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Abstract 

The majority of species are rare, yet they also are the most challenging to sample and 
model. Predicting the distribution of rare species using conventional species distribution 
models is challenging because rare species are hardly captured by most survey 
systems. When enough data is available, predictions are usually spatially biased toward 
locations where the species is most likely to occur, violating the assumptions of many 
modelling frameworks. Workflows to predict and eventually map rare species 
distribution implies important trade-offs between data quantity, quality, 
representativeness, and model complexity that need to be considered prior to survey 
and analysis. In this synthesis, we summarize how different categories of species rarity 
lead to different types of occurrence and distribution data, depending on choices made 
during the survey process, namely the spatial distribution of samples (where to sample) 
and the sampling protocol in each selected location (how to sample). We then clarify 
which species distribution models are suitable depending on the different types of 
distribution data (how to model). Among others, for most rarity forms, we highlight the 
insights from systematic species-targeted sampling and hierarchical models that allow 
correcting for overdispersion, spatial and sampling biases. 
 
Keywords 
rare species, sampling, survey, species distribution modeling, occupancy, bias, 
detectability 
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Box 1. Glossary 

● Hierarchical Models (HM): a.k.a. multi-level models. Statistical models of 
parameters that vary at more than one level of data organization (e.g., nested 
data, such as abundances of a given species located in different habitat types 
themselves located in different ecoregions) and thus allow accounting for the 
potential interdependence between the data points (for further details, see e.g., 
Raudenbush and Bryk 2002, Gelman et al. 2007).  

● Mark-release-recapture (MRR): Mark-release-recapture, also known as 
capture-mark-recapture, is a sampling technique that consists in capturing, 
marking and releasing individuals of a species in a first capture session. 
Thereafter, in a second capture session, the ratio of marked to unmarked 
specimens is taken to estimate the population size of the species. The process 
can extend to more than two sessions to produce estimates that are more 
precise (see e.g., Williams et al. 2002, Southwood and Henderson 2009). 

● Occupancy: Occupancy can refer to two different notions (MacKenzie et al. 
2017); (1) the probability of a site to be occupied by a given species, i.e. the a 
priori expectation that a particular site will be occupied by the species as 
determined by some underlying process (a.k.a. occurrence probability), (2) the 
proportion of area or sites occupied, which results from the realization of the 
former process. 

● Occupancy-Area Relationship (OAR): a.k.a. “scale-area curve” or “range-area 
relationship” (Harte and Kinzig 1997, Kunin 1998); the relationship between the 
area occupied by a species and the sampling grain size. This relationship is 
positive and its shape is characteristic of the species distribution pattern (extent, 
patchiness*, prevalence). 

● Patchiness: The way habitat patches (and populations) are distributed through 
space. Habitat patches can be clumped (i.e., spatially aggregated according to 
regular patterns with many patches aggregated in few places, potentially most at 
risk under environmental stochasticity), patchy (i.e., spatially aggregated 
according to irregular patterns, e.g., one, two, or five patches per group of 
patches), random, and regular (i.e., uniformly distributed apart from each other). 

● Spatially representative sample-set: Sample-set collected at a set of locations 
that are spatially distributed in a statistically spatially unbiased manner, e.g., by a 
stratified design, in which areas are stratified according to their environmental 
conditions and the number of samples in each stratum is proportional to the area 
of that stratum so that the sampling is representative of the variability of these 
conditions over the whole study area and does not over-represent unusual but 
rare environmental conditions. 
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● Species Distribution Model (SDM): generic term to refer to any niche model 
that allows predicting the current or future distribution of a species (using 
occurrence and/or abundance data) based on predictors (such as climate, land-
use, etc.) and, possibly, scenarios (e.g., IPCC’s climate change scenarios). 

Introduction 

Almost all international, national, and local conservation planning activities flag 

biodiversity as a crucial environmental property (e.g. Aichi Targets, Sustainable 

Development Goals; Griggs et al. 2013, Butchart et al. 2016)) to be protected from the 

deleterious effects of habitat loss, exploitation, pollution and climate change (Rands et 

al. 2010, Maxwell et al. 2016, IPBES 2019). However, part of biodiversity relies on 

species, most of which are rare at various scales (Rabinowitz 1981, Hartley and Kunin 

2003, Fontaine et al. 2007, Henle et al. 2010). Several initiatives that aim halting 

biodiversity loss have questioned whether current measures of biodiversity do actually 

sufficiently account for rare species (e.g. Fontaine et al. 2007). For example, one third 

of plant species worldwide are too poorly known and have too few data for a Red List 

assessment (Brummitt et al. 2015). At the same time, in context of global change, rare 

species are especially prone to extinction (Kunin and Gaston 1993, McKinney 1997, 

Henle et al. 2004, Courchamp et al. 2006, Işik 2011). One way to assess extinction risk 

is to track the change in spatial distribution through time (Gärdenfors et al. 2001, Araújo 

et al. 2002, Thomas et al. 2004, Benito et al. 2009). Therefore, protecting species 

diversity directly implies protecting rare species and this aim requires understanding 

their distribution patterns.  

 

Unfortunately, rarity causes considerable methodological difficulties in obtaining 

sufficient data from survey programs or alternative sources (e.g., Roberts et al. 2016), 

which limits the ability of models to predict distribution patterns. For example, many 

studies using species distribution models (SDMs)* need a minimum number of 

occurrences below which the models cannot be reliably trained and/or validated (e.g., 

van Proosdij et al. 2016). Thus, we are locked in a depressing loop, also called the 

‘rare-species modelling paradox’ (Lomba et al. 2010): the majority of species that 

require the greatest protection also are the species we know the least about and the 
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most difficult to model, due to data deficiency or since the data we have violate the 

basic assumptions of the models.  

 

However, rarity is an umbrella term used to describe various types of distribution 

patterns at various scales. Rabinowitz (1981) defined seven categories of rarity based 

on all combinations of the distributional range of a species, the distribution pattern of 

populations within the range and the local density of the species when present (Figure 

1a). Whatever the measure used (e.g., range size, occupancy, abundance, relative 

cover, biomass), and the ecosystem or scale of the study: the community is likely to 

include a handful of common species, and a much longer tail of rare species (Fisher et 

al. 1943, Preston 1948). The resulting pattern of species-abundance distributions, 

following a log-like curve in most natural systems (but also see Magurran and 

Henderson 2003), is observed on a local to global scale, with correspondingly fine 

abundance (McGill et al. 2007) to range size frequency (Gaston 1998) data. With the 

ultimate goal of e.g. mapping a rare species' distribution range for protection purposes, 

each of the seven types of rarity implies different problems in accumulating data for 

modelling. For example, having two species A and B with similar prevalence that are 

both dispersed in their range within an area: Species A has a narrow range with high 

local density (Rarity category 2) and species B has a broad range with low local density 

(Rarity category 4). Randomly distributed sampling in this area is likely to sample only a 

few sites where species A is present and many sites where species B is present. 

Consequently, species B’s distribution is likely to be better evaluated than species A’s 

distribution. However, if applying a sampling that is oriented by a priori knowledge on 

where species A is present, species A is more likely to be encountered than species B. 

Consequently, the dataset of species A contains more presences than the dataset of 

species B. The type of rarity, the spatial distribution of samples, and the protocol used 

to sample each location thus all affect the characteristics of the data generated, and the 

types of model we can use to project the species’ distribution range. 
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We therefore face a conundrum in which, although rarity is ubiquitous, it is particularly 

challenging to account for, sample and model it at all scales. To address this challenge 

and help untangle the conundrum, we aim for each of Rabinowitz’s categories of rarity: 

1.    To identify the main trade-offs involved in the search for both adequate and 

cost-effective sampling strategies when designing a survey program, and how 

these decisions affect the properties of the data,  

2.    To identify modelling frameworks that are potentially suitable for the type of 

data generated and to highlight gaps that require model development. 

To address the first aim, we focus on the spatial distribution of samples (‘where to 

sample’) and on the protocols used to do the sampling (‘how to sample’). For the 

second aim, we list and discuss the main types of modelling frameworks suitable for 

producing distribution maps for different types of rarity (‘how to model’). We synthesize 

our findings and briefly discuss some remaining challenges to be addressed with 

respect to sampling and modelling rare species. 

 

Where to sample 

When setting up a monitoring scheme, there are multiple ways by which the spatial 

allocation of samples can be decided (Table 1; Figure 1b). Any choice made at this 

stage will affect the properties of the collected data. The main trade-off to consider is 

between sampling efficiency and spatial coverage.  

 

Locally focused sampling designed to target a particular species allows studying its 

population efficiently, yet at the expense of producing a representative sample of the 

species distribution. This conflicts with the aim of covering the fundamental niche of a 

species, thus with the assumptions of many modelling frameworks. For those species 

whose distribution range is relatively wide and whose distribution pattern is dispersed 

(common species and Rarity category 4), a representative sample-set of the entire 

extent is more likely to provide the required occurrence data. Representative sampling 

has several positive properties. First, the data it generates is comparable among 

species, allowing cost-effective monitoring of multiple species. Second, even if the 
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location of samples is not constant, the data remains comparable between years, 

allowing the tracking of temporal changes in distribution (if sampling intensity kept 

constant). Third, the data generated can easily fit into most modelling frameworks if 

enough data on the focal species is collected. This is usually done with a systematic 

sampling scheme on a grid, stratifying the sampling according to habitat or land covers 

(while ensuring proportional sampling in each strata), or by randomly selecting the 

locations of the samples (Table 1; Figure 1b).  

 

However, for species with narrow and/or clumped* and patchy* distribution patterns 

(Rarity categories 1, 2, 3, 5, 6, 7), a basic random sample-set of the entire extent is 

unlikely to capture sufficient information. Most current monitoring schemes fail to 

capture the required information for the majority of species as most tend to be rare 

(Preston 1948, Magurran and Henderson 2003). For example, in the 2007 UK plants 

countryside survey, 591 locations with one km2 each were chosen to be included using 

a stratified random design (Carey et al. 2008). The survey recorded 880 species. As 

there are approximately 4000 plant species in the UK, the survey failed to detect 2400 

rare species. In fact, the narrower and clumpier the distribution of a species, the larger 

the number of random sites one will need to encounter the species in enough locations 

to make credible estimates of abundance or distributional status and changes. Thus, to 

survey rare species, one needs to use methods that increase the probability of 

encounter beyond that expected at random. To do so, one may need to bias the 

sampling towards the species of interest. 

 

Various methods allow adjusting the distribution of samples to target more locations 

likely to contain a certain rare species (Table 1; Figure 1b). These methods include 

adaptive sampling (Yoccoz et al. 2001, Thompson 2013b). Many programs that 

periodically (e.g., annually) monitor rare species sample locations where the species is 

known to occur, but rarely look for the species at new sites. Such adaptive sampling 

may be excellent in keeping track of known populations, but eventually lead to 

erroneous conclusions regarding distribution trends of the species. Consider a species 

subject to metapopulation dynamics, experiencing local extinctions and colonization of 
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patches: If sampling is done in known locations only, one may identify all local 

extinctions (and a preceding gradual decrease in population size) but would not identify 

the colonization of new patches. Thus, we might wrongly conclude that the species 

status is deteriorating while in fact it may be in an equilibrium state (Magurran et al. 

2010, but see McRae et al. 2017). 

 

Another directed, fruitful approach is to combine adaptive with SDM-guided sampling 

(e.g., Lin et al. 2014, Aizpurua et al. 2015, Chiffard et al. 2020) where one sampling 

session provides information to model and the following sessions allow adjusting the 

distribution of samples (Yoccoz et al. 2001, Thompson 2013a, 2013b). For example, a 

SDM performed on data that was sampled at a certain time can tag potentially unknown 

local populations for sampling in the next year (e.g., Lin et al. 2014). Once the area is 

sampled and the SDM parameters are updated, the SDM is re-run and new locations 

are targeted. Such a strategy may be very efficient at accumulating observations of rare 

species. However, it comes with the risk to estimate an overoptimistic trend of 

occupancy*, as the number of detected presences may increase with time while the 

actual distribution decreases (Table 1). Any form of adaptive sampling therefore needs 

considerable manipulation and/or reliable complementary information to be used in 

further species distribution modelling (Raes and ter Steege 2007, Phillips et al. 2009, 

Dorazio 2014, Hefley et al. 2014).  

 

The transition from spatially representative sampling to species-targeted sampling also 

reflects a gradient of a priori knowledge (Table 1). Random sampling does not require 

specific knowledge. Adaptive sampling and SDM-guided approaches instead need 

considerable knowledge of the species and its requirements before designing the 

sampling scheme. Stratified schemes require knowledge about sampling sites and their 

habitats or environmental conditions. In addition, stratified schemes depend on the 

quality of the original information used to guide the stratification (e.g., habitat and land-

use maps) that also has its own uncertainty, due to potential spatial errors and 

classification issues (Rocchini et al., 2011). 
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To summarize, different strategies for defining the spatial distribution of samples relate 

to different elements of the compromise between sampling efficiency and 

representativeness (Figure 1b). Overall, depending on the sampling strategy used, 

three main types of data may be generated, each having implications for modelling. 

Data can be either spatially representative (of the species range for potentially multiple 

species), spatially biased independent of the species, or spatially biased towards 

particular species.  

How to sample 

For assessing the distribution of species and changes therein, sampling should aim to 

collect the appropriate quantity of presence data, reduce the number of false absences, 

and account for detectability of the sampled species (Table 2; Figure 1c). Locally rare 

as well as elusive species (e.g. cryptic or trap-shy species) be they rare or common 

(Thompson 2013b), both pose specific challenges for achieving these goals of 

sampling. The probability of detecting a species that is present depends on a range of 

factors, such as habitat type, time of the day and year, population density and the 

methods employed to survey the species. Methods that target rare and elusive species 

and repeated sampling will reduce the probability of false absences and the latter may 

allow generating presence/absence data that account for detection probability. 

There are multiple methods that increase the detectability of species. Some are just a 

function of effort (e.g., more pitfall traps or longer transects), while others are more 

directly related to the known ecology of the target species (Table 2; Figure 1c). The 

latter methods include, for example, baiting traps with materials that attract individuals 

(e.g.  valerian-treated lure sticks for wildcat detection, Steyer et al. 2013), camera traps 

(e.g. Schüttler et al. 2017), species-specific markers in environmental DNA (eDNA) 

sampling (e.g. Carraro et al. 2018), resorting to expert knowledge on the species’ 

habitat preference and/or behavior to actively detect the species on site, or the use of 

detection dogs (Grimm & Klenke 2019, Grimm et al. 2019, Hollerbach et al. 2018).  

 

There are several points to consider when applying methods targeted to rare species to 

increase detection probability. First, most of them increase the effort required or costs 
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compared to simpler methods, especially when the sampling aims at detecting several 

rare species simultaneously rather than only one. Second, methods that increase 

detection probability increase it differently for different species, making the output less 

comparable between species unless the method is highly standardized. For example, 

baiting a trap with pheromones (or mating calls) of a specific species will attract more 

individuals from the focal species whereas baiting a trap with a food source utilized by 

many species (e.g. dung for dung beetles) may retain sufficient levels of comparability 

between species in a given site. However, recent advances in genetic monitoring tools, 

such as improved markers in eDNA detection of stream species (e.g. Jerde et al. 2019; 

Leese et al. 2020; Carraro et al. 2020), significantly increase the number of detected 

species including many rare species. This is particularly true when using water samples 

from rivers that often integrate over several kilometers in river length (e.g. Mächler et al. 

2019; Altermatt et al. 2020). Third, highly standardized protocols are also essential for 

comparisons among sites, although some variability in detectability between sites is 

always likely to remain; for example, bird songs are less audible in leaved deciduous 

forests than in mixed pine forests (e.g. Pacifici et al. 2008) and ungulates less visible in 

dense vegetation habitats (e.g. Bukombe et al. 2016). 

 

Some sampling methods allow generating presence/absence, and even abundance 

data, in sufficient quality and quantity to account for detection probability (based on 

repeated sampling of selected sites during a specific period; MacKenzie & Royle 2005). 

Among others, such methods include distance sampling (Buckland et al. 2015), and 

capture-mark-recapture (Williams et al. 2002). For the latter, capture by camera traps 

coupled with image analysis is particularly promising for rare species (e.g. Schüttler et 

al. 2017) (Table 2; Figure 1c). However, although these data greatly increase the 

spectrum of models that can be applied, they require high efforts, are rarely applicable 

except for a spatially limited area, and thus hardly available for rare species except 

perhaps for the ones clumped with high local density. They may only allow developing 

SDMs for small regions because of the efforts and costs involved. However, we will see 

in the next section that the combination of such methods with occupancy surveys or 

opportunistic observations (e.g. Atlas or citizen science data) and the incorporation of 
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environmental data as potential predictors of occupancy and/or abundance may allow 

extrapolation of rare species distribution across large spatial scales (e.g. Giraud et al. 

2016; Bowler et al. 2019), with a certain bias towards the species. 

 

How to model 

As discussed above, choices on the spatial distribution of samples (where to model) 

eventually lead to three types of datasets, spatially representative, spatially biased 

independent from the species, or spatially biased towards given species’ presences. 

From a modelling perspective, these results in a trade-off between the number of 

presences (i.e. zero inflated models when there are few presences) and the need to 

account for spatial auto-correlation in the data. Similarly, the sampling protocols in 

selected sampling locations (how to sample) affect the type and quality of inference we 

get from each location. From a modeling perspective, this affects the type of data we 

need to deal with, be it, presence-only, presence/absence, or presence/absence with 

detectability or estimates of abundances. Put together, depending on the type of rarity, 

and the ‘where to sample’ and ‘how to sample’ decisions, successful modelling of rare 

species require modelling tools that fall into all combinations of the cases above (Figure 

1d). 

 

When only presences are available, some methods allow pseudo-absences to be 

generated based on external, additional sources of information (e.g. habitat suitability; 

Barbet‐Massin et al. 2012). For some models, such as Maxent and Poisson point 

process models (PPPMs), pseudo-absences are better interpreted as background 

points, as they do not imply absences but rather samples of the available environment, 

where presences are compared against background locations that were unsampled 

(Philips et al 2009, Merow et al 2013). They do not produce probability of occurrence 

but relative occurrence rates (Guillera-Arroita et al 2015) and can be appropriate to rare 

species modelling if proper bias correction is applied (Table 3; Figure 1d).  
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In cases where presence/absence data are available, several developments in SDMs 

allow handling data overdispersion (e.g. negative-binomial and mixed effect models; 

Molenberghs et al. 2007, O’Hara and Kotze 2014, Harrison 2014), spatial-

autocorrelation (e.g. Dormann et al. 2007; Marcer 2013), uncertainty in predictions (e.g., 

ensemble forecasting; Araújo and New 2007, Guisan et al. 2017, Thuiller et al. 2019), 

and biases due to sampling scales (Keil et al. 2013, Keil and Chase 2019). In this 

respect, hierarchical models (HM)* become especially helpful due to their flexibility. 

Indeed, HMs aim to describe, on the one hand, the true state of nature that is not or 

only partly observable, and, on the other hand, the measurement error (Kéry and Royle 

2015). Consequently, HMs are highly valuable for rare species modeling in that they 

allow modeling both the process error (e.g. variations in the occurrence probability 

potentially due to variation in available resources), and the observation error (e.g. 

variations in the detection probability potentially due to the variability in observer’s skills, 

or variations in the occurrence probability due to a poor choice in the habitat type to 

sample), which result in the so-called true vs. false absences, respectively (Zuur et al. 

2009). For instance, multiscale hierarchical SDMs allow accounting for the fact that 

increasing the sampling extent increases the probability of detecting rare species 

(Rocchini et al. 2017). As such, HMs allow imperfect detectability to be considered in 

the modeling procedure (Table 3). Furthermore, by integrating prior knowledge, 

Bayesian Belief Networks allow explicitly decomposing causal pathways involved in the 

capture rate of species, including the respective influences of detection and occupancy 

while handling small or incomplete datasets (Ussitalo 2007). For instance, capture can 

be considered as dependent on detectability, which is influenced by date and trapping 

effort, and by occupancy, which may be influenced by suitability of local habitat 

conditions (Marcot et al. 2006). Such methods have already proved relevant for 

modelling species distribution (e.g. Van Echelpoel et al. 2015), and responses of rare 

and endangered species (e.g. Smith et al. 2007; Hamilton et al. 2015) (Table 3).  

 

When abundance data from standardized survey or monitoring protocols are available, 

these can be of great interest to fit rare species distribution models and track distribution 

changes (e.g. Howard et al. 2014). However, because such protocols usually do not 
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allow detecting most of the rare species, especially the clumped and low local density 

species (see ‘how to sample’ section), abundance-based SDMs are rarely accessible 

for rare species. 

 

If marked data are available, species occurrence and distribution modeling can be done 

using classical site-occupancy models and the different methods developed under the 

field of mark-release-recapture* analyses (Pollock et al. 1990, MacKenzie et al. 20017) 

(Table 3). However, these data are usually hardly available over large spatial scales 

(see ‘how to sample’ section).  

 

When unmarked occurrence data are available from spatio-temporally replicated 

measurements of presences/absences, and under the assumption of population 

closure, i.e. if the populations did not exchange propagules between the time steps 

under study, the Royle-Nichols model (Royle and Nichols 2003, Kéry and Royle 2015) 

allows estimating occurrence probability and can accommodate detection heterogeneity 

(Table 3; Figure 1d). When unmarked abundance data are available, N-mixture models 

are a good solution to estimate both detectability and abundances and have also proved 

their usefulness in large-scale species distribution modelling (Jakob et al. 2014, Guélat 

and Kéry 2018, Kéry 2018) (Table 3; Figure 1d). When some potential sources of 

measurement bias are known (e.g., type of observer, weather, vegetation density), 

these can be integrated as covariates in the latent state submodel (e.g. Cunningham et 

Lindenmayer 2005). When data are zero-inflated, one can apply variants of Royle-

Nichols model or N-mixture models that allow extra parameters and account for the 

overdispersion of the data. Several variants of N-mixture models have also been 

developed to address different situations related to spatial biases and scale-

dependence, such as variation of sampling grain size (Keil et al. 2018) or scales of 

environmental influence (Chandler & Hepinstall-Cymerman 2016). However, the 

assumptions allowing the application of such models are quite restrictive in the context 

of species distribution modelling and further simulation studies are needed to assess 

their performance on rare species when assumptions are not met. In addition, obtaining 

the abundance data needed by some of these models can be particularly costly and this 
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approach is not necessarily the most cost-effective strategy when it comes to tracking 

species distribution changes over time compared with presence/absence data (Joseph 

et al. 2006). 

 

When multiple sources of data are available (presences, presence/absence, 

abundance), recent works have shown that their combination within single modelling 

frameworks provides valuable insights into predicting species occupancy, abundance 

and/or distribution (Table 3). Even if available over restricted spatial extent, multiple 

sources of abundance data can be used in combination with other more extensive data 

such as occupancy surveys or opportunistic observations (e.g. Atlas or citizen science 

data). One can build HMs that include different submodels for the different sources of 

data, and potential detection biases and incorporate environmental data as potential 

predictors of occupancy and/or abundance. Such promising methods allow 

extrapolation and even comparison of rare species distribution across large spatial 

scales (e.g. Giraud et al. 2016; Bowler et al. 2019) and can potentially apply to all 

categories of rarity providing that relevant data sources are available and model is well 

built (Figure 1d).  

 

To summarize, model choice will mainly depend on the nature of the data, their 

overdispersion, and the spatial biases involved. Moving from presence only to 

presence/absence up to abundance in Figure 1d, there is a change in the temporal 

comparability of SDMs, and thus in our ability to track distributional changes. In the top 

row, the output is relative likelihood, which is non-comparable even for a given species 

over multiple time steps. Naïve presence/absence SDMs provide an estimate that does 

not separate the probability of occurrence from detectability, but if we assume 

detectability is constant across time and space, the resulting probability map is 

comparable for a given species over time. Finally, the population size row allows the 

separate estimation of detectability and probability of occurrence, which is comparable 

over time (and over species and space). This comparability is of high importance as it 

enables conservationists to assess change in the distribution of rare species and to 
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detect any distribution shrinkage that could lead to revising/updating the species status 

and protection needs. 

Conclusion and future perspectives 

Protecting species diversity implies protecting rare species. However, surveying and 

modelling rarity also implies considerable methodological difficulties. In this paper, we 

have identified how the main decisions on sampling strategy condition the properties of 

the data, and how these properties in turn condition the range of appropriate modelling 

methods. An exhaustive list of the multiple ways by which rare species can be sampled 

and modelled is beyond the scope of this paper and has been done elsewhere (e.g., 

Kenkel et al. 1990, Milner-Gulland and Rowcliffe 2007, Thompson 2013b). Instead our 

focus is the neglected issue of how to identify the main trade-offs we face when 

modelling the distribution of rare species, the decision path linking the form of rarity with 

the sampling and modelling strategies, and to summarize the main strategies that 

account for these trade-offs. We provide some guidelines to optimize monitoring and 

modeling of rare species depending on the characteristics of their rarity and that ensure 

the consistency between sampling methods and modeling approaches – ensuring the 

link in these steps of the same endeavor (Figure 1).  

 

Significant data on the occurrence of species is collected by numerous people, e.g. by 

citizen scientists (Chandler et al. 2017, Amano et al. 2016). Such data is highly valuable 

for monitoring biodiversity at different scales, but often biased and limited to specific 

areas. While there are ways to correct biases in citizen science data (Robinson et al. 

2017, Bird et al. 2014), for monitoring “rarest” species (i.e. narrow distributional range, 

clumped population, low local density), systematic species-targeted sampling design 

may be preferred. Significant advances are also expected to emerge from advanced 

remote sensing techniques, genetic tools and the use of detection dogs. Such 

approaches have the potential to significantly increase the detection rate of rare species 

at comparatively low costs, with more or less bias towards the species. Above all, future 

research is still needed to integrate the type of rarity more systematically, how and 
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where to sample with the selection and computational advances and the availability of 

appropriate models (Figure 1).  

 

Considering most forms of rarity, our synthesis highlights the particular potential of HMs 

as a flexible tool to improve rarity modelling while accounting for spatial, observer, and 

species-specific biases. In particular, advances in zero-inflation modelling clearly have 

to be better integrated into rare species distribution modelling as both the conceptual 

and technical foundations of these approaches are relevant to the rarity sampling and 

modelling issues. Considering the rarest forms of rarity, our synthesis suggests that 

recent HM developments to combine multiple sources of data are extremely promising, 

especially in the current context promoting open data, citizen science, and the rise of 

biodiversity synthesis science (Figure 1).  

 

Other promising perspectives have recently emerged, such as functional rarity 

modelling (Violle et al. 2017, Carmona et al. 2017) and the use of co-occurring species 

information (a.k.a. the “neighbourly advice”, McInerny and Purves 2011) and of positive 

associations among rare species (Calatayud et al. 2019, Hines and Keil 2020) as 

potentially valuable information to model rarity distribution. Other model developments 

include harnessing information from other sources that either directly inform a species’ 

distribution at larger scales, such as incorporating expert-drawn range maps (Merow et 

al., 2017) or elevational ranges (Ellis‐Soto et al., n.d.) as model offsets. Joint species 

distribution models (JSDMs) which model multiple species simultaneously to infer the 

species’ environmental response based on species co-occurrences (Ovaskainen & 

Soininen, 2011; Pollock et al., 2014), often incorporating ancillary information such as 

trait (Ovaskainen et al. 2011; Pollock et al., 2012) or phylogenetic similarity (Ovaskainen 

et al., 2017), also are a favorable place of further developments for rare species 

modelling. Finally, machine-learning based methods, including non-parametric methods, 

and methods tolerant to unstructured data, have shown promises for modelling and 

mapping rarity with strong predictive ability (e.g. Pouteau et al. 2012, Robinson et al. 

2018). Further research and sensitivity analyses are needed to assess the 
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appropriateness of all these methods in the workflow of rarity sampling and modelling, 

depending on the rarity type of the species.  
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Figures  

Currently: 5 items = 1 figure + 3 tables + 1 box 

 
Tables 1, 2, 3 
Non-exhaustive list of methods to assess (1) where to sample, (2) how to sample, and (3) how 
to model rare species data with their brief description, advantages and limits, the type of rarity 
for which they appear as most appropriate, and examples of references related. Inputs/outputs 
of modelling methods can be P (presences only), lik (presence likelihood), PA 
(Presences/Absences), ab (abundance), det (detectability information), pocc (probability of 
occurrence). Words with "*" refer to the Glossary (Box 1) 
 
Figure 1 
Synthesis infographic of (a) the Rabinowitz's seven categories of rarity, (b) examples of 
approaches to assess where to sample depending on the rarity category, (c) examples of 
approaches to assess how to sample depending on the rarity category and species local 
density, and (d) examples of modelling approaches to predict and map species distribution 
depending on the type of data generated in previous steps (a) and (b). Note that most of the 
methods can be used in more than one situation, but for the simplicity of the figure, we did not 
systematically repeat them and rather highlighted the methods we considered as the most 
useful or relevant.  
References:  [1] Breiner 2014, [2] Lomba 2010, [3] Chen 2012, [4] Fithian 2014, [5] Marcer 
2013, [6] Keil 2013, [7] Rocchini et al. 2017, [8] El-Gabbas 2017, [9] Radosavljevic 2014, [10] 
Boria 2014, [11] McKenzie 2017, [12] Royle & Nichols 2003, [13] Kéry & Royle 2015, [14] 
Willson et al. 2011, [15] Nichols et al. 2008, [16] Giraud 2016, [17] Bowler et al. 2019, [18] 
Joseph et al. 2009, [19] Cunningham & Lindenmayer 2005, [20] Chandler et al. 2011 
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Tables caption 
Non-exhaustive list of methods to assess (Table 1) where to sample, (Table 2) how to sample, and (Table 3) how to model rare species data with their brief 
description, advantages and limits, the type of rarity for which they appear as most appropriate, and examples of references related. In Table 3: inputs/outputs 
can be P (presences only), lik (presence likelihood), PA (Presences/Absences), ab (abundance), det (detectability information), pocc (probability of 
occurrence). Words with "*" refer to the Glossary (Box 1). References are listed at the end. 

Table 1. Where to sample? 
Method Brief description Pros Cons Suitable for 

which rarity 
categories? 

References 

Accumulated 
opportunistic 
observations 

Sampling locations are 
not chosen but emerge 
from external 
contribution of various 
sources, e.g. data from 
citizen science programs 
free from any 
observation protocol 

- depending on the species 
attractivity and ease of 
detection/identification, a large 
number of observations can be 
accumulated over time, with 
minimal investment of time and 
funds 
- can detect new populations and 
species 
- may be used to create atlas data 
- rare species receive particular 
attention 

- sample not representative of the 
entire extent 
- species-targeted 
- absences usually not reported, 
presence-only data 
- sampling effort varies through time 
- mainly done for charismatic taxa 
- risk of misidentification in the case 
of non-expert observations 
(particularly critical as even a small 
fraction of miss-IDed common 
species may swamp the true records 
of a rare species) 

All Chandler et al. 2017 
(iNaturalist);  
Sullivan et al. 2017 
(eBird); 
Deguines et al. 2012 
(spipoll) 

Simple random 
sampling 

Random selection of the 
locations, i.e. all the 
locations of the study 
area have the same 
probability to be 
sampled 

- spatially unbiased sample 
- objective and well-defined 
- sample representative of the 
study extent 
- temporally comparable samples 
- no target species, multi-species 
sample 

- ignores environmental/habitat 
variability 
- rare species are unlikely to be 
detected in sufficient numbers, even 
in huge samples 

Cat4 Greg-Smith 1964; 
Diekmann et al. 2007; 
Hedgren & Weslien 
2008 

Systematic 
sampling 

Sampling according to a 
fixed spatial interval(s) 
that depends on the 
predefined total number 
of locations to be 

- simple to implement, no need of 
external information nor a priori 
species-specific knowledge 
- more cost-efficient than simple 
random sampling as it guarantees 

- needs prior information on total 
number of sites to be sampled 
- detection strongly depends on the 
choice of the spatial interval of the 
sampling and on the starting point of 

Cat4 (and Cat5 
if habitats are 
organised 
randomly) 

Madow 1953;  
Fortin et al. 1989 
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sampled in the study 
area, e.g. plots arranged 
along a regular grid or 
(equidistant) transects 
that cover the space 
evenly (hyper dispersed 
distribution of samples) 

even distribution of sites and good 
coverage of the study area 
- temporally comparable samples 
- no target species, multi-species 
sample 

the sampling, e.g. in clumped 
populations species, if sampling 
interval is the same order of 
magnitude as the clumping interval, 
the sample will not be representative 
of the species distribution (will either 
under- or over-detect the species 
depending on the starting point) 

Stratified sampling Sampling organised with 
respect to a 
categorisation deemed 
to be important for the 
community or species of 
interest, e.g. habitat type 

- sample representative of the 
study extent with respect to the 
stratification factor 

- depends on subjective a priori, or a 
priori ecological knowledge 

Cat1, Cat3, 
Cat5, Cat7 (if 
we consider that 
for non 
specialist 
species, habitat-
stratified 
sampling would 
work worse) 

Thompson W.L. 2013 

Adaptive (cluster) 
sampling / prior-
informed sampling 

Sampling design where 
the sites selection 
depends on previous 
sampling raw outcomes, 
either from the overall 
survey, e.g. adaptive 
cluster sampling 
consists in searching for 
a species in a given 
location and if the 
species is found, 
searches continue 
nearby (neighborhood 
shape can vary 
according to the study 
needs), or from other 
surveys, i.e. the sites 
selection depends on 
external source of 
information and/or belief 
on the species potential 
presence, e.g.  atlas 
data  

- accurate estimations of species 
abundances 
- appropriate for rare, clustered 
and unevenly distributed species 

- not widely used in ecological 
studies 
- efficiency depends on the spatial 
distribution of the species 
- difficult to know the final sample 
size needed prior to the survey 
- data collection process is 
complexified 
- not fully adapted yet to mobile 
species, sensitive species and 
habitats (side-effects of intensive 
sampling) 
- resulting data biased towards the 
species of interest 
- sampling effort varies through time 

Cat2, Cat3 Krebs et al. 1989;  
Yoccoz et al. 2001;  
Thompson S.K. 1990; 
2013;  
Thompson W.L. 2002 
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SDM*-guided 
sampling 

Sampling locations are 
drawn from a probability 
surface generated by 
modelling the know P/A 
of a species against 
environmental predictors 
and extrapolating the 
model in space and 
time, e.g. SDM profiling, 
adaptive niche-based 
sampling 

- sampling coverage optimisation 
- allows a systematic and 
exhaustive pre-selection of 
suitable locations 

- time-consuming process 
- requires predictor layers (with good 
spatial and thematical resolution for 
narrow range species) 
- subject to model error and 
uncertainty 
- may work better for specialist 
species that are not too much 
dispersal limited (niche-based 
modelling) 

Cat1, Cat3 
(potentially 
Cat5, Cat 7 if 
clumping is not 
due to dispersal 
limitations)  

Le Lay et al. 2010; 
Aizpurua et al. 2015;  
Chiffard et al. 2020 
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Table 2. How to sample? 
Method Brief description Pros Cons Suitable for 

which rarity 
categories? 

References 

Standardized sampling  Sampling with commonly 
use methods following a 
standardized protocol 
(e.g.quadrats, transects, 
traps, etc.) without any 
adaptation to increase the 
probability of detecting 
rare species, e.g. 
biodiversity observatories 

- detection of a large number 
of species 
- data comparable across 
locations 
- unbiased with respect to 
sampling effort 

- rare species less likely to be 
detected when populations have 
low local density 

Cat1, Cat2, Cat3 Enquist et al. 2016 
(BIEN);  
Bruelheide et al. 2019 
(sPlot); 
Risely et al. 2010 
(Britsh Trust for 
Ornithology); 
Jiguet et al. 2012 
(French Breeding Bird 
Survey) 

Occupancy sampling Sampling that consists of 
repeated sampling 
following a standardized 
protocol within a period 
during which the targeted 
species remain available 
for detection 

- multi-species; allows 
estimating detection 
probability that can be used to 
obtain unbiased 
preence/absence data 

- effort required is high unless 
detection probability is high  
- may require survey methods 
targeted to particular rare 
species, such as lures 

All MacKenzie & Royle 
2005; MacKenzie et al. 
2017 

Distance sampling Sampling that consists in 
recording the distance 
from the observer to the 
organism when detected. 
This information can then 
be used to adjust 
sampling strategy and to 
correct for detection 
probability in prediction 
models  

- multi-species - requires expert knowledge 
(able to identify species at 
different distances within a 
given radius)  
- locally rare species will not 
provide sufficient observations 
for reliable estimates of 
abundance 

Common species, 
Cat2 

Rosenstock et al. 2002; 
Buckland et al. 2015 

Species-targeted 
sampling  
(or species-specific 
sampling) 

Sampling specifically 
designed for given locally 
rare species, based on 
fine information on the 
species' habits, to 
increase the encounter 
rate, e.g. traps with 
specific food items or 
pheromone baits  

- highly efficient in detecting 
rare species of interest 
- fine resolution data 

- intensive field work 
- cannot cover large spatial 
extent (but see promising 
methods such as detection 
dogs) 
- species-targeted 

All Grimm & Klenke 2019;  
Grimm et al. 2019 
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Mark-Release-
Recapture* sampling 

Sampling that consists in 
capturing, marking and 
releasing individuals of 
given species in order to 
keep track of their identity 
and be able to estimate 
capture rate and 
population parameters 

- under particular 
assumptions, allows 
estimating population 
parameters, such as 
population size, fecundity, etc. 
- fine resolution data 

- highly time-consuming and 
field-work intensive 
- cannot cover large spatial 
extent 
- species-targeted 

Cat1, Cat2, Cat3 Williams et al. 2002 

Passive sampling Sampling based on the 
setting up of devices that 
automatically record 
species passing within a 
certain radius, e.g. camera 
trapping, acoustic 
sampling 

- allows large-scale surveys 
- multi-species 

- non-specific, detects any 
species as well as noise 
- costly in terms of resources (to 
buy devices, process data, etc.) 

Cat3, Cat7 (+ 
Cat2, Cat6 if 
devices can be 
set anywhere) 

Schüttlera et al. 2016 
(camera trapping) 
Jeliazkov et al. 2016 
(acoustic sampling) 

eDNA Sampling based on DNA 
extraction from the 
environment (e.g. water, 
soil, sediments, snow) 
coming from cells of 
organisms that are and/or 
were present at some 
point in the environment. 
Specific or unspecific 
primers can be used to 
amplify eDNA samples, 
depending on whether the 
survey targets specific 
species, or the whole 
community, respectively 

- rapid survey at large scales, 
cost-effective 
- species-targeted as well as 
multi-species assessments 
- high detection power 
- non-invasive method 
- no licence constraints for 
protected species 
- in some cases, can provide 
semi-quantitative estimation of 
abundances  

- detectability depends on 
several parameters whose 
effects can be confounded with 
actual ecological responses, 
e.g. environmental conditions 
such as UV light, temperature, 
water flow, but also the activity 
and density of animals, their 
residence time, etc. 
- the importance of primer 
specificity 

Cat1, Cat2, Cat3 
(+Cat5, Cat7 if we 
consider that at 
low population 
density, habitat 
specificity may 
ensure higher 
eDNA 
concentrations 
than habitat 
unspecificity) 

England et al. 2005;  
Taberlet 2012; 
Bohmann et al. 2014;  
Rees et al. 2014;  
Jerde et al. 2011;  
Pilliod et al. 2014;  
Wilcox et al. 2013;  
Beng & Corlett 2020 
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Table 3. How to model? 
 

Method Brief description Pros Cons Suitable for 
which 
rarity 
categories
? 

Examples /  
references 

Input data -> Output 
calculated/estimated*
* 

Data 
processing 

Data 
processing 

Different processing 
strategies can be 
applied on data prior 
to actual modelling 
which allows making 
data more 
appropriate, more 
powerful, or more in 
line with the 
assumptions of 
subsequent 
modelling; e.g. 
combine 
opportunistic 
observations with 
atlas data, correct 
biases in presence-
only data, data 
transformations (e.g. 
abundances into 
rank abundance 
curves) 

- data-saving, 
allows using the 
maximum of 
information 
available 

- often requires to 
take arbitrary 
decisions to select 
thresholds, 
correcting factors, 
etc. 

All Fithian et al. 2015; 
Phillips 2009 (correct 
biases in presence-only 
data);  
Nekola et al. 2008 (data 
transformations) 

PA -> PA 
ab -> ab 

Modelling 
methods 
commonly 
grouped 
under 
"SDMs*" 

Regular SDMs 
with absence 
data 

SDMs with no 
particular correction 
effect nor 
sophistication when 
enough data are 
available and meet 
all modelling 
assumptions (rarely 
the case), e.g. GLM 

- simple - requires absence 
data 
- often too 
simplistic, resulting 
in strongly biased 
results  
- can suffer 
overfitting if the 
number of 
predictors is too 
high compared to 

Common 
species 

Guisan & Zimmermann 
2000 

PA -> relative pocc 
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too few species 
occurrences 
- assumes that 
habitat suitability is 
the most limiting 
driver of species 
distribution 
- doesn't control for 
sampling biases or 
variable detectability 

SDMs + 
pseudo-
absences 

SDMs where no 
absence data is 
unavailable. Models 
either attempt to 
generate absences 
where they believe 
the species to be 
absent (pseudo-
absences) or sample 
environmental 
conditions available 
to the species 
(background points) 

- simple 
- only requires 
readily-available 
presence data 

- requires data and 
prior knowledge on 
habitat suitability 
- assumes that 
habitat suitability is 
the most limiting 
driver of species 
distribution 

Common 
species 

Barbet-Massin et al. 2012 P (+background data) -
> relative lik 

Bias-corrected 
SDMs 

(Hierarchical) SDMs 
accounting for 
different, potential 
sources of biases 
due to spatial 
location, 
autocorrelation, 
observation effects, 
etc. Examples of 
models are mixed 
effect models with 
an observer random 
effect, models 
accounting for 
spatial auto-
correlation, SDMs 
with model-based 
bias correction, zero-
inflated models that 

- accurate 
- particularly 
appropriate and 
flexible for rare 
species modelling 
- hypothesis-driven 

- interpretation 
sometimes difficult 
- hypothesis-driven 
- requires 
information on 
observational 
conditions 

All Dormann et al. 2007, 
Marcer 2013 (models 
accounting for spatial auto-
correlation);  
Fithian 2014 (mixed effect 
models with an observer 
random effect); 
El-Gabbas 2017 (SDMs 
with model-based bias 
correction); 
Zuur et al. 2009 (zero-
inflated models) 

P -> relative lik 
PA -> relative pocc 
ab+det -> relative ab 
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allow modelling true 
and false absences 
separately 

Multi-scale 
SDMs 

Models incorporating 
distribution 
information at 
multiple grain sizes 
- information from 
distribution data at 
multiple grain sizes 
constrain fine-grain 
predictions 
- information on 
environmental 
conditions at multiple 
grain sizes used as 
inputs 

- processes that 
operate at multiple 
spatial scales, and 
ones unrelated to 
environmental 
relationships, can 
be incorporated in 
to model 
predictions 

- complicated fitting 
frameworks 

Common 
species 

Keil 2013 (hierarchical 
models incorporating 
distribution information at 
multiple grain sizes);  
Rocchini et al. 2017 

PA -> relative pocc 
P -> relative lik 

Geographically
-structured 
SDMs 

SDM procedure that: 
1) splits evaluation 
data based on 
spatial clustering of 
the data; 
2) using modelling 
data (e.g. creation of 
pseudo-absence/ 
background data), 
incorporates spatial 
bias of presence 
data or taxonomic 
group 

- can use most 
traditional SDM 
algorithms (only 
affects input data) 
- reduces the risk 
of overfitting data 
to spatial biases in 
sampling data 

- assumes that 
habitat suitability is 
the most limiting 
driver of species 
distribution 
- can cause nearly 
all data to be 
assigned to 1-2 
folds, and other 
folds being 
constructed with v. 
few occurrence 
points 

Common 
species 

Radosavljevic & Anderson 
2014; 
Philips et al. 2009 

PA -> relative pocc 
P -> relative lik 

Spatial-thinning 
SDMs 

SDM procedure that 
consists in removing 
spatially clustered 
occurrence points to 
reduce the spatial 
autocorrelation in 
input data  

- can use most 
traditional SDM 
algorithms (only 
affects input data) 
- reduces the 
spatial 
autocorrelation in 
input data 
- reduces the risk 
of overfitting data 
to spatial biases in 
sampling data 

- assumes that 
habitat suitability is 
the most limiting 
driver of species 
distribution 
- reduces quantity of 
modelling data 

Common 
species 

Boria et al. 2014 PA -> relative pocc 
P -> relative lik 
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Ensemble of 
multiple 
SDMs 

Ensemble 
SDMs 

Procedure that takes 
outputs from several 
algorithms of SDMs, 
weights these 
outputs based on 
respective model 
performances (using 
e.g. AIC) and 
generates single 
'consensus' 
predictions by model 
averaging methods 

- does not rely on 
single best model 
- ensemble 
predictions 
perform better 
compared to single 
modelling 
techniques 
- can use variance 
between models 
as estimate of 
uncertainty 

- all the cons of 
SDM approaches 
above 
- model averaging 
also has limitations 
(e.g. sensitivity to 
performance score 
and thresholds 
used) 

Common 
species 

Araújo & New 2006 PA -> relative pocc 
P -> relative lik 

Ensemble of 
Small Models 
(ESM) 

Strategy that 
consists in modelling 
the distribution of 
rare species 
based on fitting a 
larger number of 
small (bivariate, 
trivariate, etc.) 
models, 
that is models with 
only two predictors 
at a time (although 
only one or three 
could also be used), 
and averaging them 
in an 
ensemble prediction 
using weights based 
on model 
performances (e.g. 
based on AUC 
score). 

- circumvents the 
risk of overfitting 
when applying an 
SDM on too few 
occurrences data 
- excellent 
performance on 
species data with 
low number of 
occurrences 
- allows structuring 
the modelling 
framework 
according to 
different scales of 
drivers of species 
distribution (e.g. 
local vs. climatic 
predictors) 

- requires to choose 
thresholds of 
performance scores 
to decide which 
models are included 
in the ensemble 
- remains unclear 
how this method 
performs for the 
different forms of 
rarity, especially the 
spatially-biased 
ones, as it is mainly 
based on the 
number of 
occurrences and 
related IUCN status 
- ESM performance 
(compared to both 
single-model 
Regular SDM and 
standard Ensemble 
SDMs) depends on 
the number of 
species 
occurrences 
available in the data 

Cat4, Cat6 
(low density 
but spatially 
dispersed) 

Lomba 2010;  
Breiner et al. 2015 

P -> relative lik 
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Bayesian 
Belief 
Network 
SDMs 

Bayesian Belief 
Network SDMs 

(a.k.a. Bayesian 
networks, causal 
probability networks, 
acyclic directed 
graphs) Statistical 
tool derived from 
graph theory and 
Bayesian inference 
that predicts the 
probability of 
ecological responses 
to varying input 
assumptions such as 
habitat and 
population 
demography 
conditions and to 
hypothesized causal 
relationships. 

- all the pros 
related to 
Bayesian 
statistical 
frameworks: 
flexibility, 
accounting and 
quantification of 
uncertainties, 
integration of prior 
knowledge 
information on the 
rare species of 
interest, easily 
updatable with 
new data / 
information, etc. 
- integration, 
assessment and 
visualization of 
causal pathways 
to explain species 
distribution 
- due to its visual 
nature and relative 
ease of use, highly 
suitable for 
participatory 
modelling 

- requires to 
discretize input 
predictors with 
choices of 
thresholds which 
can lead to class 
edge effects (but 
see Aguilera et al. 
2010) 
- more appropriate 
for risk or 
conservation 
category 
assessment than for 
predicting or 
mapping species 
distribution 
- assumptions and 
reasoning behind 
the hypothesized 
influence diagram 
must be clearly 
documented/justifie
d as the latter 
strongly influences 
predictions 

Potentially 
all (provided 
that enough 
prior 
knowledge 
and 
validation 
data are 
available) 

Marcot et al. 2006a,b; 
Smith et al. 2007; 
Aguilera et al. 2010; 
Chen & Pollino 2012; 
MacCracken et al. 2012; 
Hamilton et al. 2015; 
Van Echelpoel et al. 2015 

P -> relative lik 
PA -> relative pocc 
ab -> relative ab 

Occupancy* 
downscalin
g modelling 

Occupancy* 
downscaling 
modelling 

Models that describe 
the OAR* are fitted 
at large grain sizes 
to atlas data and 
then extrapolated to 
predict occupancy at 
fine grain sizes. 

- by aggregating 
data at large 
scales, overcomes 
sampling gaps 
(false abences in 
atlas data) and 
effects of sampling 
biases 
- no need for 
covariates 

- needs some atlas 
data 
- only determines 
occupancy in terms 
of proportion of sites 
or area occupied, 
i.e. not spatial-
explicit 
- may be subject to 
some 
errors/uncertainty 
from the models 
- requires to think 

Cat1, Cat2, 
Cat4, Cat5, 
Cat6 

Azaele et al. 2012;  
Barwell et al. 2014; 
Marsh et al. 2019 

PA (atlas data) -> 
occupancy (as the 
proportion of sites or 
area occupied) 
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carefully about how 
to fit the upscaling 
functions 
- may not be 
possible to fit 
models for some 
species - e.g. very 
rare, dispersed 
species, or very 
common 
widespread species 
- as the OAR* 
reaches the scale of 
endemism or 
saturation 

Modelling 
methods 
commonly 
grouped 
under "site-
occupancy* 
models"  

Mark-release-
recapture* 
modelling 
(robust design) 

HM* using mark-
recapture histories to 
estimate population 
parameters 
(colonization, 
extinction, etc.), 
occurrence 
probability, and 
detectability. 
Requires to fulfill the 
population closure 
assumption between 
the temporal 
replicates and to 
have relatively good 
temporal replication 
(robust design). Can 
use covariates to 
estimate detectability 
and other potential 
biases. 

- provides 
accurate 
estimations of 
population 
parameters (e.g. 
population size, 
survivorship, 
fecundity)  
- provides 
accurate 
estimations of 
detectability (e.g. 
trap 
happiness/shynes
s effects, time-
varying capture, 
sex-dependent 
detectability) 
- thanks to the 
robust design 
principle, if one 
has multiple visits 
that are separated 
by sufficiently 
short periods of 
time, one can 
consider each visit 

- hypothesis-driven 
- computationally 
intensive 

All, 
especially 
for Cat4, 
Cat5, Cat6, 
Cat7 (low 
local 
density) but 
for low local 
density, it 
may be 
challenging 
to get 
enough data 
for reliable 
estimates 

Pollock et al. 1990;  
MacKenzie et al. 2002; 
MacKenzie 2006;  
Willson et al. 2011 

PA+det -> pocc 
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as fulfilling the 
assumption of 
population closure 

Multi-scale 
occupancy 
models 

HM* site-occupancy 
model that allows 
estimation of 
occupancy at 
different spatial 
scales to account for 
different scales of 
habitat, 
environmental, 
ecological or 
sampling influences; 
e.g. local habitat vs. 
landscape-scale 
effects. The 
approach accounts 
for the lack of 
independence of 
detections within a 
sampling occasion 
and use this 
dependence to infer 
scale-specific 
occupancy, namely 
the study area scale 
and the site scale. 
This method is a 
variation of the 
classical site-
occupancy model 
robust design, 
except that it does 
not model seasonal 
colonizations 
and extinctions, but 
simply presence or 
absence at the 
sample unit. 

- accounts for the 
scale-dependence 
of occupancy 
estimation 

- hypothesis-driven 
- requires good data 
with sufficient 
spatial-temporal 
replicates and 
detections 

All, 
providing 
that 
sufficient 
spatial-
temporal 
replicates 
are 
available 

Nichols et al. 2008; 
Mordecai et al. 2011.  
Pavlacky et al. 2012; 
Hagen et al. 2016;  

PA+det -> pocc 

N-mixture 
models 

Royle-Nichols 
models (RN) or 

HM* that estimate 
species occurrence 

- provides two 
useful estimates : 

- requires a 
sufficient amount of 

All, 
especially 

Royle & Nichols 2003;  
Kéry & Royle 2015 

PA+det -> pocc 
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Bernoulli-
Poisson N-
mixture models 
(for 
occurrences) 

probability using 
different submodels 
(and potentially 
different sets of 
predictors) for the 
"detection" and the 
"occurrence" 
processes. RN 
model provides the 
conceptual links 
between the N-
mixture models for 
abundances and the 
classical site-
occupancy* models. 
RN can estimate 
abundances from 
spatio-temporally 
replicated 
measurements of 
presences/absences
, can accommodate 
detection 
heterogeneity when 
focusing on 
occupancy and can 
link occupancy and 
abundance data in 
an integrated model. 
Some people 
consider RN as an 
occupancy model 
because the 
modeled data are 
identical. Can 
account for spatial 
autocorrelation using 
covariates as 
random or fixed 
effects 

one for the 
detection 
probability and 
one for the 
occurrence 
probability 

spatio-temporal 
replications in the 
data 
- requires good sets 
of predictors for 
both the detection 
and the occurrence 
parts of the model 

for Cat4, 
Cat5, Cat6, 
Cat7 (low 
local 
density) 



Sampling and modelling rare species 

15 

N-mixture 
models for 
abundances 

HM* that estimate 
species abundances 
using different 
submodels (and 
potentially different 
sets of predictors) 
for the "detection" 
and the "abundance" 
processes. For 
instance, in "The N-
mix" model, the 
detection probability 
can be estimated 
based on a binomial 
function of some 
predictors assumed 
as relevant to the 
detection process 
(e.g. vegetation 
density). This 
estimation is then 
incorporated in a 
(mixed) Poisson 
model that estimates 
species abundances 
(based on predictors 
relevant to the 
species ecology) 
while weighting by 
the imperfect 
detection (weighted 
likelihood). 
Examples of N-
mixture models are: 
zero-inflated, 
Poisson-binomial, 
multinomial, 
Poisson-Poisson, 
multiscale N-mixture 
models, hurdle 
models, spatially-

- provides two 
useful estimates : 
one for the 
detectability and 
one for the relative 
abundances 
- provides fine 
estimation of 
species relative 
abundances  
- with a sufficient 
amount of data 
and in some 
circumstances, 
some of these 
models can be 
used relaxing the 
population closure 
assumption 
- zero-inflated and 
hurdle models are 
particularly 
interesting for rare 
species (due to 
high risk of data 
overdispersion), 
quite intuitive to 
use and relatively 
easy to apply even 
in a likelihood 
framework 

- most of these 
models require 
good quality and 
large amount of 
abundance data 
with both spatial 
and temporal 
replications (except 
zero-inflated and 
hurdle models) 
- computationally 
intensive 
- requires good sets 
of predictors for 
both the detection 
and the abundance 
parts of the model 

All, 
especially 
for Cat4, 
Cat5, Cat6, 
Cat7 (low 
local 
density) 

Welsh et al. 2000, Martin et 
al. 2005, Joseph et al. 
2009 (zero-inflated N-
mixture models); 
Royle 2004, Denes et al. 
2015 ("The N-mix" model); 
Kéry & Royle 2015 
(Poisson-binomial/Poisson-
Poisson/multinomial/densit
y models); 
Cunningham & Lindemayer 
2005, Fletcher et al. 2005, 
Zuur et al. 2009 (hurdle 
models); 
Chandler & Hepinstall-
Cymerman 2016 
(multiscale N-mixture 
models) 

ab+det -> relative ab 
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explicit density 
models 

Occupancy 
or 
abundance 
modelling 
with 
multiple 
detection 
methods 

Occupancy or 
abundance 
modelling with 
multiple 
detection 
methods 

HM* that permits 
simultaneous use of 
data from multiple 
detection methods 
for inference about 
method-specific 
detection 
probabilities. The 
approach accounts 
for the lack of 
independence of 
detections within a 
sampling campaign 
and use this 
dependence to infer 
method-specific 
occupancy and 
detectability.  

- can be used with 
data that are 
produced by 
different sampling 
methods and 
devices (provides 
device-specific 
detection 
probability 
estimates for use 
in survey design) 

- if the species of 
interest is locally 
rare or solitary, and 
one of the detection 
devices is a method 
that retains (a trap) 
or repels (a 
camera’s flash) an 
individual upon 
detection, then the 
model needs to be 
extended to include 
different device-
specific detection 
probabilities that 
differ based on 
whether or not the 
species was 
detected by one of 
the other devices at 
the immediate 
sampling site 

All, 
especially 
for Cat4, 
Cat5, Cat6, 
Cat7 (low 
local 
density) 

Nichols et al. 2008; 
Giraud et al. 2016; 
Bowler et al. 2019 

PA+det -> pocc 
ab+det -> relative ab 
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