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Abstract 

The development of smart sensors capable to analyse data gathered on the process line and to give a 
real time feedback has been undergoing extensive research in the last years due to its potential 
benefits on the process optimisation and products improvement. In this paper, a novel approach to 
detect and monitor pH and conductivity using 2D Electrical resistance Tomography (ERT) is proposed 
for the first time in a reacting system. As a study case, the reaction between phosphoric acid and 
potassium hydroxide in mediums of both water and sodium carboxymethylcellulose (CMC) aqueous 
solution was assessed. The information gathered using the ERT have been used to determine local and 
overall mixing time for a sequence of injections of base and acid to understand the overall 
performance of the system. In addition, the same information have been used to extrapolate live data 
about the variation of the pH coupling the ERT data and machine learning techniques. Three different 
approaches have been investigated to achieve the aforementioned objective all integrating ML to the 
data processing. The first two approaches did not provide satisfying results showing the limitation of 
a completely blind approach (pure statistical approaches). However, the last approach, which 
combined ML technique and physical/chemical knowledge, showed very successful results for the real 
time monitoring of the pH in a reacting system.   

 

Keywords: mixing, electrical resistance tomography, pH, machine learning, reaction. 

 

1.0 Introduction 

Electrical resistance tomography (ERT) is an imaging technique which is often applied for geophysical 
subsurface analysis including mineral prospecting, hydrological exploration and environmental 
investigation. The imaging is determined by the characterisation of sub-surface materials by their 
electrical properties; electrodes are positioned appropriately and current is injected, with the resulting 
resistivity measured. As resistivity is the inverse of conductivity, the conductivity is then determined. 
In addition, there are numerous aqueous-based processes in which  ERT is applied (Barber & Brown, 
1983; Dickin & Wang, 1996). 
As for the application in the chemical engineering field, in the last decades ERT has been employed for 
the investigation of several important industrial operations including mixing and multiphase flows 
(Sharifi & Young, 2013)and it was shown to be particularly suitable also for in-line process monitoring 
of mixing processes (Bowler et al., 2020). Among others, miscible and immiscible liquid/liquid mixing 
(Khajeh Naeeni & Pakzad, 2019; Maluta et al., 2020), mixing of non-Newtonian fluids (Kazemzadeh et 
al., 2016), solid/liquid mixing (Carletti et al., 2014; Hosseini et al., 2010), gas/liquid mixing (Montante 
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& Paglianti, 2015), gas/solid/liquid mixing (Forte, Alberini, et al., 2019) have been extensively 
investigated, as recently reviewed by Bowler et al. (2020). Comparatively the number of investigations 
that have concerned reactive systems with ERT, so far, are very limited. One of the first applications 
to the investigation of mixing with chemical reaction by ERT was proposed by Wabo et al. (2004). 
Afterwards, a few investigations on mixing and reactive precipitation of barium sulphate from barium 
chloride and sodium sulphate based on ERT have been carried out, going from the first demonstrative 
example of application (Kagoshima & Mann, 2005), to the quantification of the effect of the 
interaction between mixing and chemical reaction on the size and morphology of crystals (Gradov et 
al., 2018). Also, ERT was adopted in combination of Positon Emission Particle Tracking for the 
simultaneous investigation of hydrodynamics and precipitation of aluminium hydroxide (Edwards et 
al., 2009). 
Overall, as a difference with non-reactive mixing, the amount of literature that covers reactive mixing 
investigations by ERT is very limited. Specifically, there is very little about monitoring of reactions in 
liquid medium using ERT and neither as potential tool to measure pH.  
Although pH is a useful value for characterizing starter activity, pH probes are often unstable, and their 
calibration and maintenance are difficult. Electrical conductivity probes, which are more robust, can 
be used to monitor chemical variations, for example during a fermentation they have been proved to 
be effective (St-Gelais et al., 1995). However, only relying on the raw conductivity data, it could be 
challenging to differentiate different chemical formed species (it can happen that different species 
could increase the conductivity despite their different ion strength). This is why pH information is 
important as well to keep track of changes in a reacting system. Indeed, this is particularly true for 
single or parallel reactions monitoring (Rauniyar, 2015), which is a challenging requirement in 
particular during manufacturing. Commonly, mass spectrometry (Shi et al., 2012) is the standard tool 
which is used to track the progress of reactions, but mostly at R&D stage. Indeed, often the high costs 
of such equipment and its time scale of measurement limited its use at manufacturing stage 
(Bantscheff et al., 2007). In light of this, the research carried out in this work presents a new approach 
and methodology to monitor a reaction in a liquid medium using ERT. 
This work is line with the basic concepts of the 4th Industrial revolution, where the ability to utilise 
techniques such as machine learning (ML) for the collection, processing, and evaluation of data on-
demand is becoming increasingly significant. 

old ongoing program with some remarkable successes along the way, it is quite understandable that 
many chemical engineers are excited about the potential applications of AI. It might seem that this 

AI (Venkatasubramanian, 2019). Machine learning is an interdisciplinary area, involving probability 
theory, statistics, approximation theory, convex analysis, algorithm complexity theory, and other 
disciplines. It is the core subset of artificial intelligence (AI). One of the advantages of ML approach is 
that the developed algorithms can build a mathematical model based on training data for predictions 
or decisions without being explicitly programmed to do so (Jiao et al., 2020). Machine learning has 
recently gained in popularity, spurred by well-publicized advances like deep learning and widespread 
commercial interest in big data analytics (Lee et al., 2018). As the number of data samples increases, 
the algorithm improves its performance. This learning can then be used to analyse a new set of data 
to draw conclusions from it (Parmar et al., 2015).  
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Although there is no precise definition of big data, it usually refers to the size and variety of datasets 
that challenge the ability of traditional processing and analytical tools to capture, store, manage, and 
analyse(Qin & Chiang, 2019).  
Generally, machine learning is divided into supervised and unsupervised learning. Supervised machine 
learning is conducted with known input and output data to train the algorithm, whereas unsupervised 
learning has no specified output data. For this study, only supervised machine learning has been used, 
with particular attention to the regression learner applications. Regression is generally used to predict 
numerical, continuous responses. It uses one or several sets of data input, along with the 
corresponding output, and then maps a function to predict future outputs using new input data 
(Clarke et al., 2005; Rasmussen & De, 2010; Sheeba et al., 2020; )Hastie et al., n.d.). 

In more detail, the objective of this study is to use the analytical information provided by ERT coupled 
with machine learning techniques to track a series of parallel reactions and their products. The 
experimental data have been collected from a series of experiments where phosphoric acid (H3PO4) 
and potassium hydroxide (KOH) were reacted together in a stirred vessel with incremental injections 
of each species using two different mediums. During the experiments, an independent measurement 
of pH as well as the conductivity of the solutions were taken using a pH-meter and a conductivity-
meter respectively. Indeed, the final aim of this work was to demonstrate how supervised machine 
learning coupled with ERT data can provide information about the reaction developments. Thus, this 
will convert ERT as real-time monitoring tool for pH and species concentrations. 

2.0 Material and methods 

Experimental rig and procedure 

The series of experiments were carried using a 6 L vessel, of diameter, T, equal to 20 cm, equipped 
with a Rushton Turbine of diameter, D, equal to T/3 located at the off-bottom clearance, C, equal to 
~T/3 (see Figure 1), as schematically depicted in Figure 1. The impeller speed, N, was kept constant 
for all experiment at 150 rpm. The vessel was also equipped with two planes (see Figure 1A) of 16 

Tomography System. The liquid height used was H=T which ensure to have enough liquid above the 
top measurement plane. 

The electrodes were configured in a circular array around the periphery of the vessel (completely non-
intrusive, the electrodes are mounted inside the wall of the tank), resulting in two separate 
measurement planes: Plane 1 was situated nearer the surface of the liquid (approximately 13.3 cm), 
while plane 2 was close the bottom of the vessel (6.7 cm). The size of each electrode was 20 mm by 
20 mm .The device recorded conductivity values for 125 frames per second over the two planes, being 
the acquisition frequency equal to 62.5 Hz, with a total of 316 pixels in each plane. The acquisition 
voltage was set to 5V and the current amplitude was equal to 1.18 mA. As ERT is a non-invasive 
technique, it did not interfere with the reaction in any way (Forte, et al., 2019).  

Two different fluids have been used: water and water with 0.2 wt.% carboxymethylcellulose (CMC). 
For each fluid, a reference was taken and in both cases the temperature was monitored with a 
standard conductivity meter probe, which had implemented a thermocouple as well. The probe was 
located (see Figure 1A and B, (1)) approximately in the middle between the shaft and the wall just 
above the top plane of the ERT to avoid any interference with it. On the opposite position (on the 
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cross section plane of the vessel) at same height, a pH meter was located as well (see Figure 1A and 
B, (3)). The experiments were carried out at temperature of approximately 20°C±0.5. The rheological 
model of the CMC solution was found to fit a power law model, as expected, and the rheological 
parameters associated to it. Consistency index, K, and power law number, n, where found to be 0.59 
Pa sn and 0.731 respectively (Stamatopoulos et al., 2015). The rheological measurements were carried 
out using a TA discovery hybrid rheometer (HR-1) equipped with a cone and plate stain steel geometry 

per decade) flow ramp 
from 0.1 up to 350 s-1 was used to identify the rheological behaviour of the solution. 

The choice of the different fluids was driven by the will of exploring two different flow regimes within 
the mixing vessel. To estimate those, both values of Reynolds number, Re, have been estimated using 
the standard definition of the rotational Reynolds number, using the same value of density equal to 
1000 kg m-3. For water, the viscosity of the medium is 0.001 Pa s and for CMC solution, the apparent 

viscosity (K / ) has been calculated using the Metzger Otto method. This is based on the estimation 
of the average shear in the vessel, = ks N, where the constant ks  is taken equal to 11.5 for a Rushton 
turbine.  

For the purpose of convenience, the first experiment is referred to as water, the second as CMC. At 
first, 6 injections of 81 wt.% phosphoric acid were added. This began with 1 ml added initially and then 
either 3 or 4 ml in each injection after, resulting in a total of 17 ml added. This was followed by 
injections of 25 wt.% potassium hydroxide, each being 3 ml, with 28 injections for water and 35 for 
CMC, resulting in a total of 34 and 41 injections for water and CMC, respectively. The time between 
each injection was selected based on live data. When the mean value of the conductivity and the 
standard deviation had a fairly constant flat profile, it was assumed that the system reached a steady 
state and the following injection was done. Each injection was done on the top of the vessel 
approximately in the perpendicular position respect to the conductivity and pH meters within the 
cross section of the vessel (see Figure 1B, (4)). 

After each injection, the pH (accuracy 0.2) of the solution was measured, as well as the conductivity 
from the conductivity meter (accuracy 0.05 S cm-1) and from the ERT. The choice of measuring twice 
the conductivity was driven by the need of recording absolute steady state changes in the solutions 
(this done using a standard conductivity meter) as well as the conductivity changes throughout the 
whole duration of the experiment using the electrical resistance tomography (transient data with a 
time resolution of 1/62.5 second, ERT). Another feature, that has been determined using the transient 
data, was the mixing times for each injection. As mentioned, the pH was monitored as well to obtain 
a reference measurement to compare with the final results. The ERT, as well as providing data after 
each injection, was also monitoring the reaction throughout the whole course of the experiment, 
providing conductivity data for each pixel on a continuous basis. The ERT data were collected for both 
reactions mediums, and this was further subdivided into two planes, resulting in four sets of ERT data. 
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A B

Figure 1. Schematic rig of the mixing vessel and locations of ERT Planes, conductivity meter (1), 
overhead mixer (2), pH meter (3) and injection position (4) for the side view (A) and cross section (B) 
as well.

Phosphoric acid and potassium hydroxide chemical reaction 

The reaction between phosphoric acid and potassium hydroxide is summarised as follows:

                                                           (1)

Despite the presence of only four species in the reaction equation, there are also the dissociations of 
H3PO4 and KOH occurring. H3PO4 undergoes three dissociations: 
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The ionisation constant, Ka, values represent the degree to which dissociation occurs. It is the ratio of 
the concentration of the dissociated products to the concentration of the original species, for Ka1: 

                                                                           (5) 

From the three acid dissociation equations and using data from the experiments, the molar fractions 
and molar concentrations of each species can be determined.  

Rearranging the three acid dissociation equations: 

 

 

 

The self-ionisation constant of water, Kw, is given by: 

 

A molar balance on the total amount of phosphate gives: 

 

Where  is the initial concentration of undissociated H3PO4. 

The molar fraction of each species is defined as: 

                                                                  (11) 

From this, it can be shown that: 

(12) 

 

 

From : 

 

Multiplying  and : 
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Multiplying ,  and : 

 

Substituting ,  and  into : 

 

By combining Eqns (6)-(8), (12), (18)-(19) and rearranging: 

 

 

 

Thus, the concentration of the species derived from the dissociation of H3PO4 can be expressed by 
Eq. (11) as: 

                                                            (21) 

Being the solution electrically neutral, the concentration of K+ ions is found through:  

 

The concentration of H+ ions can be found from the pH: 

                                                           (23) 

The concentration of OH- ions can be subsequently found: 

                                          (24) 

 

Analytical data 

The measured values for the water and CMC experiments at each injection have been recorded in 
time. In the supplementary information (SI) section the data are shown in Table 1.SI and 2.SI. The 
tables show the total cumulative amount of acid and base added after each injection, the pH of the 
solution, the specific conductivity measured by the conductivity meter and the average relative 
conductivity measured by ERT.  
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The concentration of acid, , before the base addition was determined by multiplying the total 
amount of acid added (17 ml) by its molar concentration of 15.54 mol dm-3, which was determined 
from its mass fraction of 81 wt.%, and then dividing by the total fluid volume in the vessel, giving  = 
0.044 mol dm-3 for both water and CMC. The concentrations of H+ and OH- ions were calculated from 
the pH after each injection. From these values, as well as , the concentrations of all the remaining 
species were calculated for each injection using equations (10),  and (22). 

As the conductivity values obtained from the ERT were relative conductivities, these were converted 
lately to absolute values by multiplying by the initial specific conductivity of the solution of water and 
CMC respectively 0.0953 mS cm-1 and 0.545 mS cm-1. Subsequently, by using the ERT readings as the 
closest to the true conductivity of the solution, a comparison was drawn between the ERT and the 
conductivity meter in term of the overall absolute trend (see Figure 1). The percentage difference and 
the root mean square error (RMSE) were calculated. 

Data analysis 

Data pre-processing: average, coefficient of variation and mixing time  

The data from the ERT measurements consisted of 119880 frames for water and 150350 frames for 
CMC. For each frame, conductivity was measured for all 316 pixels in each plane, resulting in a total 
of 37.9 x 106 and 47.5 x 106 conductivity values for each plane for water and CMC respectively. The 
data was then exported to MATLAB, where the results were plotted and evaluated. 

In order to quantify the degree of difference between the conductivities of the pixels within both 
planes, the standard deviation was calculated for each frame. However, due to the average 
conductivity value varying greatly between certain frames (overall changes of absolute conductivity 
due to injections), in order to standardise the deviation and allow comparisons to be made, the 
standard deviation was divided by the mean value for each frame, giving the coefficient of variation 
(CoV). 

For determining the mixing time, the variation was evaluated. It was assumed that a significant 
increase in variation was indicative of an injection, with a subsequent significant decrease in variation 
until reaching a stable value indicating satisfactory mixing, due to homogeneity of conductivity across 
all pixels. The number of frames between these two points was found, and this was subsequently 
translated into the amount of time taken for mixing to occur. 
function in MATLAB, which quickly finds local peaks and valleys (local extrema of the peak) in a noisy 
vector using a user defined magnitude threshold which corresponded to a 99% mixing time. 

In addition, for the analysis of the ERT results on a local basis, the relative conductivity and the CoV 
collected on the upper of the two planes (Plane 1) were examined as a function of the time between 
two injections. Selected snapshots of normalized conductivity maps were also observed, in order to 
gain a detailed view of the time evolution of the local variations due to the additions of the acid and 
the base in a section of the stirred tank. The conductivity was normalized for comparing the variations 
with respect to the same initial and final values. For this reason the following normalization of the 
local relative conductivity Ci is considered: 
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where Cmin and Cmax are the minimum and maximum value achieved by the conductivity, respectively. 
For the acid addition, the minimum conductivity corresponds to the beginning of the considered time 
interval, while for the base addition it corresponds to the end and the reverse holds true for the 
maximum conductivity value. 

 

Data post-processing: regression learner 

Supervised machine learning was utilised to produce a model to predict a pH value from an input of 
conductivity. This process was attempted in three stages (approaches);  

-Stage I: training ERT data using directly pH data 

The first machine learning simulation used only the ERT and pH data for each injection, shown in Table 
1 and 2, resulting in 34 and 41 distinct data points for conductivity and pH for water and CMC 
respectively. This was done with the aim of finding a strong function that linked conductivity and pH. 
A believed occurring limitation was the uneven amount (in time) of data between ERT data (1/62.5 s) 
and pH (one per injection, ~30 s). Computationally it was the less expensive. 

-Stage II: training ERT data using pH data extrapolated from curve fitting 

It was assumed that using more data samples (matching the time scales) would help the algorithm to 
learn better and thus produce a more accurate model. In order to generate this additional data, the 
original ERT and pH data was exported into the curve fitting toolbox in MATLAB. The toolbox then 
produced a polynomial function which best fitted all of the data samples; this function was then 
employed to produce 1000 conductivity data samples each for water and CMC. This data was 
subsequently transferred into the regression learner application for training.  

-Stage III: training ERT data coupling with reaction equations 

The final testing used the ERT conductivity and the reaction equations which provide the required 
information to the model in terms of ions concentration at different time step. This of course was 
achieved providing the cumulative amounts of acid and base added. To combine the molar mass of 
the different ions and their specific conductivities, the values reported in Table 1 have been used to 
calculated overall conductivity of the solution at given concentrations of the different species. 

Table 1: Equivalent conductivity of electrolytes in aqueous solution for the different ions. 

Ions Equivalent conductivity of electrolytes 
in aqueous solution (S cm2mol-1) 

H2PO4
- 36 

HPO4
2- 57 

PO4
3- 92 

K+ 73 
OH- 198 
H+ 349 

For each stage, the data are divided in three datasets for the assessment: 

(i) A training dataset, consisting in 60% of the acquired data, was fed to the machine for the 
training process, together with their own corresponding class of belonging. 
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(ii) A cross-validation dataset, consisting in 20% of the acquired data, used for selecting the 
optimum number of used features. 

(iii) A test dataset, consisting in the remaining 20% of the data, unseen by the machine was 
used to evaluate the final accuracy of the method. 

The process of training and testing the machine learning algorithm is repeated for ten times, where 
for each repetition, the datasets included in the training and testing are randomly selected. This is 
done to avoid bias in evaluating the algorithm. The reported results are the average values obtained 
in the ten repletion steps. 

For each stage, a similar workflow for the training of the regression model in the Regression learner 
has been used. The main steps of this processes are: 

1- Choose Regression model Options  
2- Training of the Regression Model. 
3- Assessing the regression model performance 
4- Export Regression model of interest 

The regression learner contained 20 different algorithms for regression which could be tested, ranging 
from support vector machines to Gaussian processes.  

The regression learner app automatically train a selection of different models on the given data. A 
selection of model types, where selected including the most common ones like, linear regression, 
regression trees, support vector machines (SVM), Gaussian process regression (GPR) and ensembles 
of trees. The first three (only if SVM has a linear kernel) usually have an easier interpretability 
compared to the last two. The five models have then being tested with different kernels such as linear, 
quadratic, cubic and for each model more than one type linear or quadratic kernel, for example can 
exist. 

All 20 different algorithms were utilised for each run, with the output model exhibiting the lowest 
RMSE being the one chosen. 
and we selected the model of interest only on the base of the training performance. 

The main differences among the models are: 

Generally, linear regression models have predictors that are linear in the model parameters, are easy 
to interpret and are fast for making predictions. These characteristics make linear regression models 
popular models to try first. However, the highly constrained form of these models means that they 
often have low predictive accuracy.  
Regression trees are easy to interpret, fast for fitting and prediction, and low on memory usage. 
Regression SVMs are easy to interpret, but can have low predictive accuracy. Nonlinear SVMs are 
more difficult to interpret, but can be more accurate. 
GPR models are often highly accurate, but can be difficult to interpret. 
Finally, ensemble models combine results from many weak learners into one high-quality ensemble 
model. In this case boosted trees and bagged trees have been employed. 
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3.0 Results and discuss

Analysis of the conductivity variations over space and time

The time evolution of the effect of the acid addition on the average value of the relative conductivity 
on Plane 1 and of the CoV between the additions 4 and 5 is shown in Figure 2. To be noticed, the 
recording of the data were done continuously, hence the time t=0 of the following plots is the same 
for all plots, being the beginning of the experiment prior to any injection. 

Figure 2. Time trace of relative conductivity and CoV of the local conductivity as a function of time. 
Acid addition in water (4th injection).

As can be observed, the relative conductivity shows the expected increase up to a constant value. The 
average constant value of conductivity is achieved after about 5 seconds from the initial detection of 
the acid on the measurement plane that corresponds to a step increment of the initial conductivity.
Besides, the CoV curve provides a closer inspection of the local differences of the conductivity, that 
achieve a maximum value with a much steeper increase than the decrease down to a constant nil 
value, that is achieved about 5-6 seconds after that observed from the conductivity curve. It is worth 
observing that such a difference is not detected in the case of the addition of a passive tracer (Paglianti 
et al., 2017). The spatial distribution of the normalized conductivity on the two measurement planes 
is shown in Figure 3 at selected snapshots. Starting from homogeneous conditions at 16 s, the progress 
of the local increase of conductivity is visible at 18.5 s and 20.5 s and the accomplishment of the acid 
mixing and dilution is achieved at 22.5 s.
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 C D 

Figure 3. Maps of normalized conductivity on the two measurement planes after the 4th injection of 
acid in water. A: t=16 s, B: t=18.5 s, C: t=20.5s, D: t=22.5s 

A similar representation of the data relevant to the base addition is provided in Figures 4 and 5, where 
the time interval just after the addition 8 and just before the addition 9 is considered. In this case the 
trend of the curves shown in Figure 4 is more complex, due to the interaction of different effects 
proving different contributions to the conductivity variation.  

 

Figure 4. Time trace of relative conductivity and COV of the local conductivity as a function of time. 
Base addition in water (8th injection). 

The conductivity trend is not monotonic due to opposite effects: the increment of the local 
conductivity, due to the local increase of ions concentration and temperature, related to the heat of 
dilution and the reduction of the conductivity due to the reaction that reduces the ions concentration. 
These two effects give rise to two different peaks in the CoV trend. 
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 A B 

 

 C D 

 

Figure 5. Maps of normalized conductivity on the two measurement planes after the 8th injection of 
base in water. A: t=28 s, B: t=30 s, C: t=32s, D: t=36s. 

 

Parameter trends over time 

The trends of the measured and calculated parameters from the whole set of experimental data are 
shown in Figure 6. The single points of ERT conductivities have been calculated taking a temporal 
average between the average between plane 1 and plane 2. This was calculated from 2 seconds of 
measurement (125 frames per plane) and after a transient steady state was reached, hence a fully 
mixed system was obtained. Moreover, those conductivities are the mean values of the whole 
tomogram values. The calculated relative conductivity was then converted to the absolute 
conductivity as described above in the material and method section in the analytical data paragraph. 

 

 

 

 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



13

A B

C D

Figure 6. Graphs showing the trends of ERT, conductivity meter readings, and pH for water (A) and 
CMC (B), as well as the computed concentration of each species for water (C) and CMC (D).

For both CMC and water, the pH shows initial decline, and then begins to increase after injection 7, 
which is when the potassium hydroxide starts to be added. The increase is neither linear, nor it is 
apparent that it is following a particular function. Instead, the increase is unpredictable, with 
alternating periods of increasing and decreasing gradient. The shapes of both pH graphs are nearly 
identical, with the slight differences likely exacerbated by CMC having 41 injections, whereas water 
had 34.

Looking at the conductivity, the shapes of the two methods are very similar. Initially, there is an 
increase in conductivity with each injection, up until the point where phosphoric acid ceases to be 
added and potassium hydroxide begins to be added, where the conductivity begins to decline. The 
decline continues until approximately injection 17 for both ERT and the conductivity meter, for both 
water and CMC. After this point, the conductivity begins to increase again with each injection. 

As shown in Figure 6 C and D, the water and the CMC graphs for concentration exhibit almost identical 
characteristics, as expected, with very similar shapes, proportions between the species and 
concentration values. Initially, there are only three species present with notable concentrations: 
H3PO4, H2PO4

- and H+. The concentration of H3PO4 and H+ continue to increase until injection 7, 
whereby they begin to decrease due to the constant addition of KOH. K+ begins to appear at injection 
7, where the injection of KOH begins, and it continues to increase constantly throughout the whole 
experiment, due to constant injections. An interesting observation is that as the concentration of 
H2PO4

- begins to decrease, the concentration of HPO4
2- begins to increase, at approximately the same 

rate. Likewise, when the concentration of HPO4
2- begins to decrease, the concentration of PO4

3- begins 
to increase, also at a very similar rate. This shows the commencement of major stages of dissociation 
of the phosphoric acid derivative species as the pH increases and the concentration of hydrogen ions 
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decreases. As expected, the concentration of hydroxide ions is very low during periods of high 
hydrogen ion concentration, with an increase towards the end of the reaction as the solution becomes 
more basic. 

Comparison between conductivity measurements

The comparison of the two conductivity measurements (Figure 6 A and B) shows that both
conductivity methods yield results which are similar in shape, though there is a small difference 
between them, with ERT generally showing higher conductivity readings.

The percentage difference and RMSE between ERT and the conductivity meter is shown in Figure 1. SI
and also the % difference between the two measurements. The small discrepancy in conductivity 
between the ERT and the conductivity meter can be attributed to the fact that the ERT values are an 
average across all the pixels for both planes, and therefore are representative of the conductivity 
throughout the whole solution (see Figure 1.SI as reference). In contrast, the conductivity meter 
measured the conductivity at a single point within the solution where the probe was placed. There is 
no significant difference between RMSE values for water and CMC.

Comparison of data in the different planes

The ERT conductivity data are shown in Figure 7 A and B, showing the average conductivity for each 
plane across the range of frames for water and CMC experiment respectively.
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Figure 7. Average ERT conductivity data for plane 1 and plane 2 for the range of frames for water 
(A) and CMC (B).

Examining Figure 7, a few observations can be made about the ERT results. The conductivity fluctuates 
seemingly at random around a constant value, which is difficult to notice by looking at the graph, but
is more apparent when the graph is magnified. The conductivity continues like this until a certain point 
where it suddenly shows a substantial increase or decrease, this process then repeats itself again. It is 
evident that these sudden changes in conductivity correspond to the injections of phosphoric acid and 
potassium hydroxide. It can be seen that the conductivity increases with each addition of phosphoric 
acid, until potassium hydroxide begins to be added instead, where the conductivity starts to decline 
with each injection. This decline is only temporary, however, and after a certain number of injections, 
the conductivity again starts increasing with each addition, with this increase continuing until the 
conclusion of the experiment. While it may appear strange that the conductivity decreases and then 
later increases upon the commencement of potassium hydroxide injection, a possible explanation for 
this could be that hydrogen ions exhibit the highest conductivity out of the ions present in the solution. 
The addition of potassium hydroxide brings an abundance of hydroxide ions, which inevitably react 
with and therefore neutralise the hydrogen ions, thus reducing the conductivity of the solution.
However, this trend does not continue for long, as ultimately, the conductivity of the solution is 
determined by the amount and type of ions present, and with each additional injection of potassium 
hydroxide, the concentration of ions within the solution increases, resulting in an increase in 
conductivity.

One dis
the same behaviour as the others; instead, it demonstrates a slight increase, followed by a decrease 
which is curved in its shape, and then a subsequent increase. This is in contrast with all of the other 
injections, which generally show a straight vertical increase or decrease. This phenomenon is 
demonstrated in both plane 1 and plane 2 and for both mediums, appearing at approximately frame 
11 x 104 for water and 13 x 104 for CMC (injection 30 for water, 35 for CMC both around pH=8). Whilst 
unusual, upon further examination it was found that this occurs during the injection whereby the 
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concentrations of both phosphate ions and hydroxide ions suddenly become notable; it is likely that 
the abrupt increase in presence of these ions affects the conductivity in this peculiar manner. 

One interesting observation, upon examining the graphs for water and CMC, is that for water, the 
conductivity for plane 1 is always similar to plane 2 for the vast majority of frames, whereas for CMC, 
there is a noticeable difference.  This could be explained by the possible different fluid dynamics 
involved during the blending. In case of turbulent flow, this will minimise the difference between the 
two planes because mixing within the vessel is more homogenous. The offset between the two planes 
is mostly influenced by the closer presence of the impeller which slightly perturbs the values of local 
conductivity in the tomograms of plane 2 (closer to the impeller, see Figure 1). On the contrary, if fluid 
flow regime is closer to laminar, the overall mixing will be penalised, hence differences will be 
expected in the two different planes of measurement due to the formation of the pseudo cavern 
(Adams & Barigou, 2007). For water it is expected a turbulent flow (Reynolds number,Re, within the 
order of 104) whilst for the CMC experiment we are closer to laminar regime (Re within the order of 
10).  

Mixing time 

As described in the material and method paragraph it is possible to evaluate the mixing time of each 
injection as well as the monitoring of the conductivity in the two measurements planes.  Figure 2.SI 
illustrates how the coefficient of variation, calculated among all pixels for each tomogram, varies 
with time taking as a reference plane 1. 

Each peak indicates an injection, understandably as when acid or base is introduced, there will be 
areas which will experience higher conductivity relative to other areas of the solution until the vessel 
is adequately mixed. It can be seen that the earlier injections have a higher variation relative to the 
others which are due the injection of acid. The variations for water and CMC are mostly similar in their 
magnitude, with both having the majority of the peaks hovering around the 0.05-0.1 range. There is, 
however, a difference in how the trend of the coefficient of variation behaves between water and 

icating a gradual increase or 
decrease in the coefficient over time. By contrast, for CMC, it is evident that there is an initial upward 
trend, followed by a brief downward trend, and then a continuous, gradual upward trend in the 
variation from approximately frame 7 x 104 (frame/total frames=0.46). This is might due to limited 
mixing efficiency which limits the full dispersion of the chemical species across the entire vessel. The 
mixing time was subsequently found by determining the number of frames between the beginning 
and the end of each peak, the results are shown in Figure 8.  
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Figure 8. Mixing time for each injection for water and CMC.

For the majority of injections, CMC demonstrated a higher mixing time than water. The average mixing 
time for water across the 31 injections documented was 9.54 seconds, while the average for CMC 
(across its first 31 injections) was 11.72 seconds. It is worth noticing that with the present working 
conditions in water, the Grenville and Nienow correlation for the evaluation of mixing time in 
turbulent non-reacting systems (Grenville & Nienow, 2004) gives a value of 10.9 s. These results are 
unsurprising, as the more viscous nature of the water and CMC solution compared with just water 
clearly influences the motion of the fluid by providing more resistance to flow, prolonging the amount 
of time required for sufficient mixing to occur (Benchabane & Bekkour, 2008), which has been 
discussed above.

Regression learner

-Stage I: training ERT data using directly pH data

Using the ERT and pH values for each injection, as shown in Table 1.SI and 2.SI, resulted in a model
that would require an input of the conductivity, and then give a corresponding pH as an output. The 
algorithm was trained with the experimental data and 20 different algorithms have been tested, with 
the best algorithms for water and CMC being:

Water - Best algorithm: Decision Tree (Fine Tree), RMSE = 1.4418
CMC - Best algorithm: Gaussian Process Regression (Exponential GPR), RMSE = 1.0353

The RMSE is calculated between the actual pH and the predicted pH of the model.

The Decision Tree algorithm uses a tree model to continuously split and categorise the data until an 
output is reached, it essentially uses nested if-else conditions. The Fine Tree is one of three tree 
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earner. 
It is characterised by having a high model flexibility, with a high number of maximum splits (100) 
relative to the other tree algorithms. Gaussian Process Regression models are non-parametric, kernel-
based models; exponential GPR uses an exponential kernel, hence more difficult to mathematically 
interpret.

Evidently, the algorithm for CMC produces a model with a more accurate fit than the one for water, 
indicated by the lower RMSE. However, when considering the fact that the pH for this experiment was 
typically between 2 and 12, RMSE values of 1.4418 and 1.0353 are incredibly high. This indicates that 
using only the ERT conductivity and pH values for each injection as the sole data for machine learning 
does not result in an accurate predictive model.  

-Stage II: training ERT data using pH data extrapolated from curve fitting

Figure 3.SI shows the curve fitting toolbox to generate polynomials 
for the ERT conductivity and the pH. All of the curves are fitted in a high order polynomials (9th) as 
these were found to give a better fit than smaller order polynomials. This lead to polynomials as
function y=f(x), where y is the conductivity or the pH, and x is the number of injections. Although in 
reality, neither are functions of the number of injections, this was used merely to generate the 
required data sample. Subsequently, 1000 input values of x were used, from 1 to 34 for water and 1 
to 41 to CMC, in order to generate 1000 values of the conductivity and the pH.

These values were input, as before, into the regression learner, with conductivity as the input and pH 
as the output. The results comparing the actual pH and the predicted pH are shown in Figure 9.
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Figure 9. Machine learning predicted pH (red) and actual pH (blue) for water (A) and CMC (B) from
models using curve fitted data as training variables for the algorithm.

The best algorithm for both was exponential GPR. From Figure 9, it is apparent that even still, the 
model performs poorly with predicting the pH from the conductivity. This is especially true for the 
injections at the beginning and the middle, which are characterised by the predicted pH shown in red 
being significantly different to the actual pH in blue. After roughly injection 24 for water and 23 for 
CMC, however, the predicted and the actual pH are much closer together, although there is still a 
noticeable error. 

The RMSE between the predicted and curve fitted pH was 1.3212 and 0.91871 for water and CMC 
respectively, which are better RMSE values than using just the experimental data (1.4418 and 1.0353), 
understandably, as a larger data set was used. However, after using the model for the actual ERT 
values and then producing the predicted pH values, the RMSE became 1.5663 and 1.2741 for water 
and CMC respectively. These RMSE values are higher than the results showed for stage I. This might 
due to the use of high order polynomial for the regression. However, the use of lower order 
polynomial would increase consistently the error on the actual pH and conductivity values. Thus, this 
was not considered giving a very high discrepancy in the input values of the model. Therefore, using 
curve fitting for the generation of more data samples did not improve the model, and instead made it 
less accurate. Despite the negative outcome this was an important lesson for a practical use of ML 
techniques. The amount of data to provide to the learner is important but not always quantity is the 
right approach. Quality and how an information can enrich the learning is often more relevant.

-Stage III: training ERT data coupling with reaction equations

Finally, as discussed in the material and method section for the stage III, the regression learner inputs 
where the conductivity and the amount of acid or base added to the system (amounts in volume of 
each injections). The equations described by equations (10), (14-16), (22)- where integrated in the 
model. In Figure 10, the results of the actual and the predicted pH are shown.
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A

B

Figure 10. Machine learning predicted pH (red) and actual pH (blue) for water (A) and CMC (B) from
models using ERT conductivity, amount of acid, and amount of base as inputs for the algorithm.

Figure 10 shows an almost perfect prediction of pH by the model, evident by the scatter points 
essentially being in the same locations, which is highlighted by the significantly low RMSE values of 
0.00142 and 0.00192 for water and CMC respectively. The best algorithm which was used to produce 
these models was exponential GPR.

Using this model, a high frequency measurement of the pH from ERT data was achieved and it as
shown in Figure 11.
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A

B

Figure 11. pH values for each frame for water(A) and CMC (B) obtained from ERT measurements.

Figure 11 shows the average pH across all pixels for every single frame for the duration of the 
experiment. This enables the pH to be monitored closely and precisely at each moment in time. One 
challenge, however, is that the pH is likely to be less accurate during the injection and while is 
approaching a new steady state (practically, during the mixing times which range between ~5 to 20 s, 
from the actual injection to reach the new steady state as shown in Figure 7 and 2.SI). This is due to 
the more discrete nature of the injections as opposed to the continuous conductivity data and ideally 
those should have the same nature being both inputs of the same model. To account for it, the amount 
of acid or base was considered added in equal volumes in time (similar to a pulse change) instead of 
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considering a step change (as the injections actually were) over the different mixing times (for each 
injection). This model assumes a steady state well mixed system which does not allow the precise 
determination of transient pH during the mixing stages of each injection. This is particularly 
challenging also due to local thermal effect (due to reaction) and our assumption of well mixed/steady 
state cannot be supported. 

4.0 Conclusions 

The use of ERT for monitoring the reaction between phosphoric acid and potassium hydroxide in 
mediums of both water and CMC solution was assessed. It was found that the conductivity values 
obtained from ERT can be used to visualise the progress of the reaction and determine exactly when 
new additions of acid or base were introduced through sharp increases or decreases in conductivity. 

Analysis of the variation of conductivity between the pixels within both planes enabled the 
determination of the mixing times for each injection of acid and base. The subsequent values for 
mixing time indicated CMC having a higher average mixing time than water, owing to it being the more 
viscous fluid. 

The usage of machine learning to develop a model that could effectively serve as a function to produce 
an output of pH from an input of ERT yielded mixed results. Using experimental data of ERT 
conductivity and pH for the training of the algorithm resulted in a very inaccurate model. Curve fitting 
was used to generate more training data, resulting in an even more inaccurate model. Finally, the use 
of the ERT data in conjunction with the cumulative quantities of acid and base as input variables 
resulted in very accurate models, which were subsequently used to produce a continuous plot of pH 
over the course of the reaction. 

Furthermore, as the concentrations of the species of the reaction can be directly determined from the 
pH, real-time monitoring of concentrations could also be achieved. The nature of ERT also allows these 
measurements to be taken across the whole plane, as well as individual pixels, allowing the close 
monitoring of different regions of the fluid. This would serve to be very useful, particularly with 
reaction vessels of a considerable size.   
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