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Table S1. Binuclear iridium(III) complexes reported in literature, classified based on the presence of 
identical or different cyclometalating ligands on the two iridium centres (i.e., homo- or hetero-binuclear 
complexes, column 3) and the properties of the bridging ligand. The photophysical properties of the 
complexes are also reported. 
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Experimental procedures 

Materials and physical measurements. Varian Inova (600 MHz for 1H, 564.3 MHz for 19F, and 150.8 

MHz for 13C) and Agilent 500 MHz spectrometers were used to record the 1H, 13C, 19F, COSY, HMBC 

and HSQC NMR spectra of the iridium(III) complexes in CDCl3 solution. Chemical shifts (δ) are reported 

in ppm relative to residual solvent signals for 1H and 13C NMR (1H NMR: 7.26 ppm for CDCl3; 13C NMR: 
77.0 ppm for CDCl3,) or relative to internal standard as chemical shift reference for 19F NMR (–163 ppm 

for C6F6). 13C{1H} NMR spectra were acquired with 1H broad band decoupled mode. Coupling constants 

(J) are given in Hz. The signals splitting is abbreviated as follows: s = singlet; d = doublet; t = triplet; dd 

= doublet of doublets; td = triplet of doublets; m = multiplet. Exact mass was performed by a Waters 

Xevo G2-XS QTof with an ESI-APCI source. 

Magnesium sulphate (anhydrous), 2-ethoxyethanol, sodium carbonate, sodium hydroxide, iridium(III) 

chloride hydrate IrCl3·x(H2O), 2-(2,4-difluorophenyl)pyridine (dfppy), 2-phenylbenzothiazole (pbt) were 

employed in the synthesis of the iridium(III) complex. These chemicals were purchased from Merck 

Aldrich and were used without any further purification. The synthesis of the iridium dimer complex 

[(C∧N)2Ir(μ-Cl)]2 was carried out by a standard procedure proposed by Watts and co.1 using IrCl3·x H2O 

and cyclometalating ligands in a mixture of 2-ethoxyethanol and water. Celite 545 filter aid (treated with 

sodium carbonate, flux c{Garces, 2002, 3464-3471}alcined, Merck Aldrich Co) was used to filter the 

reaction crude. Thin-layer chromatography (TLC) was used to monitor the reaction progress (silica gel 
60 F254, Merck Co.) and the spots were observed under UV light at 254 and 365 nm. Silica column 

chromatography was performed using silica gel (230–400 mesh, Merck Co.). Aluminium oxide 90 active 

neutral 0.063-0.200 mm (70 - 230 mesh ASTM) was used for Alumina column separations. Unless 

otherwise specified, all other reagents are of analytical grade and used as received from Merk Aldrich, 

CARLO ERBA Reagents, AlfaAesar and Tokyo chemical industries. 

NMR spectra of previously reported compounds were in agreement with those of the authentic samples 

and/or available literature data. 

 

Synthesis of μ-dichloro-bridged iridium(III) dimer complex 

[(dfppy)2Ir(μ-Cl)]2. IrCl3·x(H2O) (406 mg, 1.35 mmol) and 2-(2,4-difluorophenyl)pyridine (dfppy) (500 

mg, 2.61 mmol) were dissolved in 30 mL of 2-ethoxyethanol and water (8:2) mixture and refluxed at 
140 °C for 24 h. After the solution was cooled, the addition of 70 mL of H2O gave a yellow precipitate 
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that was filtered and washed with diethyl ether. The crude product was used for the next reaction without 

further purification (yield: 78 %).  

[(pbt)2Ir(μ-Cl)]2. IrCl3·x(H2O) (367 mg, 1.23 mmol) and 2-phenylbenzothiazole (pbt) (500 mg, 2.36 

mmol) were dissolved in 30 mL of 2-ethoxyethanol and water (8:2) mixture and refluxed at 140 °C for 

24 h. After the solution was cooled, the addition of 70 mL of H2O gave an orange precipitate that was 

filtered and washed with diethyl ether. The crude product was used for the next reaction without further 

purification (yield: 85 %). 

 

General procedure for the synthesis of mononuclear iridium(III) complexes.  

A mixture of 250 mg of the corresponding dimer [(C∧N)2Ir(μ-Cl)]2, 2.6 equivalents of 3-hydroxy picolinic 

acid and 11 equivalents of sodium carbonate was stirred overnight in a mixture (7:3) of dichloromethane 

and ethanol (40 mL) at 70 °C under nitrogen atmosphere. The solvent was removed by evaporation 

under reduced pressure. The crude product obtained was poured into water and extracted with ethyl 

acetate (3 × 50 mL). The combined organic layer was dried over magnesium sulphate (anhydrous). The 

solvent was removed under reduced pressure to give a crude residue, that was purified by using silica 

gel column chromatography with dichloromethane/methanol in 9:1 ratio as eluent, giving the desired 

complex as yellow powder. All purified samples were recrystallized and vacuum-dried before 

conducting all analysis.  

(dfppy)2Ir(pic3OH) (B).2   Results: 220 mg, 0.309 mmol, yield = 75 %. 1H NMR (500 MHz, CDCl3) δ 

13.58 (s, 1H), 8.68 (d, J = 8.3 Hz, 1H), 8.31 (d, J = 11.1 Hz, 1H), 8.25 (d, J = 8.3 Hz, 1H), 7.81 (tt, J = 
7.7, 1.9 Hz, 2H), 7.48 (m, 1H), 7.44 (m, 1H), 7.28 (m, 2H), 7.23 (t, J = 7.9 Hz, 1H), 7.04 (t, J = 6.3 Hz, 

1H), 6.52 – 6.45 (m, 1H), 6.45 – 6.38 (m, 1H), 5.79 (dd, J = 8.7, 2.3 Hz, 1H), 5.58 (dd, J = 8.6, 2.4 Hz, 

1H); 13C NMR (126 MHz, CDCl3) δ 177.4 (C), 165.7 (d, J = 7.0 Hz, C), 164.2 (m, 2C), 162.2 (m, 2C), 

160.7 (C), 160.1 (m, 2C), 152.0 (d, J = 7.4 Hz, C), 149.7 (d, J = 7.8 Hz, C), 148.6 (CH), 148.0 (CH), 

139.6 (CH), 138.4 (CH), 138.3 (CH), 134.3 (C), 130.0 (CH), 128.2 (m, C), 127.9 (m, C), 127.3, 123.4 

(d, J = 19.8 Hz, CH), 122.8 (d, J = 19.1 Hz, CH), 122.6 (CH), 122.5 (CH), 114.6 (t, J = 3.3 Hz, CH), 

114.5 (t, J = 3.6 Hz, CH), 98.4 (t, J = 26.8 Hz, CH), 97.9 (t, J = 26.7 Hz, CH); 19F NMR (470 MHz, CDCl3) 

δ -107.0 (q, J = 9.1 Hz), -107.8 (q, J = 9.5 Hz), -109.8 (t, J = 11.6 Hz), -110.2 (t, J = 11.6 Hz). 

(pbt)2Ir(pic3OH) (Y). Results: 240 mg, 0.319 mmol, yield = 83 %. 1H NMR (500 MHz, CDCl3) δ 13.63 

(s, 1H), 8.43 (d, J = 8.2 Hz, 1H), 7.86 (d, J = 8.1 Hz, 2H), 7.73 (d, J = 9.3 Hz, 1H), 7.68 (d, J = 7.8 Hz, 
1H), 7.51 (t, J = 7.8 Hz, 1H), 7.47 – 7.38 (m, 2H), 7.38 – 7.29 (m, 2H), 7.25 – 7.20 (m, 1H), 7.05 (t, J = 

7.9 Hz, 1H), 6.98 (t, J = 7.4 Hz, 1H), 6.91 (t, J = 6.8 Hz, 1H), 6.78 – 6.68 (m, 2H), 6.56 (d, J = 7.8 Hz, 

1H), 6.30 (d, J = 9.1 Hz, 1H), 6.19 (d, J = 10.3 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 182.0 (C), 179.3 

(C), 177.7 (C), 160.1 (C), 149.9 (C), 149.8 (C), 148.5 (C), 146.8 (C), 141.2 (C), 140.6 (C), 140.0 (CH), 

136.0 (C), 134.6 (CH), 134.1 (CH), 131.7 (C), 131.2 (1 C, 1CH), 130.9 (CH), 129.5 (CH), 128.4 (CH), 

127.4 (CH), 126.8 (CH), 126.3 (CH), 126.0 (CH), 125.8 (CH), 125.1 (CH), 123.1 (CH), 122.4 (CH), 122.3 

(CH), 121.7 (CH), 120.8 (CH), 117.9 (CH). 
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General procedure for the synthesis of binuclear iridium(III) complexes 

Mononuclear iridium(III) complex B or Y and 0.6 equivalents of µ-chloro bridged iridium(III) dimer 

[(pbt)2Ir(μ-Cl)]2 or [(dfppy)2Ir(μ-Cl)]2 was dissolved in 20 mL of dichloromethane and kept for stirring 

under nitrogen atmosphere. 3 mL of NaOH in absolute ethanol (0.05 N) was added dropwise. Stirring 

was continued at room temperature for about 48h. The reaction progress was continuously monitored 

with silica TLC using basified diethyl ether (with a few drops of triethylamine) as eluent. After observing 

a considerable amount of product formation from the TLC (both the starting materials will have zero Rf 
under elution conditions), the crude reaction mixture was concentrated under vacuum to eliminate all 

solvents. The crude was further dissolved in dichloromethane and passed through Celite 545 followed 

by a quick wash column with neutral alumina (with 10 cm packing height) to remove any unreacted 

chloro-bridged dimers. The resulting solution was concentrated and subjected to column 

chromatography separation with basified silica gel using diethyl ether as the sole eluent. 

(pbt)2Ir(pic3O)Ir(pbt)2 (YY). Synthesized in accordance with general procedure using Y (25 mg, 0.033 

mmol) and µ-chloro bridged iridium(III) dimer [(pbt)2Ir(μ-Cl)]2 (25.89 mg, 0.019 mmol). The desired 

product YY (Rf = 0.32) was obtained as an orange powder. Results: 42.1 mg, 0.030 mmol, yield = 92 

%. 1H NMR (500 MHz, CDCl3) δ 8.09 (d, J = 8.2 Hz, H25), 7.94 (d, J = 8.2 Hz, H4), 7.85 (d, J = 7.2 Hz, 

H28), 7.77 (dd, J = 8.3, 4.9 Hz, H17 +  H9), 7.67 – 7.57 (m, H5 + H29 + H21 + H20 + H13 + H12), 7.20 (t, J = 
7.2 Hz, H3), 7.14 (t, J = 7.0 Hz, H27), 7.10 (dd, J = 8.9, 1.5 Hz, H35), 6.99 (t, J = 7.1 Hz, H11), 6.94 (dd, J 

= 4.6, 1.4 Hz, H33), 6.89 – 6.78 (m, H22 + H19 + H26 + H30 + H6 + H34), 6.73 (t, J = 7.3 Hz, H14), 6.67 – 

6.56 (m, H7 + H2 + H31 + H23), 6.47 (td, JT = 7.4, JD = 1.4 Hz, H15), 6.39 – 6.31 (m, H1 + H24 + H10 + H8), 

6.18 (dd, J = 7.3, 4.2 Hz, H16 + H32), 5.83 (t, J = 7.2 Hz, H18); 13C NMR (126 MHz, CDCl3) δ 181.8 (C), 

180.7 (C), 179.4 (C), 178.8 (C), 175.9 (C), 169.7 (C), 150.7 (C), 150.7 (C), 150.2 (C), 150.2 (C), 150.1 

(C), 149.2 (C), 148.7 (C), 147.0 (C), 141.8 (C), 141.8 (C), 141.2 (C), 140.7 (C), 136.3 (CH), 135.5 (CH), 

135.0 (CH), 134.8 (CH), 134.4 (C), 134.2 (CH), 134.1 (CH), 131.4 (C), 131.2 (C), 130.8 (CH), 130.8 

(C), 130.6 (CH), 130.5 (C), 130.0 (CH), 130.0 (CH), 128.0 (CH), 127.5 (CH), 127.2 (CH), 126.8 (CH), 
126.4 (CH), 126.0 (CH), 125.8 (CH), 125.7 (CH), 125.6 (CH), 125.2 (CH), 125.2 (CH), 124.8 (CH), 124.7 

(CH), 122.3 (CH), 121.8 (CH), 121.7 (CH), 121.3 (CH), 121.1 (CH), 120.9 (CH), 120.85 (CH), 120.8 

(CH), 120.5 (CH), 120.0 (CH), 119.7 (CH), 119.0 (CH). HRMS (ESI-QTOF) ([M]+): m/z calcd for 

(C58H35Ir2N5O3S4+Na)+: 1386.0773; found: 1386,0811. 

(dfppy)2Ir(pic3O)Ir(dfppy)2 (BB). Synthesized in accordance with general procedure using B (25 mg, 

0.035 mmol) and µ-chloro bridged iridium(III) dimer [(dfppy)2Ir(μ-Cl)]2 (25.60 mg, 0.021 mmol). Two 

products were isolated as yellow powder, namely BB1 (Rf = 0.21) and BB2 (Rf = 0.16). 

BB1. Results: 14.0 mg, 0.010 mmol, yield = 31 %. 1H NMR (500 MHz, CDCl3) δ 8.63 (dd, J = 5.7, 0.9 

Hz, H19), 8.51 (dd, J = 5.7, 0.9 Hz, H13), 8.33 (d, J = 8.6 Hz, H4), 8.30 (d, J = 8.3 Hz, H22), 8.27 – 8.21 

(m, H10 + H7 + H16), 7.86 (t, J = 7.8 Hz, H3), 7.82 (t, J = 7.8 Hz, H21), 7.75 (t, J = 7.5 Hz, H15 + H9), 7.61 

(dd, J = 5.7, 0.9 Hz, H1), 7.20 (dd, J = 8.9, 1.5 Hz, H25), 7.07 – 7.02 (m, H20 + H2), 7.00 – 6.88 (m, H26 

+ H27 + H8 + H14), 6.47 – 6.41 (m, 1H), 6.38 – 6.30 (m, 2H), 6.30 – 6.23 (m, 1H), 5.70 (dd, J = 8.7, 2.4 
Hz, 1H), 5.64 (dd, J = 8.9, 2.4 Hz, 1H), 5.53 (dd, J = 8.9, 2.3 Hz, 1H), 5.48 (dd, J = 8.6, 2.4 Hz, 1H); 13C 
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NMR (126 MHz, CDCl3) δ 175.6 (C), 169.7 (C), 166.3 (d, J = 6.7 Hz, C), 166.1 (d, J = 7.2 Hz, C), 165.3 

(d, J = 6.7 Hz, C), 164.4 (m, 2C), 164.1 (d, J = 12.9 Hz, C), 163.7 (dd, J = 12.5, 2.5 Hz, C), 162.4 – 

161.8 (m, 2C), 161.7 (dd, J = 12.5, 2.5 Hz, C), 160.2 (dd, J = 12.9, 2.8 Hz, C), 159.9 (t, J = 12.1 Hz, C), 

153.8 (d, J = 7.2 Hz, C), 152.3 (d, J = 7.2 Hz, C), 151.2 (d, J = 7.2 Hz, C), 149.3 (d, J = 7.3 Hz, C), 
148.3 (CH), 148.12 (CH), 148.07 (CH), 148.0 (CH), 138.1 (CH), 137.8 (CH), 137.7 (CH), 137.6 (CH), 

136.8 (CH), 136.5 (CH), 132.1 (C), 129.1 (CH), 128.7 (m, C), 128.5 (m, C), 128.1 (m, C), 127.7 (m, C), 

123.5 (d, J = 20.1 Hz, CH), 122.7 (m, 3CH), 122.1 (CH), 122.0 (CH), 121.4 (CH), 121.3 (CH), 114.9 (m, 

2CH), 114.4 (dd, J = 17.2, 2.5 Hz, CH), 114.2 (dd, J = 17.2, 2.6 Hz, CH), 97.9 (t, J = 27.2 Hz, CH), 97.4 

(t, J = 27.1 Hz, CH), 97.1 (m, 2CH); 19F NMR (470 MHz, CDCl3) δ -107.3 (q, J = 9.3 Hz), -108.1 (q, J = 

9.2 Hz), -108.5 (q, J = 9.4 Hz), -109.1 (q, J = 9.4 Hz), -110.1 (t, J = 11.4 Hz), -110.4 (t, J = 11.5 Hz), -

111.0 (t, J = 11.2 Hz, 2F). HRMS (ESI-QTOF) ([M]+): m/z calcd for (C50H27F8Ir2N5O3+Na)+: 1304.1115; 

found: 1304.1096. 

BB2. Results: 16.5 mg, 0.012 mmol, yield = 36 %. 1H NMR (500 MHz, CDCl3) δ 8.78 (d, J = 5.7 Hz, 

H19), 8.76 (d, J = 5.9 Hz, H7), 8.69 (d, J = 6.7 Hz, H13), 8.28 (d, J = 8.3 Hz, H10), 8.25 (d, J = 8.3 Hz, 
H22), 8.21 (d, J = 8.4 Hz, H4), 8.16 (d, J = 8.3 Hz, H16), 7.85 (t, J = 7.9 Hz, H9), 7.77 – 7.69 (m, H21+ H15 

+ H3), 7.44 (d, J = 6.7 Hz, H1), 7.30 (t, J = 7.3 Hz, H8), 7.18 (dd, J = 8.9, 1.5 Hz, H25), 7.11 – 7.05 (m, 

H14 + H20), 7.00 – 6.95 (m, H26), 6.93 – 6.98 (m, H2 + H27), 6.48 – 6.40 (m, 1H), 6.39 – 6.29 (m, 2H), 

6.29 – 6.21 (m, 1H), 5.67 (dd, J = 8.7, 2.4 Hz, 1H), 5.63 (td, J = 8.4, 2.3 Hz, 2H), 5.55 (dd, J = 8.7, 2.3 

Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 175.4 (C), 169.7 (C), 166.0 – 165.9 (m, 2C), 165.4 (d, J = 7.2 

Hz, C), 164.8 (d, J = 7.2 Hz, C), 164.5 (d, J = 12.9 Hz, C), 164.1 (d, J = 12.9 Hz, C), 163.8 (d, J = 13 

Hz, C), 162.4 – 161.7 (m, 3C), 160.3 – 159.8 (m, 2C), 153.5 (d, J = 6.5 Hz, C), 152.5 (d, J = 7.2 Hz, C), 

151.0 (d, J = 7.0 Hz, C), 149.4 (d, J = 7.2 Hz, C), 148.0 (CH), 147.94 (CH), 147.96 (CH), 147.8 (CH), 
138.1 (CH), 137.9 (CH), 137.8 (CH), 137.7 (CH), 136.8 (CH), 136.3 (CH), 132.4 (C), 129.1 (CH), 128.8 

(m, C), 128.4 (m, C), 128.2 (m, C), 127.7 (m, C), 123.4 (d, J = 18.8 Hz, CH), 123.0 – 122.6 (m, 3CH), 

121.9 (CH), 121.8 (CH), 121.2 (CH), 121.0 (CH), 115.1 – 114.8 (m, 2CH), 114.3 (dd, J = 9.6, 2.8 Hz, 

CH), 114.2 (dd, J = 9.6, 2.8 Hz, CH), 98.1 – 97.0 (m, 4CH); 19F NMR (470 MHz, CDCl3) δ -107.2 (q, J 

= 9.1 Hz), -108.3 (q, J = 9.1 Hz), -108.5 (q, J = 9.9 Hz), -109.2 (q, J = 9.5 Hz), -109.9 (t, J = 11.6 Hz), -

110.5 (t, J = 11.6 Hz), -111.0 (t, J = 11.2 Hz), -111.2 (t, J = 11.6 Hz). HRMS (ESI-QTOF) ([M]+): m/z 

calcd for (C50H27F8Ir2N5O3+Na)+: 1304.1115; found: 1304.1096. 

(dfppy)2Ir(pic3O)Ir(pbt)2, BY. Synthesized in accordance with general procedure using B (25 mg, 0.035 

mmol) and µ-chloro bridged iridium(III) dimer [(pbt)2Ir(μ-Cl)]2 (27.30 mg, 0.021 mmol). Two products 

were isolated as orange powder, namely BY1 (Rf = 0.26) and BY2 (Rf = 0.13) 

BY1. Results: 17.2 mg, 0.013 mmol, yield = 37 %. 1H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 8.4 Hz, 

H4), 8.26 (d, J = 8.2 Hz, H21), 8.10 (d, J = 8.3 Hz, H10), 8.02 (d, J = 8.1 Hz, H13), 7.96 (d, J = 8.3 Hz, 

H24), 7.89 – 7.81 (m, H16 + H3), 7.77 (dd, J = 4.9, 0.8 Hz, H7), 7.65 (dd, J = 7.6, 0.8 Hz, H17), 7.60 (dd, 
J = 7.7, 0.8 Hz, H25), 7.58 – 7.53 (m, H1 + H9), 7.39 – 7.30 (m, H15 + H23), 7.12 (dd, J = 8.9, 1.3 Hz, H29), 

7.06 (t, J = 7.7 Hz, H22), 6.90 – 6.80 (m, H18 + H2 + H14 + H30), 6.77 – 6.72 (m, H31 + H26), 6.64 (t, J = 

7.5 Hz, H19), 6.51 (t, J = 7.5 Hz, H27), 6.46 (d, J = 8.1 Hz, H20), 6.41 – 6.35 (m, H12), 6.35 – 6.26 (m, H28 

+ H8 + H5), 5.68 (dd, J = 8.8, 2.3 Hz, H11), 5.46 (dd, J = 8.6, 2.4 Hz, H6); 13C NMR (126 MHz, CDCl3) δ 
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181.4 (C), 180.0 (C), 175.8 (C), 170.7 (C), 166.0 (d, J = 6.7 Hz, C), 164.3 (d, J = 12.4 Hz, C), 164.1 (d, 

J = 7.2 Hz, C), 162.3 (d, J = 8.4 Hz, C), 162.1 (d, J = 12.1 Hz, C), 160.1 (dd, J = 12.0, 8.0 Hz, C), 154.3 

(d, J = 6.6 Hz, C), 153.2 (d, J = 7.0 Hz, C), 150.8 (C), 150.7 (C), 148.5 (C), 148.4 (CH), 147.2 (CH), 

146.5 (C), 141.7 (C), 141.6 (C), 137.7 (CH), 137.3 (CH), 135.9 (CH), 135.6 (CH), 135.0 (CH), 134.9 
(CH), 132.7 (C), 131.5 (C), 131.4 (C), 130.3 (CH), 130.1 (CH), 128.5 (CH),128.1 (C), 127.8 (C), 127.5 

(CH), 127.4 (CH), 126.0 (CH), 125.9 (CH), 124.7 (CH), 124.6 (CH), 123.0 (d, J = 19.7 Hz, CH), 122.4 

(d, J = 19.0 Hz, CH), 122.2 (2 CH), 122.1 (CH), 121.6 (CH), 121.1 (CH), 121.0 (CH), 120.5 (CH), 120.4 

(CH), 114.5 (dd, J = 17.5, 3.3 Hz, CH), 114.2 (dd, J = 17.0, 2.3 Hz, CH), 97.7 (t, J = 27.0 Hz, CH), 97.1 

(t, J = 26.6 Hz, CH); 19F NMR (470 MHz, CDCl3) δ -107.9 (q, J = 9.5 Hz), -108.6 (q, J = 9.5 Hz), -110.5 

(t, J = 11.6 Hz), -110.8 (t, J = 11.6 Hz). HRMS (ESI-QTOF) ([M]+): m/z calcd for 

(C54H31F4Ir2N5O3S2+Na)+: 1346.0956; found: 1346.0992. 

BY2. Results: 19.0 mg, 0.014 mmol, yield = 41 %. 1H NMR (500 MHz, CDCl3) δ 8.65 (d, J = 5.7 Hz, 

H7), 8.56 (d, J = 8.8 Hz, H21), 8.40 (d, J = 8.3 Hz, H13), 8.19 (d, J = 8.1 Hz, H10), 8.10 (d, J = 8.4 Hz, H4), 

7.95 – 7.86 (m, H24 +H16), 7.72 (t, J = 8.7 Hz, H9), 7.65 (dd, J = 7.7, 0.9 Hz, H17), 7.60 – 7.43 (m, H25 + 
H3 + H23 + H22 + H15), 7.31 (t, J = 7.8 Hz, H14), 7.18 (dd, J = 9.0, 1.4 Hz, H29), 7.09 (t, J = 7.3 Hz, H8), 

6.90 – 6.83 (m, H1 + H18 + H30), 6.73 (t, J = 7.7 Hz, H26), 6.68 (dd, J = 4.6, 1.4 Hz, H31), 6.63 (t, J = 7.7 

Hz, H19), 6.54 (t, J = 7.5 Hz, H27), 6.45 – 6.35 (m, H20 + H28 + H12), 6.33 – 6.25 (m, H5), 6.07 (t, J = 7.3 

Hz, H2), 5.62 (dd, J = 8.8, 2.4 Hz, H11), 5.55 (dd, J = 8.6, 2.4 Hz, H6); 13C NMR (101 MHz, CDCl3) δ 

181.5 (C), 180.1 (C), 175.3 (C), 170.8 (C), 165.5 (d, J = 7.0 Hz, C), 164.5 (d, J = 7.4 Hz, C), 164.1 (C), 

162.2 (C), 162.0 (C), 160.1 (C), 154.3 (d, J = 6.3 Hz, C), 153.4 (d, J = 6.4 Hz, C), 150.9 (C), 150.6 (C), 

148.5 (C), 148.0 (CH), 147.4 (CH), 146.8 (C), 141.75 (C), 141.7 (C), 137.8 (CH), 137.4 (CH), 136.0 

(CH), 135.9 (CH), 135.0 (CH), 134.9 (CH), 132.7 (C), 132.0 (C), 131.7 (C), 130.2 (CH), 130.0 (CH), 
128.5 (CH), 128.2 (C), 127.6 (C), 127.0 (CH), 126.9 (CH), 126.2 (CH), 125.9 (CH), 124.9 (CH), 124.5 

(CH), 122.9 (d, J = 19.5 Hz, CH), 122.7 (d, J = 17.9 Hz, CH), 122.5 (CH), 122.2 (CH), 121.9 (CH), 121.4 

(CH), 121.0 (CH), 120.9 (CH), 120.8 (2 CH), 114.4 (CH), 114.3 (CH), 97.6 (CH), 97.1 (CH); 19F NMR 

(470 MHz, CDCl3) δ -107.8 (q, J = 9.5 Hz), -108.7 (q, J = 9.5 Hz), -110.3 (t, J = 11.2 Hz), -110.7 (t, J = 

11.6 Hz). HRMS (ESI-QTOF) ([M]+): m/z calcd for (C54H31F4Ir2N5O3S2+Na)+: 1346.0956; found: 

1346.0992.  

(pbt)2Ir(pic3O)Ir(dfppy)2 (YB). Synthesized in accordance with general procedure using Y (25 mg, 0.033 

mmol) and 0.6 equivalent of µ-chloro bridged iridium(III) dimer [(dfppy)2Ir(μ-Cl)]2 (24.07 mg, 0.019 

mmol). Two products were isolated as yellow powder, namely YB1 (Rf = 0.20) and YB2 (Rf 0.= 15). 

YB1.  Results: 18.0 mg, 0.013 mmol, yield = 41 %. 1H NMR (500 MHz, CDCl3) δ 8.47 (d, J = 5.5 Hz, 

H23), 8.28 (d, J = 8.4 Hz, H26), 8.17 (d, J = 8.5 Hz, H20),  8.02-7.97 (m, H4 + H17), 7.89 (d, J = 8.3 Hz, 

H9), 7.83 (d, J = 8.1 Hz, H12), 7.80 (t, J = 7.8 Hz, H25), 7.69 (d, J = 7.6 Hz, H13), 7.64 - 7.57 (m, H19 + 

H5), 7.45 (t, J = 7.7 Hz, H3), 7.34 (t, J = 7.7 Hz, H11), 7.12 (d, J = 8.9 Hz, H31), 7.09 – 7.01 (m, H29 + H2), 
6.95 – 6.90 (m, H14 + H30), 6.87 – 6.79 (m, H24 + H10 + H6), 6.71 (t, J = 7.5 Hz, H15), 6.61 (t, J = 7.5 Hz, 

H7), 6.51 – 6.46 (m, H16 + H1), 6.34 – 6.18 (m, H18 + H8 + 2H), 5.66 (dd, J = 8.9, 1.8 Hz, 1H), 5.46 (dd, 

J = 8.8, 1.8 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 182.3 (C), 179.3 (C), 175.3 (C), 168.8 (C), 165.8 (d, 

J = 6.6 Hz, C), 165.0 (d, J = 6.7 Hz, C), 163.7 (d, J = 13.2 Hz, C), 161.8 (d, J = 67 Hz, C), 161.7 (d, J = 
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66.5 Hz, C), 159.8 (d, J = 13 Hz, C), 151.8 (d, J = 7.8 Hz, C), 150.4 (C), 150.2 (C), 150.1, (d, J = 7.6 

Hz, C) 149.9 (C), 149.8 (C), 148.1 (CH), 147.9 (CH), 141.1 (C), 140.5 (C), 137.4 (CH), 137.0 (2 CH), 

136.0 (CH), 134.3 (CH), 134.1 (CH), 134.0 (C), 132.0 (C), 131.2 (C), 131.1 (CH), 130.7 (CH), 128.7 (m, 

C), 128.6 (m, C), 128.5 (CH), 128.0 (CH), 127.6 (CH), 126.2 (CH), 125.9 (CH), 125.1 (CH), 124.8 (CH), 
123.0 (CH), 122.4 (d, J = 18.6 Hz, CH), 122.35 (d, J = 18.7 Hz, CH), 122.3 (CH), 121.8 (CH), 121.4 

(CH), 121.3 (CH), 121.2 (CH), 120.2 (CH), 118.6 (CH), 115.0 (dq, J = 17.1, 2.8 Hz, 2 CH), 97.0 (t, J = 

27.2 Hz, CH), 96.9 (t, J = 27.0 Hz, CH); 19F NMR (470 MHz, CDCl3) δ -108.9 (q, J = 9.4 Hz), -109.6 (q, 

J = 9.4 Hz), -111.4 (t, J = 11.3 Hz), -111.6 (t, J = 11.2 Hz). HRMS (ESI-QTOF) ([M]+): m/z calcd for 

(C54H31F4Ir2N5O3S2+Na)+: 1346.0956; found: 1346.0992. 

YB2. Results: 19.5 mg, 0.014 mmol, yield = 44 %. 1H NMR (500 MHz, CDCl3) δ 8.62 – 8.58 (m, H23 + 

H9), 8.37 (d, J = 5.7 Hz, H17), 8.16 (d, J = 8.3 Hz, H26), 8.03 (d, J = 8.4 Hz, H20), 7.95 (d, J = 8.1 Hz, 

H12), 7.84 (d, J = 9.4 Hz, H4), 7.72 – 7.68 (m, H10 + H13), 7.65 – 7.52 (m, H25 + H11 + H5), 7.47 – 7.38 

(m, H19 + H3), 7.16 (t, J = 7.8 Hz, H2), 7.11 (dd, J = 9.0, 1.3 Hz, H31), 7.04 (dd, J = 4.6, 1.3 Hz, H29), 6.96 

– 6.91 (m, H30 + H14), 6.81 (d, J = 7.4 Hz, H6), 6.76 – 6.68 (m, H24 + H15), 6.63 (td, J = 7.6, 1.2 Hz, H14), 
6.54 (t, J = 6.6 Hz, H18), 6.46 (d, J = 7.5 Hz, H16), 6.33 – 6.20 (m, H8 + H1 + 2H), 5.64 (dd, J = 8.9, 2.4 

Hz, 1H), 5.60 (dd, J = 8.9, 2.4 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 182.2 (C), 179.4 (C), 175.1 (C), 

168.8 (C), 165.5 (d, J = 6.7 Hz, C), 165.2 (d, J = 6.9 Hz, C), 163.7 (d, J = 13.1 Hz, C), 161.7 (m, 2C), 

159.8 (m, 2C), 151.7 (d, J = 6.9 Hz, C), 150.23 (C), 150.2 (C), 150.1, (C), 150.06 (C) 150.0 (C), 147.9 

(CH), 147.6 (CH), 141.2 (C), 140.5 (C), 137.4 (2 CH), 137.2 (CH), 136.0 (CH), 134.3 (CH), 134.1 (CH), 

131.9 (C), 131.8 (C), 131.1 (CH), 130.6 (CH), 128.9 (m, C), 128.5 (m, C), 128.5 (CH), 127.6 (CH), 126.9 

(CH), 126.3 (CH), 125.9 (CH), 125.5 (CH), 124.5 (CH), 122.8 (2 CH), 122.4 (d, J = 18.8 Hz, 2 CH), 

121.7 (CH), 121.2 (2 CH), 121.0 (CH), 120.7 (CH), 118.4 (CH), 115.0 (d, J = 17.1 Hz, 2 CH), 97.9 (dt, 
JT = 27.2, JD = 9.5 Hz, CH); 19F NMR (470 MHz, CDCl3) δ -108.9 (q, J = 9.5 Hz), -109.7 (q, J = 9.5 Hz), 

-111.3 (t, J = 11.6 Hz), -111.5 (t, J = 11.2 Hz). HRMS (ESI-QTOF) ([M]+): m/z calcd for 

(C54H31F4Ir2N5O3S2+Na)+: 1346.0956; found: 1346.0992. 

 

Electrochemistry 

Voltammetric experiments were performed using a Metrohm AutoLab PGSTAT 302N electrochemical 
workstation in combination with the NOVA 2.0 software package. All the measurements were carried 

out at room temperature in acetonitrile solutions (if not otherwise stated) with a sample concentration 

of approx. 0.5 mM and using 0.1 M tetrabutylammonium hexafluorophosphate (electrochemical grade, 

TBAPF6) as the supporting electrolyte. Oxygen was removed from the solutions by bubbling argon. All 

the experiments were carried out using a three-electrode setup (BioLogic VC-4 cell, volume range: 1–

3 mL) using a glassy carbon working electrode (having an active surface disk of 1.6 mm in diameter), 

the Ag/AgNO3 redox couple (0.01 M in acetonitrile, with 0.1 M TBAClO4 supporting electrolyte) as the 

reference electrode and a platinum wire as the counter electrode. At the end of each measurement, 
ferrocene was added as the internal reference. Osteryoung square-wave voltammograms (OSWV) 

were recorded with scan rate of 125 mV s−1, a SW amplitude of ± 20 mV, and a frequency of 25 Hz. 

Cyclic voltammograms (CV) were recorded at 100 mV s−1. 
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Computational details 

Density functional theory (DFT) calculations were carried out using the B.01 revision of the Gaussian 

16 program package3 in combination with the M06 global-hybrid meta-GGA exchange-correlation 

functional.4,5 The fully relativistic Stuttgart/Cologne energy-consistent pseudopotential with multi-

electron fit was used to replace the first 60 inner-core electrons of the iridium metal centre (i.e., 

ECP60MDF) and it was combined with the associated triple-z basis set (i.e., cc-pVTZ-PP basis).6 On 

the other hand, the Pople 6-31G(d,p) basis was adopted for all other atoms.7,8 All of the compounds 
were fully optimized without symmetry constraints, both in the ground state (S0) and in their lowest triplet 

states (T1), by using the polarizable continuum model (PCM) to simulate acetonitrile solvation effects.9-

11 Frequency calculations were always used to confirm that every stationary point found by geometry 

optimizations was actually a minimum on the corresponding potential-energy surface (no imaginary 

frequencies). Time-dependent DFT calculations (TD-DFT),12,13 carried out at the same level of theory 

used for geometry optimizations, were employed to map the excited-state scenario of the investigated 

molecules in their optimized S0 geometry. Natural transition orbitals (NTOs) transformations were 
adopted to obtain a clear and compact orbital representation for the electronic transition density matrix 

in the case of complex multi-configurational excitations.14 To investigate the nature of the triplet states, 

geometry optimizations and frequency calculations were performed at the spin-unrestricted UM06 level 

of theory, imposing a spin multiplicity of 3; the ground-state minimum-energy geometry was used as 

initial guess for T1. In order to model 1H-NMR chemical shift and to compare them with the experimental 

ones, the previously optimized ground-state structures were submitted to a GIAO calculations in 

chloroform using the optimized procedure described by Rablen and co.;15 in detail, the specially 

parametrized WP04 functional was adopted in combination with the previously described basis set for 
iridium and the cc-pVDZ basis set for all other atoms. All the pictures showing molecular-orbitals and 

spin-density surfaces were created using GaussView 6.16 

 

Photophysical measurements 

The spectroscopic investigations were carried out in spectrofluorimetric-grade acetonitrile. The 

absorption spectra were recorded with Perkin-Elmer Lambda 950 spectrophotometer. For the 

photoluminescence experiments, the sample solutions were placed in fluorimetric Suprasil quartz 

cuvettes (10.00 mm) and dissolved oxygen was removed by bubbling argon for 30 minutes. The 
uncorrected emission spectra were obtained with Edinburgh Instruments FLS920 spectrometer 

equipped with a Peltier-cooled Hamamatsu R928 photomultiplier tube (spectral window: 185−850 nm). 

Osram XBO xenon arc lamp (450 W) was used as the excitation light source. The corrected spectra 

were acquired by means of a calibration curve, obtained by using an Ocean Optics deuterium–halogen 

calibrated lamp (DH-3plus-CAL-EXT). The photoluminescence quantum yields (PLQYs) in solution 

were obtained from the corrected spectra on a wavelength scale (nm) and measured according to the 

approach described by Demas and Crosby,17 using an air-equilibrated water solution of quinine sulfate 

in 1 N H2SO4 (PLQY = 0.546)18 as reference. The emission lifetimes (τ) were measured through the 
time-correlated single photon counting (TCSPC) technique using a HORIBA Jobin Yvon IBH FluoroHub 
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controlling a spectrometer equipped with a pulsed NanoLED (λexc = 373 nm) as the excitation source 

and a red-sensitive Hamamatsu R-3237-01 PMT (185–850 nm) as the detector. The analysis of the 

luminescence decay profiles was accomplished with the DAS6 Decay Analysis Software provided by 

the manufacturer, and the quality of the fit was assessed with the χ2 value close to unity and with the 
residuals regularly distributed along the time axis. To record the 77 K luminescence spectra, samples 

were put in quartz tubes (2 mm inner diameter) and inserted into a special quartz Dewar flask filled with 

liquid nitrogen. The poly(methyl methacrylate) (PMMA) films containing 1% (w/w) of the complex were 

obtained by drop casting and the thickness of the films was not controlled. Solid-state PLQY values 

were calculated by corrected emission spectra obtained from an Edinburgh FLS920 spectrometer 

equipped with a barium sulfate coated integrating sphere (diameter of 4 in.) following the procedure 

described by Würth et al.19 Experimental uncertainties are estimated to be ± 8% for τ determinations, ± 

10% for PLQYs, ± 2 nm and ± 5 nm for absorption and emission peaks, respectively. 

 

OLED fabrication and characterization 

Materials: PEDOT:PSS (CleviosTM, P VP AI 4083) was purchased from Heraeus, PVK (average Mn 

25000-50000) was purchased from Sigma Aldrich, OXD-7 (purity grade > 99 %) was purchased from 

Ossila. All chemicals were used as received without further purification. 

Device fabrication and characterization: Solution-processed OLEDs were fabricated on patterned ITO-

coated glasses (1 inch square), which were previously cleaned in sequential sonicating baths (for 15 

min) of deionized water, acetone and isopropanol and further treated in an oxygen plasma cleaner for 

5 minutes at 200 W.  

The OLEDs structure was: Glass/ITO (150 nm)/PEDOT:PSS (40 nm)/PVK:OXD-7:x (60 nm)/LiF (0.6 

nm)/Al (80 nm) 

PEDOT:PSS was spin coated at room temperature followed by an annealing at 150°C for 15 minutes 

to remove residual solvent from the polymeric layer. Solutions of PVK:OXD-7:binuclear complex 

(66.6:30:3.3 wt %) in chloroform (PVK concentration: 10 mg/mL) were stirred at room temperature for 

at least 4 h and then spin coated inside a nitrogen-filled glove box to obtain a 60 nm thick layer. To 

complete the device fabrication, LiF and Al were deposited sequentially using a thermal evaporator 
without breaking vacuum (approx. 3 × 10−6 Torr). Shadow masks were used to obtain device with an 

active area of 31 mm2. 

The current-voltage (I-V) characteristics of OLEDs were recorded in dark conditions inside a glovebox 

using a standard SUSS probe station coupled to a B1500A Agilent semiconductor device analyser. 

The optical output was measured from the glass side of the device by using a silicon photodiode 
(sensitivity of 0.49 A W−1 at 766 nm). EL spectra, CIE coordinates and luminance were measured by 

using a commercial CS2000 Konica Minolta spectroradiometer. 
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Figure S1a. 1H NMR spectrum of complex B. 
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Figure S1b. 13C NMR spectrum of complex B. 
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Figure S1c. HSQC spectrum of complex B. 

 

Figure S1d. HMBC spectrum of complex B. 
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Figure S1e. 19F NMR spectrum of complex B. 
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Figure S2a. 1H NMR spectrum of complex Y. 
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Figure S2b. 13C NMR spectrum of complex Y. 
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Figure S2c. HSQC spectrum of complex Y. 

 

Figure S2d. HMBC spectrum of complex Y.  
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Figure S3a. 1H NMR spectrum of complex YY. 
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Figure S3b. 13C NMR spectrum of complex YY. 
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Figure S3c. HSQC spectrum of complex YY. 

 

Figure S3d. HMBC spectrum of complex YY. 
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Figure S3e. COSY spectrum of complex YY.  
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Figure S4a. 1H NMR spectrum of complex BB1. 
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Figure S4b. 13C NMR spectrum of complex BB1. 
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Figure S4c. HSQC spectrum of complex BB1. 

 

Figure S4d. HMBC spectrum of complex BB1. 
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Figure S4e. COSY spectrum of complex BB1. 

 

Figure S4f. 19F NMR spectrum of complex BB1. 
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Figure S5a. 1H NMR spectrum of complex BB2. 

 



S30 
 

 

 

Figure S5b. 13C NMR spectrum of complex BB2. 
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Figure S5c. HSQC spectrum of complex BB2. 

 

Figure S5d. HMBC spectrum of complex BB2. 
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Figure S5e. COSY spectrum of complex BB2. 

 

Figure S5f. 19F NMR spectrum of complex BB2. 
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Figure S6a. 1H NMR spectrum of complex BY1. 
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Figure S6b. 13C NMR spectrum of complex BY1. 
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Figure S6c. HSQC spectrum of complex BY1. 

 

Figure S6d. HMBC spectrum of complex BY1. 
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Figure S6e. COSY spectrum of complex BY1. 

 

Figure S6f. 19F NMR spectrum of complex BY1. 
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Figure S7a. 1H NMR spectrum of complex BY2. 
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Figure S7b. 13C NMR spectrum of complex BY2. 
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Figure S7c. HSQC spectrum of complex BY2. 

 

Figure S7d. HMBC spectrum of complex BY2. 
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Figure S7e. COSY spectrum of complex BY2. 

 

Figure S7f. 19F NMR spectrum of complex BY2. 
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Figure S8a. 1H NMR spectrum of complex YB1. 
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Figure S8b. 13C NMR spectrum of complex YB1. 
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Figure S8c. HSQC spectrum of complex YB1. 

 

Figure S8d. HMBC spectrum of complex YB1. 
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Figure S8e. COSY spectrum of complex YB1. 

 

Figure S8f. 19F NMR spectrum of complex YB1. 
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Figure S9a. 1H NMR spectrum of complex YB2. 
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Figure S9b. 13C NMR spectrum of complex YB2. 
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Figure S9c. HSQC spectrum of complex YB2. 

 

Figure S9d. HMBC spectrum of complex YB2. 
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Figure S9e. COSY spectrum of complex YB2. 

 

Figure S9f. 19F NMR spectrum of complex YB2.  
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Figure S10. Correlation between experimental data and theoretical results for the 16 protons on the 
pyridine rings (in ppm) for complexes BB1 and BB2. 

 

 

 

Figure S11. Correlation between experimental data and theoretical results for the 16 protons on the 
pyridine rings (in ppm) for complexes BY1 and BY2. 
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Figure S12. Correlation between experimental data and theoretical results for the 16 protons on the 
pyridine rings (in ppm) for complexes YB1 and YB2. 

 

 

 

Figure S13. Correlation between experimental data and theoretical results for the 16 protons on the 
pyridine rings (in ppm) for complexes YY. 
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Figure S14. NOE (7.55 ppm) spectrum of complex BY1. Pink protons: protons irradiated during the 
experiment; white protons: nucleus affected by the NOE effect. Visible protons are < 4 Å (green lines), 
non-visible protons are at > 4 Å (red lines). 
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Figure S15. NOE (7.76 ppm) spectrum of complex BY1. Pink protons: protons irradiated during the 
experiment; white protons: nucleus affected by the NOE effect. Visible protons are < 4 Å (green lines), 
non-visible protons are at > 4 Å (red lines). 
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Figure S16. NOE (8.02 ppm) spectrum of complex BY1. Pink protons: protons irradiated during the 
experiment; white protons: nucleus affected by the NOE effect. Visible protons are < 4 Å (green lines), 
non-visible protons are at > 4 Å (red lines). 
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Figure S17. NOE (8.25 ppm) spectrum of complex BY1. Pink protons: protons irradiated during the 
experiment; white protons: nucleus affected by the NOE effect. Visible protons are < 4 Å (green lines), 
non-visible protons are at > 4 Å (red lines). 
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Figure S18. NOE (6.84 ppm) spectrum of complex BY2. Pink protons: protons irradiated during the 
experiment; white protons: nucleus affected by the NOE effect. Visible protons are < 4 Å (green lines), 
non-visible protons are at > 4 Å (red lines). 
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Figure S19. NOE (8.41 ppm) spectrum of complex BY2. Pink protons: protons irradiated during the 
experiment; white protons: nucleus affected by the NOE effect. Visible protons are < 4 Å (green lines), 
non-visible protons are at > 4 Å (red lines). 
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Figure S20. NOE (8.54 ppm) spectrum of complex BY2. Pink protons: protons irradiated during the 
experiment; white protons: nucleus affected by the NOE effect. Visible protons are < 4 Å (green lines), 
non-visible protons are at > 4 Å (red lines). 
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Figure S21. NOE (8.63 ppm) spectrum of complex BY2. Pink protons: protons irradiated during the 
experiment; white protons: nucleus affected by the NOE effect. Visible protons are < 4 Å (green lines), 
non-visible protons are at > 4 Å (red lines). 
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Table S2. Comparison between electrochemical data from cyclic voltammetry (Table 1) and square-
wave voltammetry in acetonitrile solution + 0.1 M TBAPF6 at 298 K. All potential values are reported vs. 
the ferrocene/ferrocenium couple, used as internal reference. 

 from square-wave voltammetry from cyclic voltammetry 

 Eox 
a 

[V] 
Ered 

a 

[V] 
Eox (ΔEp) 

a 

[V (mV)] 
Ered (ΔEp) 

a 

[V (mV)] 

BB1 + 0.687, + 1.018 – 2.252, – 2.547 + 0.688 (62), + 1.014 (76) – 2.250 (69), – 2.535 (150) 

BB2 + 0.687, + 1.016 – 2.260, – 2.551 + 0.688 (68), + 1.018 (72) – 2.253 (67), – 2.535 (135) 

BY1 + 0.528, + 0.989 – 2.239, – 2.403, – 2.490 + 0.526 (65), + 0.985 (98) – 2.237 (74), – 2.430 (187) 

BY2 + 0.535, + 0.995 – 2.234, – 2.419, – 2.503 + 0.536 (65), + 0.991 (81) – 2.230 (73), – 2.458 (179) 

YB1     

YB2 + 0.682, + 0.837 – 2.168, – 2.422, – 2.541 + 0.684 (66), + 0.836 (66) – 2.168 (67), – 2.420 (76) 

YY + 0.504, + 0.809 – 2.219, – 2.318, – 2.540 + 0.504 (60), + 0.806 (67) – 2.222 (73), – 2.316 (66) 

B + 0.953 – 2.125 + 0.954 (71) – 2.116 (73) 

Y + 0.782 – 2.137 + 0.784 (67) – 2.132 (77) 

 

Table S3. Electrochemical data of YB1 and YB2 from square-wave voltammetry in dichloromethane or 
acetonitrile solutions + 0.1 M TBAPF6 at 298 K. All potential values are reported vs. the 
ferrocene/ferrocenium couple, used as internal reference. All redox processes are reversible. 

 Eox 

[V] 
Ered 

[V] 
YB1 in DCM + 0.629, + 0.841 – 2.295 
YB2 in DCM + 0.645, + 0.853 – 2.274 
YB2 in ACN + 0.682, + 0.837 – 2.168, – 2.422, – 2.541 

 

Figure S22.   Comparison between the square-wave voltammograms of YB1 and YB2 recorded in 
dichloromethane or acetonitrile solutions at 298 K. The voltammogram of YB1 in acetonitrile solution is 
not available due to low solubility. Solvent effects on recorded redox potentials are negligible. 
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Table S4. Calculated NTOs couples describing the lowest five triplet excitations (below 3.00 eV) for 
BB1 in acetonitrile (see Experimental Section for details). The λ value is the natural transition orbital 
eigenvalue associated with each NTOs couple; orbital isovalue: 0.04 e–1/2 bohr–3/2. 

 
Transition 

energy 
[eV   (nm)] 

NTO couple 
        hole       ®       electron 

(λ) 
Nature 

S0 ® T1 2.60    (476) 

  

π–π* transition 
centered on the 
bridging ligand 

(99.9%) 

S0 ® T2 2.77    (448) 

  

mainly LC on the 
dfppy ligands of the 

O^O side 

(75.0%) 

S0 ® T3 2.81    (441) 

  

mainly LC on the 
dfppy ligands of the 

O^O side 

(68.1%) 

S0 ® T4 2.82    (440) 

  

mainly LC on the 
dfppy ligands of the 

N^O side 

(70.3%) 

S0 ® T5 2.87    (432) 

  

mainly LC on the 
dfppy ligands of the 

N^O side 

(59.8%) 
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Table S5. Calculated NTOs couples describing the lowest five triplet excitations (below 3.00 eV) for 
BB2 in acetonitrile (see Experimental Section for details). The λ value is the natural transition orbital 
eigenvalue associated with each NTOs couple; orbital isovalue: 0.04 e–1/2 bohr–3/2. 

 
Transition 

energy 
[eV   (nm)] 

NTO couple 
        hole       ®       electron 

(λ) 
Nature 

S0 ® T1 2.60    (477) 

  

π–π* transition 
centered on the 
bridging ligand 

(99.9%) 

S0 ® T2 2.77    (448) 

  

mainly LC on the 
dfppy ligands of the 

O^O side 

(74.6%) 

S0 ® T3 2.81    (441) 

  

mainly LC on the 
dfppy ligands of the 

O^O side 

(68.4%) 

S0 ® T4 2.82    (439) 

  

mainly LC on the 
dfppy ligands of the 

N^O side 

(69.2%) 

S0 ® T5 2.87    (432) 

  

mainly LC on the 
dfppy ligands of the 

N^O side 

(59.0%) 
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Table S6. Calculated NTOs couples describing the lowest seven triplet excitations (below 3.00 eV) for 
BY1 in acetonitrile (see Experimental Section for details). The λ value is the natural transition orbital 
eigenvalue associated with each NTOs couple; orbital isovalue: 0.04 e–1/2 bohr–3/2. 

 
Transition 

energy 
[eV   (nm)] 

NTO couple 
        hole       ®       electron 

(λ) 
Nature 

S0 ® T1 2.41    (514) 

  

mainly LC on the 
pbtz ligands of the 

O^O side 

(79.6%) 

S0 ® T2 2.44    (507) 

  

mainly LC on the 
pbtz ligands of the 

O^O side 

(75.3%) 

S0 ® T3 2.57    (483) 

  

π–π* transition 
centered on the 
bridging ligand 

(99.5%) 

S0 ® T4 2.72    (455) 

  

mainly LC on the 
pbtz ligands of the 

O^O side 

(89.8%) 

S0 ® T5 2.76    (449) 

  

mainly LC on the 
pbtz ligands of the 

O^O side 

(89.9%) 

S0 ® T6 2.82    (440) 

  

mainly LC on the 
dfppy ligands of the 

N^O side  

(68.7%) 
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S0 ® T7 2.86    (433) 

  

mainly LC on the 
dfppy ligands of the 

N^O side  

(58.0%) 
 

 

Table S7. Calculated NTOs couples describing the lowest seven triplet excitations (below 3.00 eV) for 
BY2 in acetonitrile (see Experimental Section for details). The λ value is the natural transition orbital 
eigenvalue associated with each NTOs couple; orbital isovalue: 0.04 e–1/2 bohr–3/2. 

 
Transition 

energy 
[eV   (nm)] 

NTO couple 
        hole       ®       electron 

(λ) 
Nature 

S0 ® T1 2.41    (513) 

  

mainly LC on the 
pbtz ligands of the 

O^O side 

(79.5%) 

S0 ® T2 2.44    (508) 

  

mainly LC on the 
pbtz ligands of the 

O^O side 

(77.6%) 

S0 ® T3 2.57    (483) 

  

π–π* transition 
centered on the 
bridging ligand 

(99.6%) 

S0 ® T4 2.71    (458) 

  

mainly LC on the 
pbtz ligands of the 

O^O side 

(88.8%) 
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S0 ® T5 2.75    (451) 

  

mainly LC on the 
pbtz ligands of the 

O^O side 

(89.2%) 

S0 ® T6 2.82    (439) 

  

mainly LC on the 
dfppy ligands of the 

N^O side  

(70.1%) 

S0 ® T7 2.87    (432) 

  

mainly LC on the 
dfppy ligands of the 

N^O side  

(60.3%) 
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Table S8. Calculated NTOs couples describing the lowest seven triplet excitations (below 3.00 eV) for 
YB1 in acetonitrile (see Experimental Section for details). The λ value is the natural transition orbital 
eigenvalue associated with each NTOs couple; orbital isovalue: 0.04 e–1/2 bohr–3/2. 

 
Transition 

energy 
[eV   (nm)] 

NTO couple 
        hole       ®       electron 

(λ) 
Nature 

S0 ® T1 2.47    (502) 

  

mainly LC on the 
pbtz ligands of the 

N^O side 

(79.3%) 

S0 ® T2 2.51    (493) 

  

mainly LC on the 
pbtz ligands of the 

N^O side 

(71.5%) 

S0 ® T3 2.60    (477) 

  

π–π* transition 
centered on the 
bridging ligand 

(99.7%) 

S0 ® T4 2.76    (449) 

  

mainly LC on the 
dfppy ligands of the 

O^O side  

(75.8%) 

S0 ® T5 2.80    (443) 

  

mainly LC on the 
dfppy ligands of the 

O^O side  

(69.8%) 

S0 ® T6 2.82    (440) 

  

mainly LC on the 
pbtz ligands of the 

N^O side  

(92.9%) 
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S0 ® T7 2.85    (434) 

  

mainly LC on the 
pbtz ligands of the 

N^O side 

(93.6%) 
 

 

Table S9. Calculated NTOs couples describing the lowest seven triplet excitations (below 3.00 eV) for 
YB2 in acetonitrile (see Experimental Section for details). The λ value is the natural transition orbital 
eigenvalue associated with each NTOs couple; orbital isovalue: 0.04 e–1/2 bohr–3/2. 

 
Transition 

energy 
[eV   (nm)] 

NTO couple 
        hole       ®       electron 

(λ) 
Nature 

S0 ® T1 2.47    (501) 

  

mainly LC on the 
pbtz ligands of the 

N^O side 

(75.0%) 

S0 ® T2 2.51    (494) 

  

mainly LC on the 
pbtz ligands of the 

N^O side 

(67.4%) 

S0 ® T3 2.59    (479) 

  

π–π* transition 
centered on the 
bridging ligand 

(99.1%) 

S0 ® T4 2.76    (449) 

  

mainly LC on the 
dfppy ligands of the 

O^O side 

(77.1%) 
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S0 ® T5 2.81    (441) 

  

mainly LC on the 
dfppy ligands of the 

O^O side 

(71.1%) 

S0 ® T6 2.82    (440) 

  

mainly LC on the 
pbtz ligands of the 

N^O side 

(93.6%) 

S0 ® T7 2.83    (438) 

  

mainly LC on the 
pbtz ligands of the 

N^O side 

(94.0%) 
 

 

 

Table S10. Calculated NTOs couples describing the lowest nine triplet excitations (below 3.00 eV) for 
YY in acetonitrile (see Experimental Section for details). The λ value is the natural transition orbital 
eigenvalue associated with each NTOs couple; orbital isovalue: 0.04 e–1/2 bohr–3/2. 

 
Transition 

energy 
[eV   (nm)] 

NTO couple 
        hole       ®       electron 

(λ) 
Nature 

S0 ® T1 2.41    (513) 

  

mainly LC on the 
pbtz ligands of the 

O^O side 

(80.9%) 

S0 ® T2 2.44    (509) 

  

mainly LC on the 
pbtz ligands of the 

O^O side 

(79.6%) 
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S0 ® T3 2.46    (503) 

  

mainly LC on the 
pbtz ligands of the 

N^O side 

(74.6%) 

S0 ® T4 2.51    (495) 

  

mainly LC on the 
pbtz ligands of the 

N^O side 

(63.8%) 

S0 ® T5 2.57    (483) 

  

π–π* transition 
centered on the 
bridging ligand 

(99.6%) 

S0 ® T6 2.72    (457) 

  

mainly LC on the 
pbtz ligands of the 

O^O side 

(83.7%) 

S0 ® T7 2.74    (452) 

  

mainly LC on the 
pbtz ligands of the 

O^O side 

(82.7%) 

S0 ® T8 2.82    (440) 

  

mainly LC on the 
pbtz ligands of the 

N^O side 

(90.7%) 

S0 ® T9 2.84    (437) 

  

mainly LC on the 
pbtz ligands of the 

N^O side 

(91.3%) 
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Table S11. Calculated NTOs couples describing the lowest three triplet excitations for B in acetonitrile 
(see Experimental Section for details). The λ value is the natural transition orbital eigenvalue associated 
with each NTOs couple; orbital isovalue: 0.04 e–1/2 bohr–3/2. 

 
Transition 

energy 
[eV   (nm)] 

NTO couple 
        hole       ®       electron 

(λ) 
Nature 

S0 ® T1 2.83    (438) 

  

mainly LC on the 
dfppy ligands 

(68.3%) 

S0 ® T2 2.87    (432) 

  

mainly LC on the 
dfppy ligands 

(59.0%) 

S0 ® T3 3.18    (390) 

  

mainly MLCT from 
the iridium(III) ion 
to the picolinate 

ligand 

(96.6%) 
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Table S12. Calculated NTOs couples describing the lowest four triplet excitations (below 3.00 eV) for 
Y in acetonitrile (see Experimental Section for details). The λ value is the natural transition orbital 
eigenvalue associated with each NTOs couple; orbital isovalue: 0.04 e–1/2 bohr–3/2. 

 
Transition 

energy 
[eV   (nm)] 

NTO couple 
        hole       ®       electron 

(λ) 
Nature 

S0 ® T1 2.48    (499) 

  

mainly LC on the 
pbtz ligands 

(73.2%) 

S0 ® T2 2.52    (492) 

  

mainly LC on the 
pbtz ligands 

(64.8%) 

S0 ® T3 2.83    (437) 

  

mainly LC on the 
pbtz ligands 

(94.4%) 

S0 ® T4 2.86    (434) 

  

mainly LC on the 
pbtz ligands 

(94.7%) 
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BB1 

 

 
BY1 

 
YB1 

 
YY 

 

Figure S23. (Top) Unpaired-electron spin-density surfaces of the lowest triplet state (T1) of BB1 and 
BB2 in their fully-relaxed geometries (isosurfaces: 0.002 e bohr−3); the T1 is a 3LC state centred on the 
bridging ligand, with minor contribution from iridium ions. (Bottom) Structural overlay between the fully-
relaxed geometries of the binuclear complexes in their ground state (S0, green) and lowest triplet excited 
state (T1, red); the overlays are obtained by maximizing the superposition of the bridge only. It is evident 
the much lower overlap between S0 and T1 geometries in the case of BB1, if compared to all other 
complexes. 
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Figure S24.   Normalized emission spectra of the binuclear complexes in 1% PMMA matrix at 298 K, 
together with their reference compounds B and Y. 

 

 

 

Figure S25. Commission Internationale de L’Eclairage (CIE) coordinates of OLEDs based on the 
binuclear iridium(III) complexes. 
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Figure S26. External quantum efficiency (EQE) as a function of the luminance of OLEDs based on 
binuclear complexes. 
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