

dϕ
↓
t

ϕt
, (3)

where πt = Yt/(Xt + Yt) = ϕtSt/Ft represents the ratio of the
index’ position and the fund value at time t.

Absent any motive to systematically deviate from the tar-
get, the manager’s objective is to trade off the fund’s tracking
error against its tracking difference, defined as follows. The
(cumulative) difference Dt between the fund’s return above
the safe rate and the multiple of the index’ return above the
safe rate is defined as

dDt = dFt

Ft
− rt dt − �

(
dSt

St
− rt dt

)
, D0 = 0. (4)

‡ The convention of evaluating the risky position at the ask price is
inconsequential. Using the bid price instead leads to the same results
up to a change in notation.
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Accordingly, the definitions of annualized tracking difference
and tracking error between the fund’s and the index’ multiple
are

TrDT := DT

T
= lim

	t→0

1

T

	T/	t
∑
k=1

(Dk	t − D(k−1)	t)

= 1

T

∫ T

0
(πt − �)σt dBt − ε

T

∫ T

0
πt

dϕ
↓
t

ϕt
, (5)

TrET :=
( 〈D〉T

T

)1/2

=
(

lim
	t→0

1

T

	T/	t
∑
k=1

(Dk	t − D(k−1)	t)
2

)1/2

=
(

1

T

∫ T

0
(πt − �)2σ 2

t dt

)1/2

, (6)

where 〈D〉T denotes the quadratic variation of the
process D.†

The manager’s objective is to find a trading policy that min-
imizes tracking error without deteriorating performance with
excessive trading costs, i.e. for a fixed level of tracking differ-
ence. Such cost-adjusted tracking error is summarized by the
quantity‡

E

[
− TrDT +γ

2
TrE2

T

]

= 1

T
E

[
γ

2

∫ T

0
(πt − �)2σ 2

t dt + ε

∫ T

0
πt

dϕ
↓
t

ϕt

]
. (7)

The parameter γ > 0 is interpreted as aversion to tracking
error, and the empirical results in section 5 suggest that typ-
ical values of γ range between 5 and 10, as LIETFs aim at
closely tracking the daily returns of their indexes, at the price
of a moderate but significant average underperformance.

The final term in (7) represents trading costs, which hin-
der continuous portfolio rebalancing and make constant-
proportion strategies infeasible. (Otherwise, in the absence
of trading frictions the optimal choice is to set πt constantly
equal to �, which achieves perfect replication, with realized
tracking difference and tracking error both zero.)

The appeal of the above objective is twofold: first, it makes
quantitatively explicit the tradeoff between tracking error and
trading costs, which is implicitly acknowledged in LIETF
documents. For example, the prospectus of the fund Proshares
Ultra S&P 500 states that ‘The Fund seeks daily invest-
ment results, before fees and expenses, that correspond to two
times (2x) the daily performance of the Index’ before warning
that ‘A number of other factors may also adversely affect the
Fund’s correlation with the Index, including fees, expenses,
transaction costs, financing costs [. . . ]’.

Second, the long-term average of (7) admits the interpreta-
tion of equivalent expense ratio, i.e. the hypothetical expense
ratio that a frequent user of these funds would be willing
to pay on the fund’s assets to avoid both trading costs and

† Both limits hold in probability. The first convergence follows by
the continuity of D, and the second one from theorem IV.1.3 in Revuz
and Yor (1999) by localization.
‡ The equality follows from lemma A.2, see also Remark A.3.

tracking error in the fund’s payoff:§

EER(ϕ) :=

lim inf
T→∞

1

T
E

[
γ

2

∫ T

0
(πt − �)2σ 2

t dt + ε

∫ T

0
πt

dϕ
↓
t

ϕt

]
. (8)

As leveraged and inverse funds are typically open-ended,
without a specific maturity target, this paper focuses on the
long-term objective (8).

Note that such ergodic average may be interpreted either
as the long-term average that appears in the definition, or as
the unconditional expectation of the daily cost-adjusted track-
ing error, given a stationary initial condition for the fund’s
composition at the beginning of the trading period.

Indeed, suppose that the investor could choose between
the fund Ft, which tracks imperfectly the leveraged index,
and another contract, which can be exercised anytime, and
delivers the payoff F̃t, defined as follows:

dF̃t

F̃t

− rt dt = �

(
dSt

St
− rt dt

)
− φ dt,

which does not entail any tracking error or trading costs, but
rather a management fee φ. For such a contract, the difference
process is simply D̃t = −φt, as trading costs and tracking
error are zero, which means that the right-hand side of (8)
is precisely φ, justifying its interpretation as the equivalent
expense ratio that would make an investor indifferent between
the fund Ft with its tracking error and trading costs, and a
hypothetical substitute that has neither, but rather pays such
management fee.

The above comparison is more than a thought experiment:
Ft reflects the characteristics of leveraged and inverse funds
typical of US markets, while F̃t mirrors the structure of factor
certificates prevalent in Europe, derivatives contracts issued
by a financial institution, which pay the holder the value of
a leveraged index minus a management fee, rather than the
value of a replicating portfolio.

3. Main results

The first main result characterizes the optimal policy and its
performance in terms of the solution to a one-dimensional
free-boundary problem that is independent of the volatility
process.

§ This quantity is well defined by virtue of assumption 2.1, which
guarantees that tracking error does not diverge. The lim inf guaran-
tees a good definition a priori. A posteriori, optimal strategies exist in
which the limit inferior is a limit, hence the similar problem defined
in terms of lim inf has the same solution. Note also that, if volatil-
ity σ is a function of some stationary Markov process, the first term
in (8) is equivalent to E[ γ

2 (π(Y ) − �)2σ(Y )2], where the random
variable Y has the stationary distribution under the expectation E. In
particular, the formulation in (7) in terms of a time-average is equiv-
alent to a direct ergodic formulation of the problem. We keep the
current formulation because it is does not involve the Markov prop-
erty and because an ergodic formulation of the trading cost in (8)
would require the use of local times as well as further restrictions on
trading strategies.
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Theorem 3.1 Let γ > 0 and � = 0, 1. For ε > 0 small
enough:

(i) The free boundary problem

1

2
ζ 2W ′′(ζ ) + ζW ′(ζ ) − γ

(1 + ζ )2

(
� − ζ

1 + ζ

)
= 0,

(9)

W(ζ−) = 0, W ′(ζ−) = 0, (10)

W(ζ+) = ε

(1 + ζ+)(1 + (1 − ε)ζ+)
,

W ′(ζ+) = ε(ε − 2(1 − ε)ζ+ − 2)

(1 + ζ+)2(1 + (1 − ε)ζ+)2
(11)

has a unique solution (W , ζ−, ζ+) for which ζ− < ζ+.
(ii) The trading strategy ϕ̂ that buys at π− := ζ−/(1 + ζ−)

and sells at π+ := ζ+/(1 + ζ+) as little as necessary to
keep the risky weight πt within the interval [π−, π+],
maximizes (8).

(iii) The minimum Equivalent Expense Ratio is

min
ϕ∈�

EER(ϕ) = γ σ 2

2
(π− − �)2,

where � is the set of admissible strategies (see
appendix 1).

(iv) The optimal Tracking Difference and Tracking Error
are

TrD := lim
T→∞

DT

T
= −σ 2

2

π−π+(π+ − 1)2

(π+ − π−)(1/ε − π+)
,

(12)

TrE := lim
T→∞

√
〈D〉T

T
= σ

√
π−π+ + �(� − 2β̄),

(13)

where β̄ is defined in (14) below.
(v) The average volatility s̄, exposure β̄ and squared

correlation R2 are:

s̄ := σ
√

π−π+,

β̄ := lim
T→∞

〈∫ · dF
F ,
∫ · dS

S 〉T

〈∫ · dS
S 〉T

= lim
T→∞

∫ T
0 σ 2

t πt dt∫ T
0 σ 2

t dt
= π+π−

log(π+/π−)

π+ − π−
, (14)

R2 := lim
T→∞

〈∫ · dF
F ,
∫ · dS

S 〉2
T

〈∫ · dS
S 〉2

T 〈∫ · dS
S 〉2

T

= lim
T→∞

(
1
T

∫ T
0 σ 2

t πt dt
)2

σ 2 1
T

∫ T
0 (σtπt)2 dt

= π−π+

(
log(π+/π−)

π+ − π−

)2

. (15)

(vi) The following asymptotic expansions hold:

π± = � ±
(

3

4γ
�2(� − 1)2

)1/3

ε1/3

− �

γ

(
γ�(� − 1)

6

)1/3

ε2/3 + O(ε), (16)

EER = γ σ 2

2

(
3

4γ
�2(� − 1)2

)2/3

ε2/3 + O(ε),

TrD = −3σ 2

γ

(
γ�(� − 1)

6

)4/3

ε2/3 + O(ε), (17)

TrE = σ
√

3

(
�(� − 1)

6
√

γ

)2/3

ε1/3 + O(ε), (18)

s̄ = σ� − σ(7� − 3)

4γ

(
γ�(� − 1)

6

)1/3

ε2/3

+ O(ε),

β̄ = � − 2� − 1

γ

(
γ�(� − 1)

6

)1/3

ε2/3

+ O(ε), (19)

R2 = 1 − 1

2γ

(
1 − 1

�

)(
γ�(� − 1)

6

)1/3

ε2/3

+ O(ε). (20)

In particular, the following relation holds:

TrD · TrE = −
√

3

12
σ 3�2(� − 1)2ε + O(ε4/3). (21)

Proof See appendix 4. �

The main message of this theorem is that the solution to the
optimal tracking problem is completely determined by the two
buy and sell boundaries π±, in terms of which all performance
statistics follow in closed form. As volatility dynamics does
not enter the free boundary problem, π± are independent of
the volatility process, and depend only on the factor �, the
tracking-error aversion γ , and the spread ε. In consequence,
also the average exposure β̄ and the squared correlation R2 are
independent of volatility dynamics. By contrast, the tracking
difference TrD, tracking error TrE, and the fund’s volatility s̄
also depend on the average volatility σ .

Part (vi) turns these qualitative insights into quantita-
tive implications by deriving explicit series expansions of
π± and of the performance statistics. Each of these expan-
sions depends on the unobservable parameter γ : eliminating
this parameter from (17) and (18) yields the relation (21)
among tracking error, tracking difference, and spread, which
must hold regardless of the value of γ . In summary, the
above theorem summarizes the optimal trading policy, its per-
formance, and their statistical attributes. The next sections
describe their main normative implications for replication and
performance evaluation, while the following sections examine
such implications empirically.

3.1. Trading boundaries

The optimal trading boundaries π± identified by theorem 3.1
define a range of leverage ratios around the target factor �,
on which it is optimal for the manager to refrain from buy-
ing and selling. For small trading costs, the first-order term of
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the asymptotic expansion in (16) coincides with the optimal
policy in Gerhold et al. (2014) for an investor with constant
relative risk aversion γ , constant investment opportunities,
and a target portfolio equal to �: superficially, tracking opti-
mally is like investing optimally after replacing the investor’s
desired portfolio with the target factor.

The crucial difference between optimal tracking and port-
folio choice is that the optimal tracking boundaries are insen-
sitive to the volatility process. This means that in more
volatile times the manager does rebalance more often, but
only because the leverage ratio reaches the boundaries more
often, not because the rebalancing policy changes.

An intuitive explanation of such robustness is that, because
volatility is stationary, the objective function is invariant to
a time change that stretches periods of high volatility and
compresses periods of low volatility, as to normalize it to a
constant: while in the original setting tracking error is high
when volatility is high, in the time-changed problem volatil-
ity remains fixed, but time ticks faster, thereby accumulating
more tracking error on average. As the optimal policy of the
time-changed problem is independent of volatility, so is the
optimal policy of the original one.

Figure 1 displays the optimal trading boundaries against
tracking error: low tracking error (left, corresponding to high
γ ) implies a narrow no-trade region, and thus frequent rebal-
ancing. This regime is the most relevant for leveraged ETFs,
as the users of these funds are primarily short-term traders,

for whom the precise replication of daily returns is more
important than average performance (Cheng and Madhavan
2009).

As the aversion to tracking error decreases (right), the pri-
ority shifts to reducing long-term average rebalancing costs,
at the expense of higher tracking error. For leveraged funds,
widening the no-trade region serves this purpose—up to a
point. As the emphasis on low trading costs dominates, it
becomes virtually impossible for a leveraged fund to track
its target: the next best alternative is to closely replicate the
index, which can be done essentially for free.

For inverse funds the situation is different: the closest fac-
tor that is replicable at no cost is zero, therefore the no-trade
region continues to widen until its sell boundary becomes
exactly zero, while remaining symmetric around its target
multiple to preserve pre-existing short positions. At that point,
negative exposure is seldom decreased (at the buy bound-
ary, for the sake of solvency) and never increased (as the sell
boundary of zero is never reached).

Overall, the small tracking errors that are typically sought
by managers of leveraged and inverse funds lead to simi-
lar replication strategies, based on nearly symmetric no-trade
regions. Excessive emphasis on small costs would break this
symmetry: because the only costless multiples are zero and
one, leveraged funds would veer toward one, while inverse
funds would veer toward preservation of negative exposure
while retaining solvency.

Figure 1. Buy (dashed) and sell (solid) boundaries (vertical, as risky weights π ) versus average tracking error TrE (horizontal) for leveraged
(top) and inverse (bottom) funds, with multipliers 4 (top), 3, 2, −1, −2, −3 (bottom). As aversion to tracking error γ decreases from left
(≈ 106) to right (≈ 10−4), for inverse funds (bottom) the trading boundaries widen around the target, whereas for leveraged funds (top) they
first widen and then collapse to one. ε = 1% and zero risk premium.



Leveraged Funds: Robust Replication and Performance Evaluation 1161

Figure 2. Negative tracking difference (− TrD, vertical) against tracking error (horizontal) for leveraged (solid) and inverse (dashed) funds,
in logarithmic scale, from − 3, + 4 (top), to − 2, + 3 (middle), and − 1, + 2 (bottom). As aversion to tracking error γ decreases from left
(≈ 106) to right (≈ 10−4), a k + 1-leveraged fund is akin to a −k inverse one, as the respective curves (same color) approach low and high
TrE aversion. ε = 1%, σ = 16%, and zero risk premium.

3.2. Tracking difference versus tracking error

Figure 2 displays in log scale the tradeoff between tracking
difference and tracking error for funds with different fac-
tors. For small trading costs, (21) implies that this tradeoff
is approximately

log(− TrD) + log TrE

= log

(√
3

12
σ 3�2(� − 1)2ε

)
+ O(ε4/3),

which corresponds to the negative, approximately linear
dependence in the left of the graphs. As the right-hand side
remains constant if � is replaced by −� + 1, for small track-
ing error a −(� − 1) inverse fund faces a tradeoff similar to
the one of a leveraged fund with factor �. Put differently, a
+3 leveraged fund is as difficult to manage as a −2 inverse
fund. This is clear from the comparison of solid and dashed
lines with same color in the figure.

As tracking error increases, the inverse fund’s tradeoff
improves, in that its optimal policy yields a less nega-
tive tracking difference than the symmetric leveraged fund
because the boundaries of inverse funds keep widening even
as those of leveraged funds start shrinking. As the tracking
error increases further, their performances become again triv-
ial, as both leveraged and inverse exposures are allowed to
depart from their targets to avoid trading costs.

3.3. Implied spread

Equation (21) links the tracking difference, tracking error,
leverage factor, index volatility, and trading spread ε. As the
tracking error represents the standard deviation of the estimate
of the tracking difference TrD, a low tracking error means that
in this equation all quantities are estimated accurately, with
the exception of the spread ε. In principle, one could esti-
mate ε as the average bid-ask spread observed in the index,
but in practice such an estimate would overstate the rebal-
ancing costs of leveraged and inverse funds, as they achieve
their index exposure primarily through total return swaps and
futures, which offer much lower trading costs than the index
components. In practice (cf. section 4), direct holdings of the
index’ components are typically less than the fund’s assets for
leveraged funds and are actually zero for inverse funds (i.e.
there are no short positions in index’ components but only in
swaps and futures).

This observation suggests to use (21) to define the implied
spread as

ε̃ = − 12√
3

TrD · TrE

σ̄ 3�2(1 − �)2
,

in a similar way as the familiar Black–Scholes formula is used
to define implied volatility rather than to price options. The
implied spread offers a more attractive measure of the fund’s
performance than the tracking difference or the tracking error,
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as it controls for the effects of both volatility and the leverage
factor.

This definition measures the trading cost, above which the
investor is better off replicating the fund’s payoff by trading,
and below which the fund offers a cheaper alternative. The
theoretical (population) spread is always positive, as the cor-
responding tracking difference is necessarily negative in view
of trading costs. However, sample estimates can and do lead
to occasionally negative implied spreads, which materialize
if the fund deviates from a close replication, and happens to
outperform its target by mere chance. In fact, such imprecise
estimates of the implied spread result from the imprecise esti-
mates of the tracking difference when the tracking error is
large.

In summary, the implied spread offers a synthetic figure
that represents the cost for investors of leveraged and inverse
funds, adjusting for the effects of the factor, volatility, and
the tradeoff between tracking error and tracking difference.
However, such a measure is accurate only when the track-
ing difference is accurate, which is when the tracking error
is sufficiently low.

3.4. R-Squared

The squared correlation of a fund’s return with its benchmark
is an intuitive, scale-free statistic, which reflects the fraction
of the fund’s variance that is explained by the benchmark’s
own variance. For funds with relatively low factors, such
as the ones traded in US markets, the squared correlation is

similarly close to the frictionless level of 100%, leaving few
insights to be gleaned from this quantity.

Equations (15) and (20) provide respectively the exact and
asymptotic formulas of squared correlation. Importantly, the
R2 does not depend on the volatility process, but only on
the trading cost ε, the leverage factor �, and the aversion
parameter γ that controls the tradeoff between tracking differ-
ence and tracking error. Figure 3 plots the squared correlation
against the leverage factor, highlighting several effects. First,
squared correlation declines for large positive and negative
factors, as the optimal no-trade region widens and the fund’s
exposure is increasingly variable.

Second, squared correlation is asymmetric in the factor and
systematically lowers for inverse funds. For positive factors,
correlation is poor near zero, becomes perfect at the bench-
mark value of one, and deteriorates as leverage increases
further. As negative factors do not include the benchmark,
their correlation is generally lower, and achieves its maximum
near minus one.

The low correlation near the zero factor, though empirically
irrelevant, deserves a comment, in view of its differences with
the factor of 1. The explanation of such low correlation is that
a fund with near-zero exposure combines a very low volatility
with a relatively wide no-trade region, resulting in a fund’s
exposure that is rather variable, and poorly explained by the
benchmark’s return.

There are two extreme cases, � ∈ {0, 1}, which are explic-
itly excluded in theorem 3.1. In these cases, an optimal trading
policy is not to engage in trading at all; thus both transaction
costs and tracking error vanish. Therefore, the tracking error

Figure 3. Exact R2 (vertical) for inverse and leveraged factors � (horizontal), with aversion parameter γ = 0.5 (blue) and γ = 1 (green).
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cannot be freely chosen, as the value function vanishes and
the optimal policy is independent of the value of γ .

Indeed, equations (13), (14) and (15) imply the relation
between R2 and tracking error

(
TrE

σ�

)2

= 1 − R2 +
(√

π−
�

π+
�

− R

)2

,

which yields the asymptotic formula

R2 = 1 −
(

TrE

σ�

)2

+ O(ε2/3).

This formula validates the usual interpretation of 1 − R2 as
fraction of variance in the fund unexplained by the variation
in the benchmark and shows that for � near zero even a small
but positive tracking error can lead to a low R2, as the factor
� appears in the denominator.

4. Replication of LIETFs

The model in this paper relies on the assumption that trading
costs incurred by fund managers are a small constant propor-
tion of amounts traded. Thus it is opportune to investigate the
relevance of such an assumption for the replication of LIETFs.

Engle et al. (2012) estimate average transaction costs of 8.8
and 13.8 basis points (bps) for NYSE and NASDAQ respec-
tively, based on orders executed by Morgan Stanley in 2004.
Their estimates for trading cost rise to 27 bps for relatively
larger orders—higher than 1% of the stock’s daily trading
volume. Similarly, Frazzini et al. (2012) estimate median
transaction cost of 4.9 bps, with a value-weighted average of
9.5 bps, which reflect the higher cost of larger trades. In short,
empirical studies suggest that trading costs are near 0.1%,
except for orders that are higher than 1% of daily trading
volume. Thus, to evaluate whether the assumption of con-
stant trading costs is appropriate, it is necessary to understand
(i) the details of the rebalancing strategies of leveraged and
inverse ETFs and (ii) the relative size of their trading volume
compared to that in the underlying index.

To investigate rebalancing strategies, we obtained from
ProShares the daily holdings at the security level of the main
leveraged and inverse ETFs on the S&P 500 index from
January 26 to April 6, 2018. This period included a num-
ber of days with large market movements, which offer the
opportunity to observe rebalancing behavior in volatile times.
Because the institutional objective of these funds is to offer a
multiple of the daily return on the underlying index, the daily

frequency is the natural one to study rebalancing. It is also the
highest frequency for which public data are available.

Note also that LIETFs trade both to rebalance in response
to the index’ return, and to adjust exposure in response to the
creation and redemption of shares by authorized participants.
Thus the index return alone is not a reliable indicator of the
trading volume. Instead, the direct inspection of daily portfo-
lio composition reflects the overall trading volume resulting
from both managers’ rebalancing and investors’ flows.

The left panel in table 1 shows the source of exposure to
the index for each of the S&P 500 funds: most of the expo-
sure is achieved through index swaps contracts with various
counterparties (such as Goldman Sachs, Bank of America, JP
Morgan, Credit Suisse, and other financial institutions). Such
contracts are typically multiples of 10 or 100 million USD and
are rebalanced in such multiples. A small fraction of the expo-
sure is achieved through E-mini futures contracts on the S&P
500. For leveraged funds, a substantial amount of exposure,
approximately 80% percent of the fund’s assets, is achieved
through direct ownership of each of the 505 index’ compo-
nents. By contrast, inverse funds do not take short positions
in the index’ components, thereby avoiding short sale costs
associated with borrowing shares of individual stocks, while
achieving exposure entirely through swaps and futures.

Comparing the changes in each security’s daily holdings
over time reveals the magnitude of the trading amounts gen-
erated by ProShares funds on the S&P 500 index. The right
panel in table 1 displays the average daily turnover for each
factor and asset class as a percentage of the fund’s assets.
As observed in the introduction, the overall turnover is sig-
nificantly higher for larger negative factors, with the factor
−3 generating approximately twice as much turnover as −2
or 3. In addition, the table reveals that in practice most of
the turnover is concentrated in index swaps, with a signifi-
cant minority of trading in futures and, for positive factors, in
stocks. Such a pecking order reflects the lower trading costs
of index swaps relative to futures and of futures relative to
stocks.

To understand the size of trading volume in LIETFs com-
pared to trading volume in the index, we examined daily
assets under management for all the Proshares funds on the
S&P 500 index since June 23, 2009, the first day on which
all funds multiples are available. This information allows
to compute the total volume generated by all funds, both
from rebalancing and from the subscription or redemption of
shares. Comparing such daily volume to the total volume gen-
erated by trading in the stocks included in the S&P 500 index,
yields for each day the ratio between ETFs volume and stock
market volume. The summary statistics are in table 2: trading
volume generated by LIETFs activity averages approximately

Table 1. Average exposure (left) and average daily turnover (right), both as percent of funds’ values, in different asset classes for S&P 500
LIETFs: SPXU ( − 3), SDS ( − 2), SH ( − 1), SSO ( + 2), UPRO ( + 3), from 2018-01-26 to 2018-04-06.

Factor Futures Stocks Index Swaps Factor Futures Stocks Index Swaps

− 3.00 − 12.45 0.00 − 288.67 − 3.00 2.96 0.00 10.65
− 2.00 − 9.85 0.00 − 190.81 − 2.00 1.60 0.00 5.24
− 1.00 − 5.18 0.00 − 95.15 − 1.00 0.82 0.00 2.37

2.00 5.90 83.20 110.89 2.00 0.84 0.46 1.77
3.00 6.90 83.93 209.16 3.00 1.17 0.78 5.89
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Table 2. Summary statistics for the ratio (as per-
cent) between (i) daily volume generated by LIETFs
on the S&P 500 and (ii) daily volume in the S&P 500
components. Data from 2009-06-23 to 2018-03-27.

1% Quantile Median 99% Quantile Mean

0.01 0.15 0.86 0.20

0.20% of trading volume in the S&P 500 index components,
and on 99 out of 100 days it is below 0.86%.

These figures imply that, even in the implausible worst
case scenario that all trading generated by LIETFs took place
in underlying assets, such volume would be on average five
times below the 1% threshold above which price impact starts
to become relevant. In practice, as shown by table 1, only
a minority of trading takes place in the underlying assets,
with the bulk concentrated in index swaps and futures, which
entail much lower trading costs, thereby indicating that the
assumption of constant trading costs is germane to the present
application.

5. Empirical results

This section examines the model’s implications for leveraged
and inverse exchange-traded funds listed in the USA.

Table 3 displays the performance statistics for some of the
largest families of leveraged and inverse ETFs. To facilitate
comparisons among different factors of the same benchmark,
observations for each family are trimmed to the longest period
that includes all factors (the youngest funds are usually the
ones with triple exposure). Each row displays the relative per-
formance of a leveraged or inverse fund compared to a hypo-
thetical portfolio that trades without costs in the nonlevered
fund on the same benchmark (e.g. SPY before management
fees for the S&P 500), using as safe rate the 1-month treasury
rate. The beta and tracking differences are calculated from the
linear regression of the fund’s daily returns on the returns of
the corresponding hypothetical portfolio.

Average exposures (betas) are closely aligned with their
targets, but consistently biased towards zero, and such dif-
ferences are statistically significant for higher factors, as
documented by their t-statistics. This is the underexposure
puzzle, observed by Tang and Xu (2013), and explained in our
model by equation (22) as the result of optimal rebalancing
policies. The higher tracking error of funds with larger factors
follow from the wider no-trade regions that are optimal for
larger factors. Likewise, more negative tracking differences
for larger factors may reflect higher rebalancing costs rather
than management issues.

The implied spreads in table 3 tend to be lower for larger
factors (−3, −2, +3) than they are for smaller ones (−1, +2).
In other words, the tracking differences of a larger factor is
less negative than it should be if the spread was the same as
for smaller factors. Such differences are large, ranging from
around 5 basis points for larger factors to about 20 for small
factors.

An explanation of this difference is in the relatively flat
management fees charged by funds with different factors:

for example, the funds that replicate multiples of the S&P
500 index have expense ratios of 0.90% ( − 3), 0.90% ( − 2),
0.89% ( − 1), 0.89% ( + 2), and 0.91% ( + 3). These expenses
detract directly from the tracking difference of the fund, and
make it much more onerous for an investor (in terms of
implied rebalancing cost) to pay 0.90% for a fund that gener-
ates twice the index return, than to pay 0.91% for three times.
For inverse funds it is even more obvious, as the once and
twice inverse funds have virtually the same expenses.

The relevance of this explanation is further confirmed by
the gross implied spreads, that is, the implied spreads obtained
by the tracking differences before management fees (obtained
in the data by adding to the market return the daily manage-
ment fee of the fund). In accordance with the above expla-
nation, such gross implied spreads are significantly closer to
each other across different factors. Some of the gross spreads
for the most liquid funds take small negative values due to the
effect of tracking error, as the realized return in the sample
period is minimally positive before fees.† Consistently with
the model, gross implied spreads are higher for less liquid
asset classes, such as smaller stocks (S&P Midcap 400 and
Russel 2000).

In summary, while the gross implied spread is useful to
understand the impact of management fees and managers’
tracking efficiency, the relevant performance measure for
investors is the net implied spread, as it captures the only
return that is available to them, i.e. net of fees.

5.1. Underexposure

In their empirical work on leveraged and inverse ETFs listed
in US exchanges, Tang and Xu (2013) report that ‘LETFs
show an underexposure to the index that they seek to track’.
That is, empirical average exposures are significantly closer
to zero than their target multiple. Table 3 confirms the under-
exposure phenomenon for several families of leveraged and
inverse ETFs traded in US markets: the comparison of real-
ized average exposure with target factors yields significant
t-statistics for the riskiest funds, with deviations consistently
biased toward zero.

This empirical regularity is explained by equations (14)
and (19) as a consequence of managers’ optimal rebalancing
policies. Indeed, the transaction cost correction in

β̄ = � − 2� − 1

γ

(
γ�(� − 1)

6

)1/3

ε2/3 + O(ε) (22)

is negative for � > 1 and positive for � < 0. This effect
may seem puzzling at first, as the buy and sell boundaries are
approximately symmetric around �.

The crucial point is that when the exposure πt is larger (far-
ther from zero), it is also more variable. As the trading policy
forces exposure to remain in a fixed range, the implication
is that, within such range, the exposure on average spends
more time on less variable values—where it is closer to zero.
Thus the underexposure effect arises from the combination of

† The notable exception is the EET, which has a large negative
tracking difference and hence a large implied spread, even after
controlling for management fees.
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Table 3. Performance of LIETFs on selected indexes through December 31st, 2022. For each index, observations begin on the earliest date
for which all inverse ( − 3, − 2, − 1) and leveraged (2, 3) multiples are available. (Earliest date is November 19th, 2008.) Historical prices

from Yahoo Finance, Interest rates from US Treasury.

Index Ticker X

Track.
Error
(bp)

Tracking
Diff.
(%)

Tracking
Diff.

(Gross)
(%)

Implied
Spread

(bp)

Implied
Spread
(Gross)

(bp) Beta

T-stat
(Beta)

(%)
Vol.
(%)

Years
Data

SPXU − 3 5.41 − 1.18 − 0.26 0.57 0.13 − 2.99 4.00 52.59 13.51
S&P SDS − 2 2.94 − 0.74 0.15 0.77 − 0.16 − 2.00 − 2.66 35.26 13.51
500 SH − 1 1.96 − 0.68 0.21 4.24 − 1.31 − 1.01 − 6.52 17.73 13.51
(SPY) SSO 2 2.93 − 1.59 − 0.70 14.92 6.59 2.01 3.42 35.28 13.51

UPRO 3 5.31 − 2.29 − 1.34 4.31 2.52 3.00 0.88 52.85 13.51
S&P SMDD − 3 16.45 − 2.45 − 1.50 2.19 1.34 − 2.96 5.10 61.90 12.88
Midcap MZZ − 2 11.16 − 2.31 − 1.36 5.61 3.30 − 1.94 11.75 40.54 12.88
400 MYY − 1 4.69 − 1.11 − 0.16 10.18 1.46 − 1.00 1.89 20.76 12.88
(MDY) MVV 2 4.22 − 1.42 − 0.47 11.78 3.92 1.99 − 3.78 41.26 12.88

UMDD 3 13.73 − 1.58 − 0.63 4.72 1.88 2.92 − 12.06 60.88 12.88
MSCI EDZ − 3 6.75 − 1.39 − 0.44 0.39 0.12 − 2.96 13.31 66.89 13.57
Emerging EEV − 2 4.51 − 1.63 − 0.68 1.23 0.51 − 1.99 3.22 45.05 13.57
Markets EUM − 1 2.83 − 1.14 − 0.19 4.87 0.81 − 1.00 2.98 22.53 13.57
(EEM) EET 2 12.26 − 2.74 − 1.79 50.78 33.20 1.95 − 8.81 44.61 13.57

EDC 3 7.74 − 5.12 − 4.18 6.65 5.42 2.93 − 19.07 66.35 13.57
SQQQ − 3 5.81 − 2.28 − 1.33 0.71 0.41 − 2.96 14.15 61.63 12.88

Nasdaq QID − 2 3.05 − 1.21 − 0.26 0.79 0.17 − 1.99 5.39 41.45 12.88
100 PSQ − 1 2.13 − 1.00 − 0.05 4.10 0.20 − 1.00 3.90 20.74 12.88
(QQQ) QLD 2 3.06 − 1.66 − 0.71 9.75 4.16 1.99 − 4.38 41.48 12.88

TQQQ 3 5.43 − 2.24 − 1.30 2.61 1.51 2.95 − 17.84 61.47 12.88
TZA − 3 6.55 − 4.95 − 4.00 1.09 0.88 − 2.99 5.10 72.59 14.11

Russell TWM − 2 4.79 − 3.12 − 2.18 2.01 1.40 − 1.99 5.47 48.37 14.11
2000 RWM − 1 2.66 − 1.61 − 0.67 5.20 2.14 − 1.00 − 1.80 24.37 14.11
(IWM) UWM 2 4.47 − 1.67 − 0.67 9.03 3.62 1.99 − 3.77 48.45 14.11

TNA 3 6.03 − 3.33 − 2.38 2.70 1.93 2.96 − 15.29 71.99 14.11
Barclays TTT − 3 11.75 − 2.13 − 1.18 4.01 2.22 − 2.87 15.84 41.88 10.75
20 + TBT − 2 8.90 − 1.66 − 0.74 9.43 4.20 − 1.90 16.46 27.79 10.75
Treasury TBF − 1 5.08 − 1.24 − 0.31 36.24 9.03 − 0.96 12.38 14.05 10.75
(TLT) UBT 2 11.07 − 1.07 − 0.12 68.49 7.95 1.93 − 9.49 28.40 10.75

TMF 3 5.87 − 1.71 − 0.76 6.44 2.87 2.94 − 13.53 42.61 10.75
Dow Jones SDOW − 3 4.61 − 1.39 − 0.45 0.61 0.19 − 2.97 12.03 51.04 12.88
Industrial DXD − 2 2.66 − 0.92 0.03 0.93 − 0.03 − 1.99 6.84 34.20 12.88
Average DOG − 1 1.77 − 0.85 0.10 5.14 − 0.59 − 1.00 4.18 17.13 12.88
(DIA) DDM 2 3.01 − 1.58 − 0.63 16.28 6.50 1.98 − 10.35 34.08 12.88

UDOW 3 5.48 − 1.91 − 0.96 3.96 1.99 2.95 − 14.49 50.83 12.88

symmetric trading boundaries with the asymmetric volatility
of the fund.

Substituting in equation (22) a fund’s average realized
exposure as β̄, it is possible to solve for the ratio ε/γ , which,
combined with a value of the trading cost ε, yields an esti-
mate for γ . Larger deviations of the average exposure β̄ from
the target factor � imply a lower γ (the manager favors
lower trading costs over lower tracking error) while smaller
deviations imply a larger value of γ .

For example, the SPXU has a realized β̄ = −2.99 and a
factor � = −3, which imply γ ≈ 10 assuming that ε = 0.1%,
a figure consistent with the discussion in the previous section.
Table 4 displays the average exposure implied for funds with
typical factors for different values of ε and γ . Small fac-
tors (−1 and 2) lead to average exposures that are almost
indistinguishable from their targets, especially when statisti-
cal error is accounted for. On the other hand, larger factors
(−3, −2, and 3) lead to discernible differences across TrE
aversion γ and trading costs ε. In particular, the configuration
γ = 10, ε = 0.1% closely approximates the panel of S&P 500
funds and γ = 5, ε = 0.1% the panel of Dow Jones funds.
In general, values of γ between 5 and 10 with ε = 0.1%

closely reproduce the empirical estimates on funds tracking
large-capitalization stocks, while higher trading costs ε are
warranted for small-capitalization stocks and treasuries.

Granularity. It is worthwhile to consider whether the
observed underexposure may have different explanations.
One ostensible source of underexposure could be granular-
ity. Indeed, the minimum trade size for the E-mini S&P 500
Futures contract (which is held by the ETFs tracking this
index, as explained in the previous section) equals $50 times
the index value, which means that when the index is 2800, the
contract size is $140,000. Thus for a fund with a $1 billion
exposure (the SSO has more than 2 billion in assets, hence an
exposure of over 4 billions), the granularity of futures con-
tracts could explain a discrepancy in average exposure of the
order of 1.4 × 105/109 ≈ 10−4.

In fact, the inspection of daily portfolio holdings described
above reveals that, because daily rebalancing of leveraged
(but not inverse) funds is partly achieved by trading incre-
mental quantities of individual equities, the minimum trade
unit for a fund is the price of one share, typically between
$10 and $1000. Thus, for a fund with $1 billion exposure,
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Table 4. Average exposure (β̄) for typical factors
(�) across trading costs (ε) and TrE aversion (γ ),

obtained from equation (22).

ε = 0.1%

γ

� 1 5 10

− 3 − 2.91 − 2.97 − 2.98
− 2 − 1.95 − 1.98 − 1.99
− 1 − 0.98 − 0.99 − 1.00

2 1.98 1.99 2.00
3 2.95 2.98 2.99

ε = 0.5%

γ

� 1 5 10

− 3 − 2.74 − 2.91 − 2.94
− 2 − 1.85 − 1.95 − 1.97
− 1 − 0.94 − 0.98 − 0.99

2 1.94 1.98 1.99
3 2.85 2.95 2.97

the granularity of equity prices could justify a discrepancy
in average exposure of the order of 1000/109 = 10−6. Note
also that granularity—whether from futures contract sizes
or equity prices—would generate either underexposure or
overexposure with comparable probabilities.

Empirically, the underexposure observed even for the
largest ETFs, with assets under management above $1 bil-
lion, is of the order of 0.01 = 10−2, while overexposure never
appears in any of the 40 funds in our original sample. Taken
together, these observations indicate that granularity does not
reproduce quantitatively the observed underexposure of major
leveraged and inverse exchange-traded funds.

Noisy Returns. Another potential source of underexposure is
measurement error in the returns of LIETFs and their underly-
ing index. For example, such an error can arise if such returns
are calculated from net asset values (NAVs) rather than mar-
ket prices, which differ slightly from NAVs, due to time lags
in their calculation and to small deviations, within the cost
of subscription and redemption, which cannot be arbitraged
away.

Thus, denote the observed return of a fund as R̃F
t := RF

t +
εF

t , where Rt is the true return and εt is a measurement error
and, likewise, the observed return of the underlying index
as R̃I

t := RI
t + εI

t . Then, assuming that returns are stationary
and that errors are uncorrelated with true returns and with
each other, the large sample average exposure converges in
probability to

β̃ = Cov(R̃F
t , R̃I

t )

Var(R̃I
t )

= Cov(RF
t , RI

t )

Var(RI
t ) + Var(εI

t )
= β

1 + Var(εI
t )

Var(RI
t )

≈ β

(
1 − Var(εI

t )

Var(RI
t )

)
,

where β = Cov(RF
t ,RI

t )

Var(RI
t )

is the true average exposure. In other
words, measurement error in the fund’s return does not bias

the estimate of average exposure, but measurement error in
the index’ return generates a spurious proportional underex-
posure of Var(εI

t )/Var(RI
t ).

Note that such underexposure is independent of the true or
observed fund returns, and in particular it would be indepen-
dent of the leverage factor, while the underexposure observed
in table 3 is much bigger for larger factors. This qualita-
tive observation already casts doubt on such mechanism as a
source of the observed underexposure. (In addition, the results
in table 3 do not rely on NAVs but on market prices only.)

A detailed analysis of returns of NAV and market prices
sheds additional light on this issue. Indeed, for the SPY, which
replicates the S&P 500 index, the standard deviation of the
difference between daily NAV returns and market returns is
0.16%, while the standard deviations of both the market and
the NAV daily returns are 1.15%, which implies that

Var(εI
t )/Var(RI

t ) = (0.16%)2

(1.15%)2
≈ 1.9%.

(The observation period is 2003-12-02 to 2018-12-31.) Put
differently, a measurement error equivalent to the discrepancy
between NAV and market price would generate a reduction
in average exposure of nearly 2%, irrespective of the factor
considered. By contrast, the underexposures in table 4 are
much smaller for small factors, as NAVs are never used in
the analysis.

The above observation helps understand why the underex-
posures reported here are smaller than the ones observed by
Tang and Xu (2013). Indeed, they calculate average exposures
of LIETFs with respect to the underlying indexes rather than
the market return of the nonlevered fund on the same index
(this paper’s approach). The benchmark index (which is not
itself traded) may exhibit deviations from the market price of
the same order as the NAV, and in fact Tang and Xu (2013,
table 1 B) report for the SPY an exposure of 98.48%, i.e. an
underexposure of 1.52%, which is broadly consistent with the
effect of noisy returns.

6. Robustness

This section discusses, theoretically and numerically, the
robustness of previous results to risk premia with stochas-
tic volatility, finite horizons, and discrete (as opposed to
continuous) trading.

6.1. Risk premia: trading strategies and performance

Assume that the underlying S has non-zero risk premia,

dSt

St
= (rt + μt) dt + σt dBt, S0 ≥ 0,

where μt = κσ 2
t , with κ ≥ 0. Thus this specification pre-

scribes that the Sharpe ratio increases as return variance
increases, as in the asset pricing models of Campbell and
Cochrane (1999), Bansal and Yaron (2004), and others,
and consistent with the empirical countercyclicality of risk
premia.
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Figure 4. Trading boundaries (vertical) for factor +3 against tracking error (horizontal), from first-order asymptotics (25) (red) and exact
solutions for κ = μt/σ

2
t = 0 (black), κ = 1.5625 (blue), and κ = 3.125 (green). For realistic levels of tracking error, the impact of κ is of

second order.

In view of the excess returns μt, the cumulative returns pro-
cess Dt defined by (4) includes a component μt(πt − �) dt
that can be ascribed to the deviation of the fund’s exposure
from its target. As the exposure πt is observable to investors,†
they can accordingly control for overexposure while evaluat-
ing performance, by modifying the definition of the deviation
process as

dDt := dFt

Ft
− rt dt − �

(
dSt

St
− rt dt

)
− μt(πt − �) dt,

D0 = 0. (23)

Replacing (4) with (23), the previous identities (5)–(6) for
Tracking Difference (TrD) and Tracking Error (TrE) remain
valid, and thus the objective of a leveraged ETF manager is to
find a trading policy πt that minimizes the average equivalent
expense ratio

EER(ϕ) :=

lim inf
T→∞

1

T
E

[
γ

2

∫ T

0
(πt − �)2σ 2

t dt + ε

∫ T

0
πt

dϕ
↓
t

ϕt

]

over all ϕ ∈ �, where � is the set of admissible strate-
gies (see appendix 1). Note that in this problem, although

† Note that d〈F, S〉t = FtStπtσ
2
t dt and d〈S〉t = S2

t σ 2
t dt, whence

πt = St/Ft · d〈F, S〉t/d〈S〉t.

the objective function controls for extra exposure, the risk-
premium κ has not disappeared completely, as it affects
the dynamics of the portfolio weight πt. The question is
whether this effect is significant enough to alter the previous
results.

The next theorem offers a negative answer, in which the
effect of the risk premium is found to be of the second order:

Theorem 6.1 (Risk Premia) Let γ > 0 and � = 0, 1. For
ε > 0 small enough:

(i) The free boundary problem

(
1

2
ζ 2W ′(ζ ) + κζW(ζ ) − γ�

(
ζ

1 + ζ

)

−γ

2

(
ζ

1 + ζ

)2
)′

= 0, (24)

subject to (10)–(11) has a unique solution (W , ζ−, ζ+).
(ii) The trading strategy ϕ̂ that buys at π− := ζ−/(1 + ζ−)

and sells at π+ := ζ+/(1 + ζ+) as little as to keep the
risky weight πt within the interval [π−, π+], is optimal.

(iii) The trading boundaries π− and π+ depend only on
the fraction κ = μt/σ

2
t . They have the asymptotic
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Figure 5. Negative tracking difference (− TrD) for +3 leveraged fund (vertical, colored solid lines) and −2 (dashed colored lines), against
tracking error (TrE) (horizontal), for κ = μt/σ

2
t = 0% (black), κ = 1.5625 (blue) and κ = 3.125 (green). The solid red line represents the

asymptotic formula in (1), which is the same for L and 1 − L.

expansions

π± = � ±
(

3

4γ
�2(� − 1)2

)1/3

ε1/3

− (� − κ)

γ

(
γ�(� − 1)

6

)1/3

ε2/3 + O(ε).

(25)

(iv) The minimum Equivalent Expense Ratio is

min
ϕ∈�

EER(ϕ) = γ σ 2

2
(π− − �)2, (26)

where � is the set of admissible strategies (see
appendix 1).

Thus the risk premium κ affects the optimal trading bound-
aries only in the ε2/3 term, which is negligible for reasonable
parameter values, as illustrated by figure 4. Similarly, the
tracking difference and the average exposure of the fund
are also affected at the second order. In particular, the per-
formance formula (21) remains valid, as it involves only
first-order terms.

On the issue of performance, figure 5 reproduces the rele-
vant part of figure 2 with realistic risk premia. Again, the main
message is that the tradeoff between tracking error and track-
ing difference remains virtually unchanged at typical levels of
tracking error and target factors.

6.2. Finite horizons, trading frequency, and stochastic
volatility

The use of a stationary objective raises the question of how
robust the results are to fixed horizons, and how well sta-
tionary optimal strategies perform when trading takes place at
discrete frequency, rather than continuously. Figure 6 plots the
asymptotic tradeoff between tracking difference and tracking
error to the one obtained from Monte Carlo simulations from
geometric Brownian motion (Black–Scholes model) and from
the Heston stochastic volatility model, in the presence of a risk
premium, with daily rebalancing frequency, and for a finite
horizon of 5 years.

For the Heston model, set vt := σ 2
t , where vt satisfies the

dynamics

dvt = θ(k − vt) dt + σ
√

vt dWt,

dSt

St
= (rt + κvt) dt + √

vt dBt,

with an instantaneous correlation d〈Bt, Wt〉 = ρ dt, and the
parametrization v0 = σ 2, ζ0 = ζ∗ = �

1−�
, unconditional mean

k = σ 2, mean-reversion speed θ = 5 and diffusion coefficient
σ . A minimal trade is executed whenever the proportion of
wealth π leaves the no-trade region [π−, π+] as to return
π to its closest boundary. The exact trading boundaries π±
are obtained by solving numerically (24) subject to the free
boundary conditions (10)–(11).
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Figure 6. Negative tracking difference (− TrD) for a +3 leveraged fund (vertical), against tracking error (horizontal), for μt/σt = 0 (solid
lines), 1.5625 (dashed) and 3.125 (dashed-dotted), when ε = 0.1%. The black lines depicts the exact performance from (26) with σ = 16%.
The blue and green lines correspond to Monte Carlo Estimates (15000 paths, daily grid) for the Black–Scholes (blue) and Heston (green)
models, with time horizon of T = 5 years, daily sampling and trading frequency, and correlation ρ = −0.9.

Again, the message of figure 6 is that, for realistic parame-
ter values, risk premia, trading frequencies, and finite horizons
have only a minor effect on the basic tradeoff identified by the
asymptotic formulas in the paper. While these features make
the optimization problem more complex, they remain largely
inconsequential for performance evaluation and replication
purposes.

7. Conclusion

Leveraged and inverse funds seek to replicate a multiple of
the daily return on an index by frequently rebalancing their
portfolio to keep a constant leverage ratio. In theory, in a
frictionless market continuous rebalancing yields a perfect
replication of a leveraged benchmark, i.e. zero alpha and
tracking error. In practice, trading costs create a trade-off
between the frequent rebalancing that generates low tracking
error and the low trading costs that prevent alpha from becom-
ing too negative. This trade-off becomes more relevant for
products that seek to replicate larger multiples or less liquid
benchmarks.

Portfolio performance measures based on the regression
of a fund’s return against its benchmark’s return are ubiq-
uitous, hence closely monitored by managers who may be
evaluated on their basis. On average, the negative tracking dif-
ference of a leveraged fund results from management fees and
trading costs, while the tracking error reflects the inevitable
deviations from the target exposure that are necessary to

keep trading costs under control. Other things equal, a fund
that seeks to replicate a larger multiple of an index’ return
has a higher tracking error and a more negative tracking
difference.

It is misleading to compare funds with different factors, and
to conclude that one is better managed than the other merely
because its tracking error is lower, or because its alpha is less
negative: two funds with the same factor may be optimally
managed, as one may seek lower tracking error at the expense
of more negative tracking difference. High tracking error is
not necessarily evidence of poor manager performance if the
index is less liquid. On the contrary, a savvy management
strategy must accept higher tracking error to achieve less neg-
ative tracking differences, and low tracking error inevitably
depresses average performance.
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Appendices

Appendix 1. Admissible Trading Strategies

Definition A.1 A non-anticipative, self-financing strategy (com-
pare (2)–(3)) is admissible if it is solvent and satisfies sufficient
integrability:

(i) its liquidation value is strictly positive at all times: There
exists ε′ > ε such that

Ft − ε′ϕ+
t St ≥ 0 a.s. for all t ≥ 0. (A1)

(ii) Let ‖ϕ‖t denote the total variation of ϕ on [0, t], then

E

[∫ t

0
|πu|2 du

]
< ∞,

E

[∫ t

0
πu

d‖ϕ‖u

ϕu

]
< ∞ for all t ≥ 0.

The family of admissible trading strategies is denoted by �.

Let Xt be the safe position of an admissible, self-financing trading
strategy ϕ, and Yt = ϕtSt the risky position. The following lemma
describes the dynamics of the fund value Ft = Xt + Yt, the risky
weight πt = Yt/Ft, and the risky/safe ratio ζt = Yt/Xt.

Lemma A.2 Let ϕ be an admissible trading strategy, then

dFt

Ft
= rt dt + πt

(
σt dBt − ε

dϕ
↓
t

ϕt

)
,

dπt

πt
= (1 − πt)σt dBt − πt(1 − πt)σ

2
t dt + dϕ

↑
t

ϕt

− (1 − επt)
dϕ

↓
t

ϕt
,

dζt

ζt
= σt dBt + (1 + ζt)

dϕ
↑
t

ϕt
− (1 + (1 − ε)ζt)

dϕ
↓
t

ϕt
.

(A2)

Moreover, the functional

�T (ϕ) := 1

T
E

[∫ T

0

(
dFt

Ft
− rt dt

)
− γ

2

∫ T

0

〈
dFt

Ft
− �

dSt

St

〉
T

]

can be written as

�T (ϕ) = 1

T
E

[∫ T

0

γ σ 2
t

2
(πt − �)2 dt − ε

∫ T

0
πt

dϕ
↓
t

ϕt

]
. (A3)

Proof The proof follows from similar arguments as in Guasoni and
Mayerhofer (2019, lemma A.2). �

Remark A.3 Note that zero risk premia (μ = 0) imply EER(ϕ) =
− lim infT→∞ �T (ϕ) (as in this case DT equals

∫ T
0 ( dFt

Ft
− rt dt) in

expectation, compare (4)). Accordingly, the appendix (except part A)
focuses on the equivalent problem of maximizing the functional

�∞(ϕ) :=

lim inf
T→∞

1

T
E

[∫ T

0

(
γ σ 2

t �πt − γ σ 2
t

2
π2

t

)
dt − ε

∫ T

0
πt

dϕ
↓
t

ϕt

]

= − EER(ϕ) − γ�2σ 2

2
. (A4)

Appendix 2. Replication of Leveraged Benchmarks

This section contains a series of propositions, which culminate in
a proof of theorem 3.1 in section 4. In particular, the optimal trad-
ing strategies are derived for replicating leveraged benchmarks under

transaction costs. Setting

G(ζ ) := ε

(1 + ζ )(1 + (1 − ε)ζ )
and

h(ζ ) := γ�

(
ζ

1 + ζ

)
− γ

2

(
ζ

1 + ζ

)2

,

the free boundary problem (9)–(11) can be recast as

1

2
ζ 2W ′′(ζ ) + ζW ′(ζ ) − h′(ζ ) = 0, (A5)

W(ζ−) = 0, W ′(ζ−) = 0, (A6)

W(ζ+) = G(ζ+), W ′(ζ+) = G′(ζ+). (A7)

For the next statement, the third root of a negative number a is
understood as the unique real root of the equation ζ 3 = a.

Proposition A.4 Let γ > 0. For sufficiently small ε, the free
boundary problem (A5)–(A7) has a unique solution (W , ζ−, ζ+),
with ζ− < ζ+. The free boundaries have the asymptotic expansion

ζ± = �

1 − �
±
(

3

4γ

)1/3 (
�

(� − 1)2

)2/3

ε1/3

− 5�

2γ (� − 1)2

(
γ�(� − 1)

6

)1/3

ε2/3 + O(ε). (A8)

Proof of proposition A.4 The differential equation (A5) is equiva-

lent to (
ζ 2

2 W ′(ζ ) − h(ζ ))′ = 0. As ζ− /∈ {−1, 0}, any solution of the
initial value problem (A5)–(A6) is thus of the form

W(ζ−, ζ ) = 2
∫ ζ

ζ−
(h(y) − h(ζ−))

dy

y2

= 2γ�

(
log

∣∣∣∣ ζ

1 + ζ

∣∣∣∣− log

∣∣∣∣ ζ−
1 + ζ−

∣∣∣∣
)

+ γ

(
1

1 + ζ
− 1

1 + ζ−

)
+ 2h(ζ−)

(
1

ζ
− 1

ζ−

)
.

By the terminal conditions (A7) at ζ+, and setting δ = ε1/3, (ζ−, ζ+)
satisfy the system

�1(ζ−, ζ+) := W(ζ−, ζ+) − δ3

(1 + ζ+)(1 + (1 − δ3)ζ+)
= 0,

(A9)

�2(ζ−, ζ+) := 2(h(ζ+) − h(ζ−))

ζ 2+
− (1 − δ3)2

(1 + (1 − δ3)ζ+))2

+ 1

(1 + ζ+)2 = 0. (A10)

The unique solution of the free boundary problem can be thus
obtained by solving equations (A9)–(A10). Moreover, expanding
�1,2 around ζ± = �

1−�
+ B2,1δ + O(δ2) with unknown coefficients

B2,1 yields

�1(ζ±(δ)) = −γ (1 − �)6

3�2

(
2B3

1 − 3B2
1B2 + B3

2 + 3�2

γ (1 − �)4

)
δ3

+ O(δ4),

�2(ζ±(δ)) = (B1 − B2)(B1 + B2)γ (� − 1)6

�2 δ2 + O(δ3).

Setting the relevant coefficients of the expansion to zero, it follows
that

2B3
1 − 3B2

1B2 + B3
2 + 3�2

γ (1 − �)4 = 0, B1 = −B2, (A11)
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which yields

B1 = −
(

3

4γ

)1/3 (
�

(1 − �)2

)2/3

. (A12)

Finally, it is shown that equations (A9)–(A10) have a unique solution
around

ζ0,± := �

1 − �
±
(

3

4γ

)1/3 (
�

(1 − �)2

)2/3

δ.

This is equivalent to

�1 := �1(ζ−(η−), ζ+(η+))

δ3 = 0,

�2 := �2(ζ−(η−), ζ+(η+))

δ2 = 0

having a unique solution η± := ζ±− �
1−�

δ
around (B1, B2) for suffi-

ciently small δ. As

det(D�)(η− = B1, η+ = B2, δ = 0) = −6γ (1 − �)8

�2 = 0,

the Implicit Function Theorem for analytic functions (Gunning and
Rossi 2009, theorem I.B.4) implies the existence of a unique solu-
tion. The higher order coefficients in (A8) are obtained similarly. �

Proposition A.5 Let (W , ζ−, ζ+) be the solution of the free bound-
ary problem (A5)–(A7) (provided by proposition A.4). For suffi-
ciently small ε, the pair (V , λ) defined by

V (ζ ) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for ζ < ζ−,∫ ζ

ζ−
W(u) du for ζ ∈ [ζ−, ζ+],

G(ζ+) +
∫ ζ

ζ+
G(u) du for ζ ≥ ζ+

and λ := h(ζ−),

is a solution of the HJB equation

min

(
x2

2
V ′′(x) − h(x) + λ, G(x) − V ′(x), V ′(x)

)
= 0,

x ∈ R \ [−(1 − ε)−1, 0]. (A13)

Proof of proposition A.5 First, recall that either ζ < −1/(1 − ε)
(implying ζ < −1) or ζ > −1 (implying ζ > −1/(1 − ε); thus for
both ranges,

G(ζ ) = ε

(1 + ζ )(1 + (1 − ε)ζ )
> 0.

We show now the validity of (A13), by dividing the real line into the
intervals parts ζ < ζ−, ζ ∈ [ζ−, ζ+] and ζ > ζ+. For ζ ∈ [ζ−, ζ+],
equation (A5) implies

(ζ 2/2V ′′(ζ ) − h(ζ ) + h(ζ−))′

= 1

2
ζ 2W ′′(ζ ) + ζW ′(ζ ) − h′(ζ ) = 0,

and, the first initial condition in (A6) gives

(ζ 2/2V ′′(ζ ) − h(ζ ) + h(ζ−)) |ζ=ζ−= ζ 2/2V ′′(ζ ) |ζ=ζ−= 0,

whence ζ 2/2V ′′(ζ ) − h(ζ ) + h(ζ−) ≡ 0, for all ζ ∈ [ζ−, ζ+]. Sec-
ond, show V ′(ζ ) ≥ 0. As

W(ζ ) = V ′(ζ ) = 1

2

∫ ζ

ζ−
(h(η) − h(ζ−))η−2 dη, (A14)

W ′(ζ0) = 0 if and only if h(ζ−) = h(ζ0). Hence, either ζ0 = ζ−, or
ζ0 satisfies ζ0

1+ζ0
= 2� − π−. The first-order asymptotics of (A8)

imply ζ0 /∈ [ζ−, ζ+] for sufficiently small ε, and therefore W ′ > 0
on (ζ−, ζ+], and by (A14) it follows that V ′ ≥ 0 on all of [ζ−, ζ+].

Third, note that V ′ ≤ G on [ζ−, ζ+]. Indeed, the function �1(ζ ) =
W(ζ ) − G(ζ ) (see (A9)) satisfies

�1(ζ−) = −G(ζ−) = −(1 − �)2ε + O(ε4/3), �1(ζ+) = 0,

hence for sufficiently small ε, �1(ζ ) < 0 on some interval [ζ−, ζ̄ ),
where ζ̄ ≤ ζ+. Therefore, it suffices to show that ζ̄ = ζ+ to verify
the claim.

By contradiction, suppose there exists a sequence δk ↓ 0 such that
for each k ∈ N �1(ζ̄ (δk)) = 0, and that ζ−(δk) < ζ̄ (δk) < ζ+(δk).
Changing to the variable u = ζ−ζ∗

δ
, and introducing the notation

u± = ζ±−ζ∗
δ

, ū = ζ̄−ζ∗
δ

shall prove convenient. By selecting, if nec-
essary, a subsequence, one may without loss of generality assume
that ū(δk) converges, hence it must satisfy limk→∞ ū(δk) =: B0 ∈
[B1, B2], where B1 is defined in (A12), and B2 = −B1. The calcula-
tions leading to (A12) therefore entail that B0 must satisfy (A11) in
place of B2, i.e.

2B3
1 − 3B2

1B0 + B3
0 + 3�2

γ (1 − �)4 = 0. (A15)

With B1 from (A12), the change of variable ξ = −B0/B1 implies
2 − 3ξ + ξ3 = 0, which has the only solutions 1 and −2. There-
fore, (A15) has the only relevant solution B0 = −B1 = B2. Set

ū∗(δ) =
{

ū(δk), k ∈ N

u+(δ), otherwise
.

Then (u−(δ), u∗(δ)) satisfies �(u−, u+) = 0 near (B1, B2), for suf-
ficiently small δ. By the uniqueness in the proof of proposition A.4,
u∗(δ) = u+(δ), which contradicts the assumption ζ̄ = ζ+.

Consider now ζ ≤ ζ−. As V ′ ≡ 0, it suffices to show

ϕ(ζ ) := ζ 2/2V ′′ − h(ζ ) + h(ζ−) = h(ζ−) − h(ζ ) ≥ 0.

Using

(h(ζ ) − h(ζ−))′ = h′(ζ ) = γ

(1 + ζ )2

(
� − 1

1 + ζ

)
,

the asymptotic expansion (A8) implies ϕ′(ζ−) < 0 for sufficiently
small ε. Furthermore, ϕ(ζ−) = 0, hence ϕ(ζ ) > 0 for all ζ < ζ− and
for any sufficiently small ε.

Finally, consider ζ ≥ ζ+. As V ′ = W = G, only

L(ζ ) := ζ 2/2V ′′(ζ ) − h(ζ ) + h(ζ−)

= ζ 2

2
G′(ζ ) − h(ζ ) + h(ζ−) ≥ 0

needs to be checked. Note that L is a rational function and satisfies
L(ζ+) = 0, as (W , ζ−, ζ+) is a solution of the free boundary problem.
Therefore it suffices to show L has no zeros on [ζ+, ∞) \ [−1/(1 −
ε), −1], besides ζ+. The transformation z = ζ

1+ζ
, ε = δ3 leads to a

rational function F(z, δ) := L(ζ(z), ε(δ)), for which strict positivity
has to be shown on (π+, 1/ε). As F(π+) = 0, polynomial division
by (z − π+) yields

F(z, δ) = (z − π+)

(1 − δ3z)2 g(z),

where g is a cubic polynomial. The further transformation y =
(z − π+)/(1/δ3 − π+) yields g(z(y)) = l(y)/δ3 + O(δ), where l =
y
2 [((y − 1)2(γ − 1) + 1)]. Therefore l(y) > 0 for all y ∈ (0, 1) and
for any γ > 0, which translates into positivity of F, g and
thus L. �

Lemma A.6 Let η− < η+ be such that either η+ < −1/(1 − ε),
or −1 < η− < η+ < 0 or η− > 0. Then there exists an admissi-
ble trading strategy ϕ̂ such that the risky/safe ratio ηt satisfies
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SDE (A2). Moreover, (ηt, ϕ̂
↑
t , ϕ̂↓

t ) is a reflected diffusion on the
interval [η−, η+].

Proof See the first part of Guasoni and Mayerhofer (2019, lemma
B.5). �

The following is the verification of optimality for the trading strat-
egy of lemma A.6 with the trading boundaries in proposition A.4:

Proposition A.7 Denote by ϕ̂ the trading strategy of lemma A.6 for
the free boundaries ζ± in proposition A.4, and let

π± := ζ±/(1 + ζ±).

Then for any t > 0, the proportion of wealth πt invested in the
index lies in the interval [π−, π+], almost surely, entails no trad-
ing whenever π ∈ (π−, π+), sells the index at π+ and buys it at
π−. The strategy ϕ̂ is optimal for sufficiently small ε, and the value
function is

�∞(ϕ̂) = max
ϕ∈�

limsup
T→∞

1

T
E

[∫ T

0

(
γ σ 2

t �πt − γ

2
σ 2

t π2
t

)
dt − ε

∫ T

0
πt

dϕ
↓
t

ϕt

]

= γ σ 2�π− − γ σ 2

2
π2

−.

Proof of proposition A.7 Recall from proposition A.5 that λ =
h(ζ−) and (V , λ), defined from the unique solution of the free bound-
ary problem, is a solution of the HJB equation (A13). For the
verification, the proportion πt of wealth in the index is used, instead
of the risky/safe ratio ζt. With the change of variables ζ = −1 + 1

1−π

we introduce the operator

(Lf )(π) := 1

2
f ′′(π)π2(1 − π)2 − f ′(π)π2(1 − π).

By proposition A.5 and the chain rule, V̂ (π) := V (ζ(π)) satisfies the
HJB equation

min

(
LV̂ (π) − ĥ(π) + λ, V̂ ′(π),

ε

1 − επ
− V̂ ′(π)

)
= 0, (A16)

for −∞ < π < 1/ε, where ĥ(π) = h(ζ(π)) = γ�π − γ
2 π2. By

Itô’s formula,

V̂ (πT ) − V̂ (π0) =
∫ T

0
V̂ ′(πt) dπt + 1

2
V̂ ′′(πt) d〈π〉t (A17)

=
∫ T

0

(
LV̂ (π) − ĥ(πt) + λ

)
σ 2

t dt

+
∫ T

0
(ĥ(πt) − λ)σ 2

t dt (A18)

+
∫ T

0
V̂ ′(πt)πt(1 − πt)σt dBt (A19)

−
∫ T

0
V̂ ′(πt)(1 − επt)πt

dϕ
↓
t

ϕt
(A20)

+
∫ T

0
V̂ ′(πt)πt

dϕ
↑
t

ϕt
. (A21)

The first term in line (A18) is non-negative, due to (A16). Further-
more, by (A1) there exists ε′ > ε such that πt ≤ 1/ε′ < 1/ε, for all
t, a.s.. Using (A16) one thus obtains

0 ≤ V̂ ′(πt) ≤ εε′

ε′ − ε
, a.s. for all t ≥ 0. (A22)

Hence, the integral (A19) is a martingale – in view of the inte-
grability condition in assumption 2.1 – and has zero expectation.
Furthermore, (A16) yields

0 ≤ V̂ ′(πt)πt(1 − επt) ≤ επt,

which implies that for (A20) one has

−
∫ T

0
V̂ ′(πt)(1 − επt)πt

dϕ
↓
t

ϕt
≥ −ε

∫ T

0
πt

dϕ
↓
t

ϕt
.

Finally, (A21) is non-negative, because V̂ ′ ≥ 0 due to (A16). Thus,
taking the expectation of (A17) gives the estimate

1

T
E[V̂ (πT ) − V̂ (π0)] ≥ − λ

T

∫ T

0
σ 2

t dt + 1

T
E

[∫ T

0
σ 2

t ĥ(πt) dt

]

− ε
1

T

∫ T

0
πt

dϕ
↓
t

ϕt
. (A23)

By (A22),

|V̂ (πt) − V̂ (π0)| ≤ |πT − π0| sup
0<u≤1/ε′

|V̂ ′(u)| ≤ ε

ε′ − ε
,

therefore limT→∞ 1
T E[V̂ (πT ) − V̂ (π0)] = 0. Hence letting T → ∞

in (A23) reveals that �∞(ϕ) ≤ λσ 2 for any admissible strategy ϕ.
It is finally shown that this bound is attained by the admissible
trading strategy ϕ̂ defined by lemma (A.6). Indeed, let ζt be the
corresponding risky/safe ratio. Itô’s formula yields

dV (ζt) = V ′(ζt)ζtσt dBt + 0 − επt
dϕ

↓
t

ϕt
+ (h(ζt) − λ)σ 2

t dt.

Integration with respect to t and division by T yields, in view of (A3),

1

T
E

[∫ T

0

(
γ σ 2

t �πt − γ

2
σ 2

t π2
t

)
dt − ε

∫ T

0
πt

dϕ
↓
t

ϕt

]

= λ

T

∫ T

0
σ 2

t dt + 1

T
E

[
V̂ (πT ) − V̂ (π0)

]
.

Letting T → ∞, one obtains �∞(ϕ̂) = λσ 2. �

Appendix 3. Performance Evaluation

While the trading strategies derived in the previous section are uni-
versal, in the sense that the trading boundaries are independent
of (stochastic) volatility of the benchmark’s returns, the various
performance measures depend on the stationary volatility.

This section obtains explicit expressions for several moments
related to the optimal trading strategy which allow in section 4 below
to compute the performance statistics of theorem 3.1 are calculated
in explicit form, in terms of the trading boundaries. Throughout the
section, ζt is the reflected diffusion†

dζt

ζt
= σt dBt + dLt − dUt (A24)

on the interval [ζ−, ζ+], where ζ− < ζ+, and where either −1 <
ζ− < ζ+ < 0, 0 < ζ− < ζ+ < ∞, or ζ+ < −1. Accordingly, set
π± = ζ±

1+ζ± . Note that we do not require that π−, π+ are optimal in
the sense of theorem 3.1; it is only assumed that π+ ≤ 1/ε to avoid
bankruptcy.

The discussion begins with a lemma required in the proofs of
several subsequent statements.

Lemma A.8 Let (ft)t≥0 be an adapted process satisfying 0 < f ≤
|ft| ≤ f < ∞. Then,

lim
T→∞

1

T

∫ T

0
ftσt dBt = 0 P − a.s.

† ζ−Lt, ζ+Ut are increasing processes (therefore, if ζ+ < 0, then L,
U are decreasing).
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Proof Denote by M f
t := ∫ t

0 fuσu dBu for each t ≥ 0. The quadratic
variation satisfies

〈M f 〉t =
∫ t

0
f 2
u σ 2

u du ≥ f 2
∫ t

0
σ 2

u du,

which converges P− a.s. to infinity as t → ∞ (cf. Assumption 2.1).
By the Dambis–Dubins–Schwarz Theorem, Wt := M f

Ut
, where Ut =

inf{s > 0|〈M f 〉s = t}, is a Brownian motion on (�,F , (FUt )t, P)

and, by construction, M f
t = WU−1

t
. Furthermore, as 〈M f 〉 is strictly

increasing, U−1
t = 〈M f 〉t, hence limT→∞ U−1

T /T ≤ σ 2f
2

holds P−
a.s. Thus, by the law of iterated logarithm, limT→∞ M f

T/T = 0,
P − a.s. �

Proposition A.9 Let

lim
T→∞

∣∣∣∣UT

T

∣∣∣∣ < ∞, P − a.s. (A25)

Then the following P-a.s. limits hold:

lim
T→∞

LT

T
− lim

T→∞
UT

T
= σ 2

2
, (A26)

1

2
lim

T→∞
1

T

∫ T

0
σ 2

t πt dt

= ζ+ log |π+| · lim
T→∞

UT

T
− ζ− log |π−| · lim

T→∞
LT

T
, (A27)

1

2
lim

T→∞
1

T

∫ T

0
|σtπt|2 dt = π− · lim

T→∞
LT

T
− π+ · lim

T→∞
UT

T
.

(A28)

Proof First, let Yt = log |ζt|, and u := ζ+, l := ζ−. Then Y is the
reflected diffusion

Yt = Y0 −
∫ T

0

σ 2
t

2
dt +

∫ T

0
σt dBt + LT − UT

on [l, u]. By lemma A.8, limT→∞ LT −UT
T = σ 2

2 , and thus, by assump-
tion (A25), equation (A26) follows. Furthermore, applying Itô’s
Formula to the function F(ζ ) := ζ(log |ζ | − 1) − (1 + ζ )(log |1 +
ζ | − 1) yields

dF(ζt) = σ 2
t πt

2
dt + log |πt|ζtσt dBt + log |π−|ζ−dLt

− log |π+|ζ+ dUt,

and in the limit, (A27) follows using lemma A.8 once again. Similar
arguments yield (A28) using the function G(ζ ) := log |1 + ζ | and
noting that

dG(ζt) = πtσt dBt + π−dLt − π+dUt − 1

2
σ 2

t π2
t dt.

�

Lemma A.10 If limT→∞ | UT
T | < ∞ P-a.s., then

limT→∞ LT/T

limT→∞ UT/T
= ζ+

ζ−
P-a.s. (A29)

Proof By (A2) it follows that

1

T
(ζT − ζ0)) = 1

T

∫ T

0
ζtσt dBt + ζ−Lt − ζ+Ut

and thus letting T → ∞, the first integral vanishes almost surely by
lemma A.8. The remaining limits hold in view of assumption (A25).

�

A straightforward application of the preceding statements is the
following:

Proposition A.11 For any (not necessarily optimal) trading strat-
egy associated to [ζ−, ζ+] (A25) is satisfied, and P-a.s.,

lim
T→∞

LT

T
= σ 2

2

ζ+
ζ+ − ζ−

, lim
T→∞

UT

T
= σ 2

2

ζ−
ζ+ − ζ−

, (A30)

1

2
lim

T→∞
1

T

∫ T

0
σ 2

t πt dt = σ 2

2
log(π+/π−)

π+π−
π+ − π−

, (A31)

1

2
lim

T→∞
1

T

∫ T

0
|σtπt|2 dt = σ 2

2
π−π+. (A32)

Remark A.12 This section does not assume that ζ−, ζ+ are the
optimal trading boundaries of theorem 3.1. Invoking optimality, an
alternative proof of proposition A.11 only requires the use of two of
the four identities (A26)–(A29).

Appendix 4. Proof of theorem 3.1

Proof The part (i) is covered by proposition A.4, and part (ii) is
stated in proposition A.7. Part (iii) follows from proposition A.7 by
using Remark A.3.

Proof of (iv) (Tracking Difference and Tracking Error): Let ϕt
the optimal trading strategy defined by part (ii), and let πt be
the proportion of wealth in the risky asset. Recall the defining
equation (5),

TrD := lim
T→∞

(
1

T

∫ T

0
(πt − �)σt dBt − ε

T

∫ T

0
πt

dϕ
↓
t

ϕt

)
. (A33)

By lemma A.8, the first integral in (A33) vanishes almost surely, as
T → ∞. Consider now the second term. Substituting

dLt = (1 + ζt)
dϕ

↑
t

ϕt
and dUt = (1 + (1 − ε)ζt)

dϕ
↓
t

ϕt

into (A2), the risky/safe ratio ζ satisfies equation (A24). Thus

TrD := − lim
T→∞

ε

T

∫ T

0
πt

dϕ
↓
t

ϕt

= −ε
ζ+

(1 + ζ+)(1 + (1 − ε)ζ+))
lim

T→∞
UT

T

and equation (A30) yields (12). As

TrE =
√

lim
T→∞

〈
1

T

∫ ·

0

dFt

Ft
− �

T

∫ ·

0

dSt

St

〉
T

=
√(

lim
T→∞

1

T

∫ T

0
σ 2

t π2
t dt − 2� lim

T→∞
1

T

∫ T

0
σ 2

t πt dt + σ 2�2

)
,

formula (13) follows from equations (A31)–(A32).
Proof of (v) (s̄, β̄, R2): The average volatility s of the optimal port-

folio follows from (A32). Moreover, for fixed time horizons T the
regression of 1

T

∫ T
0 ( dFt

Ft
− rtdt) against 1

T

∫ T
0 ( dSt

St
− rtdt) leads to the

estimated slope, or beta, of this regression with the continuous-time
approximation

β̄T ≈ 〈∫ ·
0

dw
w ,
∫ ·

0
dS
S 〉T

〈∫ ·
0

dS
S 〉T

=
∫ T

0 πtσ
2
t dt∫ T

0 σ 2
t dt

.

According to equations (A31)–(A32), the limit

β̄ := (σ 2)−1 lim
T→∞

1

T

∫ T

0
σ 2

t πt dt (A34)
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is well defined. Similarly, the R2 of the regression, defined as the
ratio between the variance of the predicted return and the variance of
the realized return, is

R2 = lim
T→∞

(σ 2)−1
(

1
T

∫ T
0 σ 2

t πt dt
)2

1
T

∫ T
0 |σtπt|2 dt

. (A35)

Plugging equations (A31)–(A32) into equations (A34)–(A35) yields
equations (14) and (15).

For part (vi), the asymptotic expansions of the trading boundaries
π±, (16), follow directly from those for the free boundaries ζ± in
proposition A.4. Furthermore, (16) allows to calculate the respective
expansions for EER, TrD, TrE, average volatility s, exposure β and
R2 by using their explicit expressions in terms of π± provided in
theorem 3.1. �

Appendix 5. Robustness

In the presence of excess returns (μt = κσ 2
t , κ = 0), the risky/safe

ratio of any admissible trading strategy follows the dynamics

dζt

ζt
= κσ 2

t dt + σt dBt + (1 + ζt)
dϕ

↑
t

ϕt
− (1 + (1 − ε)ζt)

dϕ
↓
t

ϕt

and thus the ODE of the free boundary problem is slightly modified
to (24), but formulated with the same boundary conditions (10)–(11).
Similar proofs as those of theorem 3.1(i) carry over to all points of
theorem 6.1. For the sake of completeness, we sketch the deriva-
tion of the free boundaries. The solution of (24) subject to the first
boundary conditions (10) is of the form

W(ζ−, ζ ) = 2

ζ 2

∫ ζ

ζ−
(h(y) − h(ζ−))

(
y

ζ

)2κ−2

dy.

Insisting on the terminal boundary conditions of zero and first
order (11) results in the following system of equations for the free
boundaries ζ−, ζ+,

2ζ−2κ
+

∫ ζ+

ζ−
(h(y) − h(ζ−)y2κ−2 dy − ε

(1 + ζ+)(1 + (1 − ε)ζ+)
= 0,

− 4κζ−2κ−1
+

∫ ζ+

ζ−
(h(y) − h(ζ−)y2κ−2 dy + 2

ζ 2+
(h(ζ+) − h(ζ−))

− (1 − ε)2

(1 + (1 − ε)ζ+))2 + 1

(1 + ζ+)2 = 0.

For sufficiently small ε, we thus arrive at the asymptotic expansions

ζ± = �

1 − �
±
(

3

4γ

)1/3 (
�

(� − 1)2

)2/3

ε1/3 − (5� − 2κ)

2γ (� − 1)2

×
(

γ�(� − 1)

6

)1/3

ε2/3 + O(ε),

from which the asymptotics (25) of the trading boundaries π± follow.
For figure 6, the exact tracking differences and tracking errors

for the optimal trading strategies are used (see theorem 6.1(ii)).
To obtain the corresponding formulas, we start with the following
modification† of proposition A.9:

† Note that in the present setting, equation (A27) generalizes to

1

2
lim

T→∞
1

T

∫ T

0
σ 2

t πt dt

= −κ lim
T→∞

1

T

∫ T

0
log |πt|ζtσ

2
t dt + ζ+ log |π+| · lim

T→∞
UT

T

Lemma A.13 If

lim
T→∞

∣∣∣∣UT

T

∣∣∣∣ < ∞, P − a.s., (A36)

then the following limits hold P-a.s.:

lim
T→∞

LT

T
− lim

T→∞
UT

T
= (1 − 2κ)

σ 2

2
, (A37)

1

2
lim

T→∞
1

T

∫ T

0
|σtπt|2 dt = κ lim

T→∞
1

T

∫ T

0
σ 2

t πt dt + π−

· lim
T→∞

LT

T
− π+ · lim

T→∞
UT

T
. (A38)

The appropriate generalization of lemma A.10 is as follows:

Lemma A.14 If limT→∞ | UT
T | < ∞, P − a.s., then limT→∞ LT /T

limT→∞ UT /T =
| ζ−
ζ+ |2κ−1.

Proof Apply Itô’s formula to the functional |ζt|1−2κ . All drift terms
vanish. Division by T and letting T → ∞ yields the claim (the
Brownian term vanishes due to lemma A.8). �

Proposition A.15 For any (not necessarily optimal) trading strat-
egy associated with [ζ−, ζ+] (A36) is satisfied, and P-a.s.,

lim
T→∞

UT

T
=

σ 2

2 (1 − 2κ)

|ζ−/ζ+|2κ−1 − 1
,

lim
T→∞

LT

T
= lim

T→∞
UT

T
+ σ 2

2
(1 − 2κ). (A39)

The tracking difference is

TrD = −σ 2

2
ζ+G(ζ+)

(
2κ − 1

1 − |ζ−/ζ+|2κ−1

)
. (A40)

Furthermore, if the trading strategy is optimal, and if � = κ , then
average excess returns (minus transaction costs), and variance of
the optimal portfolio’s returns are:

m̂ := lim
T→∞

1

T

∫ T

0
κσ 2

t πt dt

= κ

γ (� − κ)

(
σ 2
(

h(ζ−) − (1 − 2κ)γπ−
2

)

− TrD

(
1 − γ (π+ − π−)

ζ+G(ζ+)

))
,

σ̂ 2 := lim
T→∞

1

T

∫ T

0
|σtπt|2 dt

= 1

γ (� − κ)

(
−2 TrD

(
κ − γ�

π+ − π−
ζ+G(ζ+)

)

+ 2κσ 2h(ζ−) + γ�(1 − 2κ)σ 2π−
)

.

− ζ− log |π−| · lim
T→∞

LT

T
,

but in view of the logarithmic term (κ = 0), it is not tractable and
therefore abandoned. (We therefore invoke in this section optimal-
ity of the trading strategy associated with the boundaries ζ−, ζ+, cf.
remark A.12).
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Proof Equations (A39) and (A40) are a consequence of
equation (A37) and lemma A.14. Also, due to lemma A.2,

σ 2h(ζ−) = − EER −γ σ 2�2

2

= γ� lim
T→∞

1

T

∫ T

0
σ 2

t πt dt − γ

2
lim

T→∞
1

T

∫ T

0
σ 2

t π2
t dt

− επ+
1 + (1 − ε)ζ+

lim
T→∞

UT

T
.

By definition of m̂, ŝ2 and the identity (A40), the last equation may
be rewritten as

γ�

κ
m̂ − γ

2
σ̂ 2 = − TrD +σ 2h(ζ−). (A41)

Further, rewriting identity (A38) yields m̂ − σ̂ 2

2 = π+ limT→∞ UT
T −

π− limT→∞ LT
T . Thus, by equations (A39) and (A40),

m̂ − σ̂ 2

2
= − TrD · (π+ − π−)

ζ+G(ζ+)
− σ 2

2
π−(1 − 2κ). (A42)

The two equations (A41), (A42) can now be solved for m̂, σ̂ 2. �
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