## Supplementary information

## Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota

## Francesco Durazzi<sup>1</sup>, Claudia Sala<sup>1</sup>, Gastone Castellani<sup>2</sup>, Gerardo Manfreda<sup>3</sup>, Daniel Remondini<sup>1</sup>, Alessandra De Cesare<sup>4</sup>

<sup>1</sup>Department of Physics and Astronomy, University of Bologna, Bologna, 40127, Italy

<sup>2</sup>Department of Experimental, Diagnostic and Specialty Medicine – DIMES, University of Bologna, Bologna, 40127, Italy

<sup>3</sup>Department of Agricultural and Food Sciences, University of Bologna, Ozzano dell'Emilia, 40064, Italy

<sup>4</sup>Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064, Italy



**Figure S1.** Preston plot of genera abundances in all shotgun samples from caeca. Median is shown as percent genus abundance. Number of reads written in blue are those above the threshold that developed a left tail (500000), while those written in red are below it (low coverage).



Figure S2. Preston plot of genera abundances in all amplicon samples from caeca. Median is shown as percent genus abundance.



**Figure S3.** Preston plot of genera abundances in all shotgun samples from crop. Median is shown as percent genus abundance. Number of reads written in blue are those above the threshold that developed a left tail (500000), while those written in red are below it (low coverage).



Figure S4. Preston plot of genera abundances in all amplicon samples from crop. Median is shown as percent genus abundance.



**Figure S5.** Skewness of abundance profiles. Skewness of abundance profiles versus the total number of reads in shotgun samples (GREEN) and in 16S samples (RED). On average, 16S samples have bigger skewness, except for low total read number (<500000) in shotgun samples, i.d. on the left of the green vertical line. All the 50 shotgun samples having more than 500000 reads, have lower skewness than 16S median value (orange horizontal line), i.e. have a more symmetric RSA.



**Figure S6. Genera rarefaction curves**. (Top) shotgun samples and (Bottom) 16S samples. On the x-axis: sub-sampling of the number of reads. On the y-axis: number of bacterial genera identified in the sub-samples of reads.

Top: shotgun sequencing detects more taxonomical richness (177-535 genera) than 16S samples (28 – 232 genera). Samples not reaching the plateau in terms of identified genera, have less than 500000 mapped reads, so rarefaction curves end on the left of the black vertical line for these samples.

Bottom: the rarefaction curves of all the 16S samples reach the plateau but the total number of genera identified by 16S sequencing results lower than the one identified by shotgun sequencing.



**Figure S7.** Fold changes between 14<sup>th</sup> and 35<sup>th</sup> day in genera identified by both strategies. Some fold changes are shrunk toward zero by the DESeq2 algorithm (see Material and Methods). Points with a statistically significant change for both strategies are represented in blue, only for shotgun in green, only for 16S in orange and without a significant change (adjusted p-value>0.05) in cyan. Point size is the log<sub>10</sub> of average number of reads from shotgun strategy mapping to each genus. Pearson's correlation coefficient (r) and regression line are computed only on points with statistically significant fold changes according to both strategies ("Both" group in figure legend and in Table 1).Point size is the log<sub>10</sub> of the base mean of number of reads mapping to each genus-point in shotgun samples. Pearson's correlation coefficient (r) is computed only for "Both" group.





**Figure S8.** Boxplot of significant  $log_2$  fold changes (caeca vs crop). The panels show boxplots of statistically significant  $log_2$  fold changes in genera abundance between caeca and crop of chickens, for genera with a discordant change in shotgun and 16S samples. Shotgun samples on the left and 16S samples on the right. Points outside the box notch are statistical outliers.





**Figure S9.** Boxplot of significant log<sub>2</sub> fold changes (14<sup>th</sup> vs 35<sup>th</sup> day). The panels show boxplots of statistically significant log<sub>2</sub> fold changes in genera abundance between 14<sup>th</sup> and 35<sup>th</sup> day, for genera with a discordant change in shotgun and 16S samples. Shotgun samples on the left and 16S samples on the right. Points outside the box notch are statistical outliers.



r=0.721

2<sup>5</sup> 2<sup>8</sup> 16S reads 2<sup>11</sup>



**Figure S10.** Scatter plot of 16S and SHOTGUN genera abundances for all samples with more than 500000 reads. Blue dots stand for the abundance of genera detected by both sequencing strategies in (Top) caeca and (Bottom) crop samples. The other dots refer to genera detected exclusively by only one strategy (ORANGE for 16S and GREEN for shotgun). Pearson's correlation coefficients are computed only on the common genera. Log<sub>2</sub> scale is adopted for both axis.



**Figure S11.** Preston plot of genera abundances in all shotgun samples from caeca. Histograms display stacked bars, where every column is divided in a part corresponding to the abundance of genera detected by both sequencing strategies (BLUE) and the other part is relative to genera detected exclusively by shotgun sequencing (GREEN). Logarithmic (log<sub>2</sub>) scale helps to recognize that rarest genera identified by shotgun sequencing are almost not detected by 16S sequencing.



**Figure S12.** Preston plot of genera abundances in all 16S samples from caeca. Histograms display stacked bars, where every column is divided in a part corresponding to the abundance of genera detected by both sequencing strategies (BLUE) and the other part is relative to genera detected exclusively by shotgun sequencing (ORANGE).



**Figure S13.** Preston plot of genera abundances in all shotgun samples from crop. Histograms display stacked bars, where every column is divided in a part corresponding to the abundance of genera detected by both sequencing strategies (BLUE) and the other part is relative to genera detected exclusively by shotgun sequencing (GREEN). Logarithmic (log<sub>2</sub>) scale helps to recognize that rarest genera identified by shotgun sequencing are almost not detected by 16S sequencing.



**Figure S14.** Preston plot of genera abundances in all 16S samples from crop. Histograms display stacked bars, where every column is divided in a part corresponding to the abundance of genera detected by both sequencing strategies (BLUE) and the other part is relative to genera detected exclusively by shotgun sequencing (ORANGE).



**Figure S15.** Proportional genera abundance of samples. Samples are ordered from 1<sup>st</sup> to 14<sup>th</sup> and 35<sup>th</sup> day on the left-right direction, for (a,b) CAECA and (c,d) CROP. Shotgun samples are in a-c, 16S samples in b-d. The height of single coloured portion of a bar represents the percentage of a genus abundance in that sample. In the legend, we labelled only those genera whose abundance exceeded 1% on average. See Table S for ID-label correspondence.



**Figure S16.** PCoA of all samples (with more than 500000 reads). PCoA is based on the betadiversities between samples (Bray-Curtis metric), computed on genera abundances normalized by DESnorm. Gold-Cyan is for 14<sup>th</sup>-35<sup>th</sup> day from caeca, Violet for 35<sup>th</sup> day from crop of chickens. (a) Full shotgun samples, (b) full 16S samples, (c) samples with shotgun exclusive genera, (d) samples with 16S exclusive genera.

|                 | Shotgun # of<br>reads (%) | 16S # of<br>reads (%) | # of genera     |  |
|-----------------|---------------------------|-----------------------|-----------------|--|
|                 | Caeca                     |                       |                 |  |
| Only in shotgun | 9.0 ± 1.3                 | 0                     | 400 (373 – 455) |  |
| Only in 16S     | 0                         | 12 ± 3                | 54 (30 – 72)    |  |
| In both         | 91.0 ± 1.3                | 89 ± 3                | 133 (79 – 160)  |  |
|                 | Сгор                      |                       |                 |  |
| Only in shotgun | 2.0 ± 1.4                 | 0                     | 450 (371 – 490) |  |
| Only in 16S     | 0                         | 0.6 ± 0.5             | 19 (5 – 51)     |  |
| In both         | 98.0 ± 1.4                | 99.4 ± 0.6            | 59 (23 – 148)   |  |

**Table S1.** 1st-2nd column: Average and standard deviation of the percent abundances of each sample, considering the reads mapping to genera detected only by shotgun, only by 16S and by both sequencing strategies. 3rd column: Number (and range) of genera detected only by shotgun samples, only by 16S samples and those detected by both strategies.

| LABEL:<br>intestinal tract | SHOTGUN     | 16S         | SHOTGUNex   | 16Sex         |
|----------------------------|-------------|-------------|-------------|---------------|
| SS                         | 0.88 ± 0.03 | 0.72 ± 0.02 | 0.85 ± 0.04 | 0.640 ± 0.017 |

Table S2. Average Silhouette Score and standard error of the mean on Bray-Curtis PCoA of genera abundances according to intestinal tract (caeca vs crop), on counts normalized by DESeq2. Datasets: full set of genera detected by shotgun (SHOTGUN) and 16S (16S), genera detected exclusively by shotgun (SHOTGUNex) and 16S (16Sex) strategies.

| LABEL:<br>sampling time | SHOTGUN     | 16S         | SHOTGUNex   | 16Sex       |
|-------------------------|-------------|-------------|-------------|-------------|
| Mean SS                 | 0.51 ± 0.04 | 0.52 ± 0.03 | 0.45 ± 0.03 | 0.16 ± 0.05 |

Table S3. Average Silhouette Score and standard error of the mean on Bray-Curtis PCoA of genera abundances according to sampling time (14<sup>th</sup> vs 35<sup>th</sup> day), on counts from caeca normalized by DESeq2. Datasets: full set of genera detected by shotgun (SHOTGUN) and 16S (16S), genera detected exclusively by shotgun (SHOTGUNex) and 16S (16Sex) strategies.

| Year | Study     | Shotgun reads        | 16S reads            | Better<br>results on: |  |
|------|-----------|----------------------|----------------------|-----------------------|--|
|      |           | Effectively used for | Effectively used for |                       |  |
|      |           | taxonomic profiling  | taxonomic profiling  |                       |  |
| 2011 | Shah      | ~ 1000               | ~ 25 000             | 16S                   |  |
| 2017 | Tessler   | ~ 360 000*           | ~ 10 000             | 16S                   |  |
| 2018 | Laudadio  | ~ 700 000            | ~ 170 000            | Shotgun               |  |
| 2018 | Campanaro | ~ 100 000            | ~ 1 500 000          | Shotgun               |  |
| 2019 | Our work  | ~ 1 500 000          | ~ 60 000             | Shotgun               |  |

**Table S4. Number of metagenomic reads in references.** Average number of reads per sample in our current work (last line), compared to other studies in literature. All values are estimated from textual indications or from deposited data where the number of reads was not displayed explicitly in a paper. \*Authors report 12M reads per sample on average. By manual inspection of deposited data, we found that only about 3% of the reads were used for most samples, thus we reported this value as a more realistic estimate of reads available for analysis.

| 16S                 |                           | Sample | Sampling                  | Intestinal |           | Shotgun |
|---------------------|---------------------------|--------|---------------------------|------------|-----------|---------|
| metagenome<br>label | Shotgun metagenome label  | label  | time                      | tract      | 16S reads | reads   |
| B120                | xt120controllactocieco1d  | 2      | 1 <sup>st</sup> day       | Caeca      | 11705     | 10413   |
| B121                | xt121controllactocieco1d  | 3      | 1 <sup>st</sup> day       | Caeca      | 50639     | 12532   |
| B122                | xt122controllactocieco1d  | 4      | 1 <sup>st</sup> day       | Caeca      | 9001      | 12190   |
| B45                 | xt45cieco1d               | 1      | 1 <sup>st</sup> day       | Caeca      | 40706     | 7654    |
| B61                 | xt61controllactocieco14d  | 5      | 14 <sup>th</sup> day      | Caeca      | 91151     | 4724785 |
| B62                 | xt62controllactocieco14d  | 6      | 14 <sup>th</sup> day      | Caeca      | 83317     | 3016588 |
| B63                 | xt63controllactocieco14d  | 7      | 14 <sup>th</sup> day      | Caeca      | 94597     | 4754691 |
| B64                 | xt64controllactocieco14d  | 8      | 14 <sup>th</sup> day      | Caeca      | 86520     | 1438466 |
| B65                 | xt65controllactocieco14d  | 9      | 14 <sup>th</sup> day      | Caeca      | 85242     | 2914290 |
| B56                 | xt56highlactocieco14d     | 16     | 14 <sup>th</sup> day      | Caeca      | 69719     | 1645975 |
| B57                 | xt57highlactocieco14d     | 17     | 14 <sup>th</sup> day      | Caeca      | 120954    | 1942394 |
| B58                 | xt58highlactocieco14d     | 18     | 14 <sup>th</sup> day      | Caeca      | 82806     | 2197678 |
| B59                 | xt59highlactocieco14d     | 19     | 14 <sup>th</sup> day      | Caeca      | 76405     | 3234991 |
| B60                 | xt60highlactocieco14d     | 20     | 14 <sup>th</sup> day      | Caeca      | 81386     | 2331381 |
| B117                | xt117lowlactocieco14d     | 10     | 14 <sup>th</sup> day      | Caeca      | 35330     | 806601  |
| B51                 | xt51lowlactocieco14d      | 11     | 14 <sup>th</sup> day      | Caeca      | 87713     | 3033885 |
| B52                 | xt52lowlactocieco14d      | 12     | 14 <sup>th</sup> day      | Caeca      | 86532     | 3014934 |
| B53                 | xt53lowlactocieco14d      | 13     | 14 <sup>th</sup> day      | Caeca      | 79941     | 3115551 |
| B54                 | xt54lowlactocieco14d      | 14     | 14 <sup>th</sup> day      | Caeca      | 78251     | 2827872 |
| B55                 | xt55lowlactocieco14d      | 15     | 14 <sup>th</sup> day      | Caeca      | 78678     | 1522063 |
| B118                | xt118controllactocieco35d | 21     | 35 <sup>th</sup> day      | Caeca      | 41226     | 714039  |
| B119                | xt119controllactocieco35d | 22     | 35 <sup>th</sup> day      | Caeca      | 39615     | 3147868 |
| B66                 | xt66controllactocieco35d  | 23     | 35 <sup>th</sup> day      | Caeca      | 92539     | 725666  |
| B68                 | xt68controllactocieco35d  | 24     | 35 <sup>th</sup> day      | Caeca      | 92141     | 1725076 |
| B69                 | xt69controllactocieco35d  | 25     | 35 <sup>th</sup> day      | Caeca      | 97479     | 2972671 |
| B70                 | xt70controllactocieco35d  | 26     | 35 <sup>th</sup> day      | Caeca      | 83045     | 1045439 |
| B73                 | xt73controllactocieco35d  | 27     | 35 <sup>th</sup> day      | Caeca      | 90889     | 2068229 |
| B29                 | xt29highlactocieco35d     | 35     | 35 <sup>th</sup> day      | Caeca      | 82398     | 2633233 |
| B30                 | xt30highlactocieco35d     | 36     | 35 <sup>th</sup> day      | Caeca      | 76510     | 2460932 |
| B36                 | xt36highlactocieco35d     | 37     | 35 <sup>th</sup> day      | Caeca      | 95995     | 1523653 |
| B37                 | xt37highlactocieco35d     | 38     | 35 <sup>th</sup> day      | Caeca      | 91060     | 1992262 |
| B38                 | xt38highlactocieco35d     | 39     | 35 <sup>th</sup> day      | Caeca      | 100136    | 3720998 |
| B39                 | xt39highlactocieco35d     | 40     | 35 <sup>th</sup> day      | Caeca      | 103787    | 3930570 |
| B27                 | xt27lowlactocieco35d      | 28     | 35 <sup>th</sup> day      | Caeca      | 77498     | 2195624 |
| B28                 | xt28lowlactocieco35d      | 29     | 35 <sup>th</sup> day      | Caeca      | 68610     | 2252007 |
| B31                 | xt31lowlactocieco35d      | 30     | 35 <sup>th</sup> day      | Caeca      | 75796     | 3044478 |
| B32                 | xt32lowlactocieco35d      | 31     | ,<br>35 <sup>th</sup> day | Caeca      | 70171     | 2243584 |
| B33                 | xt33lowlactocieco35d      | 32     | ,<br>35 <sup>th</sup> day | Caeca      | 71281     | 1665479 |
| B34                 | xt34lowlactocieco35d      | 33     | ,<br>35 <sup>th</sup> day | Caeca      | 99075     | 2442079 |
| B35                 | xt35lowlactocieco35d      | 34     | 35 <sup>th</sup> dav      | Caeca      | 85868     | 2046583 |
| B46                 | xt46ingluvie1d            | 1      | 1 <sup>st</sup> dav       | Crop       | 11624     | 6629    |
| B47                 | xt47ingluvie1d            | 2      | 1 <sup>st</sup> dav       | Crop       | 33095     | 10735   |
| B48                 | xt48ingluvie1d            | 3      | 1 <sup>st</sup> dav       | Crop       | 5333      | 5950    |

| B49  | xt49ingluvie1d               | 4  | 1 <sup>st</sup> day  | Crop | 73617 | 5410    |
|------|------------------------------|----|----------------------|------|-------|---------|
| B50  | xt50ingluvie1d               | 5  | 1 <sup>st</sup> day  | Crop | 15365 | 9866    |
| B94  | xt94controlactoingluvie14d   | 6  | 14 <sup>th</sup> day | Crop | 49805 | 13580   |
| B95  | xt95controlactoingluvie14d   | 7  | 14 <sup>th</sup> day | Crop | 77085 | 29151   |
| B96  | xt96controlactoingluvie14d   | 8  | 14 <sup>th</sup> day | Crop | 60144 | 43574   |
| B97  | xt97controlactoingluvie14d   | 9  | 14 <sup>th</sup> day | Crop | 44876 | 23431   |
| B98  | xt98controlactoingluvie14d   | 10 | 14 <sup>th</sup> day | Crop | 64429 | 25127   |
| B89  | xt89highlactoingluvie14d     | 16 | 14 <sup>th</sup> day | Crop | 65564 | 16640   |
| B90  | xt90highlactoingluvie14d     | 17 | 14 <sup>th</sup> day | Crop | 66256 | 32795   |
| B91  | xt91highlactoingluvie14d     | 18 | 14 <sup>th</sup> day | Crop | 95142 | 20752   |
| B92  | xt92highlactoingluvie14d     | 19 | 14 <sup>th</sup> day | Crop | 46368 | 11398   |
| B93  | xt93highlactoingluvie14d     | 20 | 14 <sup>th</sup> day | Crop | 37553 | 2225    |
| B84  | xt84lowlactoingluvie14d      | 11 | 14 <sup>th</sup> day | Crop | 47359 | 39240   |
| B85  | xt85lowlactoingluvie14d      | 12 | 14 <sup>th</sup> day | Crop | 57225 | 10836   |
| B86  | xt86lowlactoingluvie14d      | 13 | 14 <sup>th</sup> day | Crop | 74967 | 23982   |
| B87  | xt87lowlactoingluvie14d      | 14 | 14 <sup>th</sup> day | Crop | 63427 | 27418   |
| B88  | xt88lowlactoingluvie14d      | 15 | 14 <sup>th</sup> day | Crop | 52399 | 8660    |
| B111 | xt111controllactoingluvie35d | 21 | 35 <sup>th</sup> day | Crop | 49592 | 3151076 |
| B112 | xt112controllactoingluvie35d | 22 | 35 <sup>th</sup> day | Crop | 35581 | 3249035 |
| B113 | xt113controllactoingluvie35d | 23 | 35 <sup>th</sup> day | Crop | 37015 | 2774971 |
| B114 | xt114controllactoingluvie35d | 24 | 35 <sup>th</sup> day | Crop | 42153 | 2725740 |
| B115 | xt115controllactoingluvie35d | 25 | 35 <sup>th</sup> day | Crop | 38620 | 1526674 |
| B116 | xt116controllactoingluvie35d | 26 | 35 <sup>th</sup> day | Crop | 27807 | 301329  |
| B105 | xt105highlactoingluvie35d    | 42 | 35 <sup>th</sup> day | Crop | 38680 | 1932019 |
| B106 | xt106highlactoingluvie35d    | 43 | 35 <sup>th</sup> day | Crop | 36865 | 57146   |
| B107 | xt107highlactoingluvie35d    | 44 | 35 <sup>th</sup> day | Crop | 34767 | 3433364 |
| B108 | xt108highlactoingluvie35d    | 45 | 35 <sup>th</sup> day | Crop | 72803 | 360581  |
| B109 | xt109highlactoingluvie35d    | 46 | 35 <sup>th</sup> day | Crop | 27229 | 2295326 |
| B110 | xt110highlactoingluvie35d    | 47 | 35 <sup>th</sup> day | Crop | 25633 | 3385569 |
| B100 | xt100lowlactoingluvie35d     | 27 | 35 <sup>th</sup> day | Crop | 44808 | 54756   |
| B101 | xt101lowlactoingluvie35d     | 28 | 35 <sup>th</sup> day | Crop | 38024 | 2316485 |
| B102 | xt102lowlactoingluvie35d     | 29 | 35 <sup>th</sup> day | Crop | 84585 | 1842157 |
| B103 | xt103lowlactoingluvie35d     | 30 | 35 <sup>th</sup> day | Crop | 88162 | 1912431 |
| B104 | xt104lowlactoingluvie35d     | 40 | 35 <sup>th</sup> day | Crop | 44788 | 2955926 |
| B99  | xt99lowlactoingluvie35d      | 41 | 35 <sup>th</sup> day | Crop | 78598 | 2660118 |

Table S5. 16S and shotgun metagenome labels of the samples tested and sample labels with indication of sampling times, target intestinal tract and treatment. Number of reads is the value computed by MG-RAST platform (reads mapping to Bacteria domain). Red numbers of reads are lower than 500000, indicating samples excluded from the comparative analyses, as indicated in the main text.