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Abstract: Nowadays, morphology and molecular analyses at the single-cell level have a fundamental
role in understanding biology better. These methods are utilized for cell phenotyping and in-depth
studies of cellular processes, such as mitosis. Fluorescence microscopy and optical spectroscopy
techniques, including Raman micro-spectroscopy, allow researchers to examine biological samples
at the single-cell level in a non-destructive manner. Fluorescence microscopy can give detailed
morphological information about the localization of stained molecules, while Raman microscopy
can produce label-free images at the subcellular level; thus, it can reveal the spatial distribution of
molecular fingerprints, even in live samples. Accordingly, the combination of correlative fluorescence
and Raman microscopy (CFRM) offers a unique approach for studying cellular stages at the single-
cell level. However, subcellular spectral maps are complex and challenging to interpret. Artificial
intelligence (AI) may serve as a valuable solution to characterize the molecular backgrounds of
phenotypes and biological processes by finding the characteristic patterns in spectral maps. The
major contributions of the manuscript are: (I) it gives a comprehensive review of the literature
focusing on AI techniques in Raman-based cellular phenotyping; (II) via the presentation of a case
study, a new neural network-based approach is described, and the opportunities and limitations of
AI, specifically deep learning, are discussed regarding the analysis of Raman spectroscopy data to
classify mitotic cellular stages based on their spectral maps.

Keywords: microscopy; Raman spectroscopy; single-cell analysis; phenotypic discovery; mitosis;
machine learning

1. Introduction

Nowadays, most of the discoveries in medicine and biology rely on the examination
of cells using super-resolution microscopes and other advanced techniques for single-cell
analysis [1]. For instance, studying the effects of chemical compounds (a) on the cells of
different phenotypes [2], and (b) on cells at different cellular stages [3], is the basis of new
drug development in several areas, including oncology. Thus, the reliable detection of
cellular phenotypes has become a fundamental step of the pipeline [4]. Regarding cellular
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processes, mitosis is considered as being crucial, especially in oncology where cancer cells
are characterized by an uncontrolled proliferation rate [5].

According to Aristotle’s principle, “The whole is greater than the sum of its parts” [6].
However, in 2022, no single instrument is capable of analyzing all aspects of cells and
tissues in detail. Thus, for a comprehensive characterization of a sample, a combination
of advanced techniques and multi-modal data analysis approaches are often required.
Raman spectroscopy is a label-free, non-invasive, and in vivo method ideal for single-cell
assessment to obtain chemical information [7]. It is based on the inelastic light scattering
phenomenon to detect an analyte via molecular bond vibrations, and it is one of the main
marker-free analytical techniques utilized in optical metrology to provide insight into
the structure and composition of tissues and cells at the molecular level. It produces
Raman spectra that serve as a fingerprinting tool for a wide range of compounds [8].
Raman microscopy combines Raman spectroscopy with an optical microscope [9]. Correlative
microscopy combines different light, electron, and/or other microscopy techniques for a
more detailed examination of samples [10]. The individual microscopy techniques can
be executed at different times, and eventually, additional biological preparations can be
applied between the different examinations. The assessment yields different types of data
that provide morphological, structural, functional, and biological information, and they can
be used to establish a fingerprint of each single cell. Traditionally, the combination of light
microscopy (LM) and/or fluorescence microscopy (FM) with electron microscopy (EM)
is the most common form of correlative microscopy [11]. However, EM is a destructive
technique. Therefore, as a current trend, correlative microscopy analyses increasingly
combine LM/FM with non-invasive Raman micro-spectroscopy [12].

The first work combining FM (specifically, a two-photon FM) with Raman microscopy
was published at around 2000 [13]. However, at that time, the timeframe for data acquisition
for the analysis of a cell was a significant limitation of this technology, making the combined
approach slower than the FM-based analyses. Accordingly, the system was inadequate for
a high-throughput analysis of single-cells. Then, microscopy technology improved quickly,
and most of the hardware limitations were eliminated, making the systems more stable [14].
Today, we can easily acquire high-resolution FM images to analyze the morphological and
structural features of single cells, and at the same time, we can use Raman microscopy to
obtain a chemical fingerprint of the same cells. Consequently, an in-depth analysis can be
performed, and one can, for instance, reliably define mitotic events or the cellular state in
general [15].

A single Raman spectrum might contain hundreds or even thousands of values, so
analyzing a Raman map (which contains an array of such spectra) is a challenging task.
Moreover, biological Raman data contain a plethora of peaks, most of them overlapping,
which make the data even more complex and harder to work with. Therefore, to extract
detailed information from the spectra, data analysis can benefit from machine learning
approaches that are optimized for the analysis of high-dimensional data. Researchers
have recently applied numerous different machine learning methods to preprocess and to
analyze Raman spectra [16]. The most popular techniques are (a) principal components
analysis (PCA), which is applied to simply reduce the dimensionality of the data, and
(b) hierarchical component analysis (HCA), which is applied to find and to group similar
spectra in the dataset. Furthermore, some newer techniques, such as t-distributed stochastic
neighbor embedding (t-SNE) [17] are also applied to yield information from biological
Raman data [18]. Other solutions were proposed in the literature [19]. However, the most
promising methods for data analysis, as well as for preprocessing, are deep learning-based
methodologies. Deep neural networks can denoise Raman spectra, resulting in a higher
signal-to-noise ratio, thus shortening the data acquisition time and, consequently, rendering
Raman spectroscopy a higher-throughput microscopy technique [20]. In addition, neural
networks have the capability for speeding up the data analysis process and extracting
useful information from hyperspectral data [21], making Raman spectroscopy a promising
technique for clinical applications as well [22].
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To critically understand the current limitations and opportunities related to correlative
fluorescence and Raman microscopy (CFRM) when applied to define the biological statuses
of the different cells composing a culture/tissue, we have performed several experiments
in order to characterize the current weaknesses of a classical commercial system [23]. Via
the correlative imaging of fixed cancer cells with stained nuclei, using a fluorescence
microscope first and a Raman system afterwards, we have revealed that currently no
validated procedures exist for (a) co-registering images between fluorescence and Raman
microscopes; (b) normalizing the Raman spectra of different cells; and (c) identifying mitotic
cells. Accordingly, here, we propose solutions for improved acquisition and analysis steps.

This study presents a comprehensive review of Raman spectroscopy in the field of
cellular phenotyping, focusing on the correlative microscopy techniques and the applied
AI-based data analysis methods. Furthermore, via a case study, the opportunities and the
limitations of CFRM, combined with neural network-based data analysis, are examined.
The following sections are organized as follows. Section 2 presents a short overview of
earlier works using Raman spectroscopy for single-cell phenotyping. Section 3 describes cell
classification methods based on correlative microscopy and machine learning approaches.
In Section 4, we present a case study of a correlative system using deep learning approaches
to analyze cell mitosis. Section 5 discusses the current opportunities and limitations related
to CFRM. Finally, Section 6 reports on the main conclusions of this research work.

2. Raman Spectroscopy for Cellular Phenotyping

Phenotyping has a fundamental role in biological research. Nowadays, several ap-
proaches are available to characterize a cellular system, even at the single-cell level [2].
An ideal technique should be non-destructive and it has the capability to reveal molec-
ular changes within the sample. Practically, the intent of development is to extend the
capabilities of microscopy techniques to yield more detailed information from a sample
without compromising the cell status. Consequently, the question was raised as to whether
Raman spectroscopy was applicable for this purpose. Based on the characteristics of this
method, Raman microscopy is increasingly utilized to examine histological samples and
cell cultures.

By acquiring Raman data, Matthäus et al. [24] analyzed the distribution of deoxyri-
bonucleic acid (DNA) and proteins during cell division. Their goal was to monitor the
distribution of chromatin and other biochemical components during mitotic events by
recording molecular vibrations. They were the first researchers to report on the Raman
and infrared (IR) micro-spectroscopic imaging of human mitotic cells. They imaged HeLa
cells and applied both univariate and multivariate methods to visualize the distribution
of cellular components. The deformation modes of uracil and thymine nucleic acids were
employed to image the distribution of DNA, along with observing the spatial locations
of proteins during mitosis. Furthermore, a hierarchical cluster analysis was performed
using correlative Raman and IR data to make a hierarchical cluster map that captured the
location of the nucleus within the cell. After the spectral data were recorded, nuclei were
stained with DAPI to validate the results with FM. DNA-based Raman and DAPI-stained
fluorescence images showed a high degree of correlation, indicating that Raman spec-
troscopy is an effective tool to map DNA distribution during mitosis without fluorescence
staining. Although the results did not provide new insights into the process of mitosis, this
study, along with other published ones, uniquely explored the whole cell division cycle by
spectroscopic methods. However, the acquisition time for a single cell was 15 h, and this
limitation prevented the utilization of this technology for the real-time high-throughput
studies of live cells.

Later, Swain et al. [25] presented a pioneering method for the spectral characterization
of biochemical changes in cell cycle dynamics at the single-cell level. They aimed to show
that Raman spectroscopy is a proper tool to distinguish cells at different cell cycle stages.
They used human osteosarcoma cells synchronized in the G0/G1, S, and G2/M phases.
As a data analysis method, PCA was applied to identify spectral differences between
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cells in different phases. Then, using the significant principal components (PC) scores, a
linear discriminant analysis (LDA) model was generated to classify the cells according to
cell cycle phase. The PCA–LDA model showed a great spectral differentiation capability
between the G0/G1 and G2/M phases. The model also demonstrated its ability for spectral
discrimination between the G0/G1, and S or G2/M phases. Thus, Swain et al. have
demonstrated the opportunities for the use of Raman micro-spectroscopy in their research
of cell cycle dynamics, both for pharmacologically treated cells and in the case when the
cell cycle is affected by cell–cell interactions. However, as these authors examined both the
G0/G1 and G2/M phases in parallel, further research is needed to decide whether Raman
spectroscopy can distinguish between the phases at this finer level of the cell cycle as well.

Similarly, Ichimura et al. [26] exploited the capabilities of Raman spectroscopy com-
bined with PCA to examine cell state transitions during the cell differentiation process and
to distinguish stem cells from differentiated ones. They investigated mouse embryonic
stem cells (ESC) and compared the results with those for terminally differentiated cell lines,
including fibroblasts, epithelial cells, and hepatocytes. Furthermore, they analyzed cells
with a potential to differentiate, such as bone marrow mesenchymal stem cells (MSCs),
adipocytes, and neuroblasts. They applied three approaches to examine these cells. On
the one hand, they visualized the differences in Raman spectra that originated from the
nucleus and the cytosol. In addition, they compared the averaged spectra of undiffer-
entiated and differentiated cells, and they were able to distinguish them. On the other
hand, they successfully discriminated between differentiated and undifferentiated cells
by acquiring detailed Raman images for visualizing the presence of large lipid droplets
and increased amounts of cytochrome C. Lastly, they visualized the PCA scores of the
nuclear spectra of ESC, which were in a distinct state of differentiation. They could group
the cells by their state, simply based on their PCA scores (PC1 and PC2). This indicates
that Raman spectroscopy has the potential to distinguish cells in different phases of the cell
differentiation process and to reveal molecular differences among them.

Finally, Pavillon et al. [27] presented an innovative method that enabled the non-
invasive assessment of cellular changes in macrophages during their activation. They
studied the activation process using a multimodal, label-free imaging approach which com-
bines quantitative phase microscopy (QPM), Raman spectroscopy, and autofluorescence
(AF) imaging. This way, they could provide quantitative information on both cellular mor-
phology and molecular content at the single-cell level. Using their system, the cellular state
or the extent of a response to a stimulus, such as lipopolysaccharide-induced macrophage
activation could be measured, based on several label-free signals. Their experimental setup
allows for the acquisition of QPM and AF images using an interferometric microscope,
along with the recording of cellular Raman spectra. This approach was used to stimulate
macrophages with lipopolysaccharide, and to generate statistical models based on the
known states of stimulation from both morphological and molecular (Raman) data. The
results for their applied models showed a fairly good correlation. This system was appropri-
ate for identifying lipopolysaccharide-induced macrophage activation within a population
of genetically identical cells. These findings indicate that Raman microscopy, compared
with other classical morphology-based techniques (e.g., QPM or AF imaging), is a valuable
tool for assessing actual cellular states such as the level of macrophage activation.

In conclusion, these works have demonstrated that spectroscopy techniques may
have a broad area of applications to effectively improve in-depth biological research,
ranging from distinguishing cell lines, through studying mitotic cells or examining cell
differentiation, to exploring the molecular changes in biological processes.

3. Cell Classification with Correlative Microscopy and Machine Learning Approaches

Since Raman spectra and Raman images are high-dimensional data with a huge
number of peaks from thousands of cell components, machine learning methods should
have an essential role in processing and analyzing them. This holds true even more when
the dataset is composed of information from different kinds of acquisition modalities.
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Merging Raman spectroscopy and other microscopy techniques can give new perspectives
in biology and medicine, but the analysis of these datasets is not trivial, especially in
the case of noisy and overlapping peaks. Moreover, it could be hard to apply Raman
spectroscopy to certain sample types. Because of these obstacles, many authors focus on
integrating new machine learning approaches into Raman data analysis, as well as on
combining this approach with other types of microscopy techniques.

Harz et al. [28] presented an approach for single blood cell analysis in cerebrospinal
fluid (CSF) samples, by applying both FM and Raman spectroscopy on the same sample.
They aimed to figure out whether it was possible to characterize cells using FM in com-
bination with Raman microscopy to gain additional molecular information. Using this
technique, they first examined blood cells isolated from whole blood samples as a model
system to determine several important methodological parameters. Next, they extracted
immune cells from CSF and analyzed the influences of the CSF matrix on Raman spectra.
Finally, they made a decision on the applicability of Raman spectroscopy for the analysis
of CSF-derived blood cells. Their study demonstrated that Raman spectroscopy could
be applied to fluorescence-stained blood cells, and they showed that the CSF matrix did
not influence the final Raman interpretations. In addition, they successfully characterized
single blood cells using PCA and HCA, and distinguished the DNA and protein-rich
regions from the lipid-rich regions of the cell. This means that they could successfully
discriminate spectra from the nucleus and the cytoplasm. However, the fluorescence of the
applied dyes can mask the Raman signal of the cells. This could prevent the acquisition of
information-rich Raman spectra. Therefore, choosing the appropriate dyes is fundamental.

Ahlawat et al. [29] analyzed the potential of Raman optical tweezers for label-free
analyses of the cell cycle. They investigated whether an optical tweezer combined with
Raman spectroscopy could be a proper tool for the examination of synchronized and
fluorescence-stained mitotic cells. They merged Raman spectroscopy with fluorescence
cytometry to monitor the molecular differences between cells in phases G0/G1 and G2/M.
They found that by exploiting the intensity of some spectral bands, the DNA contents of
the cells could be followed, and by using the Raman peaks of DNA, the different cell cycle
phases could be distinguished. In addition, cells were differentiated according to their
nuclear spectra using PCA. However, traces of the fluorescent stain were recognizable in
the spectra; therefore, when using this technique, it is fundamental to exclude the peaks of
the fluorescent dye from the analysis.

Other researchers [30] examined epigenetic changes in breast cancer by connecting
Raman imaging, fluorescence imaging, atomic force microscopy (AFM), and scanning
near-field optical microscopy (SNOM). Based on these findings, they discussed how the
epigenetic changes contribute to different aspects of tumorigenesis in malignant and non-
malignant human breast epithelial cell lines. They focused their attention on the information
that can be extracted from cell nucleoli inside the nucleus and lipid droplets within the cell
cytoplasm using Raman imaging. They analyzed the biochemical compositions of tumorous
human breast epithelial cells and discussed the potential of Raman micro-spectroscopy
as a tool to monitor epigenetic modifications in cancer development. The Raman spectra
of nucleoli provide information about proteins: particularly, the vibrations of methyl and
methylene groups in the region of 2800–3000 cm−1 are suitable to monitor the chromatin
and non-histone type protein-related epigenetic modifications that are associated with
different levels of acetylation or methylation.

On the other hand, Kallepitis et al. [31] developed a computational framework, namely
qualitative volumetric Raman imaging (qVRI), which uses vertex component analysis
(VCA) to execute the label-free visualization and quantification of cell components in 3D
cell cultures. Using this approach, they could map and identify different lipid subtypes in
monocytes and macrophages such as triglycerides, phospholipids and cholesterol esters. In
addition, they could characterize the biochemical composition and morphology of the cells
within a hydrogel biomaterial. Furthermore, the hydrogel matrix and the cell membrane
could be distinguished by applying the framework and utilizing the capabilities of the
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system. They revealed that the bioactive hydrogel matrix had stronger interactions with
the cells, as indicated by a more elongated cellular morphology in 3D, while such a finding
was not evident for the bioinert hydrogel material. In summary, they showed that Raman
spectroscopy combined with VCA has the capability to reveal valuable information about
cell differentiation or potentially any other biological processes, even in a 3D manner.

Another approach tested by Krauss et al. [32] builds on applying deep convolutional
neural networks (DCNN) to Raman microscopic image analysis. They analyzed the Ra-
man spectra of cancerous and non-cancerous urothelial cells from the sediments of urine
samples to decide whether neural networks could serve as an appropriate classifier of
spectral images, and whether image spectra can distinguish cancer cells from healthy
ones. They used AlexNet topology [33] as a starting point and derived three additional
variants of this network. Using these DCNNs and some selected wavenumbers from the
data, the urine samples were classified as cancerous or healthy ones. As a comparison,
two conventional classifiers were applied to the same dataset in order to serve as a base-
line approach. In contrast to the original AlexNet topology which yielded poorer results
than conventional classifiers, the derived neural networks outperformed the accuracies of
conventional techniques. Considering these findings, neural networks could serve as the
classifiers of choice to interpret spectral data. However, acquiring a huge amount of data,
which is essential for neural networks to achieve high accuracy, not only at some selected
wavenumbers, but in the whole spectra, is a time-consuming process because of the weak
Raman signal. Therefore, using neural networks for Raman spectral images has not become
a widespread technique.

Kobayashi-Kirschvink et al. [34] presented a unique experimental and computational
framework which can predict the expression profiles of single live cells using Raman
microscopy. These machine learning models were trained to infer gene expression levels
from Raman spectra. For this purpose, the researchers used ribonucleic acid–fluorescence
in situ hybridization (RNA-FISH) data as anchors to link single-cell RNA sequences to
paired Raman spectra. As a machine learning method, they used their own deep learning
approach developed previously [35] to link spatially resolved FISH (smFISH) data to RNA
sequences, after applying Catboost [36] to deduce anchor expression levels from the Raman
data. Their framework was appropriate to predict expression profiles with high accuracy
from Raman hyperspectral data, both at the cell type and at the single-cell levels.

4. Raman Imaging of Mitosis: A Case Study

As discussed in detail above, Raman-based imaging is suitable for acquiring data on
spatially distributed chemical characteristics, giving a complex set of information about
the compounds comprising the material under examination. Fluorescence image analysis
is an established method to quantify cells, although it does not give direct molecular
information about the sample, and most of the time, fluorescent dyes are toxic to the
examined biological system when applied to live cells. In contrast, Raman microscopy can
give detailed molecular information in a non-invasive way. For instance, it is appropriate
to analyze the DNA content of single cells and to define the biological status of the cell
of interest. However, the Raman spectra obtained are noisy and require normalization,
as well as other data preprocessing steps, e.g., cosmic ray removal, standardization, and
spectrum fitting. To better understand the current limitations and opportunities of the
technique, we present a case study on the analysis of Raman maps. The main aim of the
project was twofold. Firstly, determining whether a cell is in the interphase or the mitotic
phase. Then, for mitotic cells, extracting the exact mitotic phase (pro-, prometa-, meta-,
ana-, and telophase). In our experiment, we solved these tasks as a classification problem
with six classes (one for the interphase and five others for the mitotic phases). The classifier
was implemented in the form of a two-dimensional (2D) convolutional neural network.
Currently, fluorescence images are used for classifying the cells, to create a ground truth. In
the future, we will use label-free screening to detect the cells of interest. Below, we present
a summary of the experiments performed, schematized in Figure 1.
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Figure 1. (A) Registration points were designated using a laser microdissection microscope. (B) Cell
culturing was executed in plates ready for imaging, with 4 registration points in each chamber.
(C) Fluorescence images were acquired with a confocal microscope. (D) Cell selection was executed
by an expert. (E) Acquiring data with a Raman microscope. (F) Preprocessing Raman data, includ-
ing cosmic ray removal, standardization, and fitting. (G) Neural network training for supervised
classification of mitotic stages.

4.1. Experimental Setup

Cell Culturing and Nuclei Staining: For the case study, Henrietta Lacks (HeLa) cells
(Chemokines C–C motif chemokine ligand 2, CCL-2, the cell line derived from American
Type Culture Collection, ATCC) were cultured on glass slides using 8-well FlexiPerm
silicon chambers. HeLa cells were grown in Eagle’s minimal essential medium (EMEM)
supplemented with 10% fetal bovine serum (FBS). Around 15,000 cells were seeded into
each chamber and incubated at 37 ◦C in a 5.0% CO2 humidified environment for 24 h.
After washing with phosphate-buffered saline (PBS, pH7), the cells were fixed with 4%
paraformaldehyde (PFA) at room temperature, dissolved in PBS for 10 min, and washed
with PBS 3 times for 2 min. After washing, the nuclei of the cells were stained with DAPI
(1 µg/mL) for 30 min.

Fluorescence Imaging: Widefield fluorescence and brightfield images were obtained
using a Leica TCS SP8 confocal laser scanning microscope equipped with a 20× air objective
(numerical aperture, NA: 0.4; working distance 6.9 mm). Images were acquired with a
1.4 MP monochrome charge-coupled device (CCD) digital camera (Leica, DFC365 FX). For
detecting nuclei staining, DAPI excitation and emission filters were used (i.e., 350/50 and
460/50, respectively). The screening was performed with a 10% overlap of the images and
a laser-based autofocus system.

Identifying Mitotic Cells: First of all, mitotic cells were manually identified by an
expert microscopist under the fluorescence microscope. To identify the same cells with the
Raman microscope, four registration points were designated in each well of the multi-well
plate before the cells were plated on the glass slide. The registration points were engraved
into the glass support with a laser of a Zeiss photo-activated localization microscopy (PALM)
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MicroBeam microscope with a 40×/0.6 NA objective (Zeiss, Germany). Then a projective
transformation was estimated for each well using our software, and the transformation of
the coordinates between the microscopes was performed. The transformation was executed
by our custom-built software. Then, using the transformed positions, the cells selected
under the brightfield microscope were detected again with the Raman microscope.

Raman Imaging: Raman imaging was performed on an NT-MDT Spectrum Instru-
ments Ntegra II Raman–AFM microscope system (NT-MDT, Russia) equipped with a
60×/1.0 NA water immersion objective (Olympus, Japan). The light source was a 532 nm
laser with a power of 12 mW above the objective. The scattered light was detected with a
thermoelectrically cooled CCD at –70 °C (Andor, UK) via 300 grooves per mm diffraction
grating. The spectra were acquired within the range of 439 cm−1 to 3228 cm−1. The acquisi-
tion time of the Raman spectra was 1.2 s, with a spatial resolution of 1 µm. Each spectral
map spanned 24 µm × 24 µm and was cropped to remove the neighboring cells and most
of the background.

Preprocessing: After data acquisition, preprocessing was performed. First, spectral
maps were revised to remove the measurements related to the regions not containing cells
(because of washing issues), or to regions with fluorescent signals strong enough to hide
the Raman spectra of the cells. Furthermore, the spectral maps were cropped to cover a
single cell for each map. Second, most of the cosmic rays were removed from the data using
an algorithm proposed by Cappel et al. [37]. From a preliminary experiment on a subset of
data, we verified that it was able to correctly remove approximately 95% of the cosmic rays
(an expert operator manually highlighted all of the cosmic rays to create a ground truth
for the efficiency evaluation). Accordingly, we decided to adopt this algorithm for cosmic
ray removal. This step was complemented with manual removal of the remaining cosmic
rays based on visual inspection to eliminate the cosmic rays which were not detected by
the algorithm. The next step was to normalize each spectrum to a similar intensity. Two
different intensity correction methods were tested, standard normal variate (SNV) [38] and
baseline correction using polynomial fitting [39], but none of them produced acceptable
results for the data analyzed. A quantitative analysis with representative examples can
be found in Section 4.1. Thus, we propose an original algorithm (the implementation is
freely available at https://github.com/biomag-lab/raman-fitting), which fits each spectrum to
the same reference. This was an arbitrarily selected background spectrum, but the average
of the background spectra might have also been used. The transformation of a spectrum is
given in the following form (Equation (1)):

Ŝa,P = a× S + P, P(j) = p
(
xj
)
, j = 1, . . . , m, p(x) =

n

∑
i=0

pixi (1)

where S,Ŝ∈Rm are the original and the transformed spectra, respectively, P∈Rm is a sam-
pling of the polynomial p(x). m is the number of values in the Raman spectra; n is the
order of the polynomial. In our experiments, we found that the algorithm worked best on
our data, with n = 5. The parameters of the transformation (a∈R and the pi∈R, i=0, . . . ,n
coefficients) are found by solving the optimization problem (Equation (2)):

argmin
a,P

1
2

n
∑

i=1
Lδ

(
Ŝa,P(i)− R(i)

)
Lδ(x) =

{
x2, |x| ≤ δ,

2δ|x| − δ2, otherwise

(2)

for a previously defined reference spectrum R (see Figure 2A). The Lδ function is the Huber
loss [40]. This loss function is a combination of the mean squared error (MSE) and the mean
absolute error (MAE). The main advantage of this loss function is that it is insensitive to
outliers, in contrast with MSE, which would highly penalize greater errors. In our case,
this means that the significant peaks were ignored during fitting, and only the baseline

https://github.com/biomag-lab/raman-fitting


Biosensors 2023, 13, 187 9 of 16

was matched to the reference spectrum. To provide a generally applicable δ value, the SNV
transform was applied to each spectrum. After that, δ = 0.02 was used. The quality of the
proposed fitting method was evaluated as described in Section 4.2.
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section where significant improvement is visible. (B) The architecture of the utilized neural network.
The first 3 layers reduce the number of channels with 1×1 kernels, while the next layers apply
“classic” convolution with a 3×3 kernel size.

Neural Network Architecture: To classify the cells, a neural network (NN) was de-
signed. Raman maps can be considered as images with 1600 channels (the number of values
per a single spectrum). Accordingly, the main structure of the utilized NN’s architecture is
similar to the general networks used in the field of image processing (see Figure 2B) [41].
The first part of the network consists of convolutional layers, each reducing the dimension-
ality of the data, which are connected to the second part composed of two fully connected
layers, which produce the output. The first part can be further divided into two sections.
The first section hierarchically reduces the number of channels by grouping convolutional
layers with a kernel size of 1×1. The second section is composed of convolutional layers
which do not use grouping and that work with a kernel size of 3×3. Data were fed into
the network in 15×15 crops, which were created during the training to reduce memory
consumption. Cropped regions were shifted from each other by two pixels, thus, different
parts of the same cell were utilized as training data (test and validation data were left intact).

4.2. Results

Preprocessing: The original data and two commonly used Raman preprocessing meth-
ods (i.e., SNV and baseline correction) were compared with the proposed fitting method
(Figure 3). For inspection, two wavenumber intervals were displayed: (I) 775–795 cm−1

for the nucleus and (II) 2820–3020 cm−1 for (mostly) lipids and proteins. (I) is dominated
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by the pyrimidine ring breathing, which is a characteristic mode of vibrations of these
DNA compounds, whilst (II) is dominated by the vibration modes of CH2 and CH3 groups
which are overrepresented in lipids [42–44]. Regarding the raw data, there is no substantial
morphological difference between the two intervals. Additionally, it is worth mentioning
that none of them had any texture as such, but the cells appeared to be quite homogeneous.
This was improved at the 2820–3020 cm−1 wavenumber interval by all three preprocessing
methods, as they seemed to introduce some textural information for the cytoplasm. This
was not the case for the nucleus interval, where the three preprocessing methods yielded
quite different results. For Cell 1, none of the preprocessing methods was able to high-
light the nucleus, probably because the DNA was not concentrated in a smaller, dense
area. For Cells 2 and 3, the SNV method made a larger proportion of the cell appear at a
lower intensity compared to the background, with no clear sign of the nucleus. Similar
to SNV, the baseline correction made some of the cell pixels less intense compared to the
background positions; however, here we obtained a glimpse of what appeared to be the
nucleus, meaning that it was capable of some sort of a separation between the nucleus
and the rest of the cell. Thus, although it cannot be regarded as being of high quality, the
proposed fitting method was able to differentiate the nucleus from both the background
and other cellular compartments.
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Figure 3. Comparison of the preprocessing methods tested. The same wavenumber intervals were
used for the cells: 775–795 cm−1 for DNA, and 2820–3020 cm−1 for proteins and lipids. Each cell is in
a different mitotic phase (inter-, telo-, and prometaphase, respectively). The last column shows the
fluorescence (DAPI) image for reference.

Classification: For evaluation, the data were split into train–test–validation sets in
a 70%–15%–15% ratio. The confusion matrix of predictions is shown in Figure 4. The
one-miss accuracy was 84.47% (i.e., exact hit or hitting the neighboring mitotic stage),
while the standard accuracy of the trained model was 56.82%. There are some remarks
which should be noted. Firstly, some classes are much harder to learn than others. For
example, prometaphase was mostly classified into either pro- or metaphase (47.19% and
32.41% of all prometaphase cells, respectively, while the proportion of correctly classified
cells was only 11.58%). This is likely explained by the fact that prometaphase (as the
name suggests) is an intermediate stage between the pro- and the metaphases. In general,
most of the misclassifications happened for consecutive phases. For this reason, a better
characterization of the predictive capabilities of our model, such misclassifications were
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considered by calculating the one-miss accuracy value, for which the sum of the tridiagonal
elements of the confusion matrix was divided by the total number of data units.
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5. Discussion: Opportunities and Limitations

In this work, we have focused on the detection of mitotic stages at the single-cell level
using CFRM and artificial intelligence approaches. In particular, we have analyzed state-of-
the-art works and case studies to understand the current limitations and opportunities of
the field. Our findings are summarized below.

Fluorescence Imaging: Fluorescence microscopy is a mature and widely used tech-
nique in the field of biology. Its simplicity and high-throughput nature make this technique
an almost perfect tool to gather information from a biological system. However, it has
some limitations. One of the drawbacks of fluorescence microscopy is the potential for
the overlapping spectra of the applied dyes, therefore, the simultaneous investigation of
multiple target molecules can be difficult or even impossible. In addition, fluorescent tags
can interfere with molecular transport in live cells; thus, the observation can lead to false
conclusions. Moreover, the applied dyes can be cytotoxic and may damage the specimen.

Raman Imaging: One of the advantages of Raman spectroscopy is that it does not
require staining and it allows for the parallel assessment of multiple target molecules.
Accordingly, live cell molecular imaging can be performed without the disturbing effect
of staining. On the other hand, the Raman signal is typically noisy. Therefore, it needs
a longer integration time to improve the signal-to-noise ratio. In addition, the biological
samples are in general molecularly heterogeneous, causing the peaks in spectra to overlap.
These properties make the biological interpretation of Raman signals a challenging task.

CFRM: CFRM is a useful tool in molecular biology. By combining fluorescence images
with spectral data, the morphological and molecular features of the sample can be inspected
together to obtain more comprehensive knowledge about the investigated sample. On
the other hand, combining multiple imaging tools introduces difficulties, as multiple
hardware/software elements need to be connected. Image registration is needed because
the same cells are measured with each modality, which can be hard due to the complexity of
Raman data. After solving this issue, information-rich data are at hand for further analysis.

Cell Selection: Choosing the right cells for measurement is a crucial question. Man-
ually selecting areas to measure is tedious work. This can be solved by using automated
image analysis, and AI-based methods may offer a favorable solution to optimize the data
acquisition process and select the representative cells for the assessment. Currently, there is
no generally accepted machine learning procedure, but several solutions exist [28,31,45].
For instance, the commercial software called BIAS (Single Cell Technologies L.T.D., Szeged,
Hungary) provides an AI model to predict the mitotic phases of dividing cells, and an
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interface to connect CFRM devices. As proof of concept, we have collected and annotated
fluorescence images to guide Raman data acquisition. We have built a database containing
more than 6000 fluorescence images and 2000 annotated mitotic cells. Then, we analyzed
images using BIAS to predict the mitotic phase (85% recognition accuracy and 10-fold cross-
validation) and to guide the Raman microscope. Consequently, AI offers a real opportunity
to make Raman imaging faster by assessing only the cells of interest.

Microscope Registration: Registering multiple microscope systems is required when-
ever one aims to combine information from multiple modalities. Various techniques differ
in flexibility and complexity; however, as the models become more complex (to be able to
handle difficult transformations), their degree of freedom rises, making optimization diffi-
cult. Upon moving a sample between microscopes, the simplest way to avoid distortions
(such as bending, stretching, drying of the sample, etc.) is through using marker points
to find the corresponding positions. The type of the required transformation (rigid, affine,
and projective) depends on the setup (unit of measure, relative positions of the sample
and the objective, etc.). The main sources of registration error come from the mislocation
of registration points (due to user error, or because the marker points are not negligibly
thin) or the hardware limitations of the motors moving the sample. While these errors can
cause problems in the downstream steps of the pipeline, these rather small mistakes can be
corrected, either manually or via a (semi)automatic method.

Data Preprocessing: Raman spectroscopy is subject to several types of distortions,
which might compromise the model’s accuracy; thus, those should be eliminated. First of
all, cosmic rays are particles coming from outer space with high energy. As they hit the
atmosphere, multiple particles emerge, which can cause huge energy spikes when hitting
the CCD of the spectroscope, but numerous techniques are available to remove these spikes
from the spectra [46–48]. Noise is another problematic issue. As discussed above, the
signal-to-noise ratio can be improved by increasing the acquisition time. While this is a
simple solution, it negatively impacts the amount of data that one can gather in a reasonable
timeframe. Therefore, deciding on an appropriate acquisition time is a compromise between
data quantity and quality. That is why assessments often produce noisy spectra, making
data analysis more difficult. There are several solutions to reduce noise [49], but care must
be taken, as radical noise reduction might remove useful information as well. It is worth
mentioning that more advanced smoothing techniques also exist, which might utilize neural
networks [50]. Unfortunately, other types of destructive impacts are not so straightforward
to handle. Fluorescence adds a baseline to the overall spectrum, drastically modifying
the shape of the spectra, which hinders comparison studies. In addition, the power of
the laser used is subject to fluctuation, causing the overall intensity of the spectrum to
drop or increase unpredictably. There are a plethora of tools to tackle these challenges,
but it is hard to choose the best option. Simple techniques, such as SNV, are easy to apply
to the data at hand. The lack of parameters is both a blessing and a curse, in that the
output is produced consistently, but it lacks the flexibility to remove serious distortions
such as fluorescence. Some of the available baseline removal algorithms use polynomials
to define the shape of the background signal [51–53], thereby introducing a parameter
that is difficult to optimize. When a polynomial order is too low, it is inappropriate to
represent the baseline precisely, but setting it too high will overfit the spectrum, introducing
wave-like artifacts upon subtraction. Using a reference spectrum for fitting may also be a
reasonable choice, but it comes with the risk of forcing spectra to be “too similar” to the
reference, discarding the existing information from the data.

Data Analysis: Raman maps can be considered digital images with hundreds, or even
thousands of channels, making it a complex type of data due to its high dimensionality.
Therefore, applying machine learning techniques can improve data analysis. For instance,
deep-learning methods can recognize complex patterns within the data, and can reveal
hidden relationships between data points; thus, they support a more efficient data analysis.
This is in contrast with general AI techniques, where predefined features need to be
extracted from the raw data. The introduced technique can analyze whole Raman spectral
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maps containing hundreds of thousands of numeric values. By eliminating the need for
handcrafted features, the NN is able to extract information from the data, which could
remain undetected during a manual inspection. In addition, the architecture can investigate
spectral and spatial features together, allowing a more thorough analysis. Another issue to
consider is that, although originally NNs are not human-interpretable (it is hard to check
what features were used for the decisions), there are techniques to visualize areas in images,
which obtained a bigger emphasis from the neural networks (e.g., Grad-CAM [54]). This
can help in understanding biological processes at a molecular level. One downside of deep
NNs is that they are “data hungry” which can limit their application because gathering
huge amounts of Raman data is time-consuming. However, when a sufficient amount of
data are available, combined with the appropriate data preprocessing and architecture,
NNs appears as an effective tool in advanced data analysis. Accordingly, developing
machine learning techniques is a hot topic nowadays, and several research groups are
engaged in developing new ways to expand the capabilities of these techniques, or custom
solutions for spectral analysis.

6. Conclusions

Single-cell level morphology and molecular analyses play a significant role in the
advancement of biology and medical research. For instance, current oncological drug
development is based on studying the effects of chemical compounds on cells of different
phenotypes, and on cells in different cellular stages. Microscopy techniques, which enable
biologists to analyze cellular and subcellular components, have provided valuable informa-
tion for many years, but currently, no single microscope is capable of analyzing all aspects
of the cells in their complex environment.

For a comprehensive, in-depth analysis of a sample, a combination of advanced instru-
ments is required. The location and morphology of stained molecules can be obtained using
fluorescence microscopy. Label-free images, informing on the spatial distribution of molec-
ular fingerprints at the subcellular level, can be produced with Raman microscopy. CFRM,
the combination of these two techniques, offers a unique opportunity for the in-depth
assessment of cellular stages at the single-cell level. In addition, artificial intelligence can
speed up the process by selecting representative cells for the analysis. Nevertheless, several
limitations still leave the practical and reliable applications of CFRM an open challenge.

In order to understand how successful research has merged fluorescence microscopy,
Raman spectroscopy, and artificial intelligence for cellular phenotyping, we have reviewed
state-of-the-art articles published on this topic. Then, we executed a case study to reveal
the restrictions limiting the application of CFRM to classify mitotic cellular stages based
on the spectral map. Despite the identified difficulties, promising results were presented.
We hypothesize that by applying more advanced AI-based techniques, such as transfer or
semi-supervised learning, better results can be achieved in the future.

Based on our findings, we can conclude that currently, there is no generally accepted
procedure for (a) co-registering images between fluorescence and Raman microscopes; (b)
normalizing the Raman spectra of different cells; and (c) identifying mitotic cells. On the
other hand, numerous solutions are appearing for all these steps, creating high expectations
for a truthful application of CFRM in the near future.
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American Type Culture Collection ATCC
artificial intelligence AI
atomic force microscopy AFM
autofluorescence AF
cerebrospinal fluid CSF
charge-coupled device CCD
chemokines C–C motif chemokine ligand 2 CCL-2
correlative fluorescence and Raman microscopy CFRM
deep convolutional neural networks DCNN
deoxyribonucleic acid DNA
Eagle’s minimal essential medium EMEM
electron microscopy EM
embryonic stem cell ESC
fetal bovine serum FBS
fluorescence in situ hybridization FISH
fluorescence microscopy FM
Henrietta Lacks HeLa
hierarchical component analysis HCA
infrared IR
light microscopy LM
linear discriminant analysis LDA
mean absolute error MAE
mean squared error MSE
mesenchymal stem cell MSC
neural network NN
numerical aperture NA
phosphate-buffered saline PBS
photo-activated localization microscopy PALM
principal components PC
principal components analysis PCA
qualitative volumetric Raman imaging qVRI
quantitative phase microscopy QPM
ribonucleic acid RNA
scanning near-field optical microscopy SNOM
spatially resolved FISH smFISH
standard normal variate SNV
t-distributed stochastic neighbor embedding t-SNE
two-dimensional 2D
vertex component analysis VCA
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