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People Living with HIV (PLHIV) are at an increased risk of pneumococcal

pneumonia than HIV-uninfected adults, but the reasons for this are still not

well understood. We investigated whether alveolar macrophages (AM)

mediated control of pneumococcal infection is impaired in PLHIV compared

to HIV-uninfected adults. We assessed anti-bactericidal activity against

Streptococcus pneumoniae of primary human AM obtained from PLHIV and

HIV-uninfected adults. We found that pneumococcus survived intracellularly in

AMs at least 24 hours post ex vivo infection, and this was more frequent in

PLHIV than HIV-uninfected adults. Corroborating these findings, in vivo

evidence showed that PLHIV had a higher propensity for harboring S.

pneumoniae within their AMs than HIV-uninfected adults. Moreover,

bacterial intracellular survival in AMs was associated with extracellular

propagation of pneumococcal infection. Our data suggest that failure of AMs

to eliminate S. pneumoniae intracellularly could contribute to the increased risk

of pneumococcal pneumonia in PLHIV.
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Introduction

Streptococcus pneumoniae, the pneumococcus, is the leading

bacterial cause of community-acquired pneumonia in children

under 5-years of age, the elderly and people living with HIV

(PLHIV) (1–3). The pneumococcus frequently colonizes the

nasopharynx, especially in under-fives and PLHIV (4–7), and

this is widely-accepted as a prerequisite for disease (8, 9).

Globally, pneumococcus serotype 3 (ST3) is of major concern,

since effectiveness of the pneumococcal conjugate vaccines

(PCV) against it remain uncertain. Specifically, there is limited

reduction in ST3 disease compared to the other vaccine

serotypes in the era of PCV (7, 10, 11).

Recent evidence in humans suggests that the pneumococcus

migrates into the lung through micro-aspiration, where if not

successfully cleared leads to pneumococcal pneumonia (12, 13).

Airway phagocytic cells, including alveolar macrophages (AM)

and neutrophils, control extracellular bacteria including the

pneumococcus, through bacterial internalization, phagolysosomal

killing, release of microbiocidal factors, and metal intoxication (14–

17). Internalization of pneumococci by phagocytes is enhanced by

complement and antibody opsonization (18–20). However, the

pneumococcus can evade intracellular killing and survive in

macrophages (12, 14). In murine and porcine models,

pneumococci have been shown to replicate within CD169+

metalophillic splenic macrophages, from where they further

propagate infection (14). Furthermore, in the experimental

human challenge model, between 29 and 49 days post challenge,

41% of the colonized volunteers had detectable serotype 6B DNA in

their BAL fluid, and with some harboring intracellular serotype 6B

pneumococci in their AMs (12). While, none of the non-colonized

individuals had evidence of persistent serotype 6B in the lung.

Together, these findings indicate a potential underappreciated role

of AM in the pathogenesis of pneumococcal disease.

However, it is still unclear whether S. pneumoniae has

increased propensity to evade intracellular killing in AM from

PLHIV, as this could contribute to their increased susceptibility

to pneumococcal pneumonia. Using ex vivo and in vivo

infection, we show that AM from PLHIV exhibit poor

intracellular killing of pneumococci and demonstrated a role

of intracellular survival in continued propagation of infection.

These data suggest that AM from PLHIV are less able to fully

clear pneumococcal infection, and this could contribute to the

increased proclivity for pneumococcal pneumonia in PLHIV.
Methods

Study design and participants

In a cross-sectional study, we recruited asymptomatic adults

>18 years of age comprising of three groups namely, HIV-
Frontiers in Immunology 02
uninfected, PLHIV on short-term (<3 months) antiretroviral

therapy (ART) and long-term (>3 years) ART. All PLHIV were

on tenofovir, lamivudine and Efavirenz ART regimen according

to national guidelines. Participants were recruited from Queen

Elizabeth Central Hospital Voluntary Counselling and Testing

(VCT) clinic in Blantyre, Malawi. Participants were excluded

during screening, if they were known active smokers or smoked

in the past 6-months, had signs and symptoms of a respiratory

infection, anemic (hemoglobin<8g/dl), were suspected or known

to have chronic obstructive pulmonary disease (COPD), were

suspected, or known to be pregnant, and had contraindications

for bronchoscopy. All participants provided written informed

consent and followed by clinical assessment before

bronchoscopy. Due to the test and treat strategy, we were

unable to recruit ART-naïve HIV-infected adults. Ethical

approval was obtained from the College of Medicine Research

Ethics Committee in Malawi (Protocol P.01/18/2335) and the

Liverpool School of Tropical Medicine in the UK (Protocol

18-007).
Nasopharyngeal swabs collection and
processing

Nasopharyngeal swab (FLOQSwabs™, Copan Diagnostics,

USA) were collected and placed in 1 ml skim milk-tryptone-

glucose-glycerol (STGG) media and processed as previously

described (21).
Bronchoalveolar lavage collection and
cell isolation

BAL was collected and processed as previously described

(22). Briefly, topical lignocaine spray was applied to the nasal

and pharyngeal mucosa of semi-recumbent participants. A fibre-

optic bronchoscope (Olympus, UK) was passed down trachea

and lignocaine applied to the vocal cords and larger airways. The

bronchoscope was passed down to the level of sub-segmented

bronchus of the right middle lobe and four 50ml aliquots of

sterile normal saline at 37°C was instilled and lavage fluid

removed using gentle hand suction. BAL fluid was

immediately transported to the lab on ice.

Briefly, BAL was sterile filtered and centrifuged at 500g at

4°C. After centrifugation, supernatant was removed, and whole

cell pellet resuspended in cold PBS and centrifuged at 500g at 4°

C. Following washing, the cell pellet was further resuspended in

RPMI (Sigma-Aldrich, UK) supplemented with 10% heat

inactivated fetal bovine serum and antibiotics (amphotericin,

penicillin, and streptomycin) (Sigma-Aldrich, UK). Cell count,

primarily of viable alveolar macrophages (based on morphology

and trypan blue staining) was performed using the KOVA®
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disposable counting chamber under bright field microscope

(Olympus, Japan). Harvested airway cells, primarily AMs (23)

were seeded in 12-well cell culture plates (1x106/well) containing

RPMI supplemented with 10% heat inactivated fetal bovine

serum without antibiotics (henceforth referred to as infection

media) and incubated at 37°C in 5% CO2 for 3 hours to allow

AM adherence prior to infection studies. Due to limitation of

cells retained in some individuals, not all experiments were done

on all samples.
Bacteria opsonization

For IgG opsonization, 1x108 colony forming units (cfu) ST3

were opsonized with 25% of 007SP human anti-pneumococcal

capsule reference serum (NIBSC, UK) and 10% intravenous

immunoglobulin (IVIG) (NIBSC, UK) in infection medium as

previously reported (12, 24, 25). The ST3, 007SP and IVIG

suspension was co-incubated for 30 minutes in a horizontal

shaking incubator (ThermoFisher Scientific, USA) at a

temperature of 37°C and a speed of 170rpm.
Fluorescent staining of pneumococci

The bacteria pellet (1x108 cfu) in an aluminum foil

wrapped 15 ml falcon tube was fully resuspended in 10mM
CellTracker™ Red CMTPX (Invitrogen, USA) and incubated

at 37°C for 1 hour, whilst gently shaking at 170rpm to ensure

even staining of bacteria. Once stained, the bacteria were

centrifuged twice at 4,000g to concentrate the stained

bacterial pellet. The pellet was further resuspended in Hanks

balanced salt solution (Sigma-Aldrich, UK) supplemented with

0.2% bovine albumin serum (Sigma-Aldrich, UK) and washed

twice at 4,000g. After the final wash, stained ST3 was

resuspended in 100ml infection media.
Bacterial extracellular killing assay

To determine the growth inhibition of extracellular ST3 by

airway cells, rested airway cells were infected with opsonized ST3

at MOI 50 bacteria per AM in 1ml of infection medium.

Thereafter, 12-well culture plates were centrifuged for 3

minutes at 561g to initiate intimate contact between the

phagocytes and the ST3. Plates were incubated at 37°C in 5%

CO2 for up to 24 hours with gentle horizontal shaking 50rpm.

After each hour and for three continuous hours post infection

(p.i), supernatants matching the corresponding hour was

removed, and wells washed three times with PBS to remove

non-adherent bacteria. Supernatant were centrifuged, discarded

and viable outgrowth ST3 quantified using quantitative culture
Frontiers in Immunology 03
to determine number of cfu (26, 27). This was done for time

points 1, 2, 3 and 24 hours p.i.
Ex vivo gentamicin protection assay

To determine the number of viable intracellular

pneumococcal ST3 within AM, rested adherent AM were

infected with opsonized ST3 at MOI 50 in 1ml of infection

media. Thereafter, the plates were centrifuged at 561g to initiate

an immediate contact between the phagocytes and the ST3.

Plates were incubated at 37°C in 5% CO2 with gentle horizontal

shaking 50rpm. One hour p.i, the supernatant and non-adherent

cells were removed by aspiration, washing three times with fresh

PBS. Infection media was added to the wells with adherent cells

followed by 100µg/ml of gentamicin, a dose shown to kill

extracellular pneumococci in this assay (27, 28), including ST3

(29–31). Plates were further incubated for 30 minutes at 37°C in

5% CO2 with gentle horizontal shaking 50rpm. Thirty minutes

post gentamicin exposure, the wells were washed twice with

sterile PBS to remove any traces of gentamicin and viable

extracellular bacteria, leaving phagocytes with internalized

ST3. To the adherent cells in the wells of the cell culture

plates, fresh infection media with no antibiotics was added and

incubation continued for 24 hours. At times 1, 2, 3 and 24 hours

p.i, adherent cells were lysed with 2% saponin solution followed

by quantitative culture to determine number of viable

intracellular ST3 quantified.
Flow cytometry

Flow cytometry-based immunophenotyping was used to

characterize cells associated CMTPX-stained pneumococci.

Briefly, cells co-incubated with CMTPX-stained ST3 were

harvested and adjusted to 1x106/50ml. They were then stained

with a cocktail of the following antibodies: anti-human CD206

FITC (Clone 15-2, Cat no. 321104), anti-human CD163 BV421

(Clone GHI/61, Cat no. 333612), anti-CD66b APC (Clone

G10F5, Cat no. 305118) (All BioLegend, UK). Cells were

incubated in the dark thereafter resuspended in cold PBS and

spun in the centrifuge at 500g. Supernatant was gently poured off

and cells were gently resuspended and fixed in 0.5%

paraformaldehyde and acquired on a BD Fortessa flow

cytometer (Beckman Dickinson, USA).
Confocal microscopy

Fixed airway slides were incubated with 0.5% wheat germ

agglutinin (WGA; Alexa Flour® 633, Thermo scientific) to stain
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sialic acid and N-acetylglucosaminyl residues on the cell

membranes. Following incubation and washing, slides were

permeabilized with 0.1% Triton X-100. Slides were

subsequently washed three times with PBS before incubating

the cells for 1 hour with pneumococcal omnisera/serotype 3

specific serum (SSI Diagnostica, Denmark) diluted in 5% goat

serum (blocking solution). Afterwards, the slides were washed

with PBS before staining for 45 minutes with a secondary

monoclonal antibody conjugated with fluorochrome (anti-

rabbit Alexa Flour® A488, Thermo Scientific) to detect

bacteria. For slides requiring AMs to be identified, anti-human

CD206 (Alexa Flour® 568; Thermo Scientific) was co-incubated

with bacterial secondary conjugated antibody. Slides were then

washed three times with PBS and once in distilled water and

mounted with media containing 4′,6-diamidino-2-phenylindole

(DAPI; Thermo Scientific ProLong™ Gold Antifade Mountant)

and a coverslip added. Nail polish was used to seal the slide

before being acquired on the Olympus FluoView 1000 confocal

laser scanning fluorescent scanning microscope using a x40

objective . Z-stack images using Huygens Essential

deconvolution software version16 (Scientific Volume Imaging)

and viewed in Imaris 3D reconstruction software 9.4 (Bitplane).
Statistical analysis

Data visualization and statistical analyses were performed in

GraphPad Prism software (version 9.4). Descriptive statistics

were used to for continuous variables by calculating medians and

interquartile ranges. Groups were compared using non-

parametric tests (Wilcoxon rank sum or Wilcoxon signed-rank

test, Kruskal Wallis tests) depending on the distribution. For

multiple pairwise comparisons, the Dunn test was used.

Categorical data were summarized as proportions (and 95%

confidence intervals were appropriate) and compared using the

c2 tests. Correlations were assessed using Spearman test. Effects
Frontiers in Immunology 04
were considered statistically significant when the p value was less

than 0.05.
Results

Participant demographics and
characteristics

As shown in Table 1, a total of 76 asymptomatic individuals

were recruited, 31 HIV-uninfected, 29 PLHIV on short-term

antiretroviral therapy (ART) (<3 months) and 16 PLHIV on

long-term ART (>3 years). The median duration of ART in

PLHIV on short-term treatment was 29.2 days (IQR, 7.75 –

48.75 days), while those on long-term treatment was 7.5 years

(IQR, 4.25 – 10.75 years). Plasma HIV viral load was undetectable

in 22/45 (49%) of the PLHIV on ART, with 75% (12/16) of

individuals on long-term ART having undetectable viral load.
Airway cells differentially control
pneumococcal outgrowth during early
and late infection phases

To examine the kinetics of airway cellular control of

pneumococcal outgrowth, we used an invasive pneumococcal

serotype 3 (ST3) isolate and lower airway cells obtained via

bronchoalveolar lavage (BAL). Pneumococcal ST3 was grown in

the presence and absence of human airway cells and bacterial

load was measured in the supernatant at 1, 3 and 24 hours p.i

(Figure 1A). In the first 3 hours p.i (early infection phase), the

bacterial burden was significantly lower in conditions where

pneumococci were co-cultured with human airway cells than

from those without airway cells (all p<0.007) (Figures 1B, C;

Supplemental Figure 1). Moreover, no significant differences

were observed in the early control of pneumococcal outgrowth
TABLE 1 Demographic and laboratory characteristics of the population.

Characteristic HIV-uninfected (n=31) PLHIV <3m ART (n=29) PLHIV >3yrs ART (n=16) p value

Age
median (IQR)

33.0
(22 – 41)

31.5
(27.0 – 38.3)

41.0
(38.5 – 46.5)

0.021

Gender
(Female) n (%)

11 (35.9) 16 (53.5) 11 (68.8) 0.0001*

CD4+ count
median (IQR)

640.0
(515.0 – 829.0)

488.0
(335.0 – 564.0)

619
(399.5 – 724.0)

0.0015

Undetectable Plasma HIV viral RNA (%)# n/a 10 (37.0) 12 (75.0) 0.0268*

BAL volume median (IQR) 122.0
(108.5 – 135.0)

130.0
(115.0 -140.0)

120.0
(105.0 -135.0)

0.3519
fronti
*Analyses were done using c2- test including gender and viral load and the rest of the analysis was done using Kruskal-Wallis.
ART, antiretroviral therapy; BAL, bronchoalveolar lavage; CD, cluster of differentiation; IQR, interquartile range; PLHIV, People living with HIV. #Limit of plasma viral load (log10) <2.42
copies/ml. The bold values represent statistical significance i.e. the p values are less than 0.05.
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by cells obtained from HIV-uninfected adults compared to

PLHIV (all p>0.05) (Figures 1B, C). However, at the 24-hour

time point (late infection phase), in conditions with detectable

bacteria in the supernatant, the bacterial load was significantly

higher in those co-cultured with airway cells (irrespective of HIV

status) than those without cells (p<0.0001) (Figure 1D). This

data indicated that airway cells suppress pneumococcal

outgrowth during the early phase of infection but could lose

control in the late infection phase.
AMs are the principal phagocyte
associated with pneumococci during
early infection phase

To identify the airway immune cells associated with early

control of pneumococcal growth, we stained pneumococcal ST3

with CMTPX dye and co-incubated them with airway cells for 1
Frontiers in Immunology 05
hour to identify the predominant immune cells that bound or

internalized pneumococci (Figure 2A and Supplemental

Figure 2). Irrespective of HIV status, AMs were the principal

phagocyte associated with IgG-opsonized ST3 as observed by

flow cytometry (Figures 2B, C). This was also visualized using

confocal microscopy at 1 hour post incubation, showing binding

and internalization of fluorescent IgG-opsonized ST3 to cells

morphologically analogous to AMs (Figure 2D and

Supplemental Video 1). These results demonstrated that AMs

were the predominant airway phagocyte associated with early

control of pneumococcal outgrowth.
Pneumococcal ST3 intracellular survival
in human AMs following ex vivo infection

Next, we sought to assess intracellular survival of

pneumococci in AMs from PLHIV and HIV-uninfected adults
A

B DC

FIGURE 1

Airway cells suppress pneumococcal outgrowth better during early phases of infection. To compare the growth kinetics of S. pneumoniae
Serotype 3 in the presence and absence of human airway cells, bacteria were grown in a co-culture experiment and viable counts determined
at the time points indicated. Prior to incubation and co-culture experiment, bacteria were IgG-opsonized. (A) Schematic outlines the
experimental design for pneumococcal growth kinetics in the presence and absence of human airway cells. (B) Airway cells suppress
pneumococcal growth 1-hour post infection (p.i). (C) Airway cells suppress pneumococcal growth 3 hours p.i. (D) Differential airway cell control
of S. pneumoniae 24 hours p.i, bacterial detection limit was 33 cfu/ml. In a subset of individuals with detectable bacteria, pneumococcal bacterial
burden was compared in conditions grown with or without airway cells. Boxplots represent the median (centre line) and interquartile range (box),
minima and maxima (whiskers). Asymptomatic HIV-uninfected (n=21); asymptomatic HIV-infected on ART<3 months (n=19); asymptomatic HIV-
infected on ART>3 years (n=10); control bacteria (1 hour and 3 hours p.i, n=9; 24 hours p.i, n=25). Statistics were calculated using Kruskal-Wallis,
Dunn multiple comparison test and Mann-Whitney test.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.992659
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nyazika et al. 10.3389/fimmu.2022.992659
using the gentamicin protection assay (GPA). In this assay, IgG-

opsonized viable ST3 at MOI 50 were incubated with AM for 1

hour, gentamicin was added for 30 minutes, then the cell culture

supernatant was removed, replaced with gentamicin-free cell
Frontiers in Immunology 06
culture media and cells incubated for a further 1, 2, and 24 hours

(Figure 3A). Following lysis of the AM and bacterial culture at

the different time points, we observed a reduction in the

intracellular bacterial load from 1 to 3 hours p.i, irrespective of
A

B

D

C

FIGURE 2

Alveolar macrophages are the predominant airway phagocyte associated with early control of pneumococci. (A) Schematic outlines
experimental design. Briefly, IgG opsonised CMTPX stained S. pneumoniae were co-cultured with human airway cells for 1 hour followed by
flow cytometry and confocal microscopy analysis. Prior to the infection studies, S. pneumoniae was stained with red CMPTX, followed by IgG
opsonization. (B) Representative flow cytometry plots showing pneumococcal uptake by CD206+CD163+ AMs and CD66b+ neutrophils at MOI
50. Proportion of AMs/neutrophils associated with pneumococci were identified by subtracting the gating frequency of uninfected AMs/neutrophil
from cells infected with CMTPX stained ST3. (C) Paired comparison for the frequency of AMs and neutrophils associated with pneumococci at
MOI 50 post ex vivo infection. (D) Representative single fluorescent field images taken from a 1 individual showing the association of alveolar cells
(WGA; cell membranes – purple; DAPI – nucleus) with pneumococci-ST3 (bacteria – green) at i) MOI 10 and ii) MOI 50 (at magnification x63).
Scale bars: left panel =10mm; right panel =10mm. Cells associated with bacteria are shown with the arrow (orange). Boxplots represent the median
(centre line) and interquartile range (box), minima and maxima (whiskers). Asymptomatic individuals; HIV-uninfected (n=25), HIV-infected on ART
<3 months (n=15), HIV-infected ART>3 years (n=12). Statistics were calculated using Wilcoxon signed rank test.
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HIV status (HIV- 3100cfu/ml vs. 10cfu/ml; HIV+ART+<3m

3039cfu/ml vs. 10cfu/ml; HIV+ART+>3yr 2228cfu/ml vs. 10cfu/

ml) (Figure 3B). In a subset of individuals, we observed that

bacteria were undetectable at 3 hours p.i within the AMs but

detectable at 24 hours p.i (HIV- 24% vs. HIV+ART+<3m 43%

vs. HIV+ART+>3yr 30%) (Figure 3C). We ascertained presence

of intracellular pneumococci in AMs 24 hours p.i using confocal

microscopy, showing that pneumococci were present

intracellularly within CD206+ airway cells (Figure 3D). CD206

is a classic marker of AMs (32–35).
Frontiers in Immunology 07
In vivo evidence of intracellular survival
of pneumococci in human AMs

To corroborate the above observations, we explored in vivo

evidence of intracellular survival of pneumococci in AMs from

otherwise asymptomatic adults. Cytospins were prepared from

freshly isolated BAL samples aiming to deposit 3 x 104 cells per

cytospin, mostly AMs, onto the slides. We stained cytospin slides,

with pan-pneumococcal antibodies (Omnisera), wheat germ

agglutinin (WGA) and 4′,6-Diamidino-2-phenylindole
A

B

D

C

FIGURE 3

Intracellular survival of S. pneumoniae within AMs. (A) Schematic outlines the gentamicin protection experimental design. (B) Graph depicts the AMs
intracellular bacterial load p.i at the time points indicated. (C) Samples of AMs from individuals with undetectable bacteria at 3 hours post infection (p.i)
but having detectable pneumococcal persistence at 24 hours p.i. (D) Representative 3D Z-stack images on different planes demonstrating internalised S.
pneumoniae-ST3 within CD206+ AMs (WGA; cell membranes – purple; DAPI – nucleus, red – monoclonal anti-CD206) with S. pneumoniae-ST3
(bacteria capsule, FITC– green). Scale bars, top left panel =5mm; top right panel =3mm, bottom left panel =3mm; bottom right panel =3mm.
Asymptomatic individuals; HIV-uninfected (n=29), HIV-infected on ART <3 months (n=21), HIV-infected ART>3 years (n=10). Statistics were
calculated using Chi-squared test and Wilcoxon signed rank test.
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dihydrochloride (DAPI) and found that almost one third of the

samples had detectable pneumococci with counts ranging from

one to six bacterial cells (HIV- 33% (6/18) vs. treated HIV+ 29%

(9/31)) (Figures 4A–C). Microscopy analysis found that in all

samples the pneumococci were associated to cells morphologically

consistent with AMs (Figures 4A, B). For eight of the BAL

samples, Z-stack analysis and 3D reconstruction were

performed, which showed pneumococci were located within the

AMs (Supplemental Figure 4, Supplemental Video 2). We also

stained a slide from an individual carrying pneumococcal serotype

18 in their nasopharynx with serotype-specific antibodies and
Frontiers in Immunology 08
microscopically detected ST18 pneumococci intracellularly in

matched AMs (Figure 4D). Collectively, these data confirm

pneumococcal survival in primary human AMs.
Pneumococcal intracellular survival in
human AMs is associated with continued
propagation of infection

We next sought to assess the impact of intracellular survival

of S. pneumoniae on propagation of infection. We measured the
A

B

DC

FIGURE 4

In vivo survival and detection of pneumococci within AMs. Representative single confocal microscopy images taken from a subset of individuals
showing presence of pneumococci within cells analogous to AMs. (A) A subset of 6 individuals showing in vivo internalized pneumococci
(arrow) within AMs. (B) Representative single confocal microscopy image showing internalized pneumococci (dashed lines) within AMs. Three-
dimensional reconstruction through deconvolution analysis shows the localization of the pneumococci within the AMs from the upper focal
plane. The same three-dimensional reconstruction clarifies the localization of the pneumococci within the AMs. (C) Proportion of AMs testing
positive for pneumococcal omnisera (HIV-uninfected, n=18; treated HIV+, n=31). (D) A representative confocal image showing AMs positivity for
serotype 18B, also identified in the nasal swabs. The three-dimensional reconstruction image of the pneumococci serotype 18 within the AMs.
WGA; cell membranes – purple; DAPI – nucleus; with pneumococci-ST3 (bacteria – green) at magnification x63. Scale bars for panel A, all
10mm; panel B, top right and left =10mm, bottom right =5mm; panel D, left panel=10mm and right panel=5mm.
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presence of pneumococci in a random subset of culture

supernatants (irrespective of HIV status; n=17) from the

gentamycin protection assay and observed that 59% (10/17) of

the individuals had an increase (p=0.0020) in bacterial load from

3 to 24 hours p.i (Figure 5), suggestive of bacterial replication.

Together, these data indicated that intracellular survival of

pneumococci in AMs could propagate pneumococcal infection.
Primary human AMs exhibit diminished
control of intracellular pneumococci

Finally, we investigated the impact of HIV infection on

survival of pneumococcal intracellular survival in human AMs.

First, we calculated the proportion of individuals from whom

pneumococci was still detectable at 3 and 24 hours p.i following

lysis of AMs in the gentamycin protection assay. The proportion

of individuals with detectable pneumococci substantially

increased between 3 to 24 hours p.i in PLHIV compared to

HIV-uninfected adults (p=0.0034) (Figure 6A). Second, we
Frontiers in Immunology 09
assessed in vivo bacterial survival in AMs by culturing primary

human AM from asymptomatic adults for 24 hours, followed by

cell lysis and subsequent microbiological culture to detect

presence of any viable pneumococci from natural infection.

Viable pneumococci were commonly identifiable in PLHIV

than HIV-uninfected adults (HIV- 0% (0/18) vs. treated HIV+

19% (6/31)) (Figure 6B), indicating in vivo survival of

pneumococci in AM. Among the individuals with evidence of

in vivo AM infection, 50% (3/6) had culture detectable

nasopharyngeal pneumococcal carriage (Figure 6B).

Collectively, these data suggested that AMs from PLHIV have

diminished intracellular killing capacity of pneumococci.
Discussion

The success of the pneumococcus as a pathogen depends on

its commensal relationship with its obligate human host, and

much of our knowledge on its commensalism is confined to the

upper respiratory tract (36), with minimal data from the lower

respiratory tract in humans. Data from the experimental human

challenge model have shown that pneumococci can survive in

vivo in human AMs, without causing overt disease (12). This

raises the question of whether AMs are a potential reservoir of

pneumococcal persistence in the human airways, and whether

HIV infection promotes persistence of this intracellular reservoir

leading to increased risk of pneumococcal pneumonia. Our

study sheds new light on the intracellular survival of S.

pneumoniae in human AMs from a high pneumococcal

transmission and disease-burdened African setting. Using both

ex vivo and in vivo approaches, our study demonstrates that

pneumococci survive intracellularly in human AMs, and that

this is more frequent in AMs from PLHIV than HIV-

uninfected adults.

The mechanisms for pneumococcal intracellular survival in

macrophages are still not fully understood, despite a growing

recognition of the ability of pneumococci to survive

intracellularly in macrophages (12, 14). However, there is

some evidence suggesting that pneumolysin, a cholesterol

binding and pore-forming toxin, facilitates intracellular

lysosomal escape of the bacteria in macrophages and dendritic

cells (37, 38). Specifically, pneumolysin binds to the mannose

receptor (CD206), widely found on AMs, thus facilitating uptake

of pneumococci, but also dampening the inflammatory cytokine

responses through upregulation of cytokine suppressor-1

(SOCS1) that leads to attenuated intracellular bacterial killing

(38). It has also been shown that S. pneumoniae can attenuate

host autophagic degradation of intracellular pneumococci for its

survival within cells (39). Moreover, the non-hemolytic

pneumolysin strains of S. pneumoniae survive better inside

both alveolar epithelial cells and THP-1 macrophages than the

hemolytic pneumolysin strains (37). Thus, these findings suggest

that this prototypical extracellular bacterium could have an
FIGURE 5

Propagation of extracellular pneumococci. Alveolar macrophages
(AMs) were co-incubated with IgG-opsonised viable ST3 at MOI
50 for 1 hour, gentamicin was added for 30 minutes, then the cell
culture supernatant was removed, replaced with gentamicin-free
cell culture media and cells incubated. The graph shows outgrowth
of pneumococci in cell culture supernatant at 3- and 24 hours
(n=17). Statistics were calculated using Wilcoxon signed rank test.
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intracellular niche within macrophages and potential other cells

for its propagation and maintenance in vivo. As shown in this

study and in the experimental human challenge model that

this intracellular niche is also present in healthy adults (12), this

could indicate that in the presence of an intact immune system,

bacterial persistence does not always translate into disease; akin

to latent tuberculosis.

On the other hand, PLHIV are at an increased risk of

pneumococcal pneumonia and exhibit almost 2-fold higher

pneumococcal carriage prevalence than HIV-uninfected adults

(1, 5, 7, 40, 41). We have shown that intracellular persistence of

S. pneumoniae within AMs ex vivo and in vivo is more frequent

in PLHIV than HIV-uninfected adults. This is consistent with

observations demonstrating HIV-associated impairment of

bactericidal killing mechanisms of macrophages (42–45).

Myeloid cell leukemia 1 (mcl-1), an anti-apoptotic protein, is

upregulated in PLHIV, and has been shown to interfere with the

late bactericidal killing mechanism of AMs (42–44). While, HIV

gp120 inhibits mitochondrial-ROS (mROS) dependent

intracellular killing of S. pneumoniae in monocyte-derived

macrophages (MDM) (43). Considering that HIV persists in

the airway even following suppressive ART (45), the diminished

intracellular killing of pneumococci in AMs in PLHIV on ART

could be due to the presence of HIV or its viral components in

the airway. It is therefore plausible that intracellular persistence

of pneumococci in AMs could contribute to the increased risk of

pneumococcal pneumonia in PLHIV due to its potential to

propagate pneumococcal infection.

A major strength of this work is the use of a locally-relevant

and globally-important invasive pneumococcal ST3. ST3 is

among the commonest pneumococcal carriage serotypes in

Malawi (7) and is also a global concern due to the persistent
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ST3 disease (7, 10, 11). Pneumococcal ST3 is biochemically

different from the other serotypes, having a large thick

polysaccharide capsule, surrounded by a slime layer, which

gives it a characteristic mucoid appearance when grown on

blood agar plates (46, 47). The polysaccharide capsule is a major

virulence factor of the pneumococci as it inhibits complement

and antibody mediated opsonophagocytosis (48–51). Despite

Pneumococcal ST3 being biochemically different, our findings

are consistent with observations from other serotypes including

serotype 1 (37), serotype 2 (43, 44), serotype 6B (12) and

serotype 18, that also survive intracellularly, suggesting

intracellular survival may not be capsular specific but is

common amongst pneumococcal serotypes.

A potential limitation to the study is the use of unprotected

bronchoscopes, which raises a possibility of BAL contamination

with components from the upper respiratory tract. As a result,

identification of intracellular pneumococci in AM from natural

infection could be a sampling artefact, but we think this is highly

unlikely. Notably, we did not observe overgrowth of

contaminants including bacteria or fungi in our BAL cell

culture 24 hours p.i.

In conclusion, our study shows intracellular survival of S.

pneumoniae in primary human AMs is common, but it is

exacerbated in PLHIV. The findings suggest that diminished

intracellular killing of pneumococci in AMs could in part

contribute to the increased propensity of pneumococcal

pneumonia in PLHIV. Our findings have implications on our

understanding of pneumococcal pathogenesis for this

prototypical extracellular organism and indicate that

development of preventative therapeutic approaches should

consider the exis tence of intrace l lu lar niches for

the pneumococcus.
A B

FIGURE 6

Impact of HIV infection on pneumococcal intracellular survival in alveolar macrophages. (A) Alveolar macrophages (AMs) were co-incubated
with IgG-opsonised viable ST3 at MOI 50 for 1 hour, gentamicin was added for 30minutes, then the cell culture supernatant was removed,
replaced with gentamicin-free cell culture media and cells incubated. Proportion of individuals with viable ST3 at 3 and 24 hours following lysis
of AMs. HIV-uninfected (n=29), HIV-infected on ART <3 months (n=21), HIV-infected ART>3 years (n=10). Statistics were calculated using Chi-
squared test. (B) AMs not exposed to experimental ST3 were cultured for 24 hours and subsequently lysed for the detection of viable
intracellular pneumococci by microbiological culture. A higher proportion of Individuals with treated HIV had pneumococci in their AMs
compared to the HIV-uninfected individuals (HIV+ n=31, HIV- n=18). Fifty percent (n=6) of the individuals with viable pneumococci in AMs also
had viable bacteria on their nasal swabs.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.992659
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nyazika et al. 10.3389/fimmu.2022.992659
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Materials. Further

inquiries can be directed to the corresponding authors.
Ethics statement

The studies involving human participants were reviewed and

approved by the College of Medicine Research Ethics Committee

in Malawi (Protocol P.01/18/2335) and the Liverpool School of

Tropical Medicine in the UK (Protocol 18-007). The patients/

participants provided their written informed consent to

participate in this study.
Author contributions

KJ, TiN, HM, MO, ToN, MO and DF designed the study. KJ

and MO supervised the work. TiN, LS, JP, MC, ZJ and CM

processed all the samples and performed experiments. TiN, MC,

ZJ, MO and KJ carried out the data management and statistical

analysis. TiN and KJ wrote the initial manuscript draft. All authors

contributed to the article and approved the submitted version.
Funding

KJ was supported by the Wellcome (UK) through an

Intermediate Fellowship 105831/Z/14/Z. TiN was supported by a

training grant awarded as part of the Wellcome Strategic award to

Malawi-Liverpool-Wellcome Trust Clinical Research Programme

101113/Z/13/Z084 and the Legacy Award from the Federation of

African Immunological Societies. HMwas supported by theMedical

Research Council (MRC, UK) through an African Research Leader

award MR/PO20526/1. MC and MO were supported by an IDRF

grant. MC was supported by a HIC-Vac training grant PS3187 and

funds from the University of Leicester Doctoral College.
Acknowledgments

The authors would like to thank all study volunteers, the

clinical team and supporting staff of Malawi-Liverpool-Wellcome

Trust Clinical Research Programme and Queen Elizabeth Central

Hospital for their support and cooperation during the study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Frontiers in Immunology 11
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fimmu.2022.992659/full#supplementary-material

SUPPLEMENTARY FIGURE S1

S. pneumoniae outgrowth in the presence and absence airway cells.
Growth curves were performed to measure growth of S. pneumoniae in

the presence and absence of airway cells. Asymptomatic HIV-uninfected

(n = 21); asymptomatic HIV-infected on ART<3 months (n = 19);
asymptomatic HIV-infected on ART>3 years (n = 10); control bacteria

(n = 9).

SUPPLEMENTARY FIGURE S2

Gating strategy for AMs and neutrophils Identification of CD206+CD163+

AMs and CD206-CD163-CD66b+ neutrophils in airway lumen. Human

airway cells from were stained with fluorochrome-conjugated antibodies
against surface markers of interest.

SUPPLEMENTARY FIGURE S3

2D and 3D images of in vivo internalized pneumococci within AM cell. i)
Representative single confocal microscopy images taken from a 1

individual showing presence of pneumococci within cells analogous to

AMs. ii) 3D single confocal microscopy images showing presence of
pneumococci within cells analogous to AMs. iii) Video outlines a three-

dimensional reconstruction of deconvolved Z-stack confocal images of
pneumococci internalised within AMs. The cytospin samples were stained

with wheat germ agglutinin (WGA; cell membranes – purple), DAPI
(nucleus; blue) and FITC (green; pneumococcus capsule).

SUPPLEMENTARY TABLE 2

3D images of in vivo internalized pneumococci within AM cell.

Representative 3D single confocal microscopy images taken from five
individuals showing presence of pneumococci within cells analogous to

AMs. The cytospin samples were stained with wheat germ agglutinin
(WGA; cell membranes – purple), DAPI (nucleus; blue) and FITC (green;

pneumococcus capsule).

SUPPLEMENTARY VIDEO S1

3D video image of pneumococci binding and internalized within AMs
infected ex vivo. Video outlines a three-dimensional reconstruction of

deconvolved Z-stack confocal images of pneumococci binding and
internalized within AMs. The cytospin samples were stained with wheat

germ agglutinin (WGA; cell membranes – purple), DAPI (nucleus; blue)

and FITC (green; pneumococcus capsule).

SUPPLEMENTARY VIDEO S2

3D video image of pneumococci internalized within AMs infected in vivo.

Video outlines a three-dimensional reconstruction of deconvolved Z-
stack confocal images of pneumococci binding and internalized within

AMs. The cytospin samples were stained with wheat germ agglutinin

(WGA; cell membranes – purple), DAPI (nucleus; blue) and FITC (green;
pneumococcus capsule).
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