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Abstract: The formation of congestion on an urban road network is a key issue for the development
of sustainable mobility in future smart cities. In this work, we propose a reductionist approach
by studying the stationary states of a simple transport model using a random process on a graph,
where each node represents a location and the link weights give the transition rates to move from
one node to another, representing the mobility demand. Each node has a maximum flow rate and
a maximum load capacity, and we assume that the average incoming flow equals the outgoing
flow. In the approximation of the single-step process, we are able to analytically characterize the
traffic load distribution on the single nodes using a local maximum entropy principle. Our results
explain how congested nodes emerge as the total traffic load increases, analogous to a percolation
transition where the appearance of a congested node is an independent random event. However,
using numerical simulations, we show that in the more realistic case of synchronous dynamics for the
nodes, entropic forces introduce correlations among the node states and favor the clustering of empty
and congested nodes. Our aim is to highlight the universal properties of congestion formation and,
in particular, to understand the role of traffic load fluctuations as a possible precursor of congestion
in a transport network.

Keywords: Markov processes; master equation; entropic forces

1. Introduction

Modeling city mobility is a crucial aspect of planning future mobility infrastructures
and implementing governance policies for sustainable mobility in future smart cities [1,2].
A comprehensive microscopic model to simulate urban mobility must delineate individ-
ual mobility demand [3,4], simulate the decision-making mechanisms of individuals to
determine mobility strategies, and consider the effects of physical interactions on trans-
port networks [5].

This formidable task requires an enormous amount of data to set up the model pa-
rameters and sophisticated methodologies to analyze the simulation results and detect
the control parameters of the system. Modeling traffic dynamics has revealed some uni-
versal features, such as stop-and-go congestion when vehicle density surpasses a certain
threshold [6], which do not depend on the specifics of vehicle interaction. However, the
emergence of congestion in an urban transport system is a different phenomenon [7,8],
as the dynamics at intersection points become more significant than the dynamics on the
roads. Previous studies have proposed percolation theory as a key to understanding the
emergence of congestion in a traffic network [9–11]. The very definition of congestion
on a road network can be approached from different perspectives: individual and macro-
scopic. The individual perception is mainly influenced by changes in the average velocity
of mobility paths, and the uncertainty of travel time can be fundamental in understanding
individual behavior in urban mobility [12,13].

Conversely, the macroscopic approach considers the performance of the entire trans-
port system by introducing a macroscopic fundamental diagram [14] and modeling the
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network dynamics. In this work, we propose a reductionist approach to model transport
network dynamics and study congestion formation under stationary conditions by em-
ploying a random process on a graph, where each node represents a location, and the
link weights (i.e., the transition rates to move from one node to another) are related to
the statistical distribution of mobility paths on the network [15] and individual mobility
demand. Our aim is to highlight the universal features of congestion transition and the role
of traffic load fluctuations.

To this end, we introduce a reductionist model using a random walk on a graph
based on two assumptions shared by queue models of transport networks: the existence
of a maximum flow rate and a maximum capacity for a road. In the thermodynamic
limit, where both the number of nodes and particles tend to infinity but with a fixed ratio,
fluctuations remain finite, and an average field approach is not suitable to describe the
macroscopic evolution of the system. To highlight the effects of traffic fluctuations, we
explicitly study a transport network in a balanced condition where the average incoming
and outgoing flows at each node are equal. This assumption reflects the existence of a
Wardrop equilibrium [16,17] for urban traffic, where mobility paths distribute to optimize
the use of the transport network.

The existence of a maximum flow rate and a finite capacity for each node implies
that any displacement involves a maximum number of particles and is possible only if the
number of particles in the destination nodes is smaller than the maximum capacity [18,19].

Our main assumption regarding the dynamics is that, in a stationary state, traffic
fluctuations can be modeled by a Markov process [20,21]. We recall indeed that a coarse-
grained description of a chaotic dynamical system justifies a stochastic approach. The
Markov property, indicating short correlations in traffic fluctuations among connected
nodes, is likely justified if the mobility demand is distributed across the urban fabric due to
city complexity [2].

In the approximation of the single-step process, we can characterize the traffic load
distribution of the nodes according to a local maximum entropy principle [22,23]. The
application of the entropy concept to understand the statistical laws of urban mobility has
been proposed in previous works [24–26] using a big-data approach. We extend this result
to show how entropy principles allow the study of properties of non-equilibrium states
near a stationary state of the transport network model [27–29].

We are able to study how the congestion transition can be detected from the fluctuation
statistics of the node traffic loads, whose variance reaches a maximum when a peak at
the congested nodes appears in the traffic load distribution, but there is no singularity
in the thermodynamic limit. Using numerical simulations, we show that macroscopic
congestion in the network, due to the emergence of a congested macroscopic cluster, can be
accurately explained by a percolation transition, where the appearance of a congested node
is an independent event. However, in the more realistic case of synchronous dynamics for
the transport network, we demonstrate the appearance of entropic forces [30] that tend
to cluster empty and congested nodes, increasing the size of the congested clusters even
before the formation of macroscopic congestion. The existence of small congested clusters
can introduce significant variance in the travel time distribution for individual paths, and
our results suggest that this distribution can be used to characterize congestion formation
before the percolation transition.

The paper is organized as follows: In Section 2, we discuss how to use nonlinear
stochastic Markov systems as dynamical models of a transport network near a stationary
state. In the Section 3, we illustrate the properties of random walks on graphs as models
of transport networks and introduce an entropy-based approach to study traffic load
fluctuations. In Section 4, we study congestion formation for a simple transport network
model. In Section 5, we compare the analytical results with numerical simulations. Finally,
we present some conclusions and perspectives.
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2. Methods: Modeling Transport Network as Markov Processes

Urban traffic is the consequence of individual mobility demand to move from origins
to destinations (OD) [3,4]. However, the complex structure of modern cities [31] has ubiqui-
tously distributed activities across the urban fabric, making it extremely difficult to model
human mobility using an origin–destination paradigm without collecting information
at the individual level [5]. Moreover, the realization of mobility paths in the transport
network [7,8] results from both physical interactions (traffic dynamics) and unpredictable
individual decisions (free will) in route choice. The statistical physics approach offers a
potential solution by using stochastic dynamical models related to a coarse-grained de-
scription of traffic dynamics, particularly when the macroscopic and mesoscopic states of
traffic do not depend on the details of individual dynamics. The unpredictable features
of individual mobility demand justify the use of random dynamical models to simulate
mobility on transport networks and the application of the maximum entropy principle
(MEP) [22,23] to study the properties of stationary states and the congestion transition. The
existence of a mobility energy (i.e., travel time budget) is consistent with available data on
individual mobility and suggests that mobility in a homogeneous transport network is char-
acterized by an exponential path length distribution [24,25]. These observations suggest
that a stochastic model for urban traffic can accurately describe the statistical properties of
stationary states but may be inadequate for modeling a system out of equilibrium, where
the complexity of urban mobility related to individual behavior could emerge.

The congestion formation on an urban road network depends on two main local
features of traffic dynamics: the existence of a finite traffic flow rate at intersections [18] and
of the maximal road capacity. The finite flow rate causes the onset of queues at intersections
when the incoming flow increases and the maximal road capacity creates gridlock. A
microscopic approach that simulates the dynamics of the single mobility paths requires
a significant amount of information on the individual mobility demand, or it is based
on the synthetic data obtained according to a priori assumptions (e.g., using optimized
algorithms to compute the mobility paths from the OD mobility demand). Data on the
individual mobility paths are difficult to obtain due to privacy concerns, and the use of
synthetic data has the problem of not intruding bias in the system. Being interested in the
reconstruction of the traffic flow dynamics along the roads, the necessary information is the
measure of the probabilities, πij, to observe a path moving between the roads, j → i. The
transition probabilities, πij, do not require the whole knowledge of the path distribution,
but they could be used to directly measure at the intersections. Then, by using a continuity
argument one can compute the average traffic flows and highlight the existence of critical
situations. However, if traffic distributes on the road network to avoid critical conditions
(i.e., we have a balanced condition between average incoming and outgoing flows on each
road), then the congestion can be triggered by traffic fluctuations when the traffic load is
near to a critical value [32]. To study this effect, one introduces a stochastic process at the
intersections that distributes the flows according the transition probabilities, neglecting
the correlations among the not directly connected roads. The basic assumption is that
each individual could be considered an independent particle and the correlation of traffic
fluctuations decays rapidly with distance. This condition appears to be satisfied in modern
cities, where mobility has strong random components [33]. If the only knowledge on
the traffic dynamics is represented by the transition probabilities, πij, and one simulates
the particle dynamics according to a random walks on graphs, the Markov condition is
consistent with a maximum entropy principle, since this is the stochastic process that
maximizes the information entropy of the particle trajectories (i.e., codes by the sequence
of nodes) distribution with the constraints that the conditional probabilities, πij, for a
single evolution step are given [34]. Therefore, random walks on graphs are the models
that simulate traffic dynamics, maximizing the information entropy when the available
knowledge is the transition probability matrix, πij, at road intersections. We also remark
that the stationary distribution is completely determined by the transition probabilities
so that the random walk models are able to characterize the onset of congestion and the
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stationary congested road distribution due to traffic fluctuations when traffic load increases.
However, the traffic evolution during transient states may depends on long range spatial
correlations. The application of a random walk model to study transient states is justified
only if the microdynamics is strongly chaotic. Since the daily traffic load has strong periodic
components, it is reasonable to assume that each individual tries to optimize their daily
mobility cost. Then, one expects that mobility paths distributed on the transport network
to create a Wardrop equilibrium with respect to travel time cost. Moreover, under normal
conditions, mobility paths can be considered independent of traffic load (i.e., individuals
do not change their mobility strategies).

Using a reductionist perspective, we introduce a mathematical description of a trans-
port network using a graph where the nodes i = 1, . . . , M represent either roads or inter-
sections (in our case), and sometimes bus/train stations or generic transport facilities, and
the links distribute the traffic load. Each node i is characterized by an internal state ni (the
traffic load), and the flow Φij(ni, nj) between node j and node i depends on the node states
(Markov field model) [20]. The existence of a maximum flow rate implies that the total flow,
Φj, outgoing from the j node satisfies

∑
i

Φij = Φj ≤ Φmax
j .

Let ∆t be the evolution time scale. If, for a given traffic load, nj ≤ Φmax∆t, we have
free flow dynamics; conversely, we have queue formation at node j, and the crossing time
increases proportionally to the queue length (i.e., the traffic load nj). Queue formation
depends on the total traffic load on the transport network, resulting in a simple fundamental
diagram, as the average velocity, v̄, decreases with the total traffic load, N. When the load,
nj, of a node approaches the maximum capacity, nmax, unavoidable traffic fluctuations
can induce gridlock, drastically reducing incoming flows. In this case, the travel time
may increase non-linearly with the total traffic load, as it depends on how the congestion
spreads in the network [8]. Assuming the existence of a stationary state in a transport
network, congestion formation is triggered by traffic fluctuations.

If there are no long-range spatial correlations in the mobility path distribution, the
traffic dynamics at a stationary state can be approximated by a Markov random process
with transition probabilities πij (i.e., a non-linear random walk on a graph). The OD nature
of urban mobility is not relevant for defining the stationary state when the correlation
between the paths of two ’particles’ in the same node is negligible (i.e., the probability that
two randomly chosen particles in the same node have similar destinations is very small).
Moreover, one can justify the relaxation process to a stationary state and study the effect of
fluctuations by approximating the dynamics with a Markov process [21,27]. The average
dynamics of the transport network reads

ṅi = ∑
j

[
Φij(ni, nj)− Φji(nj, ni)

]
+ si(t), (1)

where si(t) represent the particle sources or the sinks present in the system that modulate
the total traffic load. To study the stationary states we set si = 0 and the traffic load
∑i ni = N is constant. An average equilibrium solution satisfies

∑
j

[
Φij(n∗

i , n∗
j )− Φji(n∗

j , n∗
i )
]
= 0 ∑

j
n∗

j = N, (2)

and the congestion transition occurs when the stationary solution becomes unstable and a
new solution emerges with nj = nmax for a subset of nodes (the congested nodes). When
the congested nodes form a giant cluster in the transport network, we say that the whole
network is in a congested state.
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Characterizing the Stationary State

The equilibrium states are determined by the stationary flows among the connected
nodes. By definition, πij is the probability that a particle performs the transition j → i
and does not depend on the traffic load fluctuations. πij is a stochastic matrix, and in a
free traffic condition one can set Φij ∝ πijnj. However, a maximum flow rate, ϕmax

i , and a
maximum node capacity, nmax

i , exist (i.e., Φij = 0 if ni ≥ nmax
i ). A possible definition for

the flows Φij(ni, nj) is

Φij(ni, nj) = πijϕ
max
j c(ni/nmax

i )ϕ(nj), (3)

where the function ϕ(nj) ∈ [0, 1] is assumed to be monotonic, increasing with an initial
linear dependence and an asymptotic limit, limn→∞ ϕ(n) = 1 (i.e., we do not consider a
reduction of the outgoing flow when the node is congested, assuming that the dynamics
at intersections is weakly affected by the road congestion), and the capacity function
c(ni/nmax

i ) ∈ [0, 1] is a threshold function that drops down to zero when ni ≥ nmax
i . The

flow and the capacity functions simulate the effect of particle interactions that affect the
traffic dynamics. In the case of urban road network, the flow function, ϕ(n), is simulated
by the traffic dynamics at intersections. As a consequence of definition (3), the transport
network has a flow-density fundamental diagram when we increase the average traffic
load for each node (cfr. Section 5). The equilibrium solution (2) follows from the condition

∑
j

πijϕ
max
j c(ni/nmax

i )ϕ(nj) = ∑
j

πjiϕ
max
i c(nj/nmax

j )ϕ(ni). (4)

If there exists a solution with ni ≤ nmax
i , the traffic load is sustainable, otherwise we

have congested states with some nodes at maximum capacity. In the case of a low traffic
load, we expect ϕ(nj) = αnj and c(ni/nmax

i ) = 1 and Equation (4) simplifies

∑
j

πijϕ
max
j n∗

j = ϕmax
i n∗

i .

n∗
i turns out to be the stationary eigenvector of the stochastic matrix πij, and the

equilibrium state is stable since all the other eigenvalues, λ, of the Laplacian matrix of the
network,

Lij = δijϕ
max
i − πijϕ

max
j , (5)

have a negative real part if the network is connected [35]. When the traffic load increases,
the flow function ϕ(n) → 1, and we have to consider a self-consistent approach assuming
c(ni/nmax

i ) = 1 (i.e., no congestion in the network). We compute the null eigenvector ϕ∗
i ,

∑
j

πijϕ
max
j ϕ∗

j − ϕmax
i ϕ∗

i = 0,

and we look for the solutions n∗
i of the system,

ϕ(n∗
i ) ∝ ϕ∗

i ∑
i

n∗
i = N.

We study the stability of the equilibrium solution in the presence of perturbations, δnj,
such that ∑j δnj = 0 (i.e., the total traffic load is constant). The stability character depends
on the derivative ϕ′ = dϕ/dn: if ϕ′(n∗

j ) > 0 ∀ j, then the linearized system,

δṅi = −∑
j

Lijϕ
′(n∗

j )δnj,

is still associated with a Laplacian matrix, and the eigenvalues all have a negative real part
on the invariant subspace, ∑j δnj = 0. When ϕ′(n∗

j ) → 0, the system tends to a neutral
stability. However, if the equilibrium traffic load, n∗

i , increases up tp nmax
i , congested
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states appear due to the the congested function c(ni/nmax
i ) in definition (3). Assuming

ni/nmax
i ≃ 1, we can simplify Equation (4), letting ϕ(n∗

j ) ≃ ϕmax
j (i.e., before the congestion

the roads express their maximum flow rate), the equilibrium condition reads

∑
j

πijϕ
max
j c(ni/nmax

i ) = ∑
j

πjiϕ
max
i c(nj/nmax

j ).

Therefore, the solution has the form c(n∗
i /nmax

i ) ∝ ci, where ci is the null eigenvector
of the Laplacian matrix,

L′
ij = ∑

k
πikϕmax

k δij − πjiϕ
max
i , (6)

(cfr. Equation (5)) with the constraints

∑
i

n∗
i = N and n∗

i < nmax
i .

By increasing the traffic load N, n∗
i → nmax

i for the nodes corresponding to the smallest
values of ci, and the congestion will start from these nodes. To study the stability of the
solution, we consider the linearized system, i.e.,

δṅi = ∑
j

L′
ijc

′(n∗
j )δnj c′(n∗

j ) =
dc
dnj

(n∗
j ),

and when c′(n∗
j ) < 0, we have a stable congested state. We observe that if Φmax

j is the
stationary eigenvector of the stochastic matrix πij, we have Lij = L′

ij, and the vectors ϕ∗
i

and ci are constant (i.e., at the equilibrium states, Φi/ϕmax
i and ni/nmax

i have the same
value for all the nodes).

A possible interpretation is that individuals use the transport network in such a way
that the traffic load is distributed, making the nodes equivalent from a dynamical point of
view. This condition could reflect the emergence of a Wardrop equilibrium, where the paths
distribution evolves to define a transition matrix, πij, which makes all nodes equivalent in
terms of congestion formation. In other words, any change in the path distribution would
make a node more susceptible to congestion.

Since the nodes are equivalent, congestion formation depends on the presence of
traffic fluctuations that prevent the transport system from reaching its maximum flow
rate, making congestion a dynamical stationary state. When a node i becomes congested
(ni ≥ nmax

i ), its incoming flow is null, rendering some links, πij, ineffective. Consequently,
the connected nodes, j, have a higher probability of becoming congested, whereas node
i can exit the congested state since its flow Φi > 0. Thus, we do not have an equilibrium
state with fixed congested nodes, but rather a stationary dynamical state where congestion
moves across the network in regions of almost congested nodes.

The rise of congestion due to traffic load fluctuations is not described by the average
dynamics (1), and the fluctuations define the traffic load’s stationary distribution on the
transport network.

3. Random Walk on Graphs as Models of Transport Networks

To study the physics of traffic fluctuations, we propose simple models based on
random walks on graphs [35]. According to the previous section, we associate a graph with
a transport network where the transition probabilities, πij, define the link weights. This
allows us to define a Markov process in which the ’particles’ move randomly according to
the transition probabilities. In this way, it is possible to study the fluctuation statistics at
stationary states and congestion formation.

To perform an analytical approach, we simplify model (3) by defining the flow function
ϕ(n) = Θ(n), where Θ(n) is the Heaviside function (i.e., Θ(n) = 1 if n ≥ 1 and Θ(0) =
0) and the capacity function c(n) = Θ(nmax − n), where all the nodes have the same
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maximum capacity, nmax. We refer to the vector n⃗, whose components ni ≥ 0 i = 1, ..., M
give the number of particles at node i as the dynamical state of the network, and we
define |⃗n| = ∑i ni = N as the traffic load of the transport network. In the one-step
process approximation, the evolution of the distribution function ρ(⃗n, t) is given by the
master equation

1
M

ρ̇(⃗n, t) = ∑
(i,j)

[
E−

i E+
j Φij(ni, nj)− Φji(nj, ni)

]
ρ(⃗n, t), (7)

where we set the transition rates,

Φij(ni, nj) = Θ(nj)Θ(nmax − ni)πij, (8)

and the sum runs over all the possible ordered couples (i, j).
We remark that the one-step process implies an instantaneous update of information

after each movement. This is a non-physical assumption for a transport network, and
we also consider synchronous dynamics where all nodes evolve simultaneously, and the
information of the network state is updated after the movement of all nodes. In this case,
the master equation becomes more complicated and an analytical approach is not feasible.
In Appendix A, we show how to write the incoming and outgoing flows for a generic node
(see Equation (A5)).

We observe that if j ̸= i, we have the identity

E−
i E+

j πijΘ(nj)Θ(nmax − ni)ρ(⃗n) = Θ(ni)Θ(nmax − nj)πijρ(⃗n + êj − êi),

where we set ρ(⃗n) = 0 for any non-physical state and we write the master equation in
the form

1
M

ρ̇(⃗n, t) = ∑
(i,j)

Θ(ni)Θ(nmax − nj)
[
πijρ(⃗n + êj − êi, t)− πjiρ(⃗n, t)

]
. (9)

3.1. Equilibrium State in the Case of Detailed Balance

We are interested in the stationary distribution, ρs (⃗n), of the master Equation (9). Let
p⃗ be the null right eigenvector of the Laplacian matrix of the weighted network (i.e., pi is
the probability to observe a particle in node i according to the transition rates (8)),

∑
j

πji pi − πij pj = 0 ∑
j

pj = 1 pj > 0. (10)

We look for a stationary distribution of the form

ρs (⃗n ) =

{
[C nmax

N ]−1( p⃗ )∏M
k=1 pnk

k |⃗n| = N nmax ≥ ni ≥ 0
0 otherwise .

(11)

where Cn∗
N ( p⃗ ) is the normalizing constant (i.e., the partition function), and it is related to

the Helmholtz Free Energy,

F( p⃗ ) = − ln C nmax

N ( p⃗ ) = − ln
nmax

∑
|⃗n|=N

M

∏
i=1

pni
i , (12)

where the sum runs over the physical states ni ≤ nmax (see Equation (A1) in Appendix A
for some analytical estimates in the case of nmax ≫ 1). The stationary condition reads

∑
(i,j)

Θ(ni)Θ(n∗ − nj)

[
πij

pj

pi
− πji

]
ρs (⃗n) = 0, (13)
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which has to be satisfied for all the physical states, n⃗. The main difficulty of obtaining an
analytical solution of Equation (13) is the presence of empty and congested nodes at the
same time. However, if the micro-dynamics satisfies a detailed balance (DB) condition,

πij pj = πji pi, (14)

the distribution (11) is the stationary solution of the master Equation (9). The DB condition
means that, in the stationary state, the probability to observe a path between the nodes
j → i is the same if we consider the reverse displacement i → j. We remark that the
stationary distribution, p⃗, depends on the transition matrix, πij, but different transition
matrices have the same distribution. The DB condition associates uniquely the transition
matrix to the distribution p⃗. If we introduce the Gibbs Entropy,

S [ρ(⃗n )] = −
nmax

∑
|⃗n|=N

ρ(⃗n ) ln ρ(⃗n ), (15)

the DB condition allows one to apply a maximum entropy principle (MPE) to compute the
stationary distribution. Let n̄i be the mean load per node,

n̄i =
nmax

∑
|⃗n|=N

niρs (⃗n ) i = 1, ..., M. (16)

The Gibbs entropy (15) is maximum for the distribution (11) when the probabilities,
pi, satisfy the constraints (16). The thermodynamic approach allows one to characterize
the statistical properties of the stationary state without considering the dynamics (7). An
explicit computation of the entropy for a distribution of the form (11) gives

S( p⃗ , N) = ln C nmax

N ( p⃗ )−
nmax

∑
|⃗n|=N

ρs (⃗n )∑
i

ni ln pi = −F( p⃗ )− ∑
i

n̄i ln pi,

and we get
∂S
∂pi

= − ∂

∂pi
F( p⃗ )− n̄i

pi
. (17)

The extremality condition reads

n̄i = −pi
∂

∂pi
F( p⃗ ),

and it is verified by the distribution (11). When one increases the total traffic load, N,
we observe that the distribution (11) is peaked on the marginal states where the nodes
with the greater pi are congested, ni = nmax, and the other nodes are empty. This means
that the nodes with greater pi are hot spots for the congestion spreads and the mitigation
policies have to reduce the traffic load on these nodes by redistributing the mobility
paths. The situation is different when one considers a homogeneous transport network
where pi = M−1 for all the nodes. Among all the possible distributions of the form (11),
this provides the maximum value for the Gibbs entropy and the congestion formation is
triggered by the traffic fluctuations since n̄i = N/M for any node.

To study the relation between entropy and traffic load fluctuations, we compute the
Hessian matrix of the entropy with respect to the variation of pi,
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pj pi
∂2S

∂pj∂pi
= pj pi

∂

∂pj
p−1

i

(
−pi

∂

∂pi
F( p⃗)− n̄i

)
=

= −pj
∂

∂pj
[C n∗

N ]−1
nmax

∑
|⃗n|=N

ni

M

∏
k=1

pnk
k = −

(〈
ninj

〉
− n̄jn̄i

)
, (18)

where we have used Equation (17). When the system is in a stationary state, the covariance
matrix of the traffic load, ni, is the sensitivity of the entropy to the changes of the probability
distribution, pi. Since the distribution, pi, depends on the transition probabilities, πij,
the previous equation also gives a measure of the sensitivity to the perturbations of the
transition matrix. Using the entropy as a measure of the disorder in the system, the result
(18) means that when the fluctuations of the traffic load, ni(t), are large, the system may pass
through ordered and disordered states during the evolution. We also have the reciprocity
relations that holds in the DB condition,

pj
∂n̄i
∂pj

= pi
∂n̄j

∂pi
= −pi pj

∂F
∂pi∂pj

i ̸= j,

to define how the average load of different nodes is affected by the change of the stationary
probabilities; these relations correspond to the Onsager reciprocal relations.

In the case of a homogeneous network, the fluctuation variance at each node is a key
indicator for understanding the rise of congestion. One expects that the fluctuations reduce
when the traffic load is low (ni ≪ nmax) or highly congested (ni ≃ nmax), so that one get a
critical value for the total traffic load when the average fluctuation variance is maximum.
Using the covariance matrix with Npi = ni,

σij(N) = −ninj
∂2S

∂nj∂ni
(N),

we introduce the following definition,

σ̄(N) =
1
M

Tr σ =
1
M ∑

i
n2

i
∂2S
∂n2

i
(N),

and the critical load Nc satisfies
∂σ̄

∂N
(Nc) = 0. (19)

Using numerical simulations on a simple traffic network model, we have computed
the traffic load variance for the traffic load of single nodes as a function of the average
traffic load (see Section 5). The simulations show that the maximum value of the standard
deviation is achieved at the critical value of the flow-density fundamental diagram. The
critical load, Nc, corresponds both to the maximum flow in the transport network and
to the maximum uncertainty in traffic load distribution. When N ≥ Nc, the congested
nodes start to merge in clusters until a macroscopic large cluster emerges in the network.
The congestion degree can be related to the dimension of congested clusters, which is the
fingerprint of a percolation phase transition for the congestion formation [11].

3.2. Non-Equilibrium Stationary States

When the detailed balance condition (14) does not hold, the Markov process to model
the vehicle dynamics realizes a non-reversible random walk, i.e., the statistics of the reverse
paths on the transport network is not equivalent to the statistics of the original paths in the
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stationary states. As a consequence, we have the presence of probability stationary currents
on the links j → i, defined by

Jij (⃗n) = Θ(ni)Θ(nmax − nj)
[
πijρs (⃗n + êj − êi, t)− πjiρs (⃗n, t)

]
, (20)

that correspond to net traffic flows moving on the loops of the transport network. In such
a case, the MEP cannot be applied [28], but it is possible to maximize a local entropy or
apply an entropy production principle [29]. If we consider the ensemble of states n⃗ with
0 ≤ nj < nmax so that Θ(nmax − nj) = 1, then the stationary solution satisfies

∑
j

[
πijρs (⃗n + êj − êi, t)− πjiρs (⃗n, t)

]
= 0,

and we recover a solution of the form (11) that maximizes the entropy if restricted to this
ensemble (cfr. Equation (13)). Conversely, if one considers the ensemble of states n⃗ with
0 < ni ≤ nmax and Θ(ni) = 1 and we get the condition

∑
i

[
πijρs (⃗n + êj − êi, t)− πjiρs (⃗n, t)

]
= 0,

then we have a solution of the form

ρs (⃗n ) ∝
M

∏
k=1

q−nk
k , (21)

where q⃗ is the stationary eigenvector of the Laplacian matrix associated with the reverse
transition matrix, πT

ij . The solution (21) approximates the stationary distribution in the case
of high traffic loads, and it is a maximum entropy solution for the congested states. The
distribution (21) is the distribution for the gap dynamics on a congested transport network.
In the case of DB, qi = p−1

i and the two distributions coincide. Changing the traffic load,
the stationary distribution, ρs (⃗n), changes its form, interpolating the two limit distributions.
The congestion transition depends on the probability of intermediate states, where one has
both empty and congested nodes.

4. Results: Congestion Formation in Balanced Transport Networks

To understand the role of traffic fluctuations in the congestion transition, we consider
a homogeneous transport network where all the roads are equivalent, pi = const. Using
the simple model (8), this condition corresponds to the balance condition

∑
i

πij = ∑
j

πij. (22)

For each node, the expected incoming flow is balanced by the expected outgoing
flow. This condition is consistent with the existence of Wardrop’s equilibrium in transport
systems. We also note that condition (22) does not imply detailed balance, which requires
the symmetry of the transition rates, πij. The stationary solution can be approximated by a
uniform distribution (cf. Equation (11)) for the majority of the microstates, but not for the
network states n⃗, where empty and congested connected nodes are simultaneously present.
Due to traffic fluctuations, these states are more probable when the average traffic load is
N/M = nmax/2, where the probability of empty and congested nodes is equal, so they can
play a significant role in the congestion transition.

To study how the node states are distributed in the network, we consider the single-
node distribution p(n), defined as the probability to observe a node in the state n in
the stationary state. In an homogeneous transport network, all the nodes are equivalent
so that the marginal distribution for a single node of the stationary distribution, ρs (⃗n),
approximates the traffic load distribution on the network in the thermodynamic limit. The
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distribution p(n) can be related to the congestion degree by computing the probability of
the almost congested states,

C(τ, N) ≃ ∑
n≥nmax−n(τ)

p(n),

where a suitable n(τ) is a decreasing function of τ.
In the case of low traffic load, N/M ≪ nmax, it is possible to prove that in the

thermodynamics limit the single-node distribution, p(n), is approximated by an exponential
distribution,

p(n) ≃ 1
n̄

exp
(
−n

n̄

)
n̄ =

N
M

, (23)

and the congestion probability is exponentially small. Analogously, in the case of high
traffic load (i.e., N ≃ nmaxM), it is approximated by

p(n) ∝ exp
(
−nmax − n

nmax − n̄

)
n ≤ nmax (24)

(see Appendix A for the proof), which explains why the number of congested nodes,
C(τ, N), increases with the traffic load, N. The true distribution interpolates the two ap-
proximations as the traffic load varies, but this is a continuous process and the distribution
does not cross any singularity (see Section 5).

In the case of synchronous dynamics, each node moves one particle but can receive a
variable number of particles depending on its connectivity degree. An analytic expression
for the stationary distribution ρs (⃗n) is not available, and we note that synchronous dynam-
ics introduces correlations among the states of connected nodes. Indeed, a node connected
to empty nodes has a reduced incoming flow on average, causing its population to decrease.
Consequently, network states where empty nodes cluster are favored by synchronized
dynamics. Similarly, if a node is connected to a congested node, its outgoing flows are
reduced on average, causing its population to increase, and thus congested nodes also tend
to cluster. This phenomenon can be interpreted by introducing entropic forces that attract
empty and congested nodes in synchronous dynamics. In the last part of Appendix A, we
discuss the relationship between synchronous dynamics and the appearance of entropic
forces. In Section 5, we study the effect of entropic forces using numerical simulations.

Single-Node Dynamics

We now consider the following problem:

Is it possible to introduce an effective model for the node dynamics to quantify
the effect of entropic forces?

The node state evolution can be modeled by an effective master equation that depends
on the neighbor node states. In the one-step process model, it is possible to look for a self-
consistent master equation for the distribution p(n). One can consider the balance between
the incoming and outgoing flows of a representative node i given its state n ≤ nmax,
averaged over all the states of the network. The incoming flow is the transition probability
from the state n − 1 → n so that n ≥ 1 and we get〈

∑
j

πijΘ(nj)− ∑
j

πjiΘ(nmax − nj)

〉
= 0.

One applies the following estimates

⟨Θ(nj)⟩ = 1 − π(0|n − 1)p(n − 1) ⟨Θ(nmax − nj)⟩ = 1 − π(nmax|n)p(n),
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where π(0|n − 1) is the conditional probability that a neighbor is empty when the node
state is ni = n − 1 and π(nmax|n) is the conditional probability that a neighbor is congested
when the node state ni = n. Using condition (22), we have the equilibrium

(1 − π(0|n − 1))p(n − 1)− (1 − π(nmax|n))p(n) = 0 0 < n ≤ nmax. (25)

The conditional probabilities may depend on the degree of the node, i.e., the average
is the result of an averaging on all the nodes. Equation (25) can be solved recursively
using p(0) to normalize the distribution. We remark that the conditional probabilities are
estimated from the global dynamical properties of the transport network and measure
the correlation between the states of connected nodes. In the one-step process case, the
distribution is derived from an MEP, and we expect that the node states are independent so
that in a thermodynamic limit π(0|n) = p(0) and π(nmax|n) = p(nmax). In synchronous
dynamics, the stationary distribution does not maximize the entropy, and we expect that
π(0|n) is a decreasing function on n since the empty nodes tend to cluster and π(nmax|n) is
an increasing function. These effects are a consequence of the stochastic dynamics when the
network state contains empty and congested nodes at the same time and it creates entropic
forces that explains the correlation among the connected nodes.

5. Results: Numerical Simulations of the Transport Network Model

We have checked the applicability of the analytical estimate by simulating the sim-
plified model (8) using a random network of 500 nodes with average degree d = 3 (but
the minimum degree is d = 2). For a given transition matrix, πij, we have computed the
stationary solution, pi, and we have define the stationary flows Φij = πij pj, assuming
ϕmax = 1; we have the balance condition

∑
j

Φij = ∑
j

πij pj = pi = ∑
j

πji pi = ∑
i

Φij.

As previously discussed, this condition means that the flows distribute on the transport
network so that the average incoming flows equal the average outgoing flows for each
node, simulating an optimal use of the network. The maximum average flow for the whole
network is defined by

Φ̄max =
1
M ∑

ij
Φij, (26)

and the maximum node capacity is fixed at nmax = 10. In the sequel, we refer to this model
as the transport network model. The balance condition (22) for the flows highlights the role
of fluctuations in the emergence of the congested states, but we remark that the transition
matrix, πij, does not satisfy the DB condition (i.e., Φij is not symmetric). This model is used
in all the simulations presented in the sequel.

In Figure 1, we plot the average flow nodes (26) with respect to the average traffic load
per node n̄ to get the fundamental diagram for the network [14] that points out that the
maximum flow is reached at n̄ = nmax/2, which is lower than the maximum theoretical
value since the presence of the congested nodes and empty nodes due to the fluctuations
for any traffic load prevents the network transport capacity from reaching its maximum
value. The fundamental diagram shows that the average flow is almost constant for a
large fraction of traffic load 3 ≤ n̄ ≤ 7, and it quickly reduces to zero at the limit values
n̄ = 0 and n̄ = 10. We observe that the traffic load n̄ = 7, at which the flow rate begins
to drop down, coincides with the critical value at which the clusters of congested nodes
start to merge (see Figure 8). This value can be considered a precursor of a macroscopic
congestion formation.
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Figure 1. Left picture: Fundamental diagram for the transport network model using synchronous
dynamics, where the average flow is plotted as a function of the average traffic load. The horizontal
line denotes the maximum possible average flow in the network, which is greater than the numerical
value achieved at n̄ = nmax/2 = 5 due to the presence of empty and congested nodes at any traffic
load caused by traffic fluctuations. The vertical line at n̄ = 7 indicates the critical traffic load at
which small congested clusters start to merge (see Figure 8). Right picture: Standard deviation of the
single-node traffic load distribution using the transport model in synchronous dynamics as a function
of the average traffic load 3 ≤ n̄ ≤ 7. The maximum value of the standard deviation is obtained at
the critical value n̄ = 5 of the traffic load.

To explain the fundamental diagram, we compute the traffic load distribution, p(n),
on the network (see Section 4 for the definition) as a function of the average traffic load. The
simulation results are shown in Figure 2, where we consider both the one-step process (top
pictures) and the synchronous dynamics (bottom pictures). To average out the finite size
fluctuations, the empirical stationary distributions are computed by applying an ergodic
principle and averaging over 105 evolution steps. For the one-step process, we compare
the simulation results with the equilibrium distribution for the single-node dynamics (25)
and find perfect agreement between the two approaches. The empirical distributions for
n̄ = 3, 7 are also well approximated by the exponential distributions (23) and (24), as
expected by an entropy principle. This is also true in the more realistic case of synchronous
dynamics, where we compare the stationary empirical distribution computed by averaging
over 105 iterations with the exponential approximation for n̄ = 3, 7.

One-step dynamics with n̄ = 3. One-step dynamics with n̄ = 7.

Figure 2. Cont.
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Synchronous dynamics with n̄ = 3. Synchronous dynamics with n̄ = 7.

Figure 2. (Top pictures): The dots represent the empirical distributions, p(n), of the node traffic
load for the transport network model in the one-step process approximation. The distributions are
computed by averaging over 105 evolution steps of the model. The maximum node capacity is
nmax = 10, and we consider two average traffic loads: a low traffic load, n̄ = 3 (left picture), and a
high traffic load, n̄ = 7 (right picture). The continuous lines refer to the stationary solution of the
single-node dynamics (25). (Bottom pictures): The dots represent the empirical distributions of the
node traffic load for the transport network model using the synchronous dynamics. The parameters
used in the simulations are the same as in the top pictures. The continuous line is an exponential
interpolation according to Equations (23) and (24).

The distribution p(n) indicates that, for any traffic load, the probability of observing
both empty and congested nodes reduces the traffic flow on the network. Over the critical
threshold n̄ = 5, the distribution is peaked at the congested nodes. However, the emergence
of congestion in the network is a continuous process, and no singular behavior is observed
in the distribution.

In the synchronous evolution, we observe that, for a low traffic load, the empty state
is underrepresented compared to the exponential interpolation, and states with traffic load
n > nmax are present.

Both these effects are a consequence of the fact that the node degree satisfies d ≥ 2;
indeed, the incoming flows can change the node load by up to d particles in one time step,
so the frequency of the empty state is depressed compared to the one-step process. At
the same time, if we have a node with a traffic load n ∈ [nmax − 1, nmax − d + 1], at the
next time step, its state will be n ∈ [nmax + d − 1, nmax], resulting in overloaded nodes
that cannot receive any particles until their state is again n < nmax. The frequency of the
overloaded node is fast decaying due to the dynamical rules. Even in the synchronous case,
the exponential interpolation is a good approximation of the true stationary distribution
according to a local maximum entropy principle. To illustrate how the emergence of
congestion affects the single-node distribution, we have considered the dependence of
the standard deviation on the mean traffic load for single nodes. The results are reported
in Figure 3 for the average loads n̄ = 3, 4, 5. In the cases n̄ = 3, 4, we propose a linear
interpolation that corresponds to an exponential-like distribution. The point distribution in
the pictures reflects the heterogeneity of node behavior in the transport network, which is
maximum at the low traffic load n̄ = 3. This correlation is completely lost at the critical
load n̄ = 5, when the standard deviation is maximum but the heterogeneity of the nodes
is minimum.
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Figure 3. Standard deviation of the single-node traffic load for the transport network model in the
synchronous dynamics case as a function of the corresponding mean value. From top to bottom, the
figures refer to an average traffic load per node n̄ = 3, 4, 5 (from top to bottom), and the continuous
lines refer to the linear interpolation whose parameters are reported in the insets.

However, to understand the emergence of congestion, one must also consider the
spatial distribution of congested nodes to detect the presence of congested clusters. As
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previously discussed, synchronous dynamics introduces a correlation between the states
of connected nodes when they are empty or congested. This correlation gives rise to
entropic forces that tend to cluster the empty and congested nodes. To highlight this
effect, we compute the stationary distribution when n̄ = nmax/2. The results for the
considered random network are shown in Figure 4, both for the single-step process and
the synchronous dynamics. We observe that, in the first case, the distribution is almost flat,
whereas, in the second case, the presence of entropic forces induces a bimodal distribution
with peaks at the empty and congested nodes.

Figure 4. Stationary distribution probability for the transport network model using the same parame-
ters as in Figure 2 at the critical value of the traffic load n̄ = 5. The left picture refers to the one-step
process, where the empirical distribution is almost flat (slightly peaked at n = 5), whereas the right
picture refers to the synchronous dynamics, where the distribution is bimodal near the empty and
congested states, but we do not have an analytical approximation.

To quantify the entropic forces, we have computed the conditional probabilities π(0|n)
and π(nmax|n) that denote the probability that a node with load n has an empty neigh-
bor or a congested neighbor, respectively. In the case of the single-step process, these
probabilities are

π(0|n) ≃ p(0) π(nmax|n) ≃ p(nmax)

since the nodes evolve independently in the thermodynamic limit. Conversely, in the
synchronous case we expect that the correlation among the node states will increase the
values π(0|0) and π(nmax|nmax) near the boundary states n = 0 and n = nmax. The
numerical results are reported in Figures 5 and 6, where the effect of the entropic force is
clearly visible at low and high traffic load and an interpolation of the numerical results by
a power law distribution is proposed.

π(0|n) ∝
p(0)

(1 + n)α

π(nmax|n) ∝
p(nmax

(nmax + 1 − n)α
(27)

In the numerical simulations, we have initially considered an average traffic load of
n̄ = nmax/2 (Figure 5), where the interpolation (27) of the numerical results highlights
the symmetry of the entropic forces when we consider the effect on the empty and the
congested nodes. Then, we have simulated a low traffic load, n̄l ≪ nmax, and a high
traffic load, n̄h ≃ nmax, but with the symmetric condition n̄h = nmax − n̄l (Figure 6). The
interpolation (27) provides almost the same exponent in the two cases consistently with
the equivalence of the gap dynamics and the particle dynamics in the case of a balanced
network. The case n̄ = nmax/2 is critical since the exponent is maximum (so one has a
faster decaying of the correlation), suggesting that the effect of the two entropic forces
tends to balance when the traffic load of the nodes is far from the limit values. This effect
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is illustrated by Figure 7, where we compute the normalized conditional probabilities
π(0|n)|p(0) and π(nmax|n)/p(nmax) for the critical traffic load n̄ = 5. The results also
point out the symmetrical behavior of the particle and gap dynamics (except near the
boundary values n = 0 and n ≥ nmax).

Figure 5. (Left picture): The normalized conditional probability π(0|n)/p(0) for the transport
network model is numerically computed using the synchronous dynamics (dots). The average traffic
load is n̄ = 5. The continuous line is a proposed interpolation with the power law function reported
in the inset, together with the corresponding R2-value. (Right picture): The same as in the left picture
for the conditional probability π(nmax|n)/p(nmax) (dots). The continuous line corresponds to the
power law interpolation reported in the inset.

To see how the entropic forces depend on the traffic load, we have computed the
normalized conditional probabilities π(0|n)/p(0) and π(nmax|n)/p(nmax) for a traffic load
n̄ = 3 (see Figure 6 left) and n̄ = 7 (see Figure 6 right), respectively. The results suggest
that the maximum effect of the entropic forces is achieved at the critical load n̄ = nmax/2,
whereas the connected node states tend to be weakly correlated at low or high traffic
loads. This can be understood since the probability p(0) increases for low traffic load,
decreasing the effect of the entropic force, and similarly it happens to p(nmax at high traffic
load. This explains the quite good exponential interpolation of the distribution p(n) for
the synchronous case (see Figure 2) that is computed by maximizing the entropy (i.e.,
considering the nodes independent in the thermodynamic limit).

Figure 6. (Left picture): The normalized conditional probability π(0|n)/p(0)(dots) is computed (cfr.
Figure 5 left) using an average traffic load n̄ = 3. In the inset is reported the power law interpolation
(continuous line). (Right picture): The normalized conditional probability π(nmax|n)/p(nmax)(dots)
is computed (cfr. Figure 5 right) using an average traffic load n̄ = 7. In the inset is reported the power
law interpolation (continuous line).
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To illustrate this effect, we compare the normalized conditional probabilities π(0|n)/p(0)
and π(nmax|n)/p(nmax) for traffic loads n̄ = 3, 4, 5 and n̄ = 7, 6, 5, respectively. The results
are reported in Figure 7, where we observe the entropic forces have a maximum effect
at n̄ = 5 and the symmetry of the particles and gap dynamics for the homogeneous
transport network.

Figure 7. (Left picture): Normalized conditional probability π(0|n)/p(0) for the transport network
model using the synchronous dynamics for the average traffic loads n̄ = 3, 4, 5; different symbols are
used to distinguish the cases, as reported in the inset. (Right picture): The same as in the left picture
for the normalized conditional probability π(10|n)/p(10) with average traffic loads n̄ = 7, 6, 5.

According to the previous results, the traffic load n̄ = nmax/2 is a critical value for
system fluctuations. However, the emergence of macroscopic congestion depends on the
distribution of congested nodes in the transport network as the traffic load increases. The
formation of a giant cluster is the fingerprint of the percolation transition, which has been
proposed to describe congestion on an urban road network [11]. We have computed the
number of congested clusters, the largest cluster size, and the second largest cluster size
for the transport network model, considering different traffic loads, both in the case of
the one-step process approximation and in the synchronous dynamics. The simulation
results are shown in Figure 8, where the percolation transition occurs when the largest
cluster size steepens, while both the number of clusters and the second largest cluster size
decrease due to the formation of a large congested cluster. The results indicate a percolation
threshold when the average traffic load is 7 < n̄ < 8 for both the one-step process and
the synchronous dynamics. The main difference is observed in the number of congested
clusters, which is lower in the case of synchronous dynamics. This is consistent with the
presence of entropic forces that tend to cluster the congested nodes (thus reducing their
number) and result in a larger dimension of the largest cluster in the synchronous case.
The coincidence of the percolation threshold in both cases can be explained by the weak
effect of entropic forces at high traffic loads. The formation of a giant congested cluster
can destroy the connectivity of the transport network (percolation transition), even if the
cluster is not static in the model, as the outgoing flow from the congested nodes moves the
cluster within the network.



Entropy 2024, 26, 632 19 of 25

Figure 8. Size of the largest congested cluster (LCG curve with blue dots), size of the second-largest
congested cluster (SLCG curve with yellow dots), and number of congested clusters (NCG curve with
green dots) as functions of the average traffic load. The left picture refers to the one-step process
approximation, and the right picture refers to the synchronous dynamics. The percolation transition
occurs when a macrocluster of congested nodes emerges in the network (LCG curve). The numerical
results indicate n̄ ≃ 8 as the critical traffic load for both cases (the one-step and the synchronous
dynamics). At this value, the second-largest cluster curve has a maximum, whereas the maximum
value of the number of congested clusters is achieved at n̄ ≃ 7, suggesting that the merging of small
congested clusters precedes the percolation transition.

6. Conclusions

We adopted a reductionist approach to highlight the universal properties of the con-
gestion transition in an urban road network. Our approach uses a Markov random process
on a graph to simulate two fundamental features of a transport network: the existence of a
maximum flow rate and the existence of a maximum capacity. Two different dynamics are
considered: the one-step process, where a randomly chosen node moves each time step, and
the synchronous dynamics, where all nodes move together using the same information on
the network state. Our main goal is to highlight universal characteristics of the congestion
transition and, in particular, to study the effects of traffic load fluctuations.

Throughout our analysis, we maintained the assumption that the transport network is
in a balanced condition (cf. def. (22)), where the average incoming flow at each node equals
the average outgoing flow. This condition means that the average flows are in equilibrium,
and this is related to the concept of Wardrop equilibrium, where paths are optimized across
the network to avoid congestion. In the case of non-balanced transport networks, there
exist nodes that inevitably become congested as the traffic load increases and play the
role of hot spots for congestion formation. Conversely, if the balance condition is satisfied,
congestion is driven by traffic load fluctuations. Our analytical methods, particularly the
application of a maximum entropy principle, allowed us to characterize the distribution
of fluctuations across nodes and identify how congestion emerges in a continuous way
as the overall traffic load increases. Notably, we study the entropic forces in synchronous
dynamics, leading to the clustering effect of congested and empty nodes.

The stationary distribution of traffic load fluctuations can be approximated by a
local entropy principle, and the congestion transition is characterized by a peak in the
traffic load variance of the nodes, yet without singularity in the thermodynamic limit.
Numerical simulations further demonstrated the formation of a macroscopic congested
cluster, resembling a percolation-like transition within the network, requiring traffic loads
nearing maximum capacity for its emergence. The simulations highlight the effect of
the entropic forces in the synchronous process on the congestion transition as a greater
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dimension of the congested clusters compared to the one-step process, but these slightly
affect the critical traffic load for the percolation transition.

The considered model is certainly a simplification of the microscopic urban traffic
complexity, but it allows us to underscore some universal macroscopic features. Our
results explain the emergence of congestion as a continuous process that creates clusters of
congested nodes mimicking the percolation transition (i.e., the formation of a macroscopic
congested cluster at high traffic load). The existence of entropic forces depends on the
network dynamics and favors the cluster formation of empty and congested nodes. This
research not only provides insights into the nature of traffic congestion but also contributes
to the theoretical framework necessary for enhancing urban transportation systems.

The application of control strategies to mitigate the congestion effect requires two
further steps. On one hand, the time scales of congestion formation related to the relaxation
time scales of the system need to be studied to estimate congestion diffusion in the transport
network. On the other hand, strategies must be developed to reduce the fluctuation
variance of the local traffic load across the whole network using intersection dynamics.
A quantitative application of our results to real transport networks certainly requires
more complex models, but we do not expect new physical phenomena. The possibility
of performing a validation process needs datasets containing information on traffic load
fluctuations at a road scale. This could be possible using GPS datasets with a representative
sample of vehicle trajectories on homogeneous road networks, but at the moment they are
not publicly available.
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Appendix A. Analysis of the Stationary Distributions

Using a dynamical point of view, the stationary distribution is proportional to the
visiting frequency of any microstate during the evolution when the ergodic property holds.
The normalizing constant in Equation (11), Cnmax

N ( p⃗), can be defined in a recursive way
using a generating function,

Cnmax

N ( p⃗) =
nmax

∑
|n|=N

M

∏
i=1

pni
i ≃ 1

N!
dN

dxN

∣∣∣∣
x=0

M

∏
i=1

1
(1 − pix)

, (A1)
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when nmax ≫ 1. An analytical estimate of the normalizing constant is obtained using the
Cauchy theorem

CN( p⃗) ≤
M

∏
i=1

1
1 − pi

.

The function

g(x) =
M

∏
i=1

1
1 − pix

is analytic in the disk |x| ≤ 1, and it has poles at x = p−1
i , so that the radius of convergence,

R∗, of the Taylor expansion at x = 0 depends on the nearest pole to the origin: R∗ =
mini=1,...,M{p−1

i }. We can see that if the distribution pi is not uniform, CN( p⃗) is dominated
by the contribution of the greatest pi.

Let pi = M−1, then all the microstates have the same weight and we have a simple
solution for the partition function, CN(p), that corresponds to the number CN(M) of
M-component vectors, n⃗, with non-negative integer vectors such that |⃗n| = N,

CN(M) =
1

MN

(
N + M − 1

M − 1

)
. (A2)

The stationary distribution becomes

ρs (⃗n) =
(

N + M − 1
M − 1

)−1
, (A3)

and it maximizes the Gibbs Entropy (15) by definition. Since this is an attractive distribution,
we expect that the one-step process (7) increases the entropy during the evolution. We
remark that for N finite, the state of the nodes are not independent since the state of each
node affects the other node states, but they can be considered independent for N → ∞. The
empty state is a boundary condition state at which the outgoing flow from the node is zero.
If one randomly chooses the network state n⃗, the probability that a node has n particles
requires estimation of the mean value,

♯{|⃗n| = N, nk = n, k = 1, ..., M}
M

=
1
M ∑

k
δn,nk .

One can compute the average value,

E(δn,nk ) = ∑
|⃗n|=N,nk=n

ρs (⃗n),

and if the balance condition holds we get

∑
|⃗n|=N,nk=n

ρs (⃗n) =
CN−n(M − 1)

CN(M)
.

It follows that

E(δn,nk ) =

(
N − n + M − 2

M − 2

)[(
N + M − 1

M − 1

)]−1
=

(M − 1)N...(N − n + 1)
(N + M − 1)...(N − n + M − 1)

,

and for N, M ≫ 1, we estimate

♯{|⃗n| = N, nk = n}
M

≃ 1
1 + n̄

1
(1 + n̄−1)n .
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Then, a direct calculation shows

1
1 + n̄ ∑

n≥0

1
(1 + n̄−1)n =

1
1 + n̄

1 + n̄−1

n̄−1 = 1,

and the average value is

E(n) =
1 + n̄−1

1 + n̄ ∑
n≥1

n
(1 + n̄−1)n+1 = − 1

n̄
d

dn̄−1 ∑
n≥0

1
(1 + n̄−1)n

= − 1
n̄

d
dn̄−1 (1 + n̄) =

1
n̄−1 = n̄

since the nodes are all equivalent. In the thermodynamic limit N → ∞, the marginal
distribution for a single node, pk(n), reads

pk(n) =
(1 + n̄)−1

(1 + n̄−1)n ≃ 1
n̄

e−n/n̄, (A4)

where the last estimate requires that n̄ is not too small. The marginal distribution
pk(n) = p(n) gives the probability to observe the state n for any node, and it describes the
distribution of the node states in a large network N ≫ 1. This distribution is also associated
with the fluctuations of the node state with respect to the mean value n̄ (but the time scale
of the fluctuations depend on the spectral properties of the Laplacian matrix of the master
Equation (7). Since the stationary distribution of the network state maximizes the entropy,
the same is expected for the marginal distribution with the constraints on the state of the
k-node and the total number of particles. Indeed, in the thermodynamic limit we have
the maximal entropy solution with E(n) = n̄ for an ensemble of equiprobable microstates,
and the state of the k-node becomes independent from the states of all the other nodes.
We remark that this result holds for any random walk on graphs in a balance condition.
In such a case, the dynamics are dominated by the fluctuations that scale as n̄ (not

√
n̄ as

for the Poisson distribution). The nodes with a population below the average value are
over-expressed, and few nodes have a great population, but the fluctuations continuously
change the state of each node redistributing the particles.

In the one-step process evolution, the Markov process associated with the master
Equation (7) is realized by randomly choosing a link j → i in the graph and, if nj > 0,
moves a particle with probability πij∆t. Then, the network state changes and another
movement is performed. The counterpart of the one-step process is synchronous dynamics,
when at each time step all the nodes can move a particle if their state is not empty. For a
given state, n⃗, the outgoing flows are

Φ− (⃗n) =
M

∑
j1,...,jM=1

πj11(n1)...πjM M(nM)ρ(⃗n, t),

where one considers all the possible exchanges among the nodes so that many of the terms
are zero in the previous sum. However, according to the definition of the transition rates,
πij(n), it is necessary to extend the definition by setting πii(0) = 1, otherwise the product
that defines the probability rate vanishes each time a configuration contains a null node. In
a similar way, the incoming flow can be written in the form

Φ+ (⃗n) =
M

∑
j1,...,jM=1

E−
j1

...E−
jM

E+
1 ...E+

Mπj11(n1)...πMjM (nM)ρ(⃗n, t)

=
M

∑
j1,...,jM=1

πj11(n1 − m1 + 1)...πjM M(nM − mM + 1)ρ

(
n⃗ + 1⃗ − ∑

k
êjk , t

)
, (A5)
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where mk counts the repetitions number of the index k in the M-nuple j1, .., jM: if nk −mk + 1
is the initial configuration of the k node, it has to receive mk particles to obtain the final
configuration, nk. We remark that, in synchronous dynamics, all the nodes move referring
to the same network state, since the state updates after all the displacements. An analytic
solution of Equation (A5) is not available.

In a balance condition, one considers all the possible exchanges among the connected
nodes, assuming that all the nodes are not empty, and using the transition probability rates
one has < mk >= 1 (the average incoming flow equals the outgoing flow). If a node is
connected to empty nodes, the incoming flow reduces (on average), whereas the outgoing
flow is fixed. This means that there exists an effective ’force’ that attracts the node state
to the zero state when it is connected to empty nodes. Therefore, a node gets to a neutral
equilibrium state when it is connected to non empty nodes and the balance condition holds.
However, each time one of its neighborhoods is empty, there is a negative average net flux.
The converse is also true, if we consider a node in a zero state: the net average flux is always
positive and it is maximum when all the connected nodes are not empty. This effect gives
an explanation to the exponential limit distribution as the solution of a diffusion process
with a boundary conditions and there exists a constant force toward the boundary.

We analyze the node dynamics near the zero state in detail, but a similar argument
can apply to the nodes near the congested state. If nmax ≫ 1, the stationary condition for
the flows at a given node is

(1 − p0)∑
j

πij = ∑
j

πji(1 − p0),

which is always satisfied in a balance condition when the probability of the zero state, p0, is
the same for all the nodes. The average number of zero states in the stationary distribution
is a property of the dynamics. In the one-step process dynamics, all the configurations are
equiprobable, and to compute the probability to observe a certain number of zero states
one has to count the number of possible configurations distributing the zero states in the
network. In the thermodynamic limit, the fraction of zero states can be computed using
the distribution (A4) when the nodes can be considered independent. In synchronous
dynamics, the presence of the zero states reduces the expected incoming flows to the
boundary nodes, i.e., the nodes connected to the empty nodes. A node kb is a boundary
node of a given network state n⃗ (kb ∈ B(⃗n)) if there exists j s.t. πkb j ̸= 0 with nj = 0. Let
M0 be the number of empty nodes of the state n⃗,

M0 = ♯{j : |⃗n| = N, nj = 0 j = 1, ..., M}.

The number of boundary nodes depends on the distribution of the zero states in the
network. The number of the boundary nodes is the volume, V = ♯B(⃗n). It is clear that
the volume, V0 (⃗n), is minimum when the zero state nodes form a cluster. In the evolution
of the transport network model, the nodes at the boundary feel an effective force that
decreases their state toward zero. If V0 (⃗n) is minimum, the total ‘force’ acting on the
node states at a given time is also minimum, and this corresponds to an ‘equilibrium
situation’. Therefore, we expect that these configurations are favored in the stationary
condition. According to this point of view, we call these forces ‘entropic’ since they change
the microstate probability favoring the state with minimum boundary volume, V0 (⃗n).
This effect is counteracted by fluctuations due to the stochastic dynamics that increase
the configuration entropy distributing the particles among the nodes, so that the effect
of entropic force decreases when the node degree increases. Since the entropic forces in
the synchronous dynamics decrease the total entropy of the stationary distribution, the
non-reversibility character implies that one has a non-equilibrium stationary state with an
entropy production. An open question is if the stationary state can be characterized by a
minimum entropy production [27].
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The effect of the entropic forces on a node depends on its connectivity: a node with
a high degree is little affected by having an empty neighbor, and we expect a clustering
effect of zero state nodes that have a low incoming degree. In a highly connected graph, the
entropic forces are negligible and one can approximate the invariant measure by a uniform
measure as in the one-step process.

For a given number of zero state nodes, the configuration with a minimum boundary
volume depends on the graph structure; in principle, this could be related to the existence
of a community that is poorly connected with the rest of the network. This problem requires
one to define a geometry for the network to understand how empty node clusters appear
and increase in the transport network model.
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