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Association of early glycemic
change with short-term mortality
in lobar and non-lobar intracerebral
hemorrhage

Paola Forti'™, Fabiola Maioli? & Marco Zoli*

The association between early glycemic change and short-term mortality in non-diabetic patients
with acute intracerebral hemorrhage (ICH) is unclear. We retrospectively investigated non-diabetic
patients with lobar (n=262) and non-lobar ICH (n=370). Each patient had a random serum glucose test
on hospital admission and a fasting serum glucose test within the following 48 h. Hyperglycemia was
defined as serum glucose =7.8 mmol/l. Four patterns were determined: no hyperglycemia (reference
category), persistent hyperglycemia, delayed hyperglycemia, and decreasing hyperglycemia.
Associations with 30-day mortality were estimated using Cox models adjusted for major features of
ICH severity. Persistent hyperglycemia was associated with 30-day mortality in both lobar (HR 3.00;
95% Cl 1.28-7.02) and non-lobar ICH (HR 4.95; 95% Cl 2.20-11.09). In lobar ICH, 30-day mortality was
also associated with delayed (HR 4.10; 95% CI 1.77-9.49) and decreasing hyperglycemia (HR 2.01,
95% Cl 1.09-3.70). These findings were confirmed in Cox models using glycemic change (fasting minus
random serum glucose) as a continuous variable. Our study shows that, in non-diabetic patients with
ICH, early persistent hyperglycemia is an independent predictor of short-term mortality regardless of
hematoma location. Moreover, in non-diabetic patients with lobar ICH, both a positive and a negative
glycemic change are associated with short-term mortality.

A transitory hyperglycemia is frequent after acute stroke as a part of the acute stress reaction'. Admission hyper-
glycemia is associated with several adverse outcomes of ischemic stroke, including short-term mortality, and
the association is stronger among non-diabetic than diabetic patients?. Studies of ischemic stroke also showed
that measures of glycemic change within the first 48 h are better prognostic factors than a single glucose test
on admission, since both persistent and delayed hyperglycemia are associated with poor stroke outcomes®>.

Research has consistently shown that admission hyperglycemia and short-term mortality are also related
in patients with primary intracerebral hemorrhage (ICH), but it is still controversial whether hyperglycemia
independently contributes to hemorrhagic injury or it is just a surrogate marker for severe ICH®. Admission
hyperglycemia is actually associated with several admission features of ICH severity such as hematoma volume
and intraventricular extension”®. A number of studies reported that the association with ICH mortality was
independent of clinical and radiological features of ICH severity’-'4, but most of this evidence was based on a
single glucose measurement, usually the first random test on admission. Published research on the association
of glycemic change with ICH mortality is very scant'*!>.

This retrospective study investigated the association of early glycemic change with short-term mortality in
non-diabetic patients with lobar and non-lobar ICH. The study also tested whether inclusion of early glycemic
change would improve the prognostic ability for short-term mortality of the ICH score’®, which is the most
widely known scale for prognosis estimation in acute ICH patients'”.

Methods

This is a retrospective observational single-center study based on a cohort of 880 patients aged > 18 year who,
between January 2006 and December 2018, were consecutively admitted to the Emergency Department of the
Maggiore Hospital (Bologna, Italy) within 24 h after ICH onset and subsequently transferred to the local Stroke
Unit (SU) within 24 h after hospital admission. Diagnosis of ICH was based on clinical and neuroimaging data
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(all patients had at least one CT-head at admission). The cohort did not include patients with subarachnoid
hemorrhage or intracerebral hemorrhage associated with an aneurysm, arteriovenous malformation, or other
structural lesions. At SU admission, written informed consent for future research use of all data included in their
medical record was sought from patients or their legally authorized representatives. The Maggiore Hospital Ethics
Committee approved the study in accordance with the relevant guidelines and regulations. The data that support
the findings of this study are available from the corresponding author upon reasonable request.

Demographics, preadmission medical history, and ICH characteristics were abstracted from medical records.
Random serum glucose (RSG) was defined as the first available serum glucose measurement obtained after
hospital admission (median time 1 h, 25th-75th percentiles, 1-2 h, range 1- 3 h). Fasting serum glucose (FSG)
and glycated hemoglobin ([HbAIc], Diabetes Control and Complications Trial aligned results) were determined
the morning after SU admission (median time after hospital admission 24 h; 25-75th percentile, 16-26 h; range,
12-48 h), as a part of routine biochemistry tests performed on a venous blood sample drawn after an overnight
fast. All measurements were performed using automated methods at the same central laboratory. According to
European stroke guideline'®, the local protocol for management of acute ICH recommends avoidance of glucose-
containing intravenous fluids and a glucose target between 7.8 and 10.0 mmol/l. Type and dose of antidiabetic
treatment is at discretion of the treating physician. For the purposes of this study, only non-diabetic patients
were included. Patients with diabetes were identified on the basis of pre-admission diagnosis (self-report, evi-
dence from available medical records, or use of antidiabetic drugs; n=136), new diagnosis reported in the SU
discharge letter (n=17), or retrospective diagnosis (n=44). Both new and retrospective diagnosed were based
on findings of admission HbAlc>48 mmol/mol (6.5%)". HbA1lc is not fully concordant with traditional blood
glucose criteria®® but is a convenient choice in patients with acute stroke because, differently from blood glucose
criteria, remains unaffected by stress response?’. We also excluded patients who refused/were unable to provide
informed consent (n =20), missed laboratory data (n=_8), had unknown vital status at follow-up (n=9), or were
diagnosed with primary intraventricular hemorrhage (n=14).

Prestroke characteristics included: disability (admission modified Rankin Scale?? > 1), heart disease (any
history of coronary heart disease or congestive heart failure), and anticoagulant therapy. Severity of stroke on
admission was measured using the National Institues of Health Stroke Scale*® (NIHSS) and the Glasgow Coma
Scale** (GCS). Hematoma location, classified as lobar versus non-lobar, hematoma volume?, and presence of
intraventricular extension on admission were derived from the first available CT-scan as assessed by the on-duty
neuroradiologist. All-cause mortality at 30 days after ICH onset was ascertained from Italian Regional Mortality
Registries.

Glycemic change. Hyperglycemia in non-diabetic patients was defined as serum glucose>7.8 mmol/L
based on the institutional threshold for treatment. Using RSG and FSG, we defined four patterns of glycemic
change: no hyperglycemia (both RSG and FSG below 7.8 mmol/L); persistent hyperglycemia (high RSG and
high FSG), delayed hyperglycemia (high FBG only), and decreasing hyperglycemia (high RSG only). Hypogly-
cemia (< 3.9 mmol/I?®) was too rare for meaningful analyses (<0.1% of all RSG values and only 5% for FSG).
Dichotomization of continuous predictors can lead to loss of information, reduction in statistical power, and
poor fit of the association of interest””. Therefore, we also calculated continuous glycemic change (FSG minus
RSG) as an alternative to the categorical indicator: a positive change suggests an increasing glycemic pattern
whereas a negative change suggests a decreasing pattern.

Statistical analysis. Variables were presented as median (25th-75th percentile) or number (percentage).
Univariate associations were tested using Kruskall-Wallis test or chi-square test as appropriate. The multivaria-
ble-adjusted association of glycemic change categories with 30-day mortality was tested using adjusted Hazard
Ratios (HR) and their 95% confidence intervals (95%CI) from Cox regression models also including age, sex,
disability, heart disease, anticoagulant use, GCS, hematoma volume, and prevalence of intraventricular hema-
toma extension. NIHSS was not included as a covariate because of its high collinearity with GCS, which is the
usual instrument of choice for initial assessment of ICH severity*®. Cox models for glycemic change as a continu-
ous variable also included admission RSG. To allow for nonlinear associations, continuous glucose measure-
ments were modelled using restricted cubic splines (RCS) with 4 knots placed at pre-specified locations (5th,
35th, 65th, and 95th percentile) of the variable distribution?”?. Non-linearity was rejected for a conservative
P-value >0.100%. HRs were calculated only within the range of actually observed values®. The reference pat-
tern for glycemic change categories no hyperglycemia. The reference value for continuous glycemic change was
set at the minimum mortality point. The reference value for RSG was set at 5.5 mmol (upper range of normal
blood glucose'). C-statistic was used to compare the prognostic value of Cox models using only the ICH score
(calculated from the study covariates GCS, hematoma volume, presence of intraventricular hematoma, infraten-
torial origin, and age'®) and models including the ICH score along with the study measures of glycemic change.
Analyses were performed with R software version 3.5.3 and Harrell’s rms package?'. Significance for P-value was
set at 0.050 (two-tailed). For both the lobar and non-lobar subgroup, statistical power was 0.80 for a HR of 2.0.

Results
The final cohort included 632 patients (age range, 34 to 104 years). Preliminary multivariable-adjusted Cox
models for mortality prediction in the study cohort considered as whole confirmed a significant interaction of
hematoma location with glycemic change (p <0.001, both categorical and continuous).

Table 1 summarizes patient characteristics for lobar and non-lobar ICH. Lobar ICH was associated with
higher hematoma volume and lower prevalence of intraventricular hematoma extension than non-lobar ICH,
whereas clinical severity did not differ by location. The most frequent category of glycemic change in both lobar
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Variable Lobar (n=262) Non-lobar (n=370) | P value
Age, years 79 (72-84) 77 (67-84) 0.063
Male sex 115 (43.9) 181 (48.9) 0212
Prestroke disability 93 (35.5) 97 (26.2) 0.012
Heart disease 36 (13.7) 45 (12.2) 0.559
Anticoagulant use 38 (14.5) 48 (13.0) 0.580
National Institutes of Health Stroke Scale 11 (4-21) 10 (4-19) 0.565
Glasgow Coma Scale 14 (10-15) 14 (10-15) 0.483
Volume, cm? 29 (8-82) 7 (2-19) <0.001
Intraventricular hemorrhage 78 (29.8) 138 (37.3) 0.049
Random serum glucose, mmol/l 6.8 (5.7-8.9) 6.7 (5.8-7.9) 0.830
Fasting serum glucose, mmol/l 5.5 (4.8-6.6) 5.2(4.6-6.1) 0.003
Glycemic change, categorical 0.070
No hyperglycemia 175 (66.8) 259 (70.0)

Persistent hyperglycemia 16 (6.1) 12 (3.2)

Delayed hyperglycemia 14 (5.3) 9(2.4)

Decreasing hyperglycemia 57 (21.8) 90 (24.3)

Glycemic change, mmol/l -0.9(-2.1t0-0.1) |-1.3(-2.3t0-0.4) 0.005
Glycated haemoglobin, mmol/mol 38 (34-41) 38 (34-41) 0.957
Death at 30 days 68 (25.9) 87 (23.5) 0.543

Table 1. Characteristics of the study cohort according to location of intracerebral hemorrhage. Data are
median (25th-75th percentile) or n (%). To convert mmol/l to mg/dl, multiply by 18.018.

Mortality ‘ No hyperglycemia ‘ Persistent hyperglycemia ‘ Delayed hyperglycemia ‘ Decreasing hyperglycemia ‘ P-value
Lobar

Nall 175 16 14 57

n (%) cases 25(14.3) 10 (62.5) 10 (71.4) 23 (40.3) <0.001*
HR (95%CI) 1.00 3.00 (1.28-7.02) 4.10 (1.77-9.49) 2.01 (1.09-3.70) 0.003 +
Non-Lobar

Nall 258 12 9 90

n (%) cases 46 (17.8) 11 (91.7) 2(22.9) 28 (31.1) <0.001*
HR (95%CI) 1.00 4.95 (2.20-11.09) 0.77 (0.18-3.34) 1.44 (0.88-2.37) 0.001+

Table 2. Association of glycemic change categories with 30-day mortality according to hematoma location.
*P-value from Chi-square. TP-value for overall association from a Cox model adjusted for age, sex, prestroke
disability, heart disease, anticoagulant use, Glasgow Coma Scale, hematoma volume and intraventricular
hemorrhage.

and non-lobar ICH was no hyperglycemia, followed by decreasing hyperglycemia. However, lobar ICH had a
borderline higher occurrence of persistent and delayed hyperglycemia than non-lobar ICH. Glycemic change
as a continuous variable was also smaller in lobar than in non-lobar ICH. Mortality rate did not differ by hema-
toma location.

Table 2 summarizes multivariable-adjusted analyses for categories of glycemic change by hematoma location.
Persistent hyperglycemia was associated with higher mortality in both lobar and non-lobar ICH. Delayed and
decreasing hyperglycemia were associated with higher mortality only in lobar ICH.

Multivariable-adjusted models using admission RSG and glycemic change as continuous variables showed
that both predictors were associated with mortality. In lobar ICH, however, there was evidence of a significant
non-linear component (overall and non-linear p <0.001 for both RSG and glycemic change). According to the
RCS model, the HR for mortality associated with admission RSG (Fig. 1a) significantly increased only for values
between 7 and 10 mmol/L, whereas mortality and glycemic change had a clear U-shaped association (Fig. 1b),
with a nadir of risk at around — 2.

Multivariable-adjusted models for non-lobar ICH showed that mortality was associated with both RSG (over-
all p<0.001) and glycemic change (overall p=0.007) but RCS modeling was unnecessary, because there was no
evidence of non-linearity (non-linearity p >0.200 for both predictors). Final estimates for multivariable-adjusted
HR from a standard Cox model were 1.29 (95% CI 1.11-1.49) for each 1 mmol/l increase in RSG and 1.37 (95%
CI 1.14-1.64) for each + 1 mmol/l increase in absolute glycemic change.

In analyses pooling toghether lobar and non-lobar ICH, C-statistic for mortality prediction of the model
including only the ICH score was 0.748 (95% CI 0.703-0.793). Overlapping values of C-statistic were found for
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Figure 1. Association of admission random serum glucose and glycemic change with 30-day mortality after
lobar intracerebral hemorrhage. Panel (a) refers to random serum glucose (RSG) on admission and Panel

(b) to glycemic change within the following 48 h in 245 non-diabetic patients. Hazard ratios (solid line) and
95% confidence intervals (dotted lines) are from a Cox regression model using restricted cubic splines with

four knots (represented by dots) located at the 5th, 35th, 65th, and 95th percentiles of each glucose measure.
Reference value is set at 5.5 mol/l for RSG and at the minimum mortality point for glycemic change. Models
were adjusted for age, sex, prestroke disability, heart disease, anticoagulant use, Glasgow Coma Scale, hematoma
volume and prevalence of intraventricular hemorrhage. To convert mmol/l to mg/dl, multiply by 18.018.

the models including ICH score along with categories of glycemic change (0.769, 95% CI 0.726-0.812) or rSG
and glucose change as continuous predictors (0.798, 95% CI 0.761-0.835).

Discussion

This retrospective study shows that early glycemic change is associated with short-term ICH mortality independ-
ent of major clinical and neuroradiological features of ICH severity. However, patterns of associations differ by
hematoma location. We chose a priori to perform separate analyses for lobar and non-lobar ICH because of their
different risk factors, presentation characteristics, and outcome®>**. This choice was supported by preliminary
analyses of the whole study cohort showing a significant interaction of glycemic change with hematoma location.

A first set of analyses used four patterns of glycemic change, derived from the dichotomization of admission
RSG and the first available FSG. In lobar ICH, short-term mortality was associated with hyperglycemia independ-
ent of whether the pattern was persistent, delayed or decreasing. By contrast, mortality after non-lobar ICH was
associated only with persistent hyperglycemia.

A second set of analyses simultaneously testing admission RSG and glycemic change as continuous predictors
confirmed that they both have independent associations with mortality. According to our model, the increase
in mortality risk for increasing values of admission RSG was non-linear for lobar ICH and linear for non-lobar
ICH. However, the apparent downward turn of HR estimates for RSG above 10 mmol/l in lobar ICH must be
taken with caution because prediction from RCS models is less reliable at the tails of a variable distribution?’.
Our findings agree with previous evidence that admission RSG is an independent predictor of short-term ICH
mortality’~'%. The association was not confirmed in two cohorts including a large proportion of patients with
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very severe ICH***>. However, in very severe ICH, major predictors of short-term mortality such as clinical and
neuroradiological features are known to obscure the role of weaker predictors such as admission hyperglycemia''.

Our second set of analyses also showed that, independent of admission RSG, mortality risk additionally
varied with glycemic change. In lobar ICH the association was clearly U-shaped, with mortality increasing for
both positive and negative glucose variations from a nadir around — 2 mmol/L. This negative nadir reflects the
spontaneous decline in glycemia that occurs in the majority of patients during the early phase of an acute stroke’.
By contrast, the association of glycemic change with mortality after non-lobar ICH was linear and only a positive
glycemic change was associated with an increased mortality risk.

It is still debated whether stress hyperglycemia is a true effector of secondary brain damage after ICHS.
However, animal models document an effect of hyperglycemia on early hematoma expansion by exacerbation of
perihematomal neuronal death, brain edema, and blood-brain barrier disruption®’~*. Possible physiopathologi-
cal mechanisms of damage include increased oxidative stress*’, downregulation of aquaporin-4*!, depression of
perihematomal autophagy?®, and promotion of interleukin-1 mediated inflammatory processes*>*.

Existing literature also suggests some mechanisms that may underly the unfavorable association of negative
glycemic change with mortality after lobar ICH. Stress hyperglycemia is an adaptive response aiming to provide
the brain with ready fuel*. Therefore, an early fall in blood glucose may hasten energy failure in the damaged
brain. Quenching of reactive oxygen species in damaged brain tissue is also dependent on glucose availability*.
Finally, endothelial damage by oxidative stress has been found to be greater for intermittent as opposed to sus-
tained hyperglycemia*®’.

The lack of an adverse mortality effect for decreasing glycemic change in non-lobar ICH might be explained
by a lower local vulnerability to secondary ischemic damage. Impaired vasoregulation due to acute hyperglycemia
may enhance perihematomal hypoperfusion in ICH patients, so favouring the development of secondary satellite
ischemia brain lesions adding to hemorrhagic damage*®*°. As diabetes mellitus is a specific risk factor for non-
lobar ICH®, non-diabetic patients with non-lobar ICH might have a higher likelihood of chronical exposure to
some degree of unrecognized dysglycemia. Therefore, these patients might also be less vulnerable to the adverse
effects of sudden glycemic drops in ischemic perihematomal areas as a consequence of having acquired a higher
tolerance to dysglycemia®'. Another possible explanation might be that only persistent hyperglycemia favours
damage from hematoma hexpansion, which is usually more prononunced for non-lobar than lobar [CH**>3,

Existing literature about the association of post-ICH glycemic patterns and early mortality is scant. In a
multicentric study of 295 patients', unadjusted rate of 30-day mortality was 79.5% for persistent hyperglycemia,
40% for an increasing trajectory, 36.5% for a decreasing trajectory, and only 8.6% for normoglycemia. However,
location-specific data and multivariable-adjusted estimations were not provided. In a multivariable-adjusted
Finnish study of 576 patients also using four glycemic trajectories, only persistent hyperglycemia was an inde-
pendent predictor of 6-month ICH mortality'. However, underestimation of existing associations with delayed
and decreasing hyperglycemia patterns cannot be excluded, because the Finnish study had a longer follow-up
and may have included patients with unrecognized diabetes, as diagnosis was based only on preadmission infor-
mation. Moreover, the Finnish study dichotomized hematoma location as infratentorial versus supratentorial,
but supratentorial hemorrhages are not at all homogeneous. Lobar ICH is more often associated with amyloid
angiopathy whereas non-lobar ICH is more related to diabetes and hypertensive vasculopathy*>****. Moreover,
although lobar ICH is characterized by a larger admission hematoma volume and worse neurological impair-
ment, its prognosis is usually better than that of non-lobar ICH?**%,

Studies of patients with critical illness®' and subarachnoid hemorrhage® support the hypothesis that glucose
fluctuations may be as important as a persistent hyperglycemia for prediction of early mortality. A study of ICH
patients actually found no association of glucose fluctuations with death or dependency at 3 months*. However,
sample size was small and analyses were not stratified by hematoma location.

The major strengths of this study include: a sample size at least comparable to that of the other two available
studies investigating post-ICH glycemic patterns and mortality'4'?; the effort to identify unknown diabetes cases;
and the investigation of post-ICH glycemic change using both categorical and continuous indicators. Possible
bias from withdrawal of care was also small because current Italian laws do not allow formal do-not-resuscitate
orders nor withdrawal of basic life sustaining treatments (hydration and nutrition). Finally, the main positive
findings would remain statistically significant even using a very conservative p-values (up to <0.001) in order
to account for multiple testing.

Our study, however, has also many limitations. The first and major limitation is the size of the study subgroups,
with an optimal 0.80 statistical power reached only for a HR as high as 2.0. Therefore, it cannot be excluded that
insufficient statistical power is the only reason for failing to identify an association of negative glicemic change
with mortality in non-lobar ICH. However, we believe this is unlikely, because the association was actually
detected in the smaller of the two study subgroups. The small number of cases also limited the number of covari-
ates to be included in the models and lead to wide 95% confidence intervals. However, our chosen covariates
included all the major mortality predictors listed in the ICH score. Second, the design is retrospective and data
were collected at a single hospital center. Third, glycemic change was calculated using only two measurements.
Fourth, we lack data about hematoma growth and non-mortality outcomes such as post-ICH functional sta-
tus. Fifth, our measures of glycemic change are unlikely to be of use in clinical practice, because adding these
measures to a widely known prognostic tool for short-term mortality such as the ICH score did not significantly
increase its performance. Similar findings were reported by a study evaluating whether addition of random
admission hyperglycemia improved the performance of a prognostic score for short-term mortality in ischemic
stroke™. All the same, we believe that our findings can be of interest because they suggest that, depending on
hematoma location, positive and negative glucose variation may have different associations with mortality.
Confirmation and further understanding of these findings on larger study cohorts might contribute to explain
why previous clinical trials failed to identify clinical benefits from intensive glucose control after acute stroke®®*’.
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