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We consider a procedure of elimination of cosmological singularities similar to that suggested in the
recent paper by Simpson and Visser for the construction of regular black holes. It is shown that by imposing
a nonsingular cosmological evolution with a bounce in a flat Friedmann universe filled with a minimally
coupled scalar field, we obtain a transition between the standard scalar field and its phantom counterpart. In
this case, the potential of the scalar field has a nonanalyticity of the cusp type. This result is also readily
reproduced in the case of an anisotropic Bianchi I universe. We have also found a spherically symmetric
static solution of the Einstein equations, free of singularities and sustained by a scalar field.
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I. INTRODUCTION

The study of nonsingular black holes has a rather long
history [1] (for recent reviews, see [2,3]). In the recent paper
by Simpson and Visser [4], it was shown that one may
obtain a singularity-free spacetime from the Schwarzschild
black hole by a simple substitution of the radial coordinate r
by the function rðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b2

p
, where u is a new

coordinate and b is the regularization parameter. Thus,
the new metric obtained from the Schwarzschild metric has
the following form:

ds2 ¼
�
1 −

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b2

p
�
dt2 −

�
1 −

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b2

p
�

−1
du2

− ðu2 þ b2Þðdθ2 þ sin2 θdφ2Þ; ð1Þ

where the singularity at r ¼ 0 is replaced by a regular
minimum of rðuÞ at u ¼ 0, a sphere of radius b. If b > 2m,
the formula (1) represents a wormhole with a throat at
u ¼ 0; if b < 2m, one has a black hole with two horizons at
u ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 − b2

p
; and if b ¼ 2m, we see an extremal black

hole with a single horizon at u ¼ 0.
In the black hole case, the hypersurface u ¼ 0 is not a

throat since u is a temporal coordinate there, and u ¼ 0
corresponds to a bounce in one of the two scale factors of
the Kantowski-Sachs universe in the inner region of the
black hole. This phenomenon was called the black bounce
in [4]. Later, a similar mechanism was used to regularize a

Vaidya spacetime [5], charged black-bounce spacetimes
[6], and Kerr black holes [7]. The field sources for the
Simpson-Visser spacetimes were considered in Ref. [8].
Various black-bounce solutions of general relativity were
analyzed in [9].
Moreover, in the paper by Bronnikov [10], a regulari-

zation of the static spherically symmetric configuration in
the presence of a scalar field was considered. The solution
was the regularized version of the Fisher solution [11], and
it could be seen as an exact solution of general relativity
in the presence of a self-interacting scalar field and of
a magnetic field (it is important to note that the Fisher
solution was rediscovered many times and studied in
different contexts [12–19]). An interesting transformation
between the phantom scalar field and the standard scalar
field was obtained.
In this paper, we investigate some effects that result

from the application of the Simpson-Visser-like prescription
directly to cosmology. It is well known that there is a deep
connection between the static solutions of the Einstein
equations and their cosmological solutions. We have already
mentioned that the interior part of the Schwarzschild black
holes is nothing but the Kantowski-Sachs universe. It is less
known that there is a duality between spherically symmetric
static solutions of the Einstein equations in the presence of a
scalar field and the Kantowski-Sachs universe with hyper-
bolic spatial sections. Inversely, the Kantowski-Sachs sol-
utions with spherical spatial sections correspond to static
solutions with hyperbolic symmetry. This phenomenon was
noticed in Ref. [19] and further investigated in Refs.
[20–22]. This duality is useful because, for some problems,
working with time-dependent metrics is more convenient,
while static metrics are preferred for other applications.

*leonardo.chataignier@unibo.it
†kamenshchik@bo.infn.it
‡tronconi@bo.infn.it
§giovanni.venturi@bo.infn.it

PHYSICAL REVIEW D 107, 023508 (2023)

2470-0010=2023=107(2)=023508(10) 023508-1 © 2023 American Physical Society

https://orcid.org/0000-0001-6691-3695
https://orcid.org/0000-0002-0575-486X
https://orcid.org/0000-0003-1962-2101
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.023508&domain=pdf&date_stamp=2023-01-04
https://doi.org/10.1103/PhysRevD.107.023508
https://doi.org/10.1103/PhysRevD.107.023508
https://doi.org/10.1103/PhysRevD.107.023508
https://doi.org/10.1103/PhysRevD.107.023508


Here, it is necessary to mention that the attempts to
construct nonsingular cosmological models, i.e., models
describing a universe without an initial singularity, have a
very long history and are still of considerable interest. The
Einstein static universe [23] was the first cosmological
model based on general relativity. Another historically
important cosmological model without singularities is the
steady-state universe [24,25], which, for a certain period
of time, was a strong competitor of the big bang theory.
More modern models where an initial singularity was
absent were developed in the framework of string cosmol-
ogy [26–28] and loop quantum cosmology [29]. Quite a
few recent works devoted to nonsingular cosmology
[30–33] used modified gravity theories such as Galileon
gravity [34] and Horndenski gravity [35]. A distinguish-
ing feature of these models is the very special role played
by a scalar field: Arbitrary functions of the scalar field
appear in the Lagrangian, but the equations of motion
do not contain terms with derivatives higher than that of
second order. It is also worth mentioning that the bounces,
and hence the absence of initial or final singularities, can
be achieved on a simple closed Friedmann model filled
with a minimally coupled scalar field [36–42]. In this case,
there exist both singular and nonsingular solutions of the
equations of motion, and the study of the structure of the
set of nonsingular trajectories reveals some interesting
features.
The construction of exact solutions to the Einstein

equations is an important task because it can help in the
analysis of various aspects of singularities (including their
possible avoidance) and in the discovery of other interesting
features. One can search for exact solutions, e.g., by fixing
symmetries of the spacetime and properties of the matter
fields, such as their equations of state or Lagrangian density.
However, one can also work in another way: One can write
down a metric for the spacetime, substitute it into the
Einstein equations, and observe which kind of matter
emerges on the right-hand side of these equations. This
approach can be justified when it leads to an interesting
phenomenology of spacetime and matter. This exact method
was applied in the paper by Simpson and Visser [4] and in
subsequent articles. Namely, in the well-known solutions of
the Einstein equations, a simple substitution r →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2

p
is considered, and it transforms these singular solutions into
regular ones. Evidently, a similar method can be applied to
the singular cosmological solutions. The analogy is direct:
One can make the substitution t →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ b2

p
and obtain the

nonsingular cosmological solutions.
Here, we show that, already in a flat Friedmann model,

using the Simpson-Visser-like regularization, one can
observe both a bounce (which replaces the cosmological
singularity) and the phantom-scalar transition. We also
briefly discuss the connection of these effects with similar
results discovered in a slightly different cosmological con-
text [43,44].

Then, taking into account the important role played by
scalar fields in modern gravity and cosmology, and inspired
by Ref. [10], we set out to find a regular Fisher-like static
spherically symmetric solution obtained solely from a
scalar field (and not from the combination of a scalar field
and an electromagnetic field as in [10]). To find this
solution, we make the substitution of the type r →ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2

p
only in the scale factor that multiplies the metric

of the two-dimensional sphere, while the other two metric
coefficients maintain an arbitrary form. The solution that is
obtained is simple and possesses interesting features, which
we consider in some detail.
The structure of the paper is the following: In the next

section, we consider a flat Friedmann universe filled with a
scalar field, and we show that the simple regularization
of the metric implies the phantom-scalar transition with a
cusp type of nonanalyticity in the scalar field potential. In
Sec. III, we show that these results can also be reproduced
in an anisotropic Bianchi I universe. Section IV is devoted
to spherically symmetric static regular geometries sustained
by a scalar field. The last section contains our concluding
remarks.

II. FLAT FRIEDMANN MODEL
WITH A SCALAR FIELD

Let us consider a flat Friedmann universe filled with a
massless scalar field. The exact solution for the metric and
for the scalar field in this model is well known and has the
following form:

ds2 ¼ dt2 − t
2
3ðdx21 þ dx22 þ dx23Þ; ð2Þ

_ϕ ¼
ffiffiffi
2

3

r
1

t
; ð3Þ

where a dot denotes the differentiation with respect to the
cosmic time t and the normalization is chosen so as to
simplify the form of the equations.
Let us now construct the regularized metric following the

recipe of Ref. [4]:

ds2 ¼ dt2 − ðt2 þ b2Þ13ðdx21 þ dx22 þ dx23Þ: ð4Þ

A straightforward calculation yields the expressions for the
Ricci tensor components:

R0
0 ¼

2t2 − 3b2

3ðt2 þ b2Þ4 ; ð5Þ

R1
1 ¼ R2

2 ¼ R3
3 ¼ −

b2

3ðt2 þ b2Þ2 : ð6Þ
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The Ricci scalar is

R ¼ 2t2 − 6b2

3ðt2 þ b2Þ2 : ð7Þ

The Friedmann equations immediately give us the expres-
sions for the energy density and for the isotropic pressure of
matter,

ρ ¼ t2

3ðt2 þ b2Þ2 ; ð8Þ

p ¼ t2 − 2b2

3ðt2 þ b2Þ2 : ð9Þ

As for the unregularized case, let us suppose that the
universe is filled with a spatially homogeneous scalar field
with a potential VðϕÞ. Then

ρ ¼ 1

2
_ϕ2 þ VðϕÞ ð10Þ

and

p ¼ 1

2
_ϕ2 − VðϕÞ: ð11Þ

Comparing Eqs. (8) and (9) with Eqs. (10) and (11), we
obtain

_ϕ ¼ �
ffiffiffi
2

3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − b2

p

t2 þ b2
ð12Þ

and

V ¼ b2

3ðt2 þ b2Þ2 : ð13Þ

Equation (12) can be integrated, and we can find the field ϕ
as a function of time t. However, we are not able to invert
the result or find t as an explicit function of ϕ, and thus we
cannot use Eq. (13) to find the explicit form of the potential
in terms of the scalar field. Nevertheless, Eqs. (12) and (13)
contain rather interesting information. We see that Eq. (12)
is well defined if jtj ≥ jbj. What happens if jtj < jbj? The
kinetic energy of ϕ changes sign, and the standard scalar
field transitions to a phantom scalar field. Thus, we observe
an effect analogous to that described in [10].
As far as the form of the potential is concerned, we can

study its behavior in the vicinity of t ¼ b. Let us define

t ¼ bþ τ; ð14Þ

where τ is small. Then, from Eq. (12) with the choice of an
overall plus sign (which is not essential), we obtain

dϕ
dτ

¼
ffiffiffi
τ

pffiffiffiffiffiffiffi
3b3

p ð15Þ

and

ϕðτÞ ¼ ϕ0 þ
2τ3=2

3
ffiffiffiffiffiffiffi
3b3

p ; ð16Þ

where ϕ0 is an integration constant. Hence,

τ ¼ 3b

�
ϕ − ϕ0

2

�2
3

: ð17Þ

Substituting Eqs. (14) and (17) into Eq. (13), we obtain the
formula describing the behavior of the potential of the
scalar field in the vicinity of the critical point:

VðϕÞ ¼ 1

3b2½ð1þ 3ðϕ−ϕ0

2
Þ23Þ2 þ 1�2

: ð18Þ

By keeping only the leading terms, we can rewrite the
above expression as follows:

VðϕÞ ¼ 1

12b2

�
1 − 6

�
ϕ − ϕ0

2

�2
3

�
: ð19Þ

The distinguishing feature of Eq. (19) is the presence of
a nonanalyticity of the cusp type, which is responsible for
the transition from the standard scalar field to its phantom
counterpart and vice versa.
We can also consider a slightly more general model: a

flat Friedmann model with the metric

ds2 ¼ dt2 − t2αðdx21 þ dx22 þ dx23Þ; ð20Þ

which arises in a universe filled with a perfect fluid with the
equation-of-state parameter

w ¼ 2 − 3α

3α
: ð21Þ

It is well known that this is a particular solution to the
equations of motion for the flat Friedmann model with a
minimally coupled scalar field with an exponential poten-
tial (see, e.g., Ref. [45] and references therein). In order to
avoid the cosmological singularity, we modify the metric
(20) as follows:

ds2 ¼ dt2 − ðt2 þ b2Þαdl2: ð22Þ

The components of the Ricci tensor now read

R0
0 ¼ −

3αðb2 þ ðα − 1Þt2Þ
ðt2 þ b2Þ2 ; ð23Þ
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R1
1 ¼ R2

2 ¼ R3
3 ¼ −

αðb2 þ ð3α − 1Þt2Þ
ðt2 þ b2Þ2 : ð24Þ

The Ricci scalar is

R ¼ −
6αðb2 þ ð2α − 1Þt2Þ

ðt2 þ b2Þ2 : ð25Þ

Now we can find the expressions for the energy density

ρ ¼ 3α2t2

ðt2 þ b2Þ2 ; ð26Þ

and the pressure

p ¼ −
αð2b2 þ ð3α − 2Þt2Þ

ðt2 þ b2Þ2 : ð27Þ

The expressions for the potential and the time derivative of
the scalar field realizing the evolution (22) are

VðϕÞ ¼ αðb2 þ ð3α − 1Þt2Þ
ðt2 þ b2Þ2 ; ð28Þ

_ϕ2 ¼ 2αðt2 − b2Þ
ðt2 þ b2Þ2 : ð29Þ

We note that, when the regularizing parameter b ¼ 0,
one can easily obtain from Eqs. (28) and (29) the known
expression for the exponential potential:

VðϕÞ ¼ αð3α − 1Þ exp
�
−

ffiffiffi
2

α

r
ðϕ − ϕ0Þ

�
: ð30Þ

Alternatively, if b > 0, we can see that, just as in the case
considered above (where a particular value α ¼ 1

3
was

chosen), the transition from the standard scalar field to
the phantom (or vice versa) takes place. Now, we can again
consider the vicinity of the instant t ¼ b [see Eq. (14)].
Proceeding in a similar way to what was shown above, we
obtain the following expression for the behavior of the
potential in the vicinity of the cusp:

VðϕÞ ¼ α

4b2

�
3α −

2 · 32=3

α1=3

�
ϕ − ϕ0

2

�
2=3

�
: ð31Þ

This expression has the same nonanalyticity [∼ðϕ − ϕ0Þ2=3]
as that seen in the expression (19), and, when α ¼ 1

3
, these

expressions coincide.

III. SCALAR FIELD—PHANTOM TRANSITIONS
IN A BIANCHI I UNIVERSE

Let us consider a Bianchi I universe with the metric

ds2 ¼ dt2 − ða21ðtÞdx21 þ a22ðtÞdx22 þ a23ðtÞdx23Þ: ð32Þ

It is convenient to introduce the following variables:

a1ðtÞ ¼ AðtÞeβ1ðtÞ;
a2ðtÞ ¼ AðtÞeβ2ðtÞ;
a3ðtÞ ¼ AðtÞeβ3ðtÞ; ð33Þ

where the anisotropic factors βi satisfy the identity

β1 þ β2 þ β3 ¼ 0: ð34Þ

The Ricci tensor components and the Ricci scalar have the
following form:

R0
0 ¼ −3

Ä
A
−
X3
i¼1

_β2i ;

R1
1 ¼ −

�
Ä
A
þ 2

_A2

A2
þ 3

_A
A
_β1 − β̈1

�
;

R2
2 ¼ −

�
Ä
A
þ 2

_A2

A2
þ 3

_A
A
_β2 − β̈2

�
;

R3
3 ¼ −

�
Ä
A
þ 2

_A2

A2
þ 3

_A
A
_β3 − β̈3

�
;

R ¼ −
�
6
Ä
A
þ 6

_A2

A2
þ
X3
i¼1

_β2i

�
: ð35Þ

Now, if we have an empty space or a space filled with
matter with an isotropic pressure, we have

R1
1 ¼ R2

2 ¼ R3
3 ð36Þ

and hence

R2
2 þ R3

3 − 2R1
1 ¼ 0: ð37Þ

Substituting Eq. (35) into Eq. (37) and using the relation
(34), we obtain

β̈1 þ 3
_A
A
_β1 ¼ 0: ð38Þ

Integrating this equation, we obtain

_β1 ¼
β10
A3

; ð39Þ

where β10 is an integration constant. Similarly, we obtain
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_β2 ¼
β20
A3

; ð40Þ

_β3 ¼
β30
A3

: ð41Þ

If we now substitute Eqs. (39)–(41) into the expressions for
the components of the Ricci curvature and of the Ricci
scalar, we find

R0
0 −

1

2
R ¼ 3

_A2

A2
−
1

2

β̄2

A6
; ð42Þ

where

β̄2 ≡X3
i¼1

β2i0: ð43Þ

If the universe is empty, we can equate the right-hand side
of Eq. (42) to zero, from which we can find the scale factor
A. It is also possible to compute the explicit expressions for
the anisotropy factors by integrating Eqs. (39)–(41), and
the result is the famous Kasner solution [46]. By consid-
ering the universe filled with dust or other perfect fluids,
we obtain the Heckmann-Schucking solution [47] or its
generalizations [48,49].
Here, we use instead the same prescription, which was

implemented in the preceding section, and suppose that

AðtÞ ¼ ðt2 þ b2Þ16: ð44Þ

When the regularizing parameter b ¼ 0, we obtain the
Kasner solution. Now, if b > 0, the energy density of the
matter filling the universe is

ρ ¼ t2

3ðt2 þ b2Þ2 −
β̄2

2ðt2 þ b2Þ ; ð45Þ

while the pressure is

p ¼ t2 − 2b2

3ðt2 þ b2Þ2 −
β̄2

2ðt2 þ b2Þ : ð46Þ

If the universe is filled with a minimally coupled scalar
field, we can find the expressions for its potential and the
kinetic term using Eqs. (10) and (11) from the preceding
section. We obtain

_ϕ2 ¼ t2ð2 − 3β̄2Þ − b2ð2þ 3β̄2Þ
3ðt2 þ b2Þ2 ; ð47Þ

V ¼ b2

3ðt2 þ b2Þ2 : ð48Þ

Note that the expression for the potential as a function of
time coincides with that obtained in the preceding section

for the case of the flat Friedmann universe (13). The
expression for the time derivative of the scalar field (47) is
modified by the presence of the anisotropy. One can see
that the phantom-scalar transition occurs at

jtj ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 3β̄2

2 − 3β̄2

s
: ð49Þ

We also note that the presence of the scalar field imposes
the restriction on the value of anisotropy:

β̄2 ≤
2

3
: ð50Þ

This effect was observed for the Bianchi I universe filled
with a massless scalar field years ago [50]. Just as in the
case of the flat Friedmann model, the potential providing
the “(de)-phantomization” of the scalar field has a cusp.

IV. SPHERICALLY SYMMETRIC STATIC
REGULAR GEOMETRIES SUSTAINED

BY A SCALAR FIELD

As we have already mentioned in the Introduction,
Ref. [10] considered regularized Fisher-type solutions,
where the role of matter was played by the scalar field
and by the electromagnetic field. Here, we wish to construct
a spherically symmetric static spacetime filled exclusively
with the scalar field. As in the preceding sections, we
consider a scalar field minimally coupled with gravity that
can undergo a phantom-scalar transition.
We look for the solution in the following form:

ds2 ¼ AðrÞdt2 − BðrÞdr2 − ðr2 þ b2Þðdθ2 þ sin2 θdφ2Þ:
ð51Þ

The radial coordinate r, the redshift function AðrÞ, and
the profile function BðrÞ are free, and the function that
multiplies the two-dimensional sphere metric is chosen as
r2 þ b2. (One can note that this choice is different from the
one usually used for the construction of the Fisher-type
solutions.)
We can calculate the components of the Ricci tensor for

this metric:

R0
0 ¼

A00

2AB
−

A02

4A2B
−

A0B0

4AB2
þ A0r
ABðr2 þ b2Þ ; ð52Þ

Rr
r ¼

A00

2AB
−

A02

4A2B
−

A0B0

4AB2
−

B0r
B2ðr2 þ b2Þ þ

2b2

Bðr2 þ b2Þ2 ;

ð53Þ
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Rθ
θ ¼ Rφ

φ ¼ 1

Bðr2 þ b2Þ −
B0r

2B2ðr2 þ b2Þ
þ A0r
2ABðr2 þ b2Þ −

1

r2 þ b2
; ð54Þ

where the prime denotes the derivative with respect to r.
Let us now suppose that our spacetime is filled with a

scalar field that depends solely on the radial coordinate r.
Its Lagrangian is then

L ¼ 1

2
gμνϕ;μϕ;ν − VðϕÞ ¼ −

1

2B
ϕ02 − VðϕÞ: ð55Þ

The components of the energy-momentum tensor are

T0
0 ¼

1

2B
ϕ02 þ VðϕÞ; ð56Þ

Tr
r ¼ −

1

2B
ϕ02 þ VðϕÞ; ð57Þ

Tθ
θ ¼ Tφ

φ ¼ 1

2B
ϕ02 þ VðϕÞ: ð58Þ

We see that

T0
0 ¼ Tθ

θ ¼ Tφ
φ; ð59Þ

and hence the corresponding components of the Einstein
tensor and of the Ricci tensor should also coincide:

R0
0 ¼ Rθ

θ ¼ Rφ
φ: ð60Þ

Substituting Eqs. (52) and (54) into Eq. (60), we obtain the
following condition:

A00

2AB
−

A02

4A2B
−

A0B0

4AB2
þ A0r
2ABðr2 þ b2Þ

−
1

Bðr2 þ b2Þ þ
B0r

2B2ðr2 þ b2Þ þ
1

r2 þ b2
¼ 0: ð61Þ

The above equation imposes a restriction on the choice
of the functions A and B but does not determine them
completely. A reasonable solution can be obtained with
an additional hypothesis concerning the form of these
functions. One of the simplest possible choices is the
“Schwarzschild-like” condition

AB ¼ 1: ð62Þ

Using this condition, we can rewrite Eq. (61) as an ordinary
linear second-order differential equation for the function A:

A00 −
2A

r2 þ b2
þ 2

r2 þ b2
¼ 0: ð63Þ

It is straightforward to find the general solution of Eq. (63).
A particular solution of the inhomogeneous equation is

A0 ¼ 1: ð64Þ

An obvious solution of the homogeneous equation is

A1 ¼ r2 þ b2: ð65Þ

To find the second independent solution of the homo-
geneous equation, we can use the Wronskian relation:

A0
2A1 − A0

1A2 ¼ 1; ð66Þ

which immediately gives

A0
2 −

2r
r2 þ b2

A2 −
1

r2 þ b2
¼ 0: ð67Þ

Looking for the solution of this equation in the form

A2 ¼ ðr2 þ b2Þf; ð68Þ

we obtain

f0 ¼ 1

ðr2 þ b2Þ2 : ð69Þ

Integrating Eq. (69), we obtain

f ¼ 1

2b3
arctan

r
b
þ r
2b2ðr2 þ b2Þ þ const: ð70Þ

Finally, the general solution of Eq. (63) is

A¼ 1þc1ðr2þb2Þþ c2
2b3

�
ðr2þb2Þarctan r

b
þbr

�
; ð71Þ

where c1 and c2 are arbitrary constants.
It is reasonable to require that the general solution (71) is

well defined at the limit b → 0. We use the expansion of the
arctan function when its argument tends to infinity,

arctan
r
b
¼ π

2
−
b
r
þ b3

3r3
−

b5

5r5
þ � � � : ð72Þ

Substituting the expansion (72) into the expression (71), we
find that the condition for the regularity of this expression
at b → 0 is

c1 ¼ −
c2π
4b3

: ð73Þ

We note that the expansion (72) is also valid when the
parameter b is fixed while the radius r tends to infinity. In
this limit, and substituting (73), we have
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A ¼ 1 −
c2
3r

þ c2b2

15r3
þ � � � : ð74Þ

It is convenient to introduce the notation r0 ¼ c2
3
when at

r → ∞ the expression (74) has a Schwarzschild-like form

A ¼ 1 −
r0
r
þ b2r0

5r3
þ…: ð75Þ

Finally, the expression for AðrÞ that we have obtained is

A¼1−
3πr0
4b3

ðr2þb2Þþ3r0
2b3

�
ðr2þb2Þarctanr

b
þbr

�
: ð76Þ

This geometry does not have any singularity at r ¼ 0.
Now, we would like to understand in which cases the

metric (76) describes a regular black hole or a wormhole.
We write down the derivatives of the function A:

A0 ¼ −
3πr0r
2b3

þ 3r0r
b3

arctan
r
b
þ 3r0

b2
; ð77Þ

A00 ¼ −
3πr0
2b3

þ 3r0
b3

arctan
r
b
þ 3r0r
b2ðr2 þ b2Þ ; ð78Þ

A000 ¼ 6r0
ðr2 þ b2Þ2 : ð79Þ

We see that the third derivative A000 is always positive. The
second derivative at r ¼ 0 is

A00ð0Þ ¼ −
3πr0
2b3

< 0: ð80Þ

Using the expansion (72), we find that at r → ∞

A00ðrÞ ¼ −
2r0
r3

þ…; ð81Þ

i.e., it tends to zero, remaining negative. This means that the
second derivative A00 is always negative. The first derivative
A0 at r ¼ 0 is equal to

A0ð0Þ ¼ 3r0
b2

; ð82Þ

and it is positive. At t → ∞, it behaves like

A0 ¼ r0
r2

þ…; ð83Þ

i.e., it tends to zero, remaining positive, and hence it is
always positive. The value of the function A at r ¼ 0 can
be either negative or positive depending on the relation
between the parameters b and r0. If r → ∞, the function A
tends to 1 as follows from Eq. (75). Thus, if it is negative at
r ¼ 0, it changes sign, and this situation corresponds to a

regular black hole, while in the opposite case, it describes a
wormhole with a throat at r ¼ 0. Finally, if

b ≥
3πr0
4

; ð84Þ

one has a wormhole. In the opposite case, we have a regular
black hole with a black bounce. We also note that the
geometry presented above in the case of the regular black
hole has only one horizon. Indeed, as it is clear from the
analysis of the function AðrÞ and its derivatives, it crosses
the value A ¼ 0 only once.
We can now connect this spacetime geometry with a

dynamical scalar field using the Einstein equations

Gν
μ ¼ Tν

μ; ð85Þ

where we have chosen convenient units. Combining these
equations with Eqs. (56) and (57), we see that

ϕ02 ¼ BðT0
0 − Tr

rÞ ¼ BðG0
0 −Gr

rÞ ¼ BðR0
0 − Rr

rÞ: ð86Þ

Using the explicit expressions for the components of the
Ricci tensor, Eqs. (52) and (53), together with the condition
(62), we obtain

ϕ02 ¼ −
b2

ðr2 þ b2Þ2 : ð87Þ

The negative definiteness of the right-hand side of Eq. (87)
indicates that the scalar field should be phantom and that
we should change the sign at the kinetic term of the scalar
field Lagrangian (55). Then, instead of Eq. (87), we have

ϕ02 ¼ b2

ðr2 þ b2Þ2 : ð88Þ

Furthermore,

ϕ0 ¼ � b
r2 þ b2

; ð89Þ

and choosing the positive sign in the right-hand side of
Eq. (89), we can integrate it to obtain

ϕ ¼ arctan
r
b
; ð90Þ

where an integration constant is chosen so that ϕð0Þ ¼ 0.
Inversely,

r ¼ b tanϕ: ð91Þ

Analogously, from Eqs. (85), (56), and (57), we obtain
the following expression for the potential of the scalar field:
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V ¼ 1

2
ðT0

0 þ Tr
rÞ ¼

1

2
ðG6

0 þGr
rÞ ¼

1

2
ðR0

0 þRr
r −RÞ ¼ −Rθ

θ:

ð92Þ

Using the expression (54) with the condition (63), we find

V ¼ A − 1 − rA0

r2 þ b2
: ð93Þ

Applying the expression (76) for A, we obtain

V ¼ −
3πr0
4b3

þ 3r0
2b3

arctan
r
b
þ 9r0r
2b2ðr2 þ b2Þ

−
3πr0r2

2b3ðr2 þ b2Þ þ
3r0r2

b3ðr2 þ b2Þ arctan
r
b
: ð94Þ

Using the relation (91), we can rewrite the expression (94)
as an expression for the potential as a function of the
phantom scalar field. It has the following form:

V ¼ −
3πr0
4b3

þ 3r0
2b3

ϕþ 9r0 sin 2ϕ
4b3

−
3πr0 sin2 ϕ

2b3
þ 3r0ϕ sin2 ϕ

b3
: ð95Þ

Here, the domain of the function is

0 ≤ ϕ <
π

2
; ð96Þ

and the potential is an analytic function without any
irregularities of the cusp type. It is in agreement with
the fact that, in this solution, the scalar field does not
undergo the phantom-nonphantom transition, in contrast to
the examples considered in the two preceding sections.
Naturally, there are other regular solutions of the Fisher

type sustained by a scalar field. The solution based on the
choice of the condition (63) presented here is especially
simple. We can say that one can obtain at least another
explicit solution if one fixes the function A and solves the
equation of the function B. However, this solution is much
more cumbersome.

V. CONCLUDING REMARKS

We have applied a procedure for the elimination of
singularities, which was proposed in [4] for black holes, to

simple cosmological models. We have seen that the non-
singular versions of the flat Friedmann model and the
Bianchi I universe, both filled with a homogeneous scalar
field, display the transition between the standard scalar
field and its phantom counterpart. In this context, this
phantom-scalar transition was previously presented in
Ref. [10] for the more complicated case of a spherically
symmetric static model.
Moreover, a transition between these two types of scalar

fields was also investigated in Refs. [43,44,51] in a rather
different context. There, the starting point was the obser-
vation that the equation of state of effective dark energy
models in the late universe can change its form across the
value w ¼ −1 (which is sometimes called the “crossing of
the phantom divide line”). Motivated by this fact and by
some mathematical observations made in Ref. [52], the
authors of [43] proposed a model where this effect is
realized in the presence of a single scalar field (see also the
earlier work [51]). For this to be achieved in [43], it was
necessary to have a cusp in the potential of the scalar field,
and its initial conditions needed to be chosen in a special
way. Further details of this model were explored in [44].
It is also worthwhile to mention yet another set of works in
which a phantom-scalar transition has been analyzed. In
[53], a transition of this kind was achieved without ghost
instabilities. In [54–56], the phantom-scalar transition was
combined with a transformation of gravity into antigravity
(and vice versa) in the process of crossing the big crunch–
big bang singularity.
It is clear that the approach of [43] and [44] is quite

different from that of [4,10] and the present article.
Furthermore, the physical situations are also distinct:
Whereas here we examine a regularization of the big
crunch–big bang singularity, the late-time accelerating
universe was studied in [43] and [44]. Nevertheless, the
character of the nonanalyticity in the potential, which is
responsible for the (de)-phantomization of the scalar field,
appears to be the same. It would thus be interesting to
further develop the regularized cosmological models pre-
sented here in connection with inflation and bouncing
models, as well as (effective) quantum gravity.

ACKNOWLEDGMENTS

L. C. thanks the Dipartimento di Fisica e Astronomia of
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