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a b s t r a c t

Despite the well-recognized role of the posterior parietal cortex (PPC) in processing sensory informa-
tion to guide action, the differential encoding properties of this dynamic processing, as operated by
different PPC brain areas, are scarcely known. Within the monkey’s PPC, the superior parietal lobule
hosts areas V6A, PEc, and PE included in the dorso-medial visual stream that is specialized in planning
and guiding reaching movements. Here, a Convolutional Neural Network (CNN) approach is used to
investigate how the information is processed in these areas. We trained two macaque monkeys to
perform a delayed reaching task towards 9 positions (distributed on 3 different depth and direction
levels) in the 3D peripersonal space. The activity of single cells was recorded from V6A, PEc, PE and
fed to convolutional neural networks that were designed and trained to exploit the temporal structure
of neuronal activation patterns, to decode the target positions reached by the monkey. Bayesian
Optimization was used to define the main CNN hyper-parameters. In addition to discrete positions in
space, we used the same network architecture to decode plausible reaching trajectories. We found that
data from the most caudal V6A and PEc areas outperformed PE area in the spatial position decoding.
In all areas, decoding accuracies started to increase at the time the target to reach was instructed to
the monkey, and reached a plateau at movement onset. The results support a dynamic encoding of the
different phases and properties of the reaching movement differentially distributed over a network of
interconnected areas. This study highlights the usefulness of neurons’ firing rate decoding via CNNs to
improve our understanding of how sensorimotor information is encoded in PPC to perform reaching
movements. The obtained results may have implications in the perspective of novel neuroprosthetic
devices based on the decoding of these rich signals for faithfully carrying out patient’s intentions.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The posterior parietal cortex (PPC) houses several areas impli-
ated in the integration of sensory stimuli (e.g., visual, somatosen-
ory) to guide interaction with the surrounding environment
Andersen & Cui, 2009a; Medendorp & Heed, 2019). Sensory
nformation flows through different parietal areas, and different
teps of integration support the movement control required for
he interaction. A first functional subdivision was proposed by
ngerleider and Mishkin (Goodale & Milner, 1992; Ungerleider
Mishkin, 1982) with the division into ventral stream, from

ccipital to temporal lobe, the what way, and dorsal visual stream,
o the parietal lobe, the where way. Subsequent division of the
dorsal pathway into medial and lateral streams attributed the
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ttps://doi.org/10.1016/j.neunet.2022.03.044
893-6080/© 2022 The Authors. Published by Elsevier Ltd. This is an open access a
c-nd/4.0/).
superior parietal lobule (SPL) to the branch of the medial dorsal
stream, which host areas implicated in the spatial control of
the action, against the areas of the inferior parietal lobule, more
involved in the control of the properties of grasping (Galletti,
Kutz, Gamberini, Breveglieri, & Fattori, 2003; Rizzolatti & Matelli,
2003). In humans, lesions localized in the SPL lead to severe
deficits in estimation and awareness of the spatial position of
objects to be reached, such as those reported in optic ataxia
(Karnath & Perenin, 2005; Pisella et al., 2010).

Within PPC, V6A, PEc and PE are three contiguous areas lo-
cated in the medial part of the SPL. V6A, the most caudal area of
the SPL, hosts neurons modulated by different parameters linked
to visuomotor coordination, including gaze signals
(Galletti, Battaglini, & Fattori, 1995; Hadjidimitrakis, Breveglieri,
Bosco, & Fattori, 2012; Hadjidimitrakis et al., 2011), direction and
amplitude of reaching (Fattori, Kutz, Breveglieri, Marzocchi, &
Galletti, 2005; Hadjidimitrakis et al., 2014) and spatial attention
(Galletti et al., 2010). Rostrally to V6A, PEc maintains visual
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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nd reach related modulations but corroborated by increasing
omatosensory inputs (Gamberini et al., 2018; Hadjidimitrakis,
al Bo’, Breveglieri, Galletti, & Fattori, 2015). Finally, PE strongly
espond to proprioceptive stimulation with a limited presence
f visual information (De Vitis et al., 2019; Seelke et al., 2012).
he segregated functional properties of these areas support the
dea that caudal SPL (V6A) encodes for spatial position of tar-
ets, while rostral areas (PEc-PE) actively support the movement
ontrol and execution relying on prominent sensory feedbacks
Breveglieri, Galletti, Monaco, & Fattori, 2008; Cui & Andersen,
011; Gamberini et al., 2018; Hadjidimitrakis et al., 2015). Given
he latency in the feedback inputs, the system must implement
n internal model of surrounding environment (and the conse-
uences of actions performed in the environment) and expected
eedbacks. Indeed, comparing expected with real feedback en-
bles a much more powerful dynamical interaction with the
nvironment. This model has been proposed to run in the PPC
Land, 2014; Medendorp & Heed, 2019; Mulliken, Musallam, &
ndersen, 2008a).
Despite the presence of numerous studies, a clear understand-

ng of how these PPC’s areas differentially encode visuomotor
nformation to dynamically guide action is still lacking. In particu-
ar, these areas have been mostly characterized at single cell level
De Vitis et al., 2019; Hadjidimitrakis et al., 2014, 2015) while,
t the best of our knowledge, no work has comprehensively
onsidered and directly compared the dynamics of information
ncoded, at the population level, in these three areas. Neural
ecoding, i.e., the use of activity recorded from multiple brain
ources to predict variables in the external word, represents a
seful tool to characterize how much information a given area
ontains about an external variable and how this information
iffers across different areas (Glaser et al., 2020). The attainment
f different decoding performances when building separate de-
oders, e.g., each using neural activity from a different PPC area,
ay be indicative of a different amount of information encoded

n each population.
Machine learning (ML) algorithms are widely used to design

eural decoders (Glaser et al., 2020). Deep learning – a recently
roposed branch of ML recently proposed in the computer vision
ield (LeCun, Bengio, & Hinton, 2015) – exploits models designed
y stacking layers of artificial neurons, i.e. deep neural networks
DNNs). Remarkably, DNNs are capable to handle raw/lightly
re-processed neural time series as input, automatically learning
uring a training process the more relevant features to decode
he brain states of interest while exploiting all the information
ontained in the input signals. Therefore, DNNs represent an
mportant advantage over more traditional ML approaches; the
atter first extract and select features from input neural time
eries, and then finalize the decoding task, resulting in a workflow
ore driven by a priori knowledge about the expected underly-

ng neural correlates. Furthermore, conversely to ML algorithms,
NNs provide a direct processing of the information from the
eural signals to the desired output (in an end-to-end fashion),
escribing in general a complex non-linear function mapping
nput signals to desired outputs. Nevertheless, DNNs have some
imitations, such as the introduction of many trainable parame-
ers and the introduction of a second set of parameters, named
yper-parameters, that define the functional form of the decoder
nd must be set before the DNN training (e.g., the number of
ayers, the number of neurons per layer, etc.). Among DNNs,
ecurrent Neural Networks (RNNs) were used to decode arm
inematics from spiking activity (Sussillo et al., 2012; Tseng,
rpi, Lebedev, & Nicolelis, 2019) also from PPC signals (Sanchez,
rdogmus, Nicolelis, Wessberg, & Principe, 2005; Shah et al.,
019), generally using complex and heavy architectures (in terms

f architecture structure and number of trainable parameters,
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respectively), with a fixed configuration selected via empirical
evaluations (i.e., manual selection) or selected without any ex-
plicit criterion, and hardly interpretable. Therefore, these DNNs
do not represent a parsimonious use of trainable parameters and,
due to the high number of trainable parameters, DNNs could be
more prone to overfit small datasets (commonly recorded in prac-
tice). Furthermore, the adoption of manual selection to define the
DNN structure and assign hyper-parameters could lead to sub-
optimal decoding results, limiting the potentialities of DNNs, and
require manual effort to be performed. Convolutional Neural Net-
works (CNNs) could also be used without hampering the decoding
performance, reducing the number of trainable parameters with
respect to RNNs and being easier to be interpreted in the learned
features (Tjoa & Guan, 2020). These algorithms are inspired by the
hierarchical structure of the ventral stream of the visual system
and thus, automatically learn hierarchical representations of the
input signal with multiple levels of abstraction (Yamins et al.,
2014). Despite being scarcely applied for the decoding of brain
states directly from the neuron activity, there is a growing inter-
est in the design and application of CNNs over other DNNs (such
as RNNs), as reported in related fields of electroencephalogram
decoding (Craik, He, & Contreras-Vidal, 2019; Simões et al., 2020).
In addition, techniques aimed to automatically search the optimal
hyper-parameter configuration of the decoder, such as Bayesian
Optimization (BO), could be used to automatically design decoder
functional forms without relying on mere empirical evaluations.

The aim of this study is to develop and use CNNs to accurately
decode external variables (reaching goal and trajectory) from PPC
neural activity. CNNs were used to catch temporal dynamics and
model non-linearity distinctive of high-order areas. To this end,
we recorded the activity of single neurons from macaque V6A,
PEc, and PE areas while monkeys were performing a delayed
reaching 3D task to 9 reaching targets. We approached two dif-
ferent decoding problems for a wider validation of CNNs. At first,
we performed the classification of the 9 discrete spatial positions;
this problem was addressed by predicting the output class as a
function of time within the reaching trials, providing a dynamic
decoding of the end-point during the reaching phases. To test
whether the non-linear input/output mapping as performed by
DNN methods was superior then simpler linear mapping, CNN
classification performances were compared against a linear clas-
sifier. Then, a regression problem consisting in predicting the 3D
hand trajectory of reaching was tackled; this problem was also
useful to explore internal PPC model. Remarkably, to overcome
the current limitation in designing and using DNNs for neural
decoding, the CNN structure and hyper-parameters were tuned
using an automatic hyper-parameter search algorithm based on
BO. With this approach, we mainly aspire:

i. To improve the state-of-the-art of decoding techniques. In-
deed, at best of our knowledge, this is the first time that CNNs
are validated and used to decode neuron spiking rate, and that
Bayesian optimization is used in this context. This may represent
a significant step forward, as CNNs may result highly lighter and
faster than RNNs on one hand, and more accurate than simpler
linear decoders on the other. The possibility to obtain decoders
less handcrafted, more efficient and accurate than other solutions
may not only boost a better comprehension of the characteristics
of information contained inside the decoded neural populations,
but also have implications in neural engineering, such as helping
advancement in brain–computer communication tools.

ii. To investigate how the reaching target position and the
hand kinematics (3D position) are differently encoded in the
three examined PPC areas at the population level, by analyzing
the performance of the tested decoders across the three areas.
Via this analysis, we wish to evidence how neural decoders, via

data-driven input–output mapping, can have significant potential
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o inform about the nature of information contained in neural
opulations. We also expect that, when compared to the linear
lassifier, CNNs, taking into account nonlinearity and the tem-
oral dynamics (via temporal convolutions) can better catch the
haracteristics of each area.

. Methods

The experimental part of this study was performed in ac-
ordance with the guidelines of the EU Directives (86/609/EEC;
010/63/EU) and the Italian national law (D.L. 116-92, D.L. 26-
014) on the use of animals in scientific research. Protocols
ere approved by the Animal-Welfare Body of the University
f Bologna. During training and recording sessions, particular
ttention was paid to any behavioral and clinical sign of pain
r distress. More details on the experimental procedures can be
ound in Breveglieri et al. (2012), Galletti, Fattori, Kutz, and Gam-
erini (1999), Galletti, Gamberini, Kutz, Baldinotti, and Fattori
2005), Hadjidimitrakis et al. (2014)

.1. Data acquisition

.1.1. Electrophysiological recordings
Two male macaque monkeys (Macaca fascicularis) weighing

.4 kg (Monkey 1, M1) and 3.8 kg (Monkey 2, M2) were used.
xtracellular single-cell activity was recorded by means of single
lectrode from areas V6A, PEc and PE (Fig. 1a). V6A is local-
zed in the anterior bank of the parieto-occipital sulcus (POs)
Galletti et al., 1999). Next and rostrally to V6A, on the exposed
urface of SPL, there is PEc; recording sites were assigned to
rea PEc according to the cytoarchitectural criteria described by
uppino, Ben Hamed, Gamberini, Matelli, and Galletti (2005).
inally, between somatosensory cortex and PEc, we recorded
rom the posteromedial part of PE (De Vitis et al., 2019). We
erformed multiple electrode penetrations using a five-channel
ultielectrode recording system that permitted to record from
p to five single electrodes at once (Thomas Recording GmbH,
iessen, Germany). We recorded the activity of 258 V6A neu-
ons, 120 cells from M1 and 138 cells from M2, 214 neurons
rom PEc, 94 and 120 from M1 and M2 respectively, 141 from
rea PE, 71 and 70 from M1 and M2 respectively. Action po-
entials (spikes) in each channel were isolated with a waveform
iscriminator (Multi Spike Detector; Alpha Omega Engineering
azareth, Israel) and were sampled at 100 kHz. The quality of the
ingle-unit isolation was determined by the homogeneity of spike
aveforms and clear refractory periods in ISI histograms during
pike-sorting. Only well-isolated units not changing across tasks
ere considered.

.1.2. Behavioral task
Monkeys sat in a primate chair (Crist instruments, Hager-

town, MD, USA) and were trained to perform a Fixation-to-Reach
ask under controlled conditions. This task was performed in
arkness with the arm contralateral to the recording hemisphere.
uring the task, the animals maintained steady fixation on the
ued (green) reaching target with their head restrained. Before
tarting the arm movement, the monkeys kept their hand on a
utton (home button [HB], 2.5 cm in diameter) located 5 cm in
ront of the chest on the midsagittal plane (Fig. 1b left). Reaches
ere performed to one of nine light-emitting diodes (LEDs, 6 mm

n diameter). The LEDs were mounted on a horizontal panel
ocated in front of the animals, at different distances and direc-
ions with respect to the eyes but always at eye level, so the
ovement performed by the monkeys to reach and press the
ED was upward. Target LEDs were arranged in three rows: one
entral, along the sagittal midline, and two laterals, at version
278
angles of −15◦ and +15◦, respectively (Fig. 1b right). Along each
ow, three LEDs were located at vergence angles of 17.1◦, 11.4◦,
nd 6.9◦. The nearest targets were located at 10 cm from the eyes,
hereas the LEDs placed at intermediate and far positions were
t a distance of 15 and 25 cm, respectively. The range of vergence
ngles was selected to include most of the peripersonal space
n front of the animals, from very near (10 cm) to the farthest
istances reachable by monkeys (25 cm).
The trial began when the animals pressed the button near their

hest, outside the field of view (HB press). After 1s, one of the
ine LEDs was switched on to green (Green-on). The monkeys
ad to fixate the LED within 500 ms, while keeping the HB button
ressed. Then, the monkeys had to wait 1.7–2.5 s for a change in
he color of the LED (from green to red) without performing any
ye or arm movement. The latter color change was the go signal
Go) for the animals to release the home button and to start an
rm movement towards the foveated target. Then, the monkeys
eached the target and held their hand on the target for 0.8–1.2 s.
hen the target cue was switched off, the monkeys had to release

his cue and return to the HB, which ended the trial and allowed
he monkeys to receive a reward.

The task was performed in blocks of 90 randomized trials,
ncluding 10 repetitions for each target position (out of the 9
ossible target positions). According to Fig. 1c we divided each
ecording trial in 5 functional epochs. Epoch 0 represented the
nterval in which the monkey was not engaged in the task waiting
or the LED turning on; Epoch 1 and Epoch 2 labeled the delay
nterval, specifically since the delay interval has random duration,
t was separated in its first second (epoch 1) and last second
epoch 2); Epoch 3 represented the reaction interval; Epoch 4 was
he movement interval (reaching movement towards the target
oint); Epoch 5 represented the holding interval (hold on the
arget point).

The luminance of LEDs was regulated to compensate for dif-
erence in retinal size between LEDs located at different dis-
ances. To prevent dark adaptation, the background light was
witched on between blocks. The presentation of stimuli and the
nimals’ performance were automatically controlled and moni-
ored by LabVIEW-based software (National Instruments) as de-
cribed previously (Kutz, Marzocchi, Fattori, Cavalcanti, & Galletti,
005), enabling the interruption of the trial if the monkey broke
ixation, made an incorrect arm movement, or did not respect
he temporal constraints of the task described above. The cor-
ect performance of movements was monitored by pulses from
icroswitches (monopolar microswitches, RS Components, UK)
ounted under the home button and each LED. At the beginning
f each recording session, the monkeys were required to perform
calibration task to calibrate an eye tracker (ISCAN, see below).
alibration data was used to correct eye signals as they are
ependent on the position of the cameras which can potentially
hange from day to day. For the calibration, animals sequentially
ixated 5 LEDs mounted on a vertically arranged panel placed at
distance of 15 cm from the eyes. For each eye, we extracted

ignals for calibration during fixation of five LEDs, arranged in the
hape of a cross. One LED was centrally aligned with the eye’s
traight-ahead position and four LEDs were peripherally placed
t an angle of ±15◦ (distance: 4 cm) both in the horizontal and
ertical axes. From the two individually-calibrated eye position
ignals, we derived the mean of the two eyes (version signal)
nd the difference between the two eyes (vergence signal) us-
ng the following equations: version = (R + L)/2, vergence =

− L, where R and L are the gaze direction of the right and
eft eye respectively, expressed in degrees of visual angle from
he straight-ahead direction. Eye signals were monitored to be
ure that the animal was staring at the target while performing
he task, reducing possible modulation of neurons’ firing rates
ue to saccade execution (Kutz, Fattori, Gamberini, Breveglieri, &
alletti, 2003).
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Fig. 1. Recording areas and Behavioral Task. (a) Dorsal view of left hemisphere (left) and medial view of right hemisphere (right) reconstructed in 3D. Caret software
(http://brainvis.wustl.edu/wiki/index.php/Caret:Download) was used, showing the location and extent of V6A (magenta), PEc (green), PE (orange), MIP/PRR, medial
intraparietal area/parietal reach region (Snyder, Batista, & Andersen, 1997) (blue), and V6 (Galletti et al., 1999) (yellow); cal, calcarine sulcus; cin, cingulate sulcus; cs,
central sulcus; ips, intraparietal sulcus; lf, lateral fissure; ls, lunate sulcus; pos, parieto-occipital sulcus; ps, principal sulcus; sts, superior temporal sulcus; D, dorsal;
P, posterior. (b) Schematic representation of the experimental setup for the reaching task. Exact distances are indicated in the lateral (left) and top (right) views.
Nine LEDs are used as targets, embedded in a panel located at eye level. HB = home button. (c) Time courses and behavioral epochs in reaching tasks. The task
starts with the animal holding down the HB (FREE 1 s, epoch 0), then a fixation LED lights up on one of the 9 positions, the animal starts to fixate and waits (first
1 s of DELAY, EARLY DELAY, epoch 1) for the change of color of the LED that occurs at the end of the delay (LATE DELAY, last 1 s of DELAY, epoch 2) with the GO
event. The reaction time (epoch 3) is then from the GO signal to the actual release of the HB. The animal releases the HB to perform the movement (MOV, epoch 4)
then keeps the LED target pressed for the HOLD interval (epoch 5) to then return to the HB and begin the next trial. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Number of recorded neurons for each animal and each recording area. In addition, the total number of training, validation and
test examples in supervised problems 1 and 2 as resulting from the trial chunking procedure (see Section 2.2) are reported. Note
that the reported values for supervised problem 2 refer to the default assignment of the desired output (i.e., with no offset in the
assignment).
Monkey Area N Supervised problem 1 (epochs 0–5) Supervised problem 2 (epochs 2–5)

Training Validation Test Training Validation Test

M1 V6A 138 3312 414 2070 1872 234 1170
PEc 120 3384 423 2079 1944 243 1179
PE 70 3312 414 2061 1872 234 1161

M2 V6A 120 3312 414 2052 1872 234 1152
PEc 94 3312 414 2061 1872 234 1161
PE 71 3312 414 2043 1872 234 1143
2.2. Data pre-processing and preliminary analysis

For each neuron and each individual recording trial, the ac-
ivity was initially binned at 20 ms. Since the trials and epochs
ave a different duration, the use of a constant temporal window
roduces a different number of bins across trials, not allowing
o construct a uniform dataset. Therefore, the average number of
ins (across different neurons and trials) of each epoch was com-
uted; then, the activity of each neuron and trial was re-binned
y using that number of average bins per epoch. This procedure
ed to an activity binned slightly more or less with respect to the
riginal 20 ms binning (20.1 ± 1.9, mean ± standard deviation

across monkeys and areas). Thus, to address this, we computed
firing rates by dividing the number of spikes occurring within
the bin by the temporal length of the bin. In the following, the
neuron activity is described by means of its firing rate and to
study the temporal dynamics of neural coding we constructed
some short signals (named ‘‘chunks’’ in the following) composed
of overlapped windows of B bins, extracted with stride of S bins
to be used as inputs to the CNN.

As preliminary analysis, we looked for the neurons modulated
by the reaching task. Only in this case, the neuron activity was
divided into non-overlapped chunks of B = 5 bins (i.e., extracted
with a stride of S = 5) bins and was analyzed using a sliding
ANOVA to assess the variance in neuronal activity between the
different conditions tested. One neuron was considered signifi-
cantly modulated with p < 0.01. Results were plotted as number
of modulated neurons over time.

2.3. CNN-based population decoding

2.3.1. Problem definition
Firing rates from every single neuron of the investigated pop-

ulation obtained from a specific monkey – identified with m =

{‘‘M1’’, ‘‘M2’’} – and a specific recording area – identified with
a = {‘‘V6A’’, ‘‘PEc ’’, ‘‘PE’’} – were processed as follows to perform
decoding. At first, overlapped chunks of shape (N, B) were ex-
tracted using a stride parameter S, where N denotes the number
of neurons recorded for a given animal and area (variable across
animals and areas, representing the spatial dimension, see Table 1
for N values across animals and areas), and B denotes the number
of bins in each extracted chunk (representing the time dimen-
sion). By denoting with Xt the firing rates of each entire trial, and
with Xt [i] the ith bin, chunks of neural activity were extracted as
follows:

Xt,i = Xt [ : , iS : iS + B − 1] , 0 ≤ i ≤ M − 1, (1)

indicating with Xt,i ∈ RN×B the ith extracted chunk of firing rates
for the t-th trial (see Fig. 2a for a schematization of this chunking

procedure), and with M the total number of chunks.
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Xt,i represented the CNN input, while yt,i denotes the corre-
sponding desired output. Thus, each so labeled dataset can be
denoted by D(m,a):

D(m,a)
= {

(
Xt,0, yt,0

)
, . . . ,

(
Xt,i, yt,i

)
, . . . ,

(
Xt,M−1, yt,M−1

)
}
(m,a) (2)

In this study, two different supervised problems were addressed
using the same dataset. At first, we deepened the classification
of targets to reach. In this case (supervised problem 1), yt,i ∈

L = {l0, . . . , l8} was the desired class label assuming one among 9
possible values, corresponded to each target point that was con-
stant in time during the trial (i.e., the end-point to reach did not
change within each trial). The supervision during classification
was provided using one-hot encoded labels, i.e., forming an array
corresponding to the true probability distribution with zeros for
all classes except for the desired one which is 1. In addition, we
investigated a regression problem consisting in the prediction of
the 3D hand position while reaching targets (the same targets
classified in the first supervised problem). In this case (supervised
problem 2), yt,i ∈ R3

= [px, py, pz] and corresponded to the 3D
hand position coordinates at a specific time point to be predicted
in the regression problem related to semi-synthetic trajectories
(see Section 2.3.4 for further details). That is:{
yt,i ∈ L = {l0, . . . , l8} , supervised problem 1
yt,i ∈ R3

= [px, py, pz], supervised problem 2.
(3)

Concerning the regression problem, as the hand position changed
during each reaching trial, the desired output yt,i was assigned
the 3D position coordinates in correspondence of the last bin of
Xt,i (referred as ‘‘default assignment’’, see Section 2.3.4 for further
details), i.e., the prior neural activity of B · 20ms (e.g., 300 ms in
case of B = 15 bins) was assigned to the current observable pa-
rameter, see Fig. 2a for a schematization of this output association
procedure. This corresponds to define yt,i as:

yt,i =
[
px, py, pz

]
[(iS + B − 1) + o] , (4)

where iS + B − 1 denotes the time sample corresponding to the
last bin of the chunk Xt,i, and o denotes an additional offset factor.
The latter is set to 0 in the default assignment, while assumes
positive or negative values in the latency analyses performed in
Section 2.3.4.

For both these supervised problems, the objective is to op-
timize – using a training set of examples (training stage) – a
CNN described by a parametric model f

(
Xt,i; θ

)
parametrized in

its trainable parameters θ , implementing a classifier in the first
supervised problem, i.e. f

(
Xt,i; θ

)
:RN×B

→ L, or a regressor in
the second supervised problem, i.e. f

(
Xt,i; θ

)
: RN×B

→ R3. As
mentioned above, the CNN accepts as input the ith chunk Xt,i and
provides the predicted output ypt,i. This optimization corresponds
to find the optimal θ∗

= arg minθ j (θ), where j (θ) denotes the
loss function which is computed based on the prediction error
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Fig. 2. Schematic representation of the dataset construction (a) and of the CNN design (b). (a) Neuron activities (left) and the desired output (right, corresponding
to the reaching targets or hand trajectories) were processed to obtain (Xt,i, yt,i), see Section 2.2. (b) Xt,i is fed to the CNN, which provides ypt,i as output (predicted
utput). The CNN is composed by a convolutional feature extractor (blue box), followed by a classification or regressor module (purple box), see Section 2.3.2 for
he meaning of the symbols. Layers are represented by white boxes; layers introducing trainable parameters are denoted by the italic font, with the main associated
yper-parameters reported within brackets (see Section 2.3.2 for the meaning of the symbols).
o
b
t

etween the desired output yt,i and the predicted output ypt,i.
fterwards, once the model is trained, it is tested on a sepa-
ate test set (inference stage). Besides the trainable parameters
ontained in θ , the parameters defining the specific functional
orm of the decoder (e.g., number of convolutional layers, number
f kernels to learn, etc.), called hyper-parameters, need to be
et before training starts. However, the optimal hyper-parameter
onfiguration is not a priori known and can be chosen either
ia an extensive empirical evaluation or via automatic hyper-
arameter search. For both these solutions, to study the influence
281
f different hyper-parameter configurations, the decoder needs to
e validated on a separate set (different from the training and
est set). Therefore, the dataset D(m,a) needs to be partitioned
into separate training and test sets, respectively to optimize the
parameters contained in θ and to evaluate the performance of
the learning system on unseen data. In addition, to select the
optimal hyper-parameter configuration (see Section 2.3.5) a sep-
arate validation set needs to be designed. To perform such data
partitioning, D(m,a) was divided using a 10-fold cross validation
scheme. Starting from 10 trials recorded for each spatial position
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a total of 90 trials were available), each cross-validation fold
ncluded 72, 9, 9 trials in the training, test and validation sets,
espectively, balancing across reaching targets (i.e., sets contained
he same proportion among the 9 reaching targets). During the
raining stage, the parameters used to design D(m,a) were B =

5 and S = 5, while during the inference stage, these were
B = 15 and S = 1. This choice allowed to train decoders with
overlapped chunks of data i.e., augmenting the overall training
set, but without increasing excessively the computational time
(S = 5 during training), and to test the decoders on all possible
chunks (S = 1 during testing). See Table 1 for the total number
of training, validation and test examples, for each animal and
recording area.

2.3.2. CNN architecture
The general structure of the CNN architecture is reported in

Fig. 2b and it is described in the following.
The input layer of the CNN was represented by a 2D input

feature map replicating in each neuron the corresponding value
of the input example Xt,i ∈ RN×B, i.e., the input layer was a 2D
matrix with N rows and B columns representing the firing rates,
of N neurons in B time bins. Afterwards, the input example was
processed through a convolutional feature extractor to learn and
extract relevant feature maps from the input example, followed
by a classification or regression module that finalized the decod-
ing depending on the addressed supervised problem addressed
and based on the feature maps provided by the first module.
Regarding the convolutional feature extractor, this was composed
by stacking Nb convolutional blocks. Each convolutional block is
composed by Nc repetitions of 1D temporal separable convolu-
tional layers (Chollet, 2017), each one learning K temporal kernels
with a size of F , followed by batch normalization (Ioffe & Szegedy,
2015) (optional, depending on the hyper-parameter search) and
a non-linear activation function. Then, after these Nc repetitions,
each convolutional block included also a pooling layer — aimed
to reduce the temporal dimension and thus, to reduce the overall
model size by applying a pooling function (which is a hyper-
parameter too, e.g., max or average pooling) – and a dropout
layer (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdi-
nov, 2014), with dropout probability p. All convolutional layers
were constrained (optional, depending on the hyper-parameter
search) in their norm, keeping the norm of their parameters
upper bounded at a constant c. Overall, batch normalization,
dropout and kernel max norm constraints were introduced in
the convolutional feature extractor to reduce overfit (i.e., regu-
larization mechanisms). In addition, this module was designed
using convolutional layers devoted to keep limited the number
of trainable parameters, i.e., separable convolutions, preventing
overfitting small datasets as the ones used in this study. The main
hyper-parameters of the convolutional feature extractor were
searched using an automatic hyper-parameter search algorithm
(see Section 2.3.5 for further details).

The classification or regression module reshaped (flatten layer)
at first the feature maps provided by the first module and in-
cluded a fully-connected layer with Nout output artificial neurons
to output the desired variables (target positions, Nout = 9 or
hand position coordinates, Nout = 3). Depending on the addressed
decoding problem, the activation function of the fully-connected
layer changed. In case of classification, Nout = 9 neurons were
activated using a softmax function, to provide as output the array
ypt,i = p

(
lk|Xt,i

)
∈ R9, 0 ≤ k ≤ 8 of the predicted conditional

probabilities associated to each target. Then, the most probable
class was computed, i.e., arg maxlk p

(
lk|Xt,i

)
, and the decoded

class obtained (∈ L = {l0, . . . , l8}). In case of regression, Nout = 3
neurons were activated using a linear function, to directly provide
 r

282
as output the hand position coordinates ypt,i ∈ R3 while reaching
targets.

2.3.3. Supervised problem 1: Target decoding
In the case of the classification problem, signals of the training,

test and validation sets were standardized using the mean and
standard deviation computed on the training set. The network
used as input the signals pre-processed as described in Section 2.2
from epochs 0–5 (see Section 2.1.2) and provided as output
the conditional probabilities for each target position. During the
training stage, the loss function j (θ) was defined as the cross-
entropy between the predicted distribution (provided by the
CNN) and the empirical distribution (provided in the labeled
dataset). During the inference stage on the test set, the CNN pro-
vided as output the probabilities that the input chunk belongs to
each class; the predicted class was computed as the one with the
highest probability among the 9 possible classes (see the possible
reaching targets n Fig. 2a right). Then, the decoding accuracy was
computed based on the predicted and true classes. Accuracies on
the test set were computed for each monkey and each recording
area as a function of time, i.e., computing accuracies chunk by
chunk. To provide a comparison with a state-of-the-art linear
algorithm, a Naïve Bayes (NB) classifier as the one adopted in
Filippini, Breveglieri, Hadjidimitrakis, Bosco, and Fattori (2018)
was trained and evaluated with the same procedure adopted for
the proposed CNN.

As the number of neurons recorded from the three areas dif-
fered (e.g., 70 neurons for PE vs. 100+ neurons in the other areas,
see Table 1), we assessed whether differences in performance
among different areas may be the consequence of a different
number of neurons rather than intrinsically depend on differ-
ences in the information provided by neuron activities. To this
aim, a dropping analysis was performed. During the dth step
of the dropping analysis, in each monkey and in each area, Nd
neurons were randomly selected from Nd = 2 to Nd = N
with a step of 5 cells. That is, a subset containing Nd cells was
andomly sampled from the original distribution and used to
rain, validate and test CNNs (using the same cross-validation
cheme as described in Section 2.3.1). In this way, the decoding
erformance was evaluated using the same number of Nd neurons

in each area. In addition, this analysis simulates conditions of
a reduced set of cells to decode, e.g., due to fibrosis around
implanted electrodes, at different levels. The random sampling
was performed 20 times for each dth step of the dropping analysis
and was performed for each monkey and each recording area.
Due to the high computational cost of such simulation (involving
>50 K CNN optimizations), we applied the dropping analysis only
for the supervised problem 1.

2.3.4. Supervised problem 2: Hand trajectory decoding
In the case of the regression problem, signals of the training,

test and validation sets were standardized using the statistics
computed on the training set, and the target coordinates were
normalized between [−1,1] (centered on the mid sagittal axis
f the animal), [0,1] (with 0 the position of the home button
nd 1 the maximum distance from the body corresponding to
he farthest target), and [0,1] (with 0 the elevation of the home
utton and 1 the height of the panel at eye level), respectively
or the x-, y-, z-axis . To decode the hand trajectory, the network
sed as input the signals pre-processed as described in Section 2.2
rom the epochs 2–5 (see Section 2.1.2) and provided as output
he x, y, z hand position coordinates during the reaching of each
arget position.

Kinematic data of hand trajectories was not available for
ecorded neurons, therefore the reference trajectory of the hand
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uring the experiment was reconstructed semi-synthetically,
odeling the movement as a straight ballistic motion from the
utton near the chest to one of 9 positions on the panel (see the
rajectories in Fig. 2a right) and imposing a classic bell-shaped
rofile for the acceleration and deceleration (Roy, Paulignan,
arnè, Jouffrais, & Boussaoud, 2000). The bell-shaped profile (a
aussian bell) was fitted to the average speed profile collected
rom real kinematic data, calculated over 144 trials on a separate
onkey executing the same 3D reaching task, using as reference

he x, y, z positions of index finger. A motion capture system
VICON 460, 100 Hz sampling rate) recorded the 3D position of
reflective marker placed on the monkey’s index finger. Data
ere run through a fifth-order Butterworth low-pass filter, finally
rajectory were downscaled to 0%–100% of movement to make
ossible aligning the different trials collected. Mean and standard
eviation of the Gaussian bell determined the peak of maximum
elocity (43% of movement time) and acceleration/deceleration
amp (σ = 18% of movement time) and were used to reconstruct
the reference hand trajectory for all cells.

As here we were interested in epochs including the last part
f the waiting period until the target was maintained, the CNN
ad to learn to hold the initial position during the waiting time
0,0,0), gradually move towards the target during the movement
nterval, and hold the position during the last interval.

During the training stage, the loss function j (θ) was defined
s the mean squared error between the predicted trajectory value
provided by the CNN) and the empirical trajectory value (pro-
ided in the labeled dataset). During the inference stage on the
est set, the network output was directly the predicted trajectory
alue for the corresponding input firing rate chunk. The pre-
icted trajectory was then obtained by rearranging all values in
he time-domain, and was compared with the semi-synthetically
econstructed trajectory, used as a ground truth. R-squared val-
es were computed for each monkey and each recording area
reporting mean and standard deviation across folds).

In addition, only for the supervised problem 2, we conducted
n analysis to study possible latencies, i.e., −120 ms, −40 ms,
0 ms, 120 ms, between neuron activity (firing rates contained in
ach chunk Xt,i) and detected behavior (instantaneous trajectory
alue in its x, y, z position coordinates). To this aim, we intro-
uced a time shift o between the desired output (x, y, z position
oordinates) assignment and the neuron activity when designing
he datasets D(m,a) and we trained, validated and tested CNNs
or each offset condition. By default (see Section 2.3.1), a zero
ffset (o = 0) was used, indicating that the assigned 3D trajectory
alue was sampled in correspondence of the last bin of the input
hunk (i.e., to the 15th bin, see Section 2.3.1). In addition to
he default assignment, we deepened other conditions, by using
ffsets o = {−6, −2, 2, 6}. Positive (or negative) offset values
enote conditions where CNNs were forced to learn features from
ast (or future) neuron activity (Xt,i). This suggests that neurons
re coding for future trajectories (feedforward anticipation) or
ast trajectories (sensory feedback). As an example, when o =

2, position coordinates sampled at +40 ms (= o · 20ms, see
ection 2.2) in the future respect to input neuron activity were
ecoded.

.3.5. Hyper-parameter search via Bayesian Optimization (BO)
Deep learning-based algorithms are defined by many hyper-

arameters that are not a priori known. Therefore, in this study,
o identify the optimal configuration of the convolutional fea-
ure extractor, automatic hyper-parameter search via BO (Snoek,
arochelle, & Adams, 2012) was adopted. This algorithm was
pplied to the identification of the optimal hyper-parameter set
n the supervised problem 1. Due to the performed data split (10-
283
old cross-validation scheme) and to the nature of the dataset (2
onkeys and 3 recording areas), BO led to an optimal configura-

ion specific for each fold, monkey, and area (60 configurations in
otal). Once BO was performed, the most frequent value (across
olds, monkeys and areas) of each hyper-parameter was com-
uted and used to design the CNNs to be trained from scratch
n both supervised problems 1 and 2. Therefore, this BO-based
rocedure was used to identify a single configuration of hyper-
arameters occurring more frequently across folds, monkeys and
reas, i.e. a single functional form of the decoder f that was then
xploited to train CNNs in both supervised problems. CNNs were
rained — within each BO iteration and while training the most
requent CNN configuration in the supervised problems 1 and 2
using Adam optimizer (Kingma & Ba, 2014) with a batch size
f 64 for a maximum number of 1000 epochs and applying early
topping on the validation loss.
In the following, an overview of automatic hyper-parameter

earch and of BO is reported. Hyper-parameter optimization is
evoted to find the hyper-parameter configuration of a learn-
ng system (e.g., a CNN) associated with the best performance
easured on a separate validation set. Let us denote with h the
rray containing the hyper-parameters of interest, with h ∈ H

where H is the hyper-parameter search space. In this study, we
investigated the main hyper-parameters defining the convolu-
tional feature extractor Nb (number of blocks), Nc (number of
separable convolutional layers per block), K (number of filters
per layer), F (filter size), c (max norm constraint), the use of
batch normalization, the activation function for the convolutional
layers, the pooling function, the dropout probability p and the
learning rate. Formally, hyper-parameter optimization consists in
finding h∗

= arg minh∈H k (h), where k (h) :H → R represents the
objective function to be minimized on the validation set (the loss
function in this study). To evaluate k (h) for each configuration h
the learning system needs to be trained on the training set and
then evaluated on the validation set.

Depending on the model complexity (typically high for deep
learning-based decoders) and on the number of hyper-parameters
to optimize, the evaluation of a trained model on the validation
set can be expensive. Common hyper-parameter search algo-
rithms (e.g., grid search or random search), perform many eval-
uations on the validation set, each one using a trained model
with a hyper-parameter configuration based on a pre-defined rule
(e.g., by sampling all possible hyper-parameter configurations or
by randomly sampling a fixed number of configurations) ignor-
ing the results of past evaluations. This often leads to wasting
time in evaluating ‘bad’ hyperparameters. Bayesian optimization
methods overcome this limitation, as they suggest in an informed
way the next hyper-parameter configuration to be evaluated,
thus, investigating hyper-parameters that seem promising based
on past evaluations. Specifically, these methods build a Bayesian
statistical model p (k|h) of the objective function, called surrogate
probability model, which maps hyper-parameter values to the
probability of getting a certain value of the objective function. The
surrogate model is formed by keeping track of the past evaluation
results and is easier to optimize than the actual objective function
k (h); thus, the next set of hyper-parameters to be evaluated on
the actual objective function is chosen by selecting the hyper-
parameters that perform best on the current surrogate model.
Once the surrogate p (k|h) has been initialized, the procedure
involves several optimization iterations (100 iterations were per-
formed in this study), run sequentially one after another, with
each iteration consisting of the following steps:

i. Optimize the surrogate finding the hyper-parameters that
perform best on the surrogate. The criterion used to opti-
mize the surrogate is called ‘‘selection function’’.
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Fig. 3. Percentage of modulated neurons as obtained with a sliding ANOVA. The modulation is reported over time for each monkey (M1 on top and M2 on bottom)
and each recording area (V6A black, Pec red, PE blue). Vertical bars denote the separation between epochs 0–5. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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ii. Design the learning system using the hyper-parameters
selected at point i. Train the learning system and evaluate
the objective function k.

iii. Update the surrogate probability model depending on the
history of past evaluations, including the last evaluation
result (at point ii).

ifferent choices exist for the surrogate probability model and
riterion function used to optimize it. In this study, as commonly
dopted (Bergstra, Bardenet, Bengio, & Kégl, 2011), Tree Parzen
stimator (TPE) and Expected Improvement (EI) were used as
urrogate model and selection function, respectively. By applying
he Bayes rule, the surrogate probability model can be expressed
s p (k|h) = p(h|k)p(k)/p(h), and by using TPE, p(h|k) is modeled
s:

(h|k) =

{
l (h) , k < k∗

g (h) , k ≥ k∗,
(5)

l (h) and g (h) are the distributions of the hyper-parameters, one
modeled by using the previously evaluated hyper-parameters
that resulted in objective function below the threshold k∗, and
he other by using the previously evaluated hyper-parameters
hat resulted in objective function above the threshold k∗. These
istributions are modeled with Gaussian mixture models in TPE.
o initialize the algorithm (i.e., initialize the values needed to
odel the distributions) 20 iterations were performed by ran-
omly sampling the hyper-parameters (i.e., performing random
earch). Furthermore, the TPE algorithm depends on the threshold
∗, the latter is chosen larger than the lowest observed k so that
ome points can be used to model l(h). The algorithm selects k∗ so
hat γ = p (k < k∗), but no specific modeling for p(k) is needed
Bergstra et al., 2011). In this study, hyper-parameter values were
ll sampled from uniform distributions (defining p (h)) over the
alues reported in Table 1. Then, the expected improvement (EI,
xpectation that the surrogate model, by using h, assumes values
284
below the threshold k∗) can be computed as:

EIk∗ (h) =

∫
∞

−∞

max(k∗
− k, 0)p (k|h) dk =

∫ k∗

−∞

(
k∗

− k
)
p (k|h) dk. (6)

n this scenario, the optimization problem (point i.) is reduced to
maximization of the EI. As reported in Bergstra et al. (2011), by
xpressing p (k|h) using the TPE modeling (Eq. (5)):

Ik∗ (h) ∝ (γ + (g(h)/l(h)) (1 − γ ))−1
∝ l(h)/g(h). (7)

herefore, maximizing EIk∗ (h) corresponds to maximizing the
atio l(h)/g(h), i.e., find the optimal h with high probability under
(h) and low probability under g(h). Then, the true objective
unction k(h) is evaluated with this optimal h (point ii.) and,
ubsequently, the two distributions l (h) and g (h) defining p (h|k)
re updated depending on the history of the past evaluations by
aking into account the result of this last iterations (point iii.).

. Results

We recorded the activity of single neurons from 3 contiguous
reas, V6A, PEc, and PE, in the superior parietal lobule of 2
acaques. In this study we were interested in testing if these

hree areas encode spatial information about the reaching goal
nd reaching trajectories with the same strength, and if they
ncode the temporal dynamics of this encoding. CNNs were used
s decoders for the addressed supervised problems, and we were
lso interested in searching an optimal CNN design via automatic
yper-parameter using BO. In the following, the main results are
eported.

.1. Preliminary data analysis

A simple sliding ANOVA (Fig. 3) was enough to show that the
ercentage of neurons modulated by spatial position of reach-
ng targets was different depending on the considered area. PE
howed half of neurons modulated (with peaks of approx. 20%)
ompared to V6A and PEc (with peaks between 50%–60%) which
ere very similar. It is also interesting to note that the percentage
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t

Fig. 4. Hyper-parameter probability distributions of the convolutional feature extractor resulting from BO. On the x-axis the hyper-parameter values are reported,
while on the y-axis the probability that BO selected as optimal each hyper-parameter value is reported. Nb and Nc denote the number of convolutional blocks and
emporal separable convolutions per block, respectively. K and F denote the number of temporal kernels and the kernel size, respectively. Lastly, c and p indicate
the maximum norm to use in max-norm constraint and the dropout probability, respectively.
of modulated cells was not stable over time but roughly was
characterized by 2 prominent peaks in all areas: a first increase
of modulated cells in the first phase of target presentation (Epoch
1), a second peak during the execution of the reaching movement
285
(Epoch 4). These differences prompted us to decode the overall
dynamics, which also reflect non-linear interactions and temporal
aspects. Such dynamics can be shown with deep learning-based
decoders such as CNNs and are reported in the following sections.
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Fig. 5. Decoding accuracy over time. The performance metric obtained in the supervised problem 1 for each monkey (M1 on top and M2 on bottom) and each
recording area (V6A, PEc, PE) used in the decoding is reported as a function of time. Mean values are reported (thick lines) ± standard error of the mean (overlayed
haded areas) across folds. Vertical bars denote the separation between epochs 0–5.
.2. Optimal convolutional feature extractor

The convolutional feature extractor of the adopted CNN un-
erwent automatic hyper-parameter search via BO in the super-
ised problem 1. Convolutional filters slide over the temporal
imension catching temporal patterns in firing rates; each train-
ng sample included 15 temporally consecutive bins, each bin
epresented the firing rate of a time interval of 20 ms (see
ection 2.3.1). In Fig. 4 the distributions of the searched hyper-
arameters are reported in cumulative histograms, considering
ll the optimal configurations across folds, monkeys, and areas
60 configurations in total). From these results the most frequent
onfiguration (higher bar on each plot corresponding to a given
yper-parameter in Fig. 4) was a simple shallow CNN, charac-
erized by a number of blocks Nb = 1, number of convolutional
ayers per block Nc = 1, number of convolutional filters K = 32,
ilter size F = 5, and max norm c = 1. Furthermore, options
uch as no batch normalization, ReLU activation functions for
idden units, and average pooling were more frequently adopted.
astly, a dropout probability p = 0.5 and a learning rate of 0.001
ere optimal. The CNN defined by this specific hyper-parameter
onfiguration was used to solve the decoding problems 1 and 2,
nd the subsequent reported results are related to this specific
unctional form of the decoder.

.3. Supervised problem 1: Target decoding

In Fig. 5 decoding accuracies are reported as a function of time,
or both monkeys and all areas. CNNs learned to accurately map
he activity of the collected neurons to the spatial location of the
argets, as demonstrated by the average accuracy well above the
hance level (11%) in both monkeys and in each area. Accura-
ies began to increase with target detection (epoch 1), remained
ustained with a ramping trend during movement preparation
epoch 2), peaked during movement execution (epoch 4), and
286
then began to decline as touch on the target was maintained
(epoch 5). In the case of V6A and PEc a maximum accuracy in
decoding the correct target position above 80% was reached in
epoch 4. Although the trend was similar for the 3 areas, PE had
significantly lower accuracies than V6A and PEc, varying between
20%–40%. This lower accuracy of decoding in area PE could be
due to the lower percentage of modulated cells in PE within
each epoch (see Fig. 3) and/or to the smaller population available
(roughly 1/3 of neurons were available for PE with respect of V6A
and PEc, see Section 2.1.1). To better explore this last point, a
dropping analysis (see Section 2.3.3) was applied, and its results
are reported in Fig. 6. Here, accuracies as a function of the number
of cells (Nd) used to decode the reaching targets are reported
for each monkey and each recording area. For V6A and PEc,
few neurons were enough to obtain accuracies well above the
chance level, e.g., from 7 sampled neurons accuracies >30% were
achieved both in monkey 1 and 2 (M1 and M2). Furthermore, the
initial slope of the curve ‘accuracy vs. number of cells’ followed
V6A > PEc > PE. Lastly, in V6A and PEc the trend kept improving
more than PE as the number of neurons available increased. The
dropping analysis therefore confirmed a lower ability to decode
spatial information from area PE neurons compared to the better
performance on V6A and PEc. These last two areas appear very
similar in their ability to encode the information of the target
position with the same strength.

Finally, Fig. 7 shows the comparison between the decoding
accuracy as a function of time obtained with the CNN-based
decoder and the NB-based decoder. Overall, our proposed decoder
exhibited higher accuracy scores. Moreover and interestingly, the
time pattern of accuracy during the reaching movement dif-
fered across the two classifiers. The NB classifier after the initial
increase in epoch 1, tended to exhibit an about constant (or
slightly decreasing) accuracy across the other epochs, declining
in epoch 5, and did not show the increasing trend peaking in
the movement and hold phases as the CNN classifier. Statistical
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Fig. 6. Neuron dropping analysis. The decoding accuracy in the supervised problem 1 for each monkey (M1 on top and M2 on bottom) and each recording area
(V6A, PEc, PE) used in the decoding is reported as a function of the number of cells used to classify reaching targets. For each step of the dropping analysis, the
performance was averaged across folds. The figure reports the mean values (thick lines) ± standard error of the mean (overlayed shaded areas) across the 20 random
samplings.

Fig. 7. Decoding accuracy over time obtained with the proposed CNN and with a NB linear classifier. The accuracy scored with both the CNN (black) and NB (red)
in the supervised problem 1, for each monkey (M1 and M2) and each recording area (V6A, PEc, PE), is reported as a function of time. The figure reports the mean
values (thick lines) ± standard error of the mean (overlayed shaded areas) across folds. Vertical bars denote the separation between epochs 0–5. Permutation cluster
t tests were performed for each monkey and each recording area to analyze differences between the two algorithms; temporal intervals with significant performance
differences (p < 0.05) between the two algorithms are reported on top of each panel with thick horizontal bars.

287
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Fig. 8. Representative example of 3-D decoded trajectory (a) and R2 regression scores (b). (a) A representative example of decoded trajectory (red) alongside with
he ground truth (black) over time (epochs 2–5) using V6A neural activity from M2 is reported. Coordinates are reported in their scaled units (s.u., see Section 2.3.4).
ean and standard deviations (shaded area) are calculated over cross validations. (b) The performance metric obtained in the supervised problem 2 while decoding
osition coordinates is reported for each monkey (M1 on top and M2 on bottom) and recording areas (V6A, PEc, PE) used in the decoding. Each plot reports R2 also
s a function of the offset chosen while associating the target label (see Section 2.3.4), where the default association is denoted by offset = 0. R2 scores are reported
n their mean values (bar height) ± standard deviation (vertical line) across folds. Horizontal black bars connect the areas found with significantly different R2.
nalysis shows that CNN outperformed (p < 0.05) the NB-based
ecoder for all monkeys and areas, especially after the move-
ent onset (e.g., during epoch 4 and 5), with improvements
p to 46% (in M2 decoding from V6A, during epoch 5). These
ifferences may arise from the capability of the CNN to learn non-
inear dependencies exploiting complex hierarchical features in
he temporal domain from the input temporal samples, while the
288
classic linear algorithm based on NB is plausibly unable to catch
these dynamics as it linearly combines the inputs and assumes
conditional independences between the input temporal samples.

In this problem, we reconstructed discrete spatial positions,
targets of the reaching. The 9 positions (9 classes) were recog-
nized by CNN with high accuracy during all time intervals in
which the animal was aware of the reaching position, from the
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irst stages of target fixation to the holding of touch on the target.
esides decoding target position, we also tested whether and to
hat extent other movement aspects, such as hand trajectories,
ould be potentially decoded from the activity of neurons in the
nvestigated PPC areas.

.4. Supervised problem 2: Hand trajectory decoding

A representative result while decoding position coordinates
sing V6A signals is reported in Fig. 8a (with an offset = 0 in
he kinematic association, see Section 2.3.4). Epochs 2–5 for the 9
argets are concatenated one after the other to show the range of
, y and z along the whole movement executed by the monkey.
redictions are plotted against ground truth trajectories. In this
xample, it is clear how V6A strongly contains enough informa-
ion to accurately decode movement 3-D trajectory. However, not
ll areas allowed to reconstruct the movement trajectory with
he same fidelity. In agreement with previous results as to target
osition decoding, area PE contains less useful information for the
econstruction of the trajectory, as shown by Fig. 8b reporting
he CNN performance metric for each monkey and recording
rea. Decoding performance using the default kinematic assign-
ent (i.e., o = 0, see Section 2.3.4) of the x-coordinate in V6A
as significantly lower (for both monkeys, p < 0.01, Wilcoxon
igned-rank test corrected for multiple tests using the Benjamini–
ochberg procedure (Benjamini & Hochberg, 1995) than y- and
-coordinates, but no differences were found between y- and z-
oordinates in the same area. This may be multifactorial, in part
iven by a methodological drawback, the greater spread of the
(between −1 and 1) with respect to y and z (both between
and 1), but has also physiological substantiation. Indeed, pre-
ious studies (see Section 4.2) have demonstrated a prominent
ncoding of the depth component in areas of the superior parietal
obule, and this could be the cause of a greater difficulty in
econstructing the x component of trajectories.

In Fig. 8b, decoding performance was reported also as a func-
ion of the offset used in the multi-lag kinematic association
dopted in this study, i.e., ±6, ±2, 0 (see Section 2.3.4). This
as allowed us to probe whether feedback or feedforward in-
ormation is prominent in the areas: in the case of negative
ffsets a possible increase in decoding accuracy indicates the
mportance of feedback information, i.e. the current activity of
he neurons explains an event that has already happened; in
he case of positive offsets the increase in accuracy is related
o a greater prominence of the elaboration of the movement
lan that will be realized in subsequent times. While evaluating
ifferences across offsets for each coordinate, area and monkey,
ignificant differences (p < 0.01, Friedman test) across offsets
ere only found for V6A for the x-coordinate for both monkeys,
here a positive linear trend from negative to positive offsets
as observed. By focusing only on the performance obtained with
ero-lag, we observed that PE scored lower R2 than other areas
p < 0.01, Wilcoxon signed-rank test corrected for multiple tests
sing the Benjamini–Hochberg procedure), for all monkeys and
oordinates (see statistical analysis results displayed as solid bars
n Fig. 8b).

. Discussion

In this study we explored the possibility to predict reaching
oals and movement trajectories by decoding the activity of sin-
le neurons recorded from different areas of the SPL. To decode
eural signals, CNNs were used to extract temporal dynamics
ia temporal convolutions, and their design was defined by au-
omatic hyper-parameter search using BO. This is particularly
elevant as in the literature (Glaser et al., 2020; Sussillo et al.,
289
012; Tseng et al., 2019) DNN designs are commonly defined by
mpirical evaluation (i.e., test a limited bunch of configurations
nd using the best performing one) which is a time-consuming
rocess, often leading to sub-optimal DNN configurations. CNNs
ere used in this study with two main purposes: (i) leveraging
emporal convolution to better characterize encoding dynamics
n the different areas of SPL reaching network; (ii) validating
or the first time (to best knowledge of the authors) CNNs in
ecoding spiking activity, as CNNs among DNNs (e.g., respect to
NNs) achieve good performance and explainability, while keep-
ng a lower number of trainable parameters. Finally, we probed
NNs superiority compared to simpler linear classifiers. Decoding
esults allowed to uncover the amount and characteristics of
nformation each area contains about the external variables (end-
oint position and effector trajectory) and the differences across
he different areas.

Signals collected from neurons of SPL were predictive of reach-
ng targets also before the movement onset. Decoding perfor-
ances were different between areas: while the decoding accu-

acies for V6A and PEc were very similar (over 80% of accuracy in
etecting the correct spatial position), PE diverged by obtaining
ower values (lower than 40%), suggesting a different role in the
ircuit for the different areas. Similarly, moving from decoding
eaching goals to movement trajectories, V6A and PEc maintained
ood R2 values, PE regained some points in the reconstruction
f the depth (y) and elevation (z) components of the movement
hile reconstruction of the direction (x) remained more difficult.
eural networks have proven to be robust and easily adaptable
o the required task, preferring simple architectures (see the
ore frequent optimal configuration in Section 3.2) and therefore
uickly trainable and generalizable, being able to capture the
ynamics of neuronal activity.

.1. A visual to somatosensory gradient over the network is reflected
n the decoding accuracy

The posterior parietal cortex sits in a crucial node for inte-
ration of sensory stimuli to guide action receiving visual input,
omatosensory and proprioceptive feedback, and afferent motor
opy from premotor cortex (Andersen & Cui, 2009b; Gamberini,
assarelli, Fattori, & Galletti, 2020). In agreement with this, elec-
rophysiological studies that probed different areas of the PPC
ound different levels of activation for these neurons, mostly
inked to visual stimuli for caudal regions close to extrastriate
ortex, tactile and proprioceptive moving rostrally towards so-
atosensory cortex. The network we studied bridges visual and
omatic domains, with area V6A bordering the extrastriate visual
rea V6 (Galletti et al., 1995; Matelli, Govoni, Galletti, Kutz, & Lup-
ino, 1998), PE bordering Brodmann’s area 2 and PEc in between
Breveglieri et al., 2008). In agreement with this, the number
f neurons modulated by the spatial goal position (see sliding
NOVAs of Fig. 3) was already high in V6A in the first part of the
rial (epoch 1), being the visual input of great relevance in V6A.
he number of neurons modulated by goal position is maximal
n PE in the second part of the trial, that was associated with the
xecution of the reaching movement (epoch 4–5). Although even
n the second part of the task the percentage of modulated neuron
f PE was not exceeding those of V6A and PEc, the stronger rep-
esentation of the goal position in the movement epoch reflects
stronger somatomotor than visuospatial representation in PE.
he neural activity from the first visualization of the target to the
ovement onset has been associated with the elaboration of the
otor plan, the maintenance of spatial attention towards relevant

argets and the integration of sensorimotor inputs (Andersen &
ui, 2009b; Galletti & Fattori, 2018).
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Moving from the previous ANOVA analysis, we then performed
a more sensitive decoding analysis using CNN; the latter, taking
into account neural dynamics and non-linearity, can guide a more
robust comparison. Given the link between preparatory activity
and the spatial positions of the targets, decoders successfully
extracted the correct position given the preparatory spiking ac-
tivity. Our results suggest that V6A and PEc strongly encode
visuospatial information already in the first part of the task,
enabling the decoders to easily extract useful information about
the goal spatial positions. During the planning epoch, visuospatial
inputs are converted to visuomotor signals which are required to
guide execution phase. During this second part of the task, signals
related to goal position remained strong and easily decodable.
PE in comparison, presents a less pronounced activation in re-
lation to the task tested, nevertheless during the execution phase
stronger sensorimotor signals can be decoded by CNNs. It is worth
noticing that gaining accuracy in the movement phases, in all
areas and especially in PE, is a peculiarity of the CNN classifier, not
exhibited by the linear NB classifier (see Fig. 7); this may indicate
that CNNs are more apt to catch the richness of information
contained in these areas. Ultimately, PE and PEc both part of the
Brodmann’s area 5 (Pandya & Seltzer, 1982) appear more different
than expected: the activity of PEc is much more similar to V6A,
part of Brodmann’s area 7, and should therefore be considered
part of the latter area 7. This idea, advanced by Gamberini et al.
(2020) is supported by present data.

4.2. Decoding movement goals and trajectories from PPC

Decoding of reaching goals is particularly efficient in differ-
ent areas of the PPC especially from areas of the dorso medial
network. The Parietal Reach Region (PRR) has been used as a
source of these signals in several studies (Andersen, Hwang, &
Mulliken, 2010; Hauschild, Mulliken, Fineman, Loeb, & Ander-
sen, 2012; Mulliken, Musallam, & Andersen, 2008b; Musallam,
Corneil, Greger, Scherberger, & Andersen, 2004). Interestingly, the
PRR is close to areas V6A and PEc and mostly overlap with area
MIP (anterior bank of the medial intraparietal sulcus) (Snyder
et al., 1997). Homologue of PRR in humans, together with the
more lateral anterior intraparietal area (AIP), were used to decode
motor imagery in a center-out task by a tetraplegic implanted
patient (Aflalo et al., 2015). Thus, the interest in decoding move-
ment intention from PPC remains high in light of the possibility to
extract several parameters related to cognitive processing rather
than simpler motor kinematics (Andersen, Kellis, Klaes, & Aflalo,
2014). Most of the studies used a task with reaching movements
towards a monitor placed in front of the subject, without studying
the movement in depth. Conversely, in our study the movements
were made on three different degrees of depth simulating more
naturalistic movements. Several pieces of evidence support the
diversity of networks processing direction and depth informa-
tion, with different percentages of cells modulated in depth and
direction for the different areas tested (Crawford, Henriques, &
Medendorp, 2011; Hadjidimitrakis et al., 2014, 2015; Tramper
& Gielen, 2011). Depth encoding is plausibly stronger for areas
that rely more on proprioceptive (such as PE) rather than vi-
sual (De Vitis et al., 2019). We did not find different accuracies
by decoding the two components separately when we decoded
reaching goals (data not shown). While decoding the 9 reaching
targets (supervised problem 1), not only movement attributes,
planning and execution could be exploited in the learning sys-
tem, but also spatial attention, sensory feedback, and movement
imagery. All these types of information are known to be encoded
in PPC (Section 4.1 and contribute to the generation of patterns
in the discharge of neurons, patterns that can be extracted from
the neural network and mapped to the classes corresponding to
290
spatial locations. We then tried to predict the trajectories of hand
position (supervised problem 2) from the population activity of
neurons providing the algorithm with past neural activity up
to 300 ms before the current movement (corresponding to an
offset = 0, see Section 2.3.4 and Fig. 8b). Unfortunately, the real
trajectories were not available, so we have reconstructed the
plausible trajectories of movement semi-synthetically (see Sec-
tion 2.3.4), from the pressure of the home button to the reaching
movement up to the holding of goal position. Remarkably, while
V6A and PEc R2s were high (over 0.6) obtaining a good trajectory
reconstruction, R2s of PE were lower (see Fig. 8b), especially for
the x-coordinate (corresponding to the direction of movement)
supporting the view of preferential depth (y) encoding from
rostral SPL. Our task was ideal for testing visuospatial trans-
formations and probably little activates areas more devoted to
somatomotor control. Nevertheless, it is plausible that the semi-
synthetic trajectories we used, forcing a non-natural straight-line
trajectory, could be not optimal for decoding. While reaching
goal location and trajectory decoding were good for both V6A
and PEc, and no particular difference emerges between the two
methods, trajectory decoding from PE seems to perform slightly
better than classification (especially for depth and elevation). This
could be related to the specialization of the area PE in dealing
with proprioceptive signals, so that information of the absolute
position of the target (used for classification problem) is scarcely
useful, and signals are more related to the movement of the limbs
than visuospatial representation.

4.3. Feedforward model

To perform rapid, targeted movements, our brain must rely
on a feedforward predictive model given the latency of incoming
sensory feedback signals. One of the theories that is gaining mo-
mentum is that the brain must continuously integrate the state
of the environment and the body into a feedback control loop
to perform congruent movements in real time (optimal feedback
control, Todorov, 2004). The SPL fits nicely into this framework
with caudal regions encoding the environment in relation to the
body and more rostral regions encoding the state of the body
(Medendorp & Heed, 2019). Within this model it is possible
to frame the generation and deployment of the trajectories of
movement. We found that it is possible to predict the instanta-
neous position of hand in the space by providing the activity of
neurons in a short prior interval, but also with increasing lags.
Negative lags extract features related to sensory feedback (sen-
sory outcomes of action), positive lags suggest the existence of
a predictive model or motion planning. Mulliken and colleagues
(Mulliken et al., 2008a) observed how PRR neurons encode for
either the movement angle or goal angle (or both), finding single-
cell preferences for encoding future states (positive lag), past
states (negative lag), and many cells that represented the current
state (zero lag, in particular for a task that used an obstacle on the
trajectory requiring a more dynamic control), demonstrating the
existence of the feedforward model. Our decoding analysis loses
sensitivity to a single neuron combining all contributions at the
population level but still gives us clues about the existence along
the entire network of the SPL of the running feedforward model.
The fact that the areas we studied simultaneously contain a repre-
sentation of sensory feedback and signals related to the planning
of future movements, supports the existence of an inner model
that compares the expected outcome of an action with the real
outcome, even if with intrinsic latency. While in most cases the
decoding accuracy was not affected by the different offsets, only
the x component for the V6A area shows significant dependence
(Fig. 8b). We think that this reflects two properties of the network

we are studying. Previous work from our lab found that direction
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Table 2
Hyper-parameter space of the convolutional feature extractor. Nb and Nc denote
he number of convolutional blocks and temporal separable convolutions per
lock, respectively. K and F denote the number of temporal kernels and
he kernel size, respectively. Lastly, c and p indicate the maximum norm to
se in max-norm constraint and the dropout probability, respectively. The
yper-parameter values were sampled using uniform distributions during the
yper-parameter optimization. Among the values, ‘‘None’’ denotes no usage of
specific technique (i.e., no use of kernel max norm constraint and no use of
ropout).
Hyper-parameter Values

Nb [1, 2]
Nc [1, 2, 3, 4]
K [4, 8, 16, 32]
F [3, 5]
c [None, 0.25, 0.5, 0.75, 1]
Use batch norm. [False, True]
Activation function (ReLU, ELU Clevert, Unterthiner, & Hochreiter, 2016)
Pool function [max, avg]
p [None, 0.25, 0.5]
Learning rate [0.0001, 0.0005, 0.001]

information (x-axis) is processed earlier than depth (y-axis, see
Hadjidimitrakis et al., 2014) that relies more on somatosensory
signals arriving later as sensory feedback from the moving arm.
In addition, somatosensory afferents are greater for more rostral
areas (PEc and PE, see Introduction). Accordingly, V6A decoding
accuracy is more affected by offsets that rely less on feedback
signals (see lower accuracy for negative offset in Fig. 8b), where a
high accuracy is maintained using movement preparatory signals
(positive offsets). The offset effect is less evident in PEc, with a
trend that is not statistically significant and in PE it is not present
(although it could be masked by the lower overall accuracy).

4.4. Convolutional neural networks for neural decoding

The revival of neural networks supported by a large variety
f applications in computer vision has led to the widespread use
f neural networks in various fields that can now benefit from
dvanced pattern recognition techniques (Richards et al., 2019).
e have borrowed techniques from time series analysis and
ave shown how neural networks are well suited for the study
f neural dynamics. Since our CNN-based algorithm is able to
xtract and leverage temporal features, the decoding performance
ignificantly increases (Fig. 7) compared to a classic algorithm
ased on Naïve Bayesian.
Conversely to other studies (Glaser et al., 2020; Shah et al.,

019; Sussillo et al., 2012), in this study we adopted CNNs to
ecode neural signals while automatically searching for its best
onfiguration using BO. Therefore, it is worth remarking that
he main CNN structural hyper-parameters were automatically
ptimized within the search space exploiting an automatic search
lgorithm, rather than manually select them based on a trial-and-
rror procedure. From BO, a shallow CNN architecture (i.e., Nb =

, Nc = 1) with one separable convolutional layer and one
ully-connected layer resulted optimal for decoding the neural
ctivity during reaching. The adoption of a shallow CNN has the
dvantage of lower training times and good generalization with
imit-sized datasets as the one adopted in this study, achieving
igh decoding performance both in classifying the target reaching
nd-point, and in predicting semi-synthetic trajectories. Indeed,
esults suggest that with the adopted optimal shallow CNN few
rials (72 in the training set, see Section 2.1.2) are enough to
rain the networks with the chunking procedure (augmenting the
raining set up to 3384 examples, see Table 1), achieving high
erformance. Temporal patterns of the single separable convolu-
ional layer led to an optimal decoding when extracted within a
indow of 100 ms (i.e., F = 5 bins). Interestingly, despite being a
291
shallow CNN, the optimal architecture learned the highest num-
ber of features among the admitted values of hyper-parameter
space (i.e., K = 32 feature maps were learned, see Table 2). Thus,
instead of selecting a deep convolutional neural network (e.g., 2
blocks with 4 convolutional layers per block, corresponding to
the maximum depth in the defined search space) and a low
number of filters per layer (e.g., 4 filters), which is a common
design principle in computer vision applications (Simonyan &
Zisserman, 2015), BO selected a simple shallow CNN learning the
highest possible number of filters in the single convolutional layer
included.

Therefore, by analyzing these structural hyper-parameters, re-
sults suggest that the information contained in the input neural
chunks did not require extracting high-level and more abstract
features (e.g., as resulting from a deep CNN in deeper layers) to
perform an accurate decoding, but rather learning many low-level
and less abstract features directly from the raw input chunks
was more beneficial. This result may depend on the fact that
some high-level features have already been extracted upstream,
from the visual and somatosensory processing flows that precede
the posterior parietal lobule; i.e., the inputs to our network are
not directly taken from the external world, as usually done in
deep neural networks, but have been significantly pre-processed
by the primary brain areas. Future applications in neural de-
coding could benefit in designing shallow but wide CNNs rather
than deep and narrow CNNs. Furthermore, regarding regular-
ization hyper-parameters, constraints such as kernel max-norm
constraint (with c = 1) and dropout (selecting the highest
dropout probability, i.e., p = 0.5, see Table 2) proved their utility
improving the generalization in the addressed decoding tasks.
Interestingly, batch normalization did not result as useful as the
previous regularization methods (BO selected less frequently this
regularizer). Thus, in perspective, neural decoders could benefits
in applying the specific combination between kernel max-norm
constraint and dropout (with a high dropout probability, e.g., set
to 0.5 as in this study) to perform regularization.

Despite the main objective of this study was to propose a
CNN architecture for decoding neural activity and enabling the
analysis of three different PPC areas, some methodological as-
pects may prospectively have significant implications for BCI.
First, the proposed CNN structure resulted from an automatic
algorithm (BO) and resulted optimal in terms of performance
on a separate validation set, significantly outperforming a linear
classifier. Furthermore, the design included separable convolution
that are lighter and more efficient than standard convolutions,
Chollet (2017), providing a neural network that is less prone to
overfit small datasets and that produces a fast inference. That is,
the proposed CNN resulted in an accurate, light, and efficient non-
linear decoder of neurons’ spiking rate that, in prospective, may
find some applicability in BCI systems.

4.5. Future directions

Although we focused on CNNs in our analysis because we
think they should be better explored as method for neural decod-
ing thanks to their simplicity and interpretability (Tjoa & Guan,
2020), many studies used different implementations based on
RNNs (as mentioned in the introduction) obtaining good results
especially in the decoding of trajectories for practical applications
(despite RNNs remain in many cases black boxes). RNNs are
being trained to simulate the frontoparietal network of grasping
(dorso-lateral pathway rather than dorso-medial of reaching),
with artificial units resembling the neural activity of real neurons
recorded in areas of grasping circuits. In such model, virtual
lesion to the artificial network produced outputs similar to le-
sion/inactivation studies on monkeys (Michaels, Schaffelhofer,
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gudelo-Toro, & Scherberger, 2020). Given the interconnections
etween the reaching and grasping networks with neurons sen-
itive to grip types found in V6A (Fattori et al., 2010) and neu-
ons sensitive to reach locations in anterior intraparietal area
Lehmann & Scherberger, 2013) it is expected that a similar RNN
rchitecture can also be applied to the dorso-medial network.
uture developments include the adoption of RNN to compare
ith CNNs in a benchmark (with many datasets and decoding
lgorithms) and evaluate which decoding approach represents
he best compromise between performance, training time and
odel size (i.e., number of trainable parameters). Furthermore,

echniques aimed to improve the interpretability of the CNN
e.g., occlusion techniques and saliency maps Simonyan, Vedaldi,
Zisserman, 2014), recently exploited to investigate neural sig-
atures in the electroencephalogram while decoding brain states
Borra, Fantozzi, & Magosso, 2020, 2021), can be of value also
o explain network’s decision when decoding neurons’ spiking
ates. In particular, these explanation techniques could help to
haracterize the impacts of individual input neurons or sub-
opulations of neurons (e.g., at different locations) inside each
pecific area in the decoding process, as well as the importance
f specific time bins, contributing to understand their role at the
evel of brain network dynamics. Working on these two points,
.e., developing algorithms that decode efficiently and accurately
eural dynamics, and explaining decoding decision could bring
reat benefits. First, it may further increase our knowledge about
he link between neural activity and behavioral outcome; second,
nd prospectively, it may contribute to advance BCI technologies
y driving improvements aimed to maximize brain information
xtraction and better brain–computer communication.
Finally, it is important to stress that neural decoders as the

nes proposed here are of significance to determine the amount
nd nature of information neural populations contain about spe-
ific external variables, but are not designed for mechanistic
nterpretation, i.e., for explaining the neural mechanisms un-
erlying multisensory and sensorymotor integration in PPC for
uide actions. To this aim, biologically inspired neural networks
re needed, designed to functionally and structurally resemble
pecific parts of the brain and to implement more biological
earning rules than back-propagation. Data-driven deep learning
pproaches and biologically constrained interpretative networks
re complementary approaches that can both boost a better com-
rehension of how information is encoded and processed in the
rain and each one can support the advancement of the other; for
xample, a better description of the information encoded by the
ifferent neural populations gained by CNNs decoders may guide
he design of interpretative models (Kay, 2018).

. Conclusion

We decoded the activity of neurons from three areas of the
eaching network within the superior parietal lobule of macaque,
6A, PEc, and PE to reconstruct the position of the goal in space
nd the trajectory required to accomplish the reaching. CNNs
ere used as neural decoders and proved to accurately decode
oth the reaching target and 3D hand position. The optimal
esign of the CNNs, as obtained with hyper-parameter search,
esulted in shallow (but wide) architectures with only one hidden
eparable convolutional layer. While the more caudal V6A and
Ec encoded more strongly the position of the target in space
decoding accuracy was already good at the presentation of the
arget) the area PE, more rostral, was weaker in this represen-
ation, its accuracy reaching a peak during the execution of the
ovement. This supports a model of the PPC where the more
audal areas represent the body-environment relationship and
he more rostral areas the effects of the action on the body.
292
The results can be framed in the role played by PPC in the
neural control of reaching movements. New generations of BCIs
can gain benefits from a better combined study between system
neuroscience and renewed deep learning technologies.
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