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brachycarpa to the invasive A. taxiformis . Seaweed biomass was the structural
attribute better explaining the variation in epifaunal abundance, species richness and
diversity. Overall, our results suggest that the shift from E. brachycarpa to A.
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associated biodiversity. We hypothesize that a complete shift from native to invasive
seaweeds could ultimately lead to bottom-up effects on rocky shore habitats, with
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Highlights

Highlights:

e Primary producer biomass is 90% lower in 4. taxiformis than in E. brachycarpa habitat.
e From native to invasive seaweeds, epifaunal assemblages lost 40% of their diversity.

e Seaweed biomass was the structural attribute explaining the epifaunal variation.

e We suggest a complete shift from native to invasive seaweeds could impair rocky shore

habitats.
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the associated epifaunal assemblages in homogenous and mixed stands of E. brachycarpa and A.
taxiformis. The results showed that the biomass of primary producers is reduced by 90% in the A.
taxiformis invaded habitat compared to the E. brachycarpa native habitat. The structure of the
epifaunal assemblages displayed significant variations among homogenous and mixed stands. The
abundance, species richness and Shannon-Wiener diversity index of the epifaunal assemblages
decreased by 89%, 78% and 40%, respectively, from homogenous stands of the native E. brachycarpa
to the invasive A. faxiformis. Seaweed biomass was the structural attribute better explaining the
variation in epifaunal abundance, species richness and diversity. Overall, our results suggest that the
shift from E. brachycarpa to A. taxiformis habitat would drastically erode the biomass of primary
producers and the associated biodiversity. We hypothesize that a complete shift from native to
invasive seaweeds could ultimately lead to bottom-up effects on rocky shore habitats, with negative

consequences for the ecosystem structure, functioning, and the services provided.

Keywords: habitat shift; alga; Ericaria brachycarpa; epifauna diversity; Cystoseira sensu lato; rocky

shore; Marine Protected Area

Introduction

Invasive species are globally recognized among the main drivers of habitat shift in both terrestrial
and marine ecosystems (Gallardo et al., 2016; Macic¢ et al., 2018). In marine environments, decades
of human activities related to global aquatic trade have enabled the dispersion of invasive species
among distant geographic areas worldwide (Bax et al., 2003; Williams and Smith, 2007; Molnar et
al., 2008; Servello et al., 2019). In addition, the rise in seawater temperature caused by global
warming has allowed non-native species to cross environmental and geographical barriers, facilitating
their expansion and in turn eroding indigenous resistance (Occhipinti-Ambrogi and Galil, 2010; Lo
Brutto et al., 2019). Concerns over ecological and social-economic consequences have led researches

to investigate the effects of invasive species on many marine ecosystems around the world.

2



55

56

7
58

11
160
13

1
1
16
162
18
1%3
20

21
264
23
245
25
26
2P0
28
2%7

3
258
33
3469
35

3670

37

38
391
40
a17)
42
43
443
45

1674
47

4
RE
50
5176
52

2377

54
55
5¢/8
57
5819
59

60
6180
62
63
64
65

Seaweeds are a significant component of marine non-native and invasive species (227 taxa
globally), with some of them being responsible for drastic habitat shifts (Williams and Smith, 2007).
Studies have highlighted how invasive seaweeds can negatively impact the recipient habitats by
reducing biomass of primary producers, biodiversity, and nutrient flows, compromising ecosystem
functioning (Boudouresque et al., 2005; Streftaris and Zenetos, 2006; Thomsen et al., 2014; Maggi
et al., 2015; Ramsay-Newton et al., 2017; Geburzi and McCarthy, 2018). Interestingly, the effects of
non-native seaweeds seem to change depending on the complexity of the recipient habitat (Thomsen
et al., 2014). In less structured habitats (e.g. soft bottoms), the introduction of non-native seaweeds
enhances structural complexity that may favor the increase in biodiversity and food web length
(Dijkstra et al., 2017). Conversely, the introduction in well-structured habitats (e.g. seagrass
meadows, algal canopies) may alter the diversity and function, depending on the structural features
of the recipient habitat (Engelen et al., 2013; Veiga et al., 2014, 2018).

Macroalgal complexity plays a significant role in shaping the abundance, richness and structure of
epifaunal assemblages associated with both non-native and native seaweeds (Chemello and Milazzo,
2002; Jormalainen and Honkanen, 2008; Pitacco et al., 2014; Veiga et al., 2014; Maggi et al., 2015;
Dijkstra et al., 2017; Veiga et al., 2018; Chiarore et al., 2019). Algae with a high structural
complexity, expressed as a combination of attributes, such as degree of branching, thallus width and
height, and wet weight, can support well-structured epifaunal communities (Hacker and Steneck,
1990; Chemello and Milazzo, 2002; Jormalainen and Honkanen, 2008; Pitacco et al., 2014; Veiga et
al., 2014; Bitlis, 2019; Chiarore et al., 2019). Studies comparing the epifaunal diversity between
invasive and native seaweeds revealed that, when invasive species are structurally less complex than
native ones, they support low abundance and richness, and a simplified structure of epifaunal
assemblages (Navarro-Barranco et al., 2018; Veiga et al., 2018). However, when native macroalgae
are less complex, the abundance and diversity of epifauna associated with invasive seaweeds may be
higher (Veiga et al., 2014; Dijkstra et al., 2017). This indicates that the effects of invasive seaweeds

on epifaunal assemblages may change depending on both the invasive and the native seaweed
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structural features. However, other studies have shown that native and invasive seaweeds with similar
morphologies can host either similar (Suarez-Jiménez et al., 2017) or different epifaunal diversity
(Navarro-Barranco et al., 2019). Overall, these contrasting evidences suggest that, apart from
seaweed morphology, other factors can be involved in structuring the associated assemblages.

In the last decades, the Mediterranean basin has witnessed an increase in the number of non-native
and invasive seaweeds, with consequent modification of biodiversity and ecosystem functioning of
coastal areas (Ribera Siguan, 2002; Streftaris et al., 2005; Streftaris and Zenetos, 2006; Piazzi and
Balata, 2009; Musco et al., 2014; Bulleri et al., 2016; Corriero et al., 2016; Giangrande et al., 2020).
In particular, Asparagopsis taxiformis (Delile) Trevisan de Saint-Léon is listed among the 100 worst
invasive species in this basin (Streftaris and Zenetos, 2006). The earliest reports of its presence in the
Mediterranean Sea date back to 1798-1801 in Alexandria (Egypt) as a result of trading operations
and the opening of the Suez Canal (Verlaque et al., 2015). It was first recorded along the Italian coast
on the western shore of Sicily, close to the city of Trapani, in May 2000 (Barone et al., 2003). While
A. taxiformis has been suspected of producing harmful effects on native habitats (Barone et al., 2003),
as far as we know, only one study assessed its effects on biodiversity, in particular by comparing the
vagile macrofauna associated with this species to that of the native Halopteris scoparia (Linnaeus)
Sauvageau indicating that 4. taxiformis hosted less diverse epifaunal assemblages compared to native
algae (Navarro-Barranco et al., 2018).

Along the Italian coast, gametophytes of A. taxiformis can colonize coastal areas dominated by
habitat-forming seaweeds, mainly belonging to the genus Cystoseira - recently divided into three
genera Cystoseira, Gongolaria and Ericaria and hereafter referred to as Cystoseira sensu lato to
include all three genera (Orellana et al., 2019; Molinari Novoa and Guiry, 2020). Cystoseira sensu
lato species are important ecological engineers, greatly increasing the habitat surface, complexity and
productivity in coastal ecosystems from the infra-littoral zone to the upper circalittoral zone.
(Giaccone et al., 1994; Bulleri et al., 2002; Falace and Bressan, 2006; Ballesteros et al., 2009;

Mancuso et al., 2021b). By creating shelter, Cystoseira sensu lato species improve the biodiversity
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of their related assemblages, leading to the development of well-structured food webs (Schiel and
Foster, 2006; Cheminée et al., 2013; Mineur et al., 2015; Mancuso et al., 2021b). According to the
European Water Framework Directive (2000/60), they are also considered indicators of good water
and environmental quality (European Commission, 2000).

In a recent study, we discovered that A. taxiformis had a less diverse and less structured molluscan
assemblage than E. brachycarpa; however, no information about other epifaunal components
associated with seaweeds was reported, nor information about intermediate states, such as mixed
stands of E. brachycarpa and A. taxiformis (Mancuso et al., 2021a). Here, we compared the structure
of the epifaunal community (amphipods, molluscs and annelids) associated with three plausible
alternative states of the transition between the native Ericaria brachycarpa (J.Agardth) Orellana &
Sanson and the invasive A4. taxiformis. In particular, we characterized and compared the biomass and
the diversity (richness, evenness, structure and composition) of the epifauna associated with the
fronds of homogenous and mixed stands of E. brachycarpa and A. taxiformis. Moreover, we explored
the variation of the epifaunal diversity in relation to the structural features of the two algae (dry
weight, thallus volume, canopy volume, and interstitial volume). We hypothesize that shifting from
habitats dominated by E. brachycarpa to those dominated by A. faxiformis will have a negative
impact on the associated biodiversity, resulting in low abundances and diversity of each epifaunal

component.

Materials and Methods
Study area and algal species characteristics

The research was performed on the southwestern, shallow rocky shore of Favignana Island
(Sicily, Italy), within the Egadi Islands Marine Protected Area (MPA) in June 2011 (Fig. 1). The
region consists of gently sloping (5°-10°) carbonate rocky platforms and scattered boulders (Pepe et

al., 2018) that provide substrates for well-developed macroalgal vegetation.
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In this area, A. taxiformis was first recorded in 2000 (Barone et al., 2003). Since then, no studies
have explored the temporal effects of this invasive species on native habitats. Although today 4.
taxiformis is well established in the area, previous surveys allowed the identification of three sites
with distinctive habitats corresponding to three possible alternative states of the transition from native
to invasive seaweed habitats: “Scoglio Corrente” (37° 55'2.0778" N, 12° 17'6.0432" E) characterized
by stands of E. brachycarpa (100% coverage); “Scoglio Palumbo™ (37° 55' 10.4226" N, 12° 18'
41.097" E) hosting stands of 4. faxiformis (100% coverage), and “Cala Grande” (37° 55' 35.385" N,
12° 16' 39.514" E) with mixed stands of E. brachycarpa (~50% coverage) and A. taxiformis (~50%
coverage) (Fig. 1). In this study, we decided to use these three sites to compare the epifaunal
communities associated with three plausible alternative states of the transition from native to invasive
habitats.

Ericaria brachycarpa is a brown seaweed (Fucales) characterized by caespitosus thalli up to 20-
25 cm in height with several perennial axes, up to 2-6 cm in height, connected to the substratum by a
more or less compact discoid base formed by haptera (Molinari Novoa and Guiry, 2020). The apices
of the axes are flattened, smooth and not very prominent. Branches are cylindrical with smooth bases,
or covered with tiny spinose appendages that are typically fertile in the spring-summer season
(Goémez-Garreta et al.,, 2002; Mannino and Mancuso, 2009; Cormaci et al., 2012). Like other
Cystoseira sensu lato species, E. brachycarpa displays seasonal differences in vegetative
development (Gomez-Garreta et al., 2002). At the study sites, new branches of E. brachycarpa grow
from the perennial axes in spring (May-June) providing new substrate and shelter for colonizing
fauna, while in autumn (September-October) E. brachycarpa starts to become quiescent, losing
almost all branches, leaving perennial axes that persist throughout the cold winter season.

Asparagopsis taxiformis is a red alga (Bonnemaisoniales) common in the tropics and subtropics
across the globe. The species experiences a heteromorphic life cycle, with an erect gametophyte
alternating with a filamentous sporophyte known as Falkenbergia hillebrandii (Bornet) Falkenberg

(Andreakis et al., 2004; Ni Chualain et al., 2004). The gametophytes are characterized by sparsely
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branched, creeping stolons and erect shoots from which several side branches grow in all directions.
The latter ramifies over and over again giving the thallus a plumose appearance. In the study area, A4.
taxiformis develops in the upper sublittoral zone of the rocky substrate or as an epiphyte of other algal
species. The gametophytes are present during all seasons with a maximum occurrence in spring

(Barone et al., 2003).
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Fig. 1 Location of the three study sites (red dots) along the rocky-shore of Favignana Island MPA

(green dot), Trapani, Sicily, Italy. SC = Scoglio Corrente, SP = Scoglio Palumbo, CG = Cala Grande.

Sampling and analysis of epifauna

Samples were collected by scuba diving at a depth of 5-7 m. For each site (hereafter referred to
as habitat), two areas (5 x 5 m) were haphazardly selected. For each area, 10 thalli of E. brachycarpa
from homogenous stands (100% algal coverage), 10 thalli of E. brachycarpa from mixed stands and
10 gametophytes of A. taxiformis from homogenous stands (100% algal coverage) were collected (n
= 20 per habitat). Thalli were collected 50cm apart to avoid spatial autocorrelation among samples.
Underwater, each thallus and the associated epifauna were enveloped in a plastic bag, then the alga
was detached from the substrate and the plastic bag was immediately closed to prevent the escape of

vagile fauna. After collection, each sample was carefully drained of seawater in order to prevent
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escape of small epifauna and stored at -20°C until laboratory analysis. In the laboratory, each thallus
of E. brachycarpa and gametophytes of A. taxiformis were transferred into buckets abundantly rinsed
under running water, allowing the associated fauna to detach from the algae. Then, the water was
sieved through a 1 mm mesh. After sorting, molluscs, amphipods, and annelids were stored in 70%
seawater ethanol solution and subsequently counted and identified to species, or the nearest possible
taxonomic level. Taxonomy and nomenclature were updated according to the World Register of

Marine Species database (WoRMS Editorial Board (2021)).

Seaweed structural attributes

For each thallus of E. brachycarpa and gametophyte of A. taxiformis collected, we measured 4
structural features (thallus volume, canopy volume, interstitial volume, and biomass), to explore their
relationships with the diversity indices calculated for the epifaunal assemblages. Thallus volume was
measured as the variation of volume, in ml, after the immersion of a thallus into a graduated cylinder
filled with seawater. Canopy and interstitial volumes were estimated according to Hacker and Steneck
(1990). The canopy volume (CV, the volume, in ml, created by the overall dimension of a
thallus submerged in seawater) was defined as the volume of a theoretical cylinder (CV = m X r? x
h), where m = 3.14, h is the length of the thallus from the base to its apical portion of the thallus,
including epiphytes, and r is the radius calculated as an average measure of the radius of the thallus
measured with a ruler (+/- 1 mm) at the apical, median, and basal parts. The interstitial volume (/V,
the volume, in ml, of water among the branches of the alga) was obtained by subtracting the thallus
volume (7V) from the canopy volume CV (IV = CV —TV).

Finally, the biomass of the macroalgae was calculated as dry weight (DW, gr) after drying in a
stove at 60 °C for 48 h (Stein-Taylor et al., 1985). Biomass was used as a proxy for the primary

production of each habitat.

Data analysis
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For each epifaunal species, we calculated total abundance (N), frequency (F%; the percentage of
samples in which a particular species is present) and dominance index (D%; the percentage of the
rate between the percentage of individuals of a particular species and the total number of individuals
within the sample) (Magurran, 1988). The epifaunal assemblages of each habitat were characterized
according to total abundance of individuals (N), rarefied species richness (S), Shannon-Wiener
diversity index (H’) and Pielou's Evenness index (J). A two-way analysis of variance (ANOVA) was
used to test differences in the epifaunal indices (N, S, H’, J) between habitats (fixed with 3 levels: E.
brachycarpa, E. brachycarpa in mixed stands and A4. taxiformis) and areas (random and nested within
habitat with 2 levels: area 1 and area 2). Cochran’s test was used to check for the homogeneity of
variances (Underwood 1997). Tukey’s HSD procedure was used to separate means (at o = 0.05)
following significant effects in the ANOV As (Underwood, 1996). The hierarchical structure of the
taxonomic classifications of the epifaunal assemblages of E. brachycarpa, E. brachycarpa in mixed
stands, and 4. faxiformis was visualized using the “heat_tree” function in the “Metacoder” R- package
(Foster et al., 2017).

SIMPER analysis (Clarke, 1993) was performed to identify those taxa that contributed to the
dissimilarity of the epifaunal assemblages between habitats (61%). The ratio 8i/SDi) was used to
measure the consistency of the contribution of a particular taxon to the average dissimilarity in the
comparison between habitats. A cut-off value of 70% was used to exclude low contributions.

Differences in the epifaunal community structure (which takes into account species identity and
relative abundance) and composition (presence/absence, which only takes into account species
identity) among habitats and areas were assessed by Permutational Multivariate Analysis of Variance
(PERMANOVA). The analyses were based on a Bray-Curtis distance matrix of square-root
transformed epifaunal abundances (structure) and on a Jaccard distance matrix of presence/absence
data (composition) using 9999 permutations. PERMANOVA was also performed separately for each
component of the epifauna (molluscs, annelids and amphipods). Permutational analysis of

multivariate dispersion (PERMDISP) was used to test differences in multivariate dispersion

9
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(Anderson et al., 2008). A principal coordinate analysis (PCoA) plot was generated to visualize the
variation of the epifaunal community structure (based on a Bray-Curtis distance matrix) and
composition (based on a Jaccard distance matrix).

Differences in each of the structural attributes (CV, IV, TV, DW) among habitats and areas were
analyzed by two-way ANOVAs according to the above mentioned design. Cochran’s test was used
to check for the homogeneity of variances (Underwood, 1996).

Linear regression (LM) analysis was used to test which algal structural attributes explained better
the variation of total abundance (N), rarefied species richness (S), Shannon-Wiener diversity (H’)
and Pielou's Evenness (J) of the whole epifaunal assemblages and its individual components
(molluscs, annelids and amphipods). If a non-linear relationship between response and depended
variables was detected, we examined the significance of applying a quadratic term in the model. In
addition, a distance-based redundancy analysis (dbRDA, Legendre and Anderson, 1999) was used to
investigate the relationship between structural attributes and the epifaunal multivariate structure.
Since dbRDA is susceptible to multicollinearity (i.e. high correlation between environmental
variables), draftsman plots were used to verify skewness or identify clear correlations between
structural attributes. A log(x + 1) transformation was used to correct the right-skewness of thallus
volume (7V) and biomass (DW). Moreover, due to the high correlation between canopy volume (CV)
and interstitial volume (/7)) we removed CV from the subsequent analyses. Then, the structural
attributes were normalised using a z-score transformation due to their varying measurement scales.
Finally, forward selection was used to identify the structural properties that mostly contributed to the
heterogeneity in the multivariate structure of the epifaunal assemblages.

Statistical analyses were performed using R open access statistical software 3.5.1 (R Core Team,

2018). See the “Data availability and reproducible research” section for further details.

Results

Epifauna
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Overall, we identified 5676 individuals of epifauna belonging to 199 taxa (74 molluscs, 50
amphipods, and 75 annelids). Of these, 46 and 38 taxa were exclusively found on homogenous and
mixed stands of the native E. brachycarpa respectively, while the invasive 4. taxiformis hosted only
12 unique taxa (Fig. 2, Table S1-S2). Syllidae (annelids) and Rissoidae (molluscs) were the most
species rich families (35 spp. and 21 spp. respectively), while all the other families contained less
than 10 species each (Fig. 2, Table S1). Among molluscs, the most abundant species were Eatonina
cossurae (Calcara, 1841) on both E. brachycarpa (186 ind.) and A. taxiformis (12 ind.) and Setia
ambigua (Brugnone, 1873) on E. brachycarpa from mixed stands (161 ind.). The most abundant
species among amphipods were Ampithoe ramondi on E. brachycarpa (164 ind.), Apherusa
alacris (Krapp-Schickel, 1969) on E. brachycarpa from mixed stands (253 ind.) and Caprella
acanthifera (Leach, 1814) on A. taxiformis (33 ind.). Finally, annelids were mostly represented by
Amphiglena mediterranea (Leydig, 1851) on E. brachycarpa (457 ind.) and Syllis prolifera (Krohn,
1852) on both E. brachycarpa in mixed stands (171 ind.) and 4. taxiformis (17 ind.) (Fig. 2, Table

S1).
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232 Total abundance (N) and rarefied species richness (S), differed significantly among habitats,
283  with values that were higher in E. brachycarpa compared to E. brachycarpa in mixed stands and 4.
§4 taxiformis (Fig. 3, Table S3). Shannon-Wiener diversity (H') varied significantly across habitats, with

285  E. brachycarpa and E. brachycarpa in mixed stands exhibiting closer and higher values than A.

?286 taxiformis.
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287 Conversely, Pielou’s evenness (J) was higher in 4. taxiformis compared to the other two

18
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assemblage associated with E. brachycarpa, E. brachycarpa in mixed stands, and 4. taxiformis. Bar
plots show mean +/- 1 standard error (n = 20). Significant codes: *** p<= 0.001, * p <= 0.05, ns

p>0.05. See Table S3 for further details.

PERMANOVA showed that the structure and composition of the epifaunal assemblages
differed significantly among habitats (Table S4). PERMDISP analysis revealed a high dispersion of
samples within habitats, especially for E. brachycarpa in mixed stands and 4. taxiformis (Fig. 4).
Notwithstanding this high dispersion, the epifaunal assemblages of the three habitats were clearly
separated, as shown by the PCoA ordination plot (Fig. 4). The proportion of variance explained by
the first two axes was 62.8% for structure and 45.6% for composition. The first axis accounted for
the larger part of the variance (structure = 49.5% and composition = 36.1%) and highlighted a shift,
in both structure and composition, from E. brachycarpa to A. taxiformis, with E. brachycarpa in
mixed stands placed between the two homogeneous stands of native and invasive seaweeds (Fig. 4).
The second axis explained lower variation (structure = 13.3% and composition = 9.5%) and separated

E. brachycarpa and A. taxiformis from E. brachycarpa in mixed stands (Fig. 4).
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Fig. 4 Structure (a) and composition (b) of the epifaunal assemblages associated with the three
habitats. The Principal coordinate analysis plot (PCoA) based on a Bray-Curtis distance matrix of
square-root transformed relative abundances (structure) or on a Jaccard distance matrix of

presence/absence data (composition). The circles show the 90% confidence interval for each seaweed.

The SIMPER analysis revealed that 28 taxa contributed 70% to the dissimilarity between E.
brachycarpa and A. taxiformis; 37 taxa contributed 70% to the dissimilarity between E. brachycarpa
and E. brachycarpa in mixed stands; and 30 taxa contributed 70% to the dissimilarity between E.
brachycarpa in mixed stand and A. taxiformis (Fig. S1, Table S5). Most of the species contributing
to the dissimilarities belonged to amphipods. The polychaete Amphiglena mediterranea (Leydig,
1851) was the species mostly contributing to the differences observed between both E. brachycarpa
and A. taxiformis and between E. brachycarpa and E. brachycarpa in mixed stands, contributing
respectively to 8% and 6% of the observed differences. The amphipod Apherusa alacris Krapp-
Schickel, 1969 was the species most contributing to the differences (7%) between E. brachycarpa in
mixed stands and 4. faxiformis. In addition, the gastropod Obtusella macilenta (Monterosato, 1880)
was the species that contributed consistently (higher 8i/SD(di) values) to the difference between E.
brachycarpa and A. taxiformis (Fig. S1, Table S5), while the amphipod Stenothoe monoculoides
(Montagu, 1813) and the gastropod FEatonina cossurae (Calcara, 1841) were the species that
contributed consistently to the differences between E. brachycarpa in mixed stands and E.
brachycarpa, and between E. brachycarpa in mixed stands and A. taxiformis (Fig. S1, Table S5). The
polychaete S. prolifera was among the first 5 species contributing to the differences between each
couple of habitats (Fig. S1, Table S5).

Multivariate analyses conducted separately for the three dominant epifaunal groups (molluscs,
annelids, and amphipods) revealed patterns of variation comparable to those of the whole epifaunal

assemblage (Table S6). Only, amphipods showed less variability among habitats (Table S6).
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Seaweed structural attributes and relationships with the epifaunal assemblages.

Canopy volume (CV) and interstitial volume (IV) differed significantly among habitats with
higher values in 4. taxiformis compared to E. brachycarpa in mixed stands and E. brachycarpa (Fig.
5 a-b, Table S7). Biomass (DW) and thallus volume (TV) showed similar values between E.
brachycarpa and E. brachycarpa in mixed stands and were significantly higher compared to those of

A. taxiformis (Fig. 5 c-d, Table S7).
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Fig. 5 Differences in structural attributes among habitats. Canopy volume (CV), interstitial
volume (IV), thallus volume (TV) and biomass (expressed as dry weight, DW) of the epifaunal

assemblages associated with E. brachycarpa, E. brachycarpa in mixed stands and 4. faxiformis. Bar
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plots show mean + 1 standard error (n = 20). Significant codes: *** p<=0.001, ** p <=0.01, * p <=

0.05, ns p>0.05. See Table S7 for further details.

The linear regression analysis revealed that biomass (DW) was the attribute that explained better the
variation in abundance (R?>n=0.51), rarefied species richness (R%s = 0.58), Shannon-Wiener diversity
(R%r = 0.54) and Pielou’s evenness index (R?% = 0.2) of the epifaunal assemblages (Table S8). The
variance explained by algal biomass increased if we considered a quadratic relationship between
those variables (Fig. 6). The relationship was positive for N, S and H’, while J presented and opposite
pattern of variation (Fig. 6). Otherwise, canopy volume (CV) interstitial volume (IV) and thallus
volume (TV) explained less variation (and it was significant for N, S and H’ but not for J) of the
epifaunal attributes (R-squared < (.5, Table S8). The analysis conducted separately on the three
dominant epifaunal groups (molluscs, annelids, and amphipods) revealed similar results however for
amphipods and annelids the relationship between assemblage parameters and algal biomass was
weaker (annelids: R’y = 0.35, R%s=0.52, R%y = 0.49, R?;= 0.03; amphipods: R>x= 0.23, R%s=0.43,
R%p=0.31, R%=0.01) although remaining the most important explanatory variable for both groups.
Meanwhile, molluscs revealed patterns of variation similar to the whole assemblage (R*= 0.5, R%s
=0.53, R%r=0.48, R%=0.12) (Table S8). As for the other algal structural features, annelids showed
a weaker and not significant relationship with the canopy and interstitial volumes, differing from

amphipods and molluscs (Table S8).
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Biomass (DW) was also the structural attribute selected for constrained db-RDA, explaining
24.7% of the variation in the structure of the epifaunal assemblages (Table S9). The first two axes of
the dbRDA plot explained 15.6% of the total variance of the multivariate structure of the epifaunal

assemblages, with 12.4% for axis 1 and 3.2% for axis 2 (Fig. 7).
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Fig. 7 Relationship between structural attributes and the multivariate structure of the epifaunal
assemblages associated to the three habitats. The distance-based redundancy (dbRDA) plot
illustrates the structural attribute better explaining the multivariate structure of the three habitats.

DW.log = seaweed biomass (log + 1).
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Discussion

The biodiversity and the socio-economic value of marine ecosystems are threatened by biological
invasions around the world (Bax et al., 2003; Molnar et al., 2008). Understanding how invasive
seaweeds modify the functioning of recipient ecosystems may allow us to better understand large
scale effects on native rocky shore habitats. Here we investigated the effects of the invasive A.
taxiformis on the native E. brachycarpa by comparing the epifaunal assemblage associated with three
alternative states of the transition between native and invasive seaweeds, homogenous and mixed
stands of the two seaweeds. Our results showed differences in abundance and diversity of the
epifaunal assemblages between three alternative states of the transition from native E. brachycarpa
to invasive A. taxiformis. In particular, A. taxiformis hosted almost 6 times less epifaunal individuals
compared to E. brachycarpa in mixed stands, and 10 folds less individuals compared to homogenous
stands of E. brachycarpa. Also, the number of epifaunal species was more than 4 folds lower in the
invasive compared to the native habitat, while diversity reduced by half. These results confirm that
generally invasive seaweeds exhibit a less diverse epifaunal component compared to native seaweeds
(Guerra-Garcia et al., 2012; Janiak and Whitlatch, 2012; Maggi et al., 2015; Navarro-Barranco et al.,
2018; Veiga et al., 2018).

We found that variation in diversity and multivariate structure of the epifaunal assemblages was
related to changes in algal structural features. In particular, biomass was the variable better explaining
the variation in abundance, number of species, and the multivariate structure of the epifaunal
assemblages. The role of macroalgal complexity in shaping the associated biota has been highlighted
in several studies, with complex algae hosting a larger abundance and diversity of epifauna than
simpler ones (Chemello and Milazzo, 2002; Pitacco et al., 2014; Veiga et al., 2014; Lolas et al., 2018;
Veiga et al., 2018; Bitlis, 2019; Chiarore et al., 2019; Poursanidis et al., 2019; Mancuso et al., 2021b).
In general, studies have highlighted that invasive seaweeds host lower (Guerra-Garcia et al., 2012;
Navarro-Barranco et al., 2018; Rubal et al., 2018; Veiga et al., 2018) or higher (Veiga et al., 2014)

epifaunal abundance, species richness, and diversity, depending on whether their structural
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complexity is respectively lower or higher compared to native seaweeds. Navarro-Barranco et al.
(2018) showed that A. taxiformis had low fractal complexity and hosted an impoverished faunal
assemblage compared to native seaweeds. Guerra-Garcia et al., (2012) found that A. armata had low
algal volume and showed lower abundance, species richness, and diversity of associated isopods
fauna compared to the native Ellisolandia elongata (J.Ellis & Solander) K.R.Hind & G.W.Saunders.
Moreover, lower dry weight and fractal dimension in the invasive S. muticum compared to native
seaweeds have been shown to play a major role in shaping the associated faunal assemblages (Veiga
et al., 2014, 2018). Likewise other studies (Janiak and Whitlatch, 2012; Veiga et al., 2014; Rubal et
al., 2018), our results indicated that the quantity of habitat (biomass) was the best predictor variable
explaining variation in terms of abundance, species richness, as well as multivariate structure of the
associated epifauna.

Interestingly, our results highlight that 4. faxiformis affected each component (molluscs, annelids,
and amphipods) of the epifaunal assemblages in the same way. However, in the available literature
on the epifaunal assemblages of invasive seaweeds, we can find distinct responses among epifaunal
components (Schmidt and Scheibling, 2006; Gestoso et al., 2010; Guerra-Garcia et al., 2012; Bedini
et al., 2014; Veiga et al., 2018; Navarro-Barranco et al., 2019). For example, species richness,
Shannon diversity and total abundance of isopods were significantly lower in 4. armata compared to
native algae (Guerra-Garcia et al., 2012). Bedini et al. (2014) found that the invasive Lophocladia
lallemandii (Montagne) F. Schmitz hosted a higher abundance of amphipods, isopods, and
polychaetes, while native habitats harbored a greater abundance of molluscs and decapods. Bivalves
associated with the invasive S. muticum were more abundant compared to native seaweeds, which, in
contrast, hosted more gastropods (Veiga et al., 2018), and Gestoso et al. (2010) found that isopods
and amphipods were more abundant in S. muticum than in native seaweeds. Moreover, the invasive
Codium fragile subsp. fragile (Suringar) Hariot supported higher densities of nematodes, bivalves,
and specialist herbivores compared to fronds of the native kelp, which, in contrast, supported greater

densities of gastropods and asteroids (Schmidt and Scheibling, 2006). Other authors revealed that
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differences between invasive and native seaweeds in single components of epifaunal assemblages
changed depending on the site and the identity of the algal species (Navarro-Barranco et al., 2019).
The fact that in our study, the A. taxiformis habitat showed lower abundance, species richness, and
diversity values for all the epifaunal organisms, regardless of the groups investigated in this study
(molluscs, amphipods and annelids), led us to hypothesize that a potential shift from the native (i.e.
E. brachycarpa) to the invasive (i.e. A. taxiformis) habitat could cause large negative cascade effects
on the benthic ecosystem.

Although differences in the epifaunal assemblages among native and invasive seaweeds have
been largely explored, our results also suggest that the presence of 4. taxiformis affects the epifaunal
assemblages associated with E. brachycarpa in mixed stands. This result could be explained by other
attributes that differed between native and invasive seaweeds, such as the amount of epiphytes and/or
the presence of chemical defenses, that have been related to the ability of seaweeds to shape their
associated fauna (Hay et al., 1987; Viejo, 1999; Paul et al., 2006; Cacabelos et al., 2010; Maximo et
al., 2018; Gache et al., 2019). Invasive seaweeds can release secondary metabolites (e.g. halogenated
compounds) able to act as deterrents against epiphytes, and herbivores (Paul et al., 2006; Cacabelos
et al., 2010; Vega Fernandez et al., 2019). Secondary metabolites released by 4. taxiformis can affect
the survival of fish in the post-larval stages, eventually leading to alteration of the grazing pressure
on the surrounding habitat (Maximo et al., 2018; Gache et al., 2019). Other studies suggest that
invasive seaweeds can alter the trophic web by changing the composition of epiphytes which reduces
suitable habitat for many epifaunal species (Viejo, 1999; Wikstrém and Kautsky, 2004). Several
authors suggested that the amount of epiphytes could explain the higher species richness found in the
invasive S. muticum compared to native seaweeds (Viejo, 1999; Cacabelos et al., 2010). In our study,
A. taxiformis had no or fewer epiphytes compared to E. brachycarpa (R.C. personal observation). As
epifauna is mostly represented by microalgae grazers, we can hypothesize that differences in the
abundance of epiphytes between A. taxiformis and E. brachycarpa could contribute to the variation

in epifaunal assemblages observed in this study. It is therefore arguable that further studies analyzing
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the direct and indirect role of epiphyte abundance and secondary metabolites released by 4. taxiformis
in structuring its associated epifauna would allow us to better clarify the effects of this seaweed on
the recipient habitats.

Moreover, as suggested by other authors (Navarro-Barranco et al., 2019), landscape features
could be another key aspect explaining the effect of 4. taxiformis on E. brachycarpa associated
assemblages in mixed stands. In fact, the presence of invasive seaweeds may contribute to the
fragmentation of native habitats, reducing the patch size of native seaweeds, and at the same time
increasing their isolation (Roberts and Poore, 2006; Lanham et al., 2015). It has been observed that
the reduction in patch size of Cystoseira sensu lato habitats reduces the diversity of associated faunal
assemblages (Mancuso et al., 2021b). Thus, we can hypothesize that the presence of A. taxiformis in
mixed stands can act as a physical barrier to the dispersal of vagile fauna, reducing connectivity on a
small scale and ultimately eroding the diversity of native habitats (Lanham et al., 2015). However,
another possibility to consider is that some epifaunal groups may be able to disperse through the
different seaweeds (Taylor, 1998) in mixed stands. In this case, the lower epifaunal abundance and
diversity observed on E. brachycarpa from mixed stands could be because part of this diversity may
have preferentially dispersed to the 4. taxiformis portion of these mixed stands. Our study, however,
cannot address the effects of epifauna movement among seaweeds on the observed results, and more
studies are necessary to understand the possible role of mobile epifaunal assemblage movement
patterns within mixed stands of E. brachycarpa.

One inherent weakness of this study concerns the impossibility of separating the effects of 4.
taxiformis from natural spatial variability. This should be accounted for by using more interspersed
sites for each condition (mono and mixed stands of native and invasive seaweeds). Unfortunately, we
were not able to find more interspersed sites in the area of study. However, the three sites selected
had the same average values of different environmental variables (surface temperature, salinity,
nitrate and phosphate concentrations, dissolved oxygen, chlorophyll and photosynthetic active

radiation, Table S10), indicating that spatial variability had little effect. Then, we think that the data
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presented in this study is still valuable, albeit with its limitations, for understanding epifaunal
community changes between plausible alternative states of the transition between E. brachycarpa

and A. taxiformis.

In summary, our study suggests that shifting from native to invasive habitats may pose a serious
threat to biodiversity in coastal areas (Martin et al., 1992; Heck et al., 2003), potentially leading to
bottom-up effects on rocky shore ecosystems. In addition, the low biomass supplied by the herein
studied invasive species suggests that the shift from native canopy-forming algae to the invasive 4.
taxiformis habitat would also drastically reduce the biomass of primary producers in affected coastal
areas. Predicting the ecological effects of invasive seaweeds is one of the main goals in the study of
biological invasions. Previous research has highlighted the context-dependent effects of invasive
seaweeds, with larger impact caused by invasive species exerting a different functional role compared
to native habitat forming species (Ricciardi and Atkinson, 2004; Ricciardi et al., 2013; Navarro-
Barranco et al., 2019). Our results not only remark the negative effect of A. taxiformis on E.
brachycarpa epifaunal assemblages, but also suggest that invasive species are able to affect native
habitats in a transitional phase (mixed stands) of the habitat shift, facilitating fragmentation and
isolation. Further studies aimed at understanding the effects of the habitat shift from native to invasive
seaweeds should include multiple transitional phases (different percentage coverage), as well as the

analysis of changes in the trophic structure of the associated epifaunal assemblages.
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