
A&A 668, A147 (2022)
https://doi.org/10.1051/0004-6361/202243803
c© The Authors 2022

Astronomy
&Astrophysics

Influence of magnetic field and stellar radiative feedback on the
collapse and the stellar mass spectrum of a massive star-forming

clump
Patrick Hennebelle1, Ugo Lebreuilly1, Tine Colman1, Davide Elia2, Gary Fuller3,4, Silvia Leurini5, Thomas Nony6,

Eugenio Schisano2, Juan D. Soler2, Alessio Traficante2, Ralf S. Klessen7, Sergio Molinari2, and Leonardo Testi1

1 AIM, CEA, CNRS, Université Paris-Saclay, Université Paris-Diderot, Sorbonne Paris-Cité, 91191 Gif-sur-Yvette, France
e-mail: patrick.hennebelle@cea.fr

2 INAF-IAPS, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
3 Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, The University of Manchester, Manchester M13

9PL, UK
4 Physikalisches Institut, University of Cologne, Zülpicher Str. 77, 50937 Köln, Germany
5 INAF – Osservatorio Astronomico di Cagliari, Via della Scienza 5, 09047 Selargius, CA, Italy
6 Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, 58089 Morelia,

Michoacán, México
7 Universität Heidelberg, Zentrum für Astronomie, Institut für theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg,

Germany

Received 17 April 2022 / Accepted 22 October 2022

ABSTRACT

Context. In spite of decades of theoretical efforts, the physical origin of the stellar initial mass function (IMF) is still a subject of
debate.
Aims. We aim to gain an understanding of the influence of various physical processes such as radiative stellar feedback, magnetic
field, and non-ideal magneto-hydrodynamics on the IMF.
Methods. We present a series of numerical simulations of collapsing 1000 M� clumps, taking into account the radiative feedback
and magnetic field with spatial resolution down to 1 AU. We performed both ideal and non-ideal MHD runs, and various radiative
feedback efficiencies are considered. We also developed analytical models that we confront with the numerical results.
Results. We computed the sum of the luminosities produced by the stars in the calculations and it shows a good comparison with the
bolometric luminosities reported in observations of massive star-forming clumps. The temperatures, velocities, and densities are also
found to be in good agreement with recent observations. The stellar mass spectrum inferred for the simulations is, generally speaking,
not strictly universal and it varies, in particular, with magnetic intensity. It is also influenced by the choice of the radiative feedback
efficiency. In all simulations, a sharp drop in the stellar distribution is found at about Mmin ' 0.1 M�, which is likely a consequence of
the adiabatic behaviour induced by dust opacities at high densities. As a consequence, when the combination of magnetic and thermal
support is not too high, the mass distribution presents a peak located at 0.3–0.5 M�. When the magnetic and thermal support are high,
the mass distribution is better described by a plateau, that is, dN/d log M ∝ M−Γ, Γ ' 0. At higher masses, the mass distributions
drop following power-law behaviours until a maximum mass, Mmax, whose value increases with field intensity and radiative feedback
efficiency. Between Mmin and Mmax, the distributions inferred from the simulations are in good agreement with an analytical model
inferred from gravo-turbulent theory. Due to the density PDF ∝ ρ−3/2 relevant for collapsing clouds, values on the order of Γ ' 3/4
are inferred both analytically and numerically. More precisely, after 150 M� of gas have been accreted, the most massive star has a
mass of about 8 M� when magnetic field is significant, and 3 M� only when both the radiative feedback efficiency and magnetic field
are low, respectively.
Conclusions. When both the magnetic field and radiative feedback are taken into account, they are found to have a significant influence
on the stellar mass spectrum. In particular, both of these effects effectively reduce fragmentation and lead to the formation of more
massive stars.
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1. Introduction

Star formation is a topic of fundamental importance in astro-
physics, particularly with regard to the mass distribution of
stars, described by the initial mass function (IMF, Salpeter 1955;
Kroupa 2001; Chabrier 2003; Bastian et al. 2010; Offner et al.
2014; Lee et al. 2020), which plays a crucial role in setting the
abundances of heavy elements and regulating stellar feedback.
These, in turn, play major roles in the formation and evolution

of galaxies and the interstellar medium. In the efforts to find
a complete description of the IMF, it is sometimes overlooked
that observed stellar masses span more than three orders of
magnitudes: from 0.1 M� to more than 100 M�. This fact likely
implies the existence of several regimes of dominant physical
processes and star formation conditions. It is clear that this prob-
lem requires a long standing community effort and over the past
few decades, several teams have conducted systematic inves-
tigations with the help of numerical simulations, introducing
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progressively more and more physical processes with an increas-
ingly higher numerical resolution.

The first attempts to obtain stellar mass spectra from numeri-
cal simulations in isothermal, self-gravitating, supersonic turbu-
lent flows were made by Klessen (2001) and Bate et al. (2003).
Together with several high-resolution studies performed by var-
ious authors (e.g. Girichidis et al. 2011; Bonnell et al. 2011;
Ballesteros-Paredes et al. 2015; Lee & Hennebelle 2018a), they
find stellar mass spectra that present similarities with the obser-
vationally inferred mass spectra. In particular, at high masses
the distributions are compatible with power laws, namely,
dN/d log M ∝ M−Γ, although in many runs, values of Γ = 3/4
to 1 have been obtained, which are seemingly shallower than the
canonical Γ ' 1.3 value inferred by Salpeter (1955) as discussed
in Lee & Hennebelle (2018a). The inferred distributions also
present a peak, which (when the simulations are strictly isother-
mal) is due to limited spatial resolution, however. A robust,
numerically converged peak is obtained when an effective equa-
tion of state with an adiabatic index larger than 4/3 is taken into
account (Lee & Hennebelle 2018b).

The influence of the magnetic field on the stellar
mass spectrum was investigated by Haugbølle et al. (2018),
Lee & Hennebelle (2019), and Guszejnov et al. (2020) perfom-
ing high spatial resolution simulations with various magnetisa-
tions. The resulting mass spectra have been found to be similar
to those inferred from simulations without magnetic field. In par-
ticular, Guszejnov et al. (2020) stress that magnetic field cannot
provide a characteristic mass that may explain the peak of the
IMF and that thermal processes have to be considered.

Several attempts have been made to study the IMF using
radiative transfer calculations. Urban et al. (2010) considered
radiative feedback, that is, stellar and accretion luminosity, by
adding them onto the sink particles. They concluded that isother-
mal and radiative transfer calculations are significantly differ-
ent, in particular the stars are much more massive in simulations
with radiative feedback. Bate (2009) performed high resolution
calculations, introducing the sink particles at a very high den-
sity, namely n > 1019 cm−3. However, stellar feedback onto the
sink particles is not explicitly added. This means that the accre-
tion luminosity onto the star is not accounted for and this makes
stellar feedback much weaker than it should be. Krumholz et al.
(2012) performed adaptive mesh refinement calculations with a
resolution of 20–40 AU. Both stellar and accretion luminosity
are added to the sinks. A relatively flat mass spectrum, that is to
say, such that Γ ' 0 is inferred when winds are not considered
while in the presence of stellar winds the mass spectra present
a peak around 0.3 M� and a power-law with Γ ' 0.5−1. Likely
enough when winds are present, the radiation escape along the
cavities and the heating is reduced. Mathew & Federrath (2020)
presented simulations with a spatial resolution of 200 AU and
performed calculations that use either a polytropic equation
of state or heating from stars. They found that when heating
is included, more massive stars would form. Hennebelle et al.
(2020a) conducted adaptive mesh simulations with a spatial res-
olution of 4 AU and down to 1 AU. Both stellar and accretion
luminosity are treated, with various efficiencies, facc, ranging
from 0 to 50%, as well as two sets of initial conditions, namely,
very compact and more standard clumps have been considered.
For the most compact clumps and when facc is high, a flat mass
spectrum develops. Otherwise all runs present mass spectra with
a peak around 0.3–0.5 M� and a power law at higher masses,
even when radiative feedback is not considered, that is, facc = 0,
and when a barotropic equation of state is used instead. High effi-
ciency radiative feedback runs however tend to present a broader

distribution, both at the low mass and high mass end, with high-
mass stars up to two to three times more massive than in the
barotropic and low-feedback efficiency runs.

In the present paper, we pursue the investigation of the ori-
gin of the stellar mass spectrum within a massive star-forming
clump. In particular, we focus on the role that magnetic field may
have, in conjunction with radiative feedback. A number of stud-
ies performed calculations with both magnetic field and radiative
feedback although most of the time, without predicting the mass
spectrum. As revealed in previous works (Peters et al. 2010,
2011; Commerçon et al. 2011; Myers et al. 2013), both these
physical processes significantly influence the collapse and star
formation, particularly by reducing the fragmentation. More-
over, their joint effect is not a mere superposition. These stud-
ies, however, have not presented sufficient statistics to allow
any conclusions to be drawn regarding the stellar mass spec-
trum. A stellar mass spectrum was obtained by Li et al. (2018),
where a magnetised and radiative calculation was performed at
a spatial resolution of about 30 AU. These statistics need to
be expanded and various initial conditions must be systemat-
ically explored. To do so, we performed high-resolution sim-
ulations of massive star-forming clumps where both magnetic
field and radiative feedback are accounted for. To get a good
description of the small scales which are mandatory to describe
the formation of low-mass stars, we employed an adaptive mesh
refinement with a spatial resolution down to 1 AU. As the mag-
netic intensity is likely to be varying from clump to clump, and
not many constraints from observations are available yet, we
explored three magnetisations. In addition, the radiative feed-
back efficiency is subject to large uncertainties, so we considered
two different values. Importantly, we also perform a simulation
in which non-ideal MHD effects, namely, ambipolar diffusion
(Mestel & Spitzer 1956), are explicitly taken into account. We
stress that these runs are the first for which both magnetic field
and radiative feedback are taken into account, while considering
a configuration which leads to sufficient statistics and spatial res-
olution to provide a reliable stellar distribution in the range from
0.1 to 10 M�.

The paper is structured as follows. Section 2 presents the
equations that we solved for the purposes of this work, along
with the relevant physical processes as well as the numerical
methods used to solve these equations. It also presents the ini-
tial conditions and describes the various runs presented in the
paper. In Sect. 3, we look at the evolution of the clump during
its collapse and investigate the effect of the magnetisation and
radiative feedback. We study the global properties, such as the
total accreted mass and radiated energy, the temperature, mag-
netic field, and mass distribution. An analytical model is pre-
sented in the appendix, developed with the aim to understand
the temperature distribution in the simulations. We make com-
parisons with observational results. In Sect. 4, we present the
stellar mass spectrum obtained in the simulations. They are
quantitatively compared with an analytical model which gives
more insight into the effect of the different physical processes
and is also presented in an appendix. In Sect. 5, we provide a
discussion and our conclusions are given in Sect. 6.

2. Numerical simulations

2.1. Equations, numerical methods, and setup

In this paper, we solve the equations of the radiative magneto-
hydrodynamics. All the radiative quantities are estimated in the
co-moving frame and assuming the grey approximation; that is
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to say that the radiative energies are integrated over the entire fre-
quency spectrum (e.g. Commerçon et al. 2011). The equations
are:

∂tρ + ∇ ·
[
ρu

]
= 0,

∂tρu + ∇ ·
[
ρu ⊗ u + PI

]
= −λ∇Er + FL − ρ∇φ,

∂tET + ∇ ·
[
u
(
ET + P + B2

8π

)
− 1

4π (u · B) B − EAD × B
]

= −Pr∇ : u − λu∇Er

+∇ ·
(

cλ
ρκR
∇Er

)
+ S ?

−ρu · ∇φ,
∂tEr + ∇ · [uEr] = −Pr∇ : u + ∇ ·

(
cλ
ρκR
∇Er

)
+κPρc(aRT 4 − Er)
+S ?,

∂t B − ∇ × [u × B + EAD] = 0,
∇ · B = 0,
∆φ = 4πGρ,

(1)

where ρ is the material density, u is the velocity, P the thermal
pressure, λ is the radiative flux limiter (Minerbo 1978), Er is
the radiative energy, FL = 1/(4π)(∇ × B) × B is the Lorentz
force, φ is the gravitational potential, ET the total energy ET =
ρε + 1/2ρu2 + B2/(8π) + Er (ε is the gas specific internal energy),
B is the magnetic field, EAD is the ambipolar electromotor field
(EMF), κP is the Planck mean opacity, κR is the Rosseland mean
opacity, Pr is the radiation pressure, S ? the luminosity source,
and T is the gas temperature. The ambipolar EMF is given by

EAD =
ηAD

B2 [(∇ × B) × B] × B, (2)

where ηAD is the ambipolar diffusion resistivity, calculated
as a function of the density, temperature, and magnetic field
amplitude.

The numerical method is overall very similar to the one used
in Hennebelle et al. (2020b). The simulations were performed
with the adaptive mesh refinement (AMR) magnetohydrody-
namics (MHD) code RAMSES (Teyssier 2002; Fromang et al.
2006). When non-ideal MHD, namely, ambipolar diffusion, is
included the scheme, as described in Masson et al. (2012) and
used in previous studies (Masson et al. 2016; Hennebelle et al.
2020a; Mignon-Risse et al. 2021; Commerçon et al. 2022;
Lebreuilly et al. 2021). The resistivities are the ones calculated
in Marchand et al. (2016).

In all simulations presented here, radiative transfer is
accounted for using the flux limited diffusion method assum-
ing grey approximation (see Commerçon et al. 2011, 2014).
The flux limited diffusion method is known to present some
restrictions for instance it does not treat shadows well due to
its isotropic nature. More accurate methods such as the M1
method (González et al. 2007), the hybrid method (Kuiper et al.
2010; Mignon-Risse et al. 2020) or the Variable Eddington
Tensor method (Menon et al. 2022) have been developed and
deal significantly better with anisotropic radiative transfer (see
also Jaura et al. 2018; Peter et al. 2022). However, they tend to
be more costly than the flux limited diffusion method employed
in this work, and are often limited in their current implementa-
tions. This certainly represents a line for future improvements.

At high density, the equation of state is taken from
Saumon & Chabrier (1992) and Saumon et al. (1995) which
takes into account H2, H, H+, He, He+, and He2+ (the He
mass concentration is 0.27). The opacities are as described in
Vaytet et al. (2013). For the range of temperatures and densi-
ties covered in this work, the opacities are the ones calculated
in Semenov et al. (2003).

The boundary conditions are periodic. The cloud is initially
spherical and has a radius four times lower than the computa-
tional domain size. All simulations were run on a regular grid
of 2563 computing cells and ten have been further added dur-
ing the course of the calculation leading to a total number of
18 AMR levels. The resolution criterion is the Jeans length and it
is resolved with at least ten points. In the present paper, the issue
of numerical resolution is not further discussed and we refer to
the appendix of Hennebelle et al. (2020b) for an investigation of
the impact of numerical resolution.

2.2. Sink particles and stellar feedback

The sink particle algorithm is described in Bleuler & Teyssier
(2014). Sink particles are formed at the highest refinement level
at the peak of clumps whose maximum density is larger than
nacc. The sink particles are created if the parent clump has a
density n > nacc and if it is sufficiently gravitationally bound
(see Bleuler & Teyssier 2014). The value of nacc is equal to
1013 cm−3. With this value of nacc, the computational cells hav-
ing a density equal to nacc possess a mass of roughly 1–2%
of the mass of the first hydrostatic core, ML = 0.03 M�. At
each time step, 10% of the gas mass inside the sink’s accretion
radius and with a density above nacc is retrieved from the grid
and accreted by the sink. The sinks are not allowed to merge.
The impact of changing the value of nacc has been discussed in
Hennebelle et al. (2020b). It has been found that both the spa-
tial resolution and the value of nacc may influence the peak of
the stellar distribution. However, once the first hydrostatic core
is sufficiently resolved, this should not be the case.

Sink particles are also a source of radiation due to the stellar
luminosity and gas accretion. The accretion luminosity is given
by:

Lacc =
faccGM∗Ṁ

R∗
(3)

where M∗ and R∗ are, respectively, the star’s mass and radius,
while Ṁ is the accretion rate. If all the kinetic energy of the
infalling gas was radiated away, we would have facc ' 1. The
accretion luminosity has been shown to be the dominant source
of gas heating at early time and has important effects on the
surrounding gas (e.g. Krumholz et al. 2007; Offner et al. 2009).
The stellar luminosity of the protostars L∗ and R∗ are taken from
Kuiper & Yorke (2013; see also Hosokawa & Omukai 2009). As
discussed in Hennebelle et al. (2020b), the value of facc that
should be used is not clearly established. In particular, the radi-
ation is emitted on a very small scale, namely, of a few stel-
lar radii, and is not expected to propagate uniformly because of
the highly anisotropic density distribution (e.g. Krumholz et al.
2012). As in Hennebelle et al. (2020b), we performed simula-
tions in which we used an ‘effective’ accretion luminosity and
explore the values facc = 0.1 and 0.5. By considering an effec-
tive luminosity smaller than the estimated total luminosity, we
envisage that the rest of the energy either escape preferentially
along the cavities open by winds and jets or is converted into jet
or a wind kinetic energy. This is obviously an important source
of uncertainties which requires further investigation.

We started by considering accretion and stellar luminosities
when the sink has a mass of about 2 ML, that is, 0.07 M�. The
reason is that due to the limited spatial resolution, when the
sink is introduced the protostar is not truly formed yet. Since
the size of the sink particles is not very different from the radius
of the first hydrostatic core, it seems reasonable to assume that
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Table 1. Summary of the runs performed.

Name Rc (pc) µ M lmax dx (AU) facc NMHD

NMHD10f05 0.4 10 7 18 1.15 0.5 Yes
MHD10f05 0.4 10 7 18 1.15 0.5 No
MHD10f01 0.4 10 7 18 1.15 0.1 No
MHD100f05 0.4 100 7 18 1.15 0.5 No
HYDROf05 0.4 ∞ 7 18 1.15 0.5 No
HYDROf01 0.4 ∞ 7 18 1.15 0.1 No

Notes. Rc is the initial clump radius. µ is the mass-to-flux over critical mass-to-flux ratio. M is the initial clump Mach number. lmax is the
maximum level of grid used and dx corresponds to the maximum resolution which is equal to 1.15 AU in these runs. facc gives the fraction of the
accretion luminosity which is taken into account in the calculation. NMHD tells whether non-ideal MHD is accounted for.

the protostar is formed only when the sink reaches a mass equal
to a few ML. We note that although this assumption is rea-
sonable, it clearly requires further investigation. For instance,
Bhandare et al. (2020) who performed two-dimensional simu-
lations of the second Larson cores, namely, the young proto-
star, found that they grow with time far beyond the solar radii.
This clearly suggests that at least some of the accretion energy
is not fully radiated away but somehow stored in the star for
some time. Indeed, the accretion shock at the edge of the second
Larson core is subcritical (Vaytet et al. 2013), meaning that most
of the accretion energy is advected inside the protostar and not
immediately radiated away. This constitutes an important source
of uncertainty for calculations such as those performed in this
work.

2.3. Initial conditions and performed runs

Our initial conditions consist of spherical clouds in which a tur-
bulent velocity field has been added. The velocity field has a
classical Kolmogorov power-spectrum equal to 11/3 with ran-
dom phases. A fully self-consistent approach would require to
also set up the density and magnetic field fluctuations, however,
this is not a straightforward task. In practice, it requires running
a large-scale series of simulations and zooming in or at least per-
forming a preliminary run without self-gravity (see for instance
Lane et al. 2022). We note that Lee & Hennebelle (2018a) have
compared various approaches, such as starting from a previous
phase in which the simulation is run without self-gravity and
starting directly from a prescribed turbulent field, as done here.
They found very similar results. This suggests that, at least in the
context of collapsing clumps, the choice of the initial turbulent
field may not be so important, probably because as the collapse
proceeds, the fluctuations evolve and the initial perturbations are
largely forgotten.

The clump we consider in this study has a mass of 103 M�
and an initial radius of 0.4 pc corresponding to a uniform den-
sity of about 8 × 104 cm−3 initially. Observationally, this corre-
sponds to relatively standard massive star-forming clumps (e.g.
Urquhart et al. 2014; Elia et al. 2017, 2021; Lin et al. 2022).
With an initial temperature of 10 K, the ratio of the thermal over
gravitational energy is about 0.008. The clump density leads to a
freefall time of about 110 kyr. The initial value of the Mach num-
ber is equal to 7 leading to a turbulent over gravitational energy
ratio of about 0.4, that is to say, the clumps are close to being
initially virialised.

We set up the simulations with a uniform initial magnetic
field through the cloud and intercloud medium. We considered
two initial mean-field strengths, with mass-to-flux ratios, µ, of
10 and 100, respectively (corresponding to about 100 µG and

10 µG, respectively). These values are motivated by the obser-
vations of µ on the order of a few in dense cores (e.g. Crutcher
2012; Myers & Basu 2021). This selection also aims to account
for the broad dispersions in the µ values of the massive clumps
identified in the 1-kpc scale simulation presented in Hennebelle
(2018). In these MHD simulations, which have a spatial reso-
lution down to 400 AU, it has been found that the mass-to-flux
ratio, which presents a broad dispersion, is indeed on the order
of a few for Solar mass cores but is lower for the more mas-
sive ones. More precisely, Fig. 5 of Hennebelle (2018) shows the
distribution of self-gravitating objects with density larger than
104 cm−3. It shows a clear trend that the mass-to-flux ratio, µ, is
increasing with mass in spite of a broad distribution. The most
massive clumps displayed has a mass of about 100 M� and, thus,
it is necessary to extrapolate to get a hint on 1000 M� clumps.
Based on this figure, we would expect that the typical µ of a
1000 M� clumps is certainly larger than 10. This may at first
sight be surprising because low mass cores have been observed
to present values of µ on the order of a few (Pattle et al. 2022).
It should, however, be remembered that the mass-to-flux ratio
is the ratio of a volume over a surface weighted quantity; thus,
considering objects with similar mean density, the mass-to-flux
is expected to increase with the object size.

Another fundamental aspect is the physics of the magnetic
field evolution. Whereas many studies have assumed ideal MHD,
it is however clear that this is a poor approximation at high
density in star-forming regions (e.g. Zhao et al. 2020). We per-
formed one run with ambipolar diffusion and a magnetisation
corresponding to µ = 10. Due to the small time steps induced by
the second order derivative in the ambipolar diffusion operator,
this numerical simulation is quite challenging and has required
about 500 000 cpu h. Table 1 summarises the various runs per-
formed.

Two ideal MHD runs (MHD10f05 and MHD100f05) and one
purely hydrodynamical runs (HYDROf05) allow us to investi-
gate the role of the magnetic field during the collapse notably
on the initial mass function; whereas the non-ideal MHD run
(NMHD10f05) is the most realistic simulation and to our knowl-
edge is the first simulation of a massive star-forming clump
which includes both radiative feedback and non-ideal MHD.
These four runs are complemented by two runs with a lower
accretion luminosity parameter, facc = 0.1, namely MHD10f01
and HYDROf01 which allow to assess and discuss the influ-
ence of radiative feedback on our results. All simulations are
carried out until at least 150 M� of gas have been accreted
onto the sink particles, except run NMHD10f05 for which the
final mass accreted by the sinks is 100 M�. This is because,
as explained above, this simulation is more computationally
demanding.
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Fig. 1. Total mass, accretion rate and luminosity as a function of time. Top row shows the total accreted mass (top-left panel) and the total accretion
rate (top-right panel) as a function of time for the various runs. Bottom-left panel portrays the total luminosity while bottom-right panel shows the
same quantity divided by Lglob = 0.5 ×GM∗,tot Ṁ∗,tot/(2 R�).

3. General clump description

In this section, we look at the global evolution and final proper-
ties of the collapsing clump as a whole. We start by describing
the general morphology, before proceeding to discuss the star
formation and luminosity. We then study the gas density and
temperature distribution inside the clump.

3.1. Total accreted mass

Figure 1 displays the total mass accreted (top-left panel) by sink
particles, Mtot,∗ as a function of time for the six simulations. The
total accretion rate is also plotted (top-right panel). Since it is a
heavily fluctuating quantity, the latter is calculated by averaging
its instantaneous value over 100 uniformly spaced time intervals.
As indicated above, all simulations are run until about 150 M�
have been accreted, corresponding to a star-formation efficiency
of 15%. There are two exceptions, NMHDf05 for which at the
end of the simulation 100 M� have been turned into the sinks,
and MHD10f05 for which the final total mass of sinks is equal
to 200 M�. Two groups of simulations are easily distinguished.
On one hand, the hydrodynamical simulations and the low mag-
netised one, MHD100f05 and, on the other hand, the more mag-
netised ones, namely, MHD10f01, MHD10f05, and NMHDf05.
As expected, due to magnetic support, the latter group of simu-
lations collapses a bit more slowly. Two points are worth men-
tioning, first the simulations with facc = 0.1 and with facc = 0.5
behave very similarly showing that in spite of strong heating,
radiation does not significantly alter the large scale dynamics. A
similar conclusion is also reached for the ambipolar diffusion.
This is because i) thermal support is rather weak and an increase
of temperature even by a factor of several does not make ther-
mal support sufficiently strong to provide a significant support at

the clump scale and also because ii) magnetic field is only sig-
nificantly modified by non-ideal MHD processes, at high density
(say n > 107 cm−3). Interestingly, we see that after a fast increase
the accretion rate, Ṁtot,∗, reaches values, which are nearly
identical for all simulations and equal to about 10−2 M� yr−1.
This is because the accretion rate is controlled by the largest
scale – here, the clump which is globally collapsing. The mag-
netic intensity considered here is too weak to significantly mod-
ify this global dynamics.

3.2. Total luminosity

The bottom-left panel of Fig. 1 portrays the total luminosities,∑
(L∗ + Lacc) of the sink particles (see also Fig. C.1). As for the

accretion rate, after an increase which takes about 0.02 Myr, it
reaches, in the case with facc = 0.5, a plateau at about 1−2 ×
105 L�. In the case of f = 0.1, the total luminosity is 10–20 times
lower for run HYDROf01 and 3 times lower for run MHD10f01.
We note that Fig. 1 shows that the clumps spend about 0.02 Myr
in the protostellar phase with a luminosity several times lower
than the peak values.

It is interesting to compare these values with the observa-
tions. Although what is observationally available is the bolomet-
ric luminosities rather than the total source luminosities, they
are obviously related and can be compared. In particular, it is
expected that the radiation emitted by the star in the visible
domain is quickly absorbed and reemitted in the infrared by
the dust. For instance, Fig. 12 in Elia et al. (2017) displays the
bolometric luminosities as a function of mass for a sample of
clumps. As can be seen our values agree well with the lumi-
nosity distribution of the protostellar 1000 M� clumps, which
range from 102 to few 105 L� although these values correspond
to their upper values when facc = 0.5. We note, however, that the
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Fig. 2. Column density at t = 0.11 Myr
for the six runs. The dark circles repre-
sent the sink particles aiming at describ-
ing the stars.

bolometric luminosities calculated in Elia et al. (2017) corre-
spond to wavelengths longer than 20 µm. Therefore these values
represent themselves lower limits of the real luminosities.

Lin et al. (2022) present detailed observations for several
massive star-forming clumps with comparable mass and radii
(see their Table 6). Luminosities of a few 105 L� are also
reported. Since the mass of the clump is 1000 M�, this means
that once the luminosity is about 105 L�, the luminosity per solar
mass is about 10−100 L�/M�. Again, this is in good agreement
with the values seen in Fig. 13 of Elia et al. (2017).

In order to define a reference the luminosities can be com-
pared to, we defined a quantity Lglob = 0.5×GM∗,totṀ∗,tot/(2R�),
which would correspond to the accretion luminosity of an object
of mass, M∗,tot, and radius, 2 R�, accreting at a rate, Ṁ∗,tot, with
an efficiency of facc = 0.5. The ratio

∑
L∗/Lglob is expected to be

smaller than 1 because the luminosity is a non-linear quantity,
which decreases with the number of stars. It gives a sense of how

fragmented is the clump and how efficiently is the gravitational
energy converted into radiation. The bottom-right panel shows∑

L∗/Lglob for the six runs as a function of time. As expected,
this quantity decreases with time and, at a later time, it reaches
values as small as 10−3 and as high as 2×10−2, depending on the
run. Interestingly, there is a clear trend for the magnetised runs
to have values that are 1.5–2 times larger than their hydrodynam-
ical counterpart. As we show later in this work, this is because
magnetic field tends to reduce fragmentation, therefore building
more massive stars that present higher luminosities.

3.3. General morphology

Figure 2 portrays the column density of the whole clump at
time t = 0.11 Myr, which (as seen from Fig. 1) corresponds
to a time where approximately 100–120 M� have been accreted.
The dark circles show the sink particles, which represent
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individual stars. The six simulations present a similar pattern.
A complex network of intervowen and interconnected filaments
have formed and three of them appear to be a little more promi-
nent. Their length is approximately '0.3 pc and is comparable to
the whole clump size. The three main filaments intersect, form-
ing a hub located approximately at y = 0.75 pc and z = 0.65 pc.
The stars are represented by the dark circles, which are mainly
(though not exclusively) located in the hub and in the filaments.
We recall that density filaments are naturally produced both by
MHD turbulence (Hennebelle 2013; Federrath 2016; Xu et al.
2019), shocks (Abe et al. 2021), and by gravity (e.g. Smith et al.
2014; Abe et al. 2021), which for different reasons tend both to
amplify anisotropies.

Beyond these general similarities, significant differences
between the six simulations are clearly visible. First of all,
we see that radiative feedback has a clear influence on the
cloud evolution and its fragmentation (Krumholz et al. 2007;
Hennebelle et al. 2020b). For instance, there are more sinks in
run HYDROf01 than in run HYDROf05 and in run MHD10f01
than in MHD10f05 (this will be further quantified in Sect. 5.1).
This is a clear consequence of less heating when f = 0.1 than
when f = 0.5. The impact on the gas structure appears to
remain more limited. Second, clearly the magnetic field signifi-
cantly reduces the numbers of sinks. This is particularly obvious
by comparing run HYDROf05 with run MHD10f05 as well as
run HYDROf01 with run MHD10f01. It is also clear that sink
particles tend to form in higher column density regions in the
magnetised runs. This clearly is a consequence of the support
provided by the magnetic field which efficiently stabilises the
gas particularly when its column density is not too high. This
obviously happens only if the magnetic field is strong enough.
Indeed, in run MHD100f05 which has an initial magnetic field
that is ten times lower than run MHD10f05, the sink distribution
is very similar to run HYDROf05. Interestingly, the sink distri-
bution in run NMHDf05 is comparable to run MHD10f05 except
near the high column densities areas, where a small excess
of sinks is sometimes visible. This stems from the fact that
ambipolar diffusion is efficient only at small scales and at high
density.

4. Gas and magnetic field distribution

4.1. Density, velocity, and temperature profiles

Figure 3 displays radial profiles of various density-weighted
quantities for runs MHD10f05 (left) and HYDROf05 (right) and
at several timesteps. For the sake of concision, only two simula-
tions are being displayed and discussed here. The adopted centre
is the position of the most massive sink particle, which is located
in the hub at y = 0.75 pc and z = 0.65 pc.

The first row displays the gas temperature, which we recall is
initially uniform and equal to 10 K. As time goes on, temperature
increases by two to three orders of magnitude in the centre and
about one order of magnitude in the clump’s outer part. The tem-
perature profile in the clump inner part broadly behaves as r−1,
while it is almost flat in the clump outer part. We further note the
presence of many temperature peaks associated to sink particles
distributed through the clouds. We also stress that the tempera-
ture is clearly larger by a factor '1.5 in run MHD10f05 than in
run HYDROf05. We come back to this particular point later in
this work, however, we note here that this effect is similar to what
was reported by Commerçon et al. (2011), on the basis of radia-
tive MHD calculations and with higher temperatures reported
in the MHD case. This is a consequence of the non-linearity

of the accretion luminosity proportional to ṀM. By reducing
fragmentation and extracting angular momentum, magnetic field
increases both M and Ṁ leading to higher accretion luminos-
ity. These temperatures appear to be in good agreement with the
ones presented in Fig. 10 of Lin et al. (2022). For instance, the
temperature at few 0.01 pc is about 100–200 K while at 0.1 pc it
is typically 50–70 K.

The second row shows the density profiles. The straight line
represents the density of the singular isothermal sphere (SIS),
that is, ρ = c2

s,0/(2πGr2), where cs,0 is the sound speed taken
here equal to 0.2 km s−1. As the process of collapse proceeds,
the density increases from outside-in and after roughly 0.1 Myr,
it presents a power law-like shape close to, but slightly shal-
lower than, r−2. As we see the values evolve with times and
also slightly depend on the radius. We see however than it is
nearly two orders of magnitude denser than the SIS, which is
an expected consequence of the low initial thermal energy and
the compactness of the cloud. The density in run HYDROf05
is slightly lower than in run MHD10f05, which is a conse-
quence of the magnetic support. We recall that the r−2 density
profile is the expected density structure of a spherical collaps-
ing cloud (e.g. Larson 1969; Shu 1977) since, together with
a uniform radial velocity, it leads to a roughly constant accre-
tion rate through the cloud (Li 2018; Gómez et al. 2021). When
turbulence is included, it is however common to find profiles
slightly shallower, for instance ρ ∝ r−1.5 is often reported (e.g.
Murray & Chang 2015; Li et al. 2018); however, in the present
case this value seems a little too shallow.

The radial velocity through the cloud is presented in the third
row. At 0.1 Myr, a constant radial velocity of '1.5−2 km s−1

appears to reasonably represent the cloud radial velocity for
radius between 0.03 and 0.3 pc. The radial velocity increases
towards the cloud inner part where it reaches '10 km s−1. The
parallel velocity, which represent both turbulent and rotation (i.e.
the non-radial component) is displayed in the fourth row. Due
to the chosen initial conditions, it is of the order of '2 km s−1

in the cloud outer part. As the collapse proceeds and due to
the increase of vr, turbulence is further amplified toward the
cloud centre (Hennebelle 2021) and this behaviour explains the
density profile being shallower than r−2. These velocity values
are in good agreement with the values presented in Fig. 22 of
Lin et al. (2022). For instance at 0.1 pc, values of about 3 km s−1

are reported.

4.2. Mass distribution

The mass distribution, which we recall is equivalent to the mass
weighted density PDF, is displayed in Fig. 4 for the six simu-
lations at several time steps. The distribution contains several
features and going from low to high densities four domains
can be identified: the interclump medium, the clump outer part,
the collapsing envelopes, and the high density material. We
stress that the last two do not correspond to a single physical
region but, rather, they develop around each individual collapse
centre.

4.2.1. The interclump medium

At low density, the mass distribution presents a roughly
lognormal shape which peaks at about 500 cm−3 (e.g.
Vázquez-Semadeni 1994; Federrath et al. 2008; Kritsuk et al.
2011) and remains stationary through time. It is due to the
development of turbulence in the cloud outerpart. The latter has
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Fig. 3. Radial profiles at several timesteps
in HYDROf05 and MHD10f05, respectively.
The black dashed line in the density panel
shows the singular isothermal sphere density.

formed by the turbulent-driven expansion of the cloud external
layer and, clearly, it contains a small amount of mass.

4.2.2. The clump’s outer part

At higher density, that is, ρ ' 105−106 cm−3, a second peak
of the mass distribution located at the cloud initial mean den-
sity, is visible. It contains most of the mass of the cloud and
shifts toward higher densities as collapse proceeds. Meanwhile
(as expected), the mass it contains declines over time. Over-
all the mass distribution of this density range is similar for the
six simulations. We can nevertheless note that the peak is a bit
broader for the two hydro runs, than for the more magnetised
runs MHD10f01, MHD10f05, and NMHDf05. This is likely a
consequence of the magnetic field which is known to reduce the

turbulent dispersion of the density distribution (e.g. Molina et al.
2012).

4.2.3. The collapsing envelopes

At densities higher than its peak value, the mass distribution
is better described by a power law behaviour up to densities
of 109 and even 1010 cm−3. This part of the mass distribution
corresponds to the n ∝ r−α, α ' 2 envelope discussed in
Fig. 3.

We recall that there is a simple correspondence between α
and the index of the mass distribution. Let dN be the number
of fluid particles located between radius r and r + dr. We have
dN ∝ r2dr. But since n ∝ r−α, we have dN/d log n ∝ n−3/α and
the mass weighted density PDF is:
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Fig. 4. Mass distribution as a function of density at several timesteps for the six runs. Section 4.2 describes the corresponding physical regimes.
The dotted line shows a powerlaw behaviour M ∝ n−1/2 as expected for a density PDF ∝n−3/2 (see Sect. 4.2.3).

n
dN

d log n
∝ n−3/α+1. (4)

For α ' 2, we thus find that ndN/d log n ∝ n−1/2, which
indeed is close to the observed bevaviour of the mass distribu-
tion between 107 and 109−1010 cm−3 as shown by a comparison
with the dotted lines.

Several aspects are worth noting. First at early stages (black
and red curves), the mass distributions evolve with time. More
mass is gradually accumulated at high densities as collapse pro-
ceeds. Once the n ∝ r−2 envelope is fully developed, the mass
distribution is stationary. This is all consistent with the stationar-
ity observed in Fig. 3, illustrating that the accretion rate remains
broadly constant with time.

4.2.4. The high-density material

At density larger than 109−1010 cm−3, the mass distribution
becomes flatter, meaning that mass is pilling up. This is a conse-

quence of rotational and thermal supports. Indeed protoplanetary
disks form (see Lebreuilly et al. 2021, for a description of disks
in similar simulations). Clearly the amount of mass significantly
varies with magnetisation and it is several times higher in the
hydro runs than in the significantly magnetised ones (MHD10).
This is a clear consequence of magnetic braking, which, via the
extraction of angular momentum, leads to smaller and less mas-
sive disks.

4.3. Temperature versus density distributions

Figure 5 shows the mean temperature as a function of den-
sity in the six simulations. In each density bin, the mean tem-
perature is simply the mass weighted temperature. The overall
behaviour is as suggested by the temperature profiles shown in
Sect. 4.1.

The temperature associated to the high density material
is typically larger than '300 K and reaches values of few
thousands K. As expected, the temperature increases with f .
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Fig. 5. Mass-weighted temperature in density intervals as a function of density at six time steps for the six runs. The dotted lines show a powerlaw
behaviour of T ∝ n1/2 and T ∝ n0.3, respectively.

For the lower density material (i.e. n < 109 cm−3), we see
first that the temperature decreases roughly as T ∝ n−0.3−0.5

(as indicated by the dotted line) and then at density of about
'107 cm−3, it reaches a plateau and remains constant, T = Text,
at lower densities. Depending on the runs and the time, the tem-
peratures vary between 10 and up to '30 K.

To interpret these temperatures, we developed a simple
spherical model which is presented in Sect. A. Although we see
from Fig. 2 that the clouds are not spherical and that the sources
are not clustered in the centre as assumed in our model, this nev-
ertheless allows us to get a deeper understanding of these tem-
peratures. The inferred power-law behaviours are as described
by Eqs. (A.4) and (A.8). More precisely, Eq. (A.4) combined
with Eq. (A.1) predicts that for T > 100 K, T ∝ n0.5 while for
T < 100 K, T ∝ n0.3.

To quantitatively estimate the values of Text, we use
Eq. (A.9):

Text = 33.5K
(
τ0

0.5

)3/(4+2α)
(

Ltot

105L�

)1/(4+2α) (
δ

100

)−1/(2+α)

, (5)

where we recall that δ is as defined by Eq. (A.1) and τ0 is the
optical depth at which the radiation is free streaming.

From Figs. 1 and 5, we see that when Ltot ' 105 L�, Text '

30 K, whereas when Ltot ' 104 L� Text ' 20 K, which is close to
what Eq. (5) predicts. Looking at Fig. 5 of Elia et al. (2017), we
see that 20–30 K corresponds to the temperature of the warmest
star-forming clumps, which agrees well with the relatively high
luminosities that we inferred. The HiGAL-based temperature is
the average termperature of the cold dust in a clump. They are
derived from 160-to-500 (and 870, 1100, when available) µm
grey-body fit, so that probed temperatures cannot be higher than
this value. Since the mass in the outer part of the clump domi-
nates, this cold component corresponds to that of the outer layers
and of most of the volume of the clump. This should therefore
broadly correspond to Text.

4.4. Magnetic field distributions

Figure 6 portrays the volume weighted magnetic intensity as
a function of gas density for the four magnetised simulations.
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Fig. 6. Magnetic field as a function of density at several timesteps for the four magnetised runs. The dotted line shows a powerlaw behaviour
B ∝ n1/2.

Overall, we see that, at least for n between 107 and 109 cm−3,
the magnetic field scales with density broadly as B∝ n1/2,
a result observed in previous works (see for instance
Hennebelle & Inutsuka 2019, for a review). This is a conse-
quence of the field amplification induced by field lines dragging
by collapsing motion. Even more simply, this is likely a con-
sequence of energy equipartition. As seen in Fig. 3, v2 depends
weakly on r while n ∝ r−2, therefore the kinetic energy scales
as r−2 and thus B ∝ r−1 ∝ n1/2. Interestingly, this implies
that the Alfvén velocity, Va, remains roughly constant in this
range of density. We see, however, that its value is not identi-
cal for the four runs. We estimate that for runs MHD10f05 and
MHD10f01, Va ' 1−1.2 km s−1, while for run MHD100f05, Va
is less than half this value. When non-ideal MHD is treated, the
Alfvén velocity is reduced by tens of percents at n ' 109 cm−3.

At lower densities, the behaviour depends on the field inten-
sity. For run MHD100f05, the dependence of B on n, is a bit
stiffer. This is expected as when the field is weak, the clump con-
traction tends to be spherical in which case B ∝ n2/3 (Li et al.
2015). This explains why the magnetic field at high density in
run MHD100f05 is larger than a tens of the B values in run
MHD10f05. Magnetic intensity is more vigorously amplified
when it is weaker.

At high densities, that is, n > 109 cm−3, the magnetic field is
further amplified up to density values on the order of 1011 cm−3.
The highest magnetic intensities vary from one run to the other.
In the most magnetised runs, MHD10f05 and MHD10f01, it
reaches '100 G and about one third of this in run MHD100f05.
Run NMHDf05 presents different behaviour. For n > 1010 cm−3,
the intensity is nearly independent of n and the largest intensities
is about '30 G. This behaviour, which has been discussed pre-
viously (e.g. Masson et al. 2016; Wurster & Li 2018) is a conse-

quence of ambipolar diffusion that tends to diffuse the field. This
implies that the influence of magnetic field on the high density
gas is significantly reduced compared to ideal MHD runs.

5. Stellar mass spectrum

5.1. Fragmentation and massive stars

Figure 7 portrays the number of sink particles as a function
of accreted mass (left panel) as well as the mass of the most
massive star (right panel). The number of sinks at the end of
the simulations is typically between 100 and 300 depending of
the runs. As anticipated from the clump images, both magnetic
field and radiative feedback reduce fragmentation. Here, we see
that the differences between runs HYDROf05 and MHD10f05
or between HYDROf01 and MHD10f01 is about a factor of 2,
the difference being more pronounced for the two runs with
facc = 0.5. On the other hand, the differences between runs
MHD10f05 and MHD10f01 is on the order of 50%, showing
that whereas radiative feedback contributes to reduce fragmen-
tation, its effect is comparatively lower than magnetic field.
Indeed, although the initial magnetisation of run MHD100f05
is quite weak, it nevertheless reduces the fragmentation by
tens of percents compared to run HYDROf05. Interestingly, run
NMHDf05, which treats ambipolar diffusion and has the same
magnetisation than run MHD10f05, presents a number of sinks
similar to run MHD100f05.

In all runs but HYDROf01, two phases can be distinguished.
When Mtot,∗ is smaller than '3 M� ('10 for run HYDROf05),
the number of sinks increases fast and is nearly proportional
to Mmtot

tot,∗ with mtot ' 0.7−1. Beyond this value, the number of
sinks increases much less rapidly and typically mtot ' 0.2−0.3.
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Fig. 7. The number of sinks (left panel), Ntot and the largest sink mass (right panel) as a function of the total accreted mass, Mtot, in several runs.

For instance for run MHD10f05, the number of sinks has roughly
doubled between the time when Mtot,∗ = 10 M� and Mtot,∗ =
100 M�. This is most certainly related to radiative feedback and
to the global increase of temperature within the clumps. The con-
sequence is obvioulsy that the sink particles, build their masses
in this second phase after fast fragmentation has occurred.

At the end of the runs, the mass of the most massive star is
between 3 and 10 M�. The observed trends are in good agree-
ment with the sink numbers. The mass of the most massive
star is higher when magnetic field and radiative feedback are
larger and magnetisation is comparatively slightly more effi-
cient than radiative feedback in producing massive stars. Two
phases of growth can also be distinguished, typically below and
above Mtot,∗ ' 10 M�, where Mmax grows respectively slowly
and fastly. We observe that Mmax ∝ Mmmax

tot,∗ with mmax ' 0.5
when Mtot,∗ < 10 M�, while mmax ' 1 otherwise.

We note an important feature of the stellar mass distribution
is that in a group of stars which in total contains about 100–
120 M�, a star more massive than 8 M� is expected. We see
that in our simulations only runs MHD10f05 and MHD10f01
have reached this value. Runs HYDROf05 and MHD100f05 are
slightly below while run HYDROf01 is almost a factor of 3
below. This may constitute a hint that magnetic field is playing
a role regarding the building of the massive stars, essentially by
reducing the cloud fragmentation.

5.2. The sink mass function

Figure 8 displays the sink mass function, ought to represent the
initial mass function, for the six runs and three values of Mtot,∗.

5.2.1. Analytical model

Before presenting the stellar mass spectra induced from the
simulations, we discuss an analytical model that will be use-
ful to interpret the results. It is in essence the model proposed
in Hennebelle & Chabrier (2008), in which the density PDF is
the one appropriated to the gravitational collapse and stated by
Eq. (4) as proposed in Lee & Hennebelle (2018a). For the sake
of completeness, it is described in Appendix B. Equations (B.6)
and (B.7) are the final equations to be used. Let us remember that
the model predicts two asymptotic behaviours. At small mass,
when thermal or magnetic support dominates, Γ → 0, while at
larger mass, when turbulent support dominates, Γ → 3/4. The
transition between these two regimes occurs at scales or equiv-
alently masses (see Eq. (B.6)) for which thermal and magnetic
and turbulent supports are comparables.

In order to be compared with the numerical simulations, one
needs to specify the values of the sound speed, cs, of the Alfvén
speed, Va, and of the turbulent velocity dispersion, V0. All these
values can be inferred from the results presented in Sect. 4.
Another important point when comparing simulations with the
analytical model is the normalisation. For this purpose, we write:

Mtot,∗ =

∫ Mmax

Mmin

MN(M)dM

=

∫ log10(Mmax)

log10(Mmin)
MN(M)

M
log 10

d log10 M. (6)

Thus, N0 as defined by Eq. (B.7), is determined
once Mtot,∗, Mmin, and Mmax are specified. The various parame-
ters are reported in Table 2. Since cs, Va, and V0 are all evolving
with time and positions, the reported values are global estimates.

We recall that the model is isothermal in nature. The sound
speed may vary for instance over time but remains uniform
within the whole cloud. This has an important consequence,
which is that the model does not predict a minimum stellar mass.
We should, however, remember that the isothermal assumption
becomes invalid when the density reaches density on the order
of 1010 cm−3 when the gas becomes progressively adiabatic.
As discussed in Hennebelle et al. (2019), the change of thermal
behaviour, which leads to the formation of the first hydrostatic
core (Larson 1969), results in a peak or cut-off for the IMF at
typically several times the mass of the first hydrostatic cores, ML
(that we recall is about ML ' 0.03 M�). This implies that the
analytical model is valid for masses larger than a few times ML
and this is why we choose Mmin = 0.1 M�. The values of Mmax
are taken from Fig. 7.

5.2.2. The hydrodynamical runs

The two top panels of Fig. 8 show results for run HYDROf05
and HYDROf01. The mass spectra are similar to those obtained
in Hennebelle et al. (2020b) with slightly different initial con-
ditions and less spatial resolution. Essentially, most of the
sinks have their mass between few 10−2 and few M�. The
distributions present a plateau that ranges between '0.1 and
'0.5 M�. A relatively sharp drop occurs around 0.1 M�
and we get a small number of objects at lower mass, par-
ticularly in run HYDROf05. At mass larger than '0.5 M�,
the distribution drops following a powerlaw-like behaviour,
whose index cannot be reliably determined due to the lack
of statistics. A tentative M−1 distribution (dotted line) is
represented for comparison. This value is similar to what
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Fig. 8. Mass spectra at various times characterised by the total accreted mass, for the six runs and for three values of the accreted mass. The red
dotted lines represent the analytical model presented in the paper for comparison. The black dotted one shows for reference a M−1 power laws.

previous authors have inferred from simulations (Bonnell et al.
2011; Girichidis et al. 2011; Ballesteros-Paredes et al. 2015;
Lee & Hennebelle 2018a,b; Padoan et al. 2020). Overall, we see
that there is a good agreement between the analytical model (red
dotted line), and the sink mass distribution, or M > 0.1 M�. We
stress that the main effect of increasing radiative feedback is to
broaden the distribution toward larger masses. From the analyt-
ical model, we see that this is compatible with this being a con-
sequence of the mean cloud temperature increasing due to the
radiative heating.

The peak of the distribution however is barely affected. This
confirms, as claimed in Hennebelle et al. (2020b), that radiative
feedback is not responsible of setting the peak of the IMF. In
fact, at early time (total accreted mass of 50 M�), the distribution
is clearly peaked toward 0.1–0.2 M� which is several times the
mass of the first hydrostatic core. As time goes on, the mass of
the most massive stars increases while the number of low mass
objects remains constant or increases moderately. This is entirely
compatible with the idea that the stars inherite a minimum mass

reservoir equal to a few times the mass of the first hydro-
static core (Hennebelle et al. 2019; Colman & Teyssier 2020),
which is swiftly accreted. After this, the stars keep accret-
ing from their mass reservoir which likely is set by gravo-
turbulence (Padoan et al. 1997; Hennebelle & Chabrier 2008;
Hopkins 2012). While this process should largely be determin-
istic in nature, it is also likely the case that stochastic pro-
cesses modulate this accretion as well (Bonnell et al. 2001;
Basu & Jones 2004; Basu et al. 2015).

5.2.3. The influence of magnetic field on the stellar mass
spectrum

The influence of magnetic field can be seen by comparing, on
one hand, runs HYDROf05, MHD100f05 and MHD10f05 and,
on the other hand, run HYDROf01 with run MHD10f01. Clearly,
magnetic field has a significant impact on the mass spectrum that
it tends to broaden towards larger masses. In fact, the low mass
distribution is almost unchanged. Again this provides further
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Table 2. Parameters used to confront the stellar initial mass function inferred from the simulations with the analytical model stated in Sect. B.

Name Rc (pc) cs (km s−1) Va (km s−1) V0 (km s−1) Mtot,∗ (M�) Mmax (M�) Mmin (M�)

NMHD10f05 0.3 0.35 1 3 100 3 0.1
IMHD10f05 0.3 0.35 1 3 150 8 0.1
IMHD10f01 0.3 0.25 1 3 150 7 0.1
IMHD100f05 0.3 0.35 0.3 3 150 7 0.1
HYDROf05 0.3 0.35 0 3 150 7 0.1
HYDROf01 0.3 0.25 0 3 150 3 0.1

Notes. Rc is the clump radius, cs is the typical sound speed, Va, the Alfvén speed, V0, the velocity dispersion, Mtot,∗ is the total accreted mass, Mmax,
the mass of the most massive stars formed and Mmin is the smallest mass for which the comparison is meaningful.

confirmation that radiative feedback has no significant impact on
the low mass end of the stellar initial mass function since as dis-
cussed above magnetic field leads to stronger radiative feedback.
This also obviously shows that magnetic field does not influence
the low mass end of mass spectrum in good agreement with the
idea that it is mainly linked to the mass of the hydrostatic core.

Run MHD10f05 presents a plateau that extends from about
0.1 M� to '2 M�. It is reminiscent of run A presented in Fig. 6
of Lee & Hennebelle (2018a) and the run presented in Fig. 2
bottom panel of Jones & Bate (2018). These runs have in com-
mon to have a high thermal energy initially or equivalently a low
Mach number. The analytical model suggests that when thermal
support is high, a collapsing clump would indeed develop a stel-
lar mass spectrum, dN/d log M ∝ M0, while when turbulent sup-
port dominates the support of the mass reservoir, dN/d log M ∝
M−3/4 is expected. Likely enough run MHD10f05 falls in the
regime where thermal and magnetic field dominates over turbu-
lence at the scale of the mass reservoirs and this explains the flat
mass spectrum. This is indeed what the good agreement with
the MHD models and the simulations suggests since the broad
plateau (where dN/d log M ∝ M0) displayed by the analytical
models is due to combination of a high Alfvén velocity and a
high sound speed.

Compared to run MHD10f05, the mass spectum of run
MHD10f01 presents a plateau that is less broad. This is the case
both for the numerical and the analytical models, which are again
in good agreement. This clearly is due to the lower temperatures
in run MHD10f01, which compared to run MHD10f05, leads to
weaker thermal support.

5.2.4. The impact of ambipolar diffusion

The mass spectrum of run NMHDf05 presents similarities with
the one of run MHD10f05 but also significant differences. Over-
all it is more similar to the mass spectrum of run MHD10f01.
First of all, unlike run MHD10f05, it does not present a plateau
that extends up to '3 M� but rather stops at 1 M� and the most
massive stars are also less massive. This is in good agreement
with the slightly lower magnetic field which is found for run
NMHDf05 (see Fig. 6) than for run MHD10f05. The similar-
ity with run MHD10f01 likely comes from the total support due
to both thermal and magnetic supports are closer because run
MHD10f01 has stronger field but lower temperatures than run
NMHDf05.

A more surprising difference comes from the low-mass
objects. As can be seen, there are more sink particles of masses
lower than 0.1 M� in run NMHDf05 than in the ideal MHD
runs but also more than in the hydrodynamical runs. The rea-
son for this remains to be clarified. The most likely explana-
tion is the relatively weak magnetic field intensity at density

above 1010 cm−3 in run NMHDf05 compared for instance to run
MHD10f05. As seen from Fig. 6, the change of behaviour is rel-
atively sharp, with B being very comparable in runs NMHDf05
and MHD10f05 below 1010 cm−3. Thus while in both runs, high
densities may develop due to field support, the field support
drops at density above 1010 cm−3 for run NMHDf05 and this
may favor fragmentation. This may also be due to the difference
in the disk populations that form in the various runs and pre-
sented in Lebreuilly et al. (2021). The disks formed in non-ideal
MHD runs are intermediate in mass and size between the hydro-
dynamical disks and the ones which form in ideal MHD runs.
While the latter are usually very stable due to the fast growth of
a toroidal magnetic component, but since more mass is available
in bigger disks, the former fragments tend to form bigger objects
than in non-ideal MHD disks.

6. Discussions

6.1. Dependence of the high-mass slope of the stellar mass
spectrum

As discussed in the previous section, our numerical results suggest
that from a few solar mass to at least 7–8 M�, the stellar distribu-
tion presents a power law behaviour dN/d log M ∝ M−Γ, with
Γ ' 3/4. Analytically, this behaviour is found when at the scale
of the individual mass reservoir, (i) the dominant support against
gravity is turbulence and (ii) when the density PDF is ∝ρ−3/2,
which is a consequence of gravitational collapse. On the other-
hand, when the density PDF is close to a lognormal distribution,
we do expect Γ ' 1.3, as discussed in Lee & Hennebelle (2018a).
In essence, the density PDF is a direct estimate of how the gas mass
is distributed amongst densities and therefore controls the number
of density fluctuations at a given density. Typically a log-normal
distribution has less dense gas than a PDF ∝ρ−3/2 and therefore
less small mass objects are produced with the former than with
the latter. The transition between the two exponents, Γ = 3/4 and
Γ = 1.3, is expected to occur at the density, ntrans, which typically
connects the turbulent log-normal PDF to the power law ∝ ρ−3/2

gravitational PDF. In the present simulations this occurs around
'106 cm−3. Combining Eqs. (B.3) and (B.6), we can estimate the
mass, Mtrans it corresponds to

Mtrans ' 15 M�
( V0

3 km s−1

)6 (
Rc

0.3pc

)−3 ( ntrans

106 cm−3

)−2

' 15 M�

(
M

103 M�

)3 (
Rc

0.3pc

)−6 ( ntrans

106 cm−3

)−2
(7)

where for simplicity, we have assumed η = 0.5 and V2
0 '

GM/Rc. Because of the sixth power which appears for V0 or Rc,
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the clump radius, the value of Mtrans is clearly not accurate and
likely can abruptly change from one environment to another.
Typically, we expect a fast transition around Rc ' 0.3 pc. It
is however illustrative and shows that for our simulations, at
high mass, the mass spectra are expected to be mostly if not
exclusively described by the Γ = 3/4 exponent since our stel-
lar masses are smaller than 15 M�. It also shows that in a less
dense and compact clump, the transition should occur at smaller
masses since the value of V0, or equivalently the value of Rc,
should be smaller. While most of the studies which have started
from massive clumps, comparable to the ones studied here, tend
to present Γ lower than the canonical Salpeter exponent (see the
discussion in Lee & Hennebelle 2018a), those works that have
the IMF obtained from larger scale clouds studies – obtaining the
IMF in larger scale simulations with initial conditions that corre-
spond to more standard giant molecular clouds – generally report
Γ values that are closer to 1.3. This is the case, for instance, for
the run XL-F presented in Fig. 4 of He et al. (2019) and the run
presented in Fig. 3 of Padoan et al. (2020) for masses between
10 and 50 M�, respectively. This is also the case for the runs
presented in Ntormousi & Hennebelle (2019) and the core mass
function extracted from these simulations (Louvet et al. 2021).

6.2. Observationally inferred mass distribution in actively
star-forming regions

While it may sound surprising at first not to find Γ ' 1.3,
which is the slope inferred by Salpeter (1955), it should be
stressed that recent observations have been inferring that in
some actively star-forming regions, the IMF may indeed be top-
heavy (Zhang et al. 2018; Lee et al. 2020). More precisely, in the
Arches cluster Hosek (2019) inferred Γ ' 0.8. On the other
hand, recent studies of the core mass function also obtained
within massive star-forming regions have also inferred power
law behaviours with indices of Γ ' 0.95 (Motte et al. 2018;
Pouteau et al. 2022). As cores are widely assumed to be the pro-
genitors of stars out of which they build their mass, the inferred
Γ values are compatible with the idea that the shape of the IMF
in massive star-forming regions is inherited from the shape of
the CMF, at least at high masses, although eventually it should
be compared with the IMF of the very same region.

While more detailed investigations, including careful com-
parisons between simulations and observations must be carried
out before firm conclusions can be drawn, there is a clear sugges-
tion coming from both observations and theories that systematic
variations of the IMF may occur, particularly in very compact
star-forming regions.

6.3. Limits of the present work and the ‘universality’ of the
IMF

Our work presents several important limits that need to be dis-
cussed. Indeed, one of the conclusion is that the combination of
magnetic field and radiative transfer possibly leads to more vari-
ability that what observational inferences of the IMF may have
led us to conclude. Admittedly, this question even for our own
Galaxy remains difficult to address, particularly because of the
relatively limited samples that are often available but it seems
nevertheless unavoidable that at least some level of fluctuations
should be present (see for instance the comprehensive discussion
provided in Dib 2022).

Determining whether the variations observed in the present
work are compatible with the galactic fluctuations of the IMF, is
beyond the scope of the present paper, but it is worth to not-
ing that an important source of variations is due to the effi-
ciency of the accretion luminosity expressed by the parameter

facc. Whereas there may be some variability of facc, it is not
likely that it is a factor of 5, as we have been exploring here. The
other possibly extreme variations we have considered is mag-
netic intensity since we have explored a factor of 10 (and even
go to pure hydrodynamical cases). This is not well constrained
yet, but a 1000 M� clump is a relatively large ensemble and it is
unclear what the variations of the magnetisation are in the galac-
tic populations.

Finally, we stress that a potentially important process has
been omitted in this work, namely, that of the protostellar jets.
Recently, Guszejnov et al. (2021) have explored their impact in
simulations comparable to the ones presented here (with a resolu-
tion of few tens of AU). They concluded that protostellar jets may
be playing a significant role in setting the IMF in particular for
the formation of low-mass objects in the presence of a significant
initial magnetic field. Whether this process may help explaining
the universality of the IMF is not, however, clear at present.

7. Conclusions
With the goal of understanding how magnetic field and radiative
feedback influence the collapse and the fragmentation of a mas-
sive star-forming clump, we performed high-resolution adaptive
mesh calculations with a spatial resolution down to about 1 AU.
Six runs featuring two radiative feedback efficiencies, three mag-
netic intensities as well as the impact of non-ideal MHD are
explored here. We show that the physical characteristics of the
simulated star-forming clumps show a good comparison with
various observations. This is, for instance, the case for the obser-
vational bolometric luminosities that we compared with the total
luminosities of the sink particles produced in the simulations
as well as for the gas temperatures. For the latter, we develop
an analytical model which agrees well with the temperatures
inferred from the simulations.

The stellar mass spectra of the six runs are analysed in detail
and compared with an analytical model in which thermal, mag-
netic, and turbulent supports are playing a major role. Overall
the analytical model reproduces well the numerical mass spectra
for masses above '0.1 M�. At this mass, which corresponds to
a few times the mass of the first hydrostatic core, the underly-
ing gas thermodynamics is nearly adiabatic and specific models
should be considered (e.g. Hennebelle et al. 2019). The combi-
nation between simulations and analytical results allows us to
clearly assess the role and influence of each physical process
which are as follows:

– In the density range at which the gas is not adiabatic, the
density PDF which is ∝ρ−3/2 is deeply shaping the stellar
mass spectrum and leads to two physical distinct regimes for
the mass spectra.

– At masses larger than ' 0.1 M�, thermal pressure and
magnetic field may lead to a flat mass spectrum, namely,
dN/d log M ∝ M−Γ with Γ ' 0 if they are strong enough
compared to turbulence.

– At larger scales, turbulence dominates and may lead to a
mass spectrum with Γ ' 3/4. At even larger scales and lower
density, the PDF is expected to be log-normal in shape and
stiffer mass spectra, with larger Γ are expected.

– the transition between the regime with Γ ' 0 and Γ ' 3/4
is not universal and depends on the local physical processes
such as thermal support, magnetic field, and Mach number.
Generally speaking, we find that the main effect of magnetic

field and radiative transfer is to reduce the total number of frag-
ments and to increase the mass of the most massive stars. These
latter have been found to increase with the magnetic intensity
and the radiation feedback efficiency. For instance, in the present
work, we found that for the hydrodynamical simulation with the
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lowest efficiency, the most massive star produced after 150 M�
have been accreted, is about 3 M�. With a higher radiative feed-
back efficiency or a sufficiently strong initial field, stars of masses
7–8 M� are produced. We therefore conclude that whereas mag-
netic field and radiative feedback may not be essential to explain
the peak or the various slope values of the IMF, they may be essen-
tial to reproduce the exact shape (such as the transition between
the various regimes), the level of fragmentation, that is, the num-
ber of stars formed and the mass of the most massive stars.
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Appendix A: A simple analytical model for the
temperature

To better understand the temperature profils through the clump,
we make use of the simple model discussed in Hennebelle et al.
(2020b), improving on various aspects. The model assumes
that the cloud is spherically symmetric and that all sources are
located in the clump centre. As seen in § 4.1, the radial profil of
the density field in collapsing envelopes is given by:

ρ(r) =
δρc2

s,0

2πGr2 , (A.1)

where δρ is a dimensionless factor which typically is equal to
'30-100. We assume that gas and dust have the same temper-
ature and are stationary. The grey body approximation that is
being used, leads when the medium is optically thick to

−4πr2 c
3κ(T )ρ(r)

∂r(aT 4) =
∑

(L∗ + Lacc). (A.2)

where a is the radiation density constant. In this expression we
assume that all the emitting sources are located in the clump cen-
tre. The opacity temperature dependences (e.g. Semenov et al.
2003), suggest that we can distinguish two regimes of tempera-
ture:

κ(T ) = κ0 ' 5 cm2g−1 for T > Tcrit ' 100 K, (A.3)

κ(T ) ' κ0

(
T

Tcrit

)α
for T < Tcrit,

where α is typically between 1 and 2. In this work, we adopted
α = 1.5. Combining Eqs. (A.1), (A.2), and (A.3), we get:

T (r) =

T 4
crit + K

 1
r3 −

1
r3

crit

1/4

for T > Tcrit,

T (r) =

(
KT−αcrit

4 − α
4

1
r3

)1/(4−α)

for T < Tcrit and r < rext, (A.4)

K = faccδρ
3κ0c2

s,0

24π2acG

∑
(L∗ + Lacc), (A.5)

where rcrit is the radius at which T = Tcrit and is given by

r3
crit = K

4 − α
4

T−αcrit

T 4−α
crit − T 4−α

ext
. (A.6)

Finally, Text is the temperature where the optical depth is
about 1 and rext the corresponding radii. We therefore have
κ(Text)ρ(rext)rext ' τ0 where τ0 should be on the order of 1. Com-
bining Eqs. (A.1), (A.3), and (A.4), we obtain for rext

rext =

κ0δc2
s,0

2πGτ0

(4−α)/(4+2α)  K
T 4

crit

4 − α
4

α/(4+2α)

. (A.7)

At this point, the radiative flux becomes simply equal to the term
cER and Eq. (A.2) becomes invalid. Under the assumption that
the temperature remains the one of a blackbody, it then remains
constant at larger radii and thus:

T (r) = Text =

(
KT−αcrit

4 − α
4

1
r3

ext

)1/(4−α)

for r > rext. (A.8)

The expression for Text is obtained by continuity at rext. By com-
bining Eq. (A.8) and Eq. (A.7), we find that

Text =

π(1 −
α

4
)
Ltot

ac
T 2α

critG
2

κ2
0δ

2c4
s
τ3

0

1/(4+2α)

. (A.9)

Appendix B: Analytical model of the mass
spectrum

For completeness, we describe here the analytical model devel-
oped in Hennebelle & Chabrier (2008) and Lee & Hennebelle
(2018a) that we use in the paper to interpret the numerical
results.

It is based on the equality of mass of the density fluctuation
which are unstable at a scale, R, (left-hand term) and the mass
that ends up into the structures, namely, the stars:

Mtot(R)
Vc

=

∞∫
δc

R

ρ exp(δ)PR(δ)dδ =

Mc
R∫

0

M′N(M′)P(R,M′) dM′, (B.1)

where δ = ln(ρ/ρ̄), PR is the density PDF, P(R,M) is the prob-
ability of finding a self-gravitating clump of mass M′ embedded
into a self-gravitating clump of mass MR unstable at scale R. It
is assumed to be 1.

Taking the derivative with respect to R, we get:

N(Mc
R) =

ρ

Mc
R

dR
dMc

R

(
−

dδc
R

dR
exp(δc

R)PR(δc
R)

)
. (B.2)

The mass of the density fluctuations is given by

M = CmρR3, where typicallyCm = 4π/3. (B.3)

Here we assume that the density PDF is given by

PR(ρ) = P0

(
ρ

ρ0

)−1.5

, (B.4)

The gravitational instability criterion for a clump of mass M
at scale R is

M > MJ = aJ

[
c2

s +
V2

a
6 +

V2
0

3

(
R
Rc

)2η] 3
2√

G3ρ exp(δ)
, (B.5)

where cs is the sound speed, Va the Alfvén speed, V0 the rms
velocity dispersion at the cloud scale, Rc is the cloud radius and
η an exponent to describe the turbulent scale dependence. Typi-
cally η = 0.3− 0.5 and in this work the value η = 0.5 is assumed
for simplicity. Equation (B.5) is the standard Jeans mass expres-
sion in which the support is assumed to be as suggested by the
virial theorem. We note that the surface terms are not taken into
account, they would typically modify this expression by a factor
of 2. Taking the standard definition of the Jeans mass, the mass
enclosed in a sphere of diameter equal to the Jeans length, we
get aJ = π5/2/6. With Eq. (B.3), this implies:

Mc
R =

a
2
3
J C

1
3
m

G

c2
sR +

V2
a

6
R +

V2
0

3 G

(
R
Rc

)2η

R

 , (B.6)

where Mc
R is the critical mass at scale R.

With Eq. (B.4) and Eq. (B.2) leads to:

N(Mc
R) = N0

(
R

Mc
R

)3/2 dR
dMc

R

(
−

1
Mc

R

dMc
R

dR
+

3
R

)
. (B.7)

Knowing the cloud physical conditions, cs, Va, V0, together with
Eq. (B.6), Eq. (B.7) allow to predict the stellar mass spectrum.
The normalisation coefficientN0 is determined by specifying the
total mass within stars.
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It is useful to see that

M → 0⇔ N → M−1 ⇔
dN

d log M
→ M0. (B.8)

In this limit, the mass reservoir is thermally supported and the
mass spectra present a plateau, namely, dN

d log M ∝ M0.
On the other hand, in the limit:

M → ∞⇔ N → M3/(4η+2)−5/2 ⇔
dN

d log M
→ M3/(4η+2)−3/2. (B.9)

As revealed by Eq. (B.6), in this limit the mass reservoir is domi-
nated by the turbulent dispersion. For η = 0.5, the mass spectrum
is dN

d log M ∝ M−3/4.
We recall that at small masses, the asymptotic behaviour will

eventually break down when the gas becomes adiabatic due to

the dust opacity and the formation of the first hydrostatic core,
while at large masses, the assumption of the density PDF being
∝ ρ−3/2, is eventually invalid (typically it eventually turns into
a log-normal distribution). Therefore while useful, these asymp-
totic behaviours must be handled with care.

Appendix C: Accretion and stellar luminosities

To get a better understanding of the origins of the luminosities,
we investigate the stellar and accretion luminosities separately.
The two panels of Fig. C.1 show the sum of the stellar luminosi-
ties (left panel) and the sum of the accretion luminosities (right
panel). In a first phase, up to time ' 0.1 Myr, the accretion lumi-
nosity largely dominates. Then, as stars of few solar masses have
formed, the stellar luminosities increase steeply and then reach
values comparable to the accretion luminosities.
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Fig. C.1. This figure complements Fig. 1. Left panel displays the total stellar luminosities and right one the total accretion luminosity.
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