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A B S T R A C T

We propose an analytical framework to model the effect of single and multiple mechanical
surface oscillators on the dynamics of vertically polarized elastic waves propagating in half-
space. The formulation extends the canonical Lamb’s problem, originally developed to obtain
the wavefield induced by a harmonic line source in an elastic half-space. In short, our approach
utilizes the solution of the classical Lamb’s problem as Green’s function to formulate the
multiple scattered fields generated by a cluster of mechanical resonators attached to the surface.
For an arbitrary number of resonators, arranged atop the elastic half-space in an arbitrary
configuration, the displacement fields are obtained in closed form and validated with numerics
developed in a finite element environment. We demonstrate that our approach can correctly
model elastic waves interacting with single and couples of resonators, and capture complex
dynamics phenomena such as wave conversion and wave localization induced by arrays of
resonators, also known as metasurfaces.

1. Introduction

Modeling the propagation of mechanical surface waves in an elastic half-space is a long-lasting topic in physics and engineering. A
cornerstone of this research topic is the seminal work by Lamb (1904) which describes the fundamental solution for a harmonic load
applied on the surface of an elastic medium, a scenario currently known as the Lamb’s problem. Since then, numerous researchers
have enriched the complexity of this problem accounting for the presence of inclusions, obstacles, profile and material discontinuities
along and within the elastic medium (Brûlé, Javelaud, Enoch, & Guenneau, 2014; Li, Xu, Zheng, & Cao, 2018; Luco & De Barros,
1994; Malfanti, Taschin, Bartolini, Bonello, & Torre, 2011; Tanaka & Tamura, 1998; Wang, Balogun, & Achenbach, 2019; Zhao,
Zhou, & Huang, 2020).

A canonical problem of particular interest concerns the propagation of elastic waves in a semi-infinite substrate supporting a
cluster of resonant elements. This configuration can indeed illustrate problems of technological relevance across different length-
scales, as seismic waves interacting with the built environment (Boutin & Roussillon, 2006; Ghergu & Ionescu, 2009; Jennings
& Bielak, 1973) or surface waves propagating in micro-mechanical resonant systems (Boechler et al., 2013; Khelif, Achaoui,
Benchabane, Laude, & Aoubiza, 2010). Additionally, periodic clusters of surface resonators have been recently explored to realize
novel devices for surface wave manipulation, the so-called elastic metasurfaces. Among these periodic configurations, arrays of
beams or pillars (Chaplain et al., 2020; Colquitt, Colombi, Craster, Roux, & Guenneau, 2017; Wootton, Kaplunov, & Colquitt, 2019),
and mass–spring resonators (Boechler et al., 2013; Garova, Maradudin, & Mayer, 1999; Pu, Palermo, Cheng, Shi, & Marzani, 2020)
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have shown the capabilities to shape both the direction of propagation and the frequency content of elastic waves. Pivotal in all
these coupled substrate-resonators engineering problems is the knowledge of both dispersion relation and wavefield.

Several analytical formulations are currently available to derive the dispersive properties (Colquitt et al., 2017) and transmission
coefficients of metasurfaces (Boutin & Roussillon, 2006; Marigo, Pham, Maurel, & Guenneau, 2020). In most cases, these approaches
describe the collective behavior of an infinite array of oscillators with the aid of an effective medium approach (Boechler et al.,
2013; Maznev & Gusev, 2015), or via asymptotic and homogenization techniques (Boutin & Roussillon, 2006; Marigo et al., 2020;
Schwan & Boutin, 2013).

The calculation of the elastic wavefield of a finite-size, arbitrarily distributed cluster of resonators is instead obtained via
numerical techniques like standard (Palermo, Celli, Yousefzadeh, Daraio, & Marzani, 2020) or spectral FEM (Colombi, Colquitt,
Roux, Guenneau, & Craster, 2016), since no closed-form formulation is currently available to this purpose. Nonetheless, only the
knowledge of the wavefield can shed light on the destructive or constructive wave interference generated by the resonators array
which is in turn responsible for peculiar wave phenomena like surface-to-bulk wave conversion (Colquitt et al., 2017; Pu et al.,
2020), rainbow trapping and wave localization (Chaplain, De Ponti, Aguzzi, Colombi and Craster, 2020; Colombi et al., 2016).
Despite the possibility to obtain actual results for specific configurations by means of numerical schemes, analytical treatment of
this elastodynamic problem can allow (i) to better comprise the nature of these phenomena, (ii) to guide the optimal design of
waves control devices, and (iii) to derive general conclusions on the interaction problem between closed resonators mechanically
coupled by an elastic substrate.

Hence, in this work we develop an exact formulation which extends the classical Lamb’s problem to the case of an elastic half-
space coupled to an arbitrary cluster of vertical surface resonators. To this purpose, we calculate the incident wavefield generated by
a harmonic source following the approach by Lamb. The Lamb’s solution is also used as Green’s function to describe the scattered
field generated by each resonator when excited by a harmonic motion at its base. The substrate wavefield is then obtained as
solution of the coupled problem due to the interference of the incident field and the multiple scattered fields of the oscillators. Our
formulation can tackle a generic number of different resonators located at arbitrary distances from the source, as illustrated in the
various examples discussed in the work and validated against numerical results (FEM).

The article is organized as follows. In Section 2, we present our analytical formulation. We begin by describing the solution of
the Lamb’s problem for a harmonic source applied on the free surface of a semi-infinite elastic substrate (Section 2.1). Then, we
recall the response for an oscillator subjected to a harmonic motion at its base (Section 2.2) and formulate the interaction problem
between resonators and the half-space (Section 2.3). In Section 3, we calculate the response of an elastic substrate with a single, a
pair and a cluster of surface resonators and validate our predictions against numerics. Finally, in Section 4 we summarize the main
findings of our work.

2. Analytical framework

We develop an analytical framework to calculate the response of an isotropic, linear elastic half-space coupled with 𝑁 oscillators
and excited by a harmonic line source (see Fig. 1).

Our investigation begins recalling (i) the solution of the Lamb’s problem for a harmonic line load applied at the free surface of
an elastic, isotropic half-space (Lamb, 1904) and (ii) the response of a vertical oscillator to an imposed harmonic base motion. The
response of the coupled system is obtained by formulating the interaction problem between the source-generated wavefield, the
solution of the Lamb’s problem, and the summation of the scattered wavefields generated by the motion of the surface resonators.

2.1. Surface harmonic load on a half-space

Let us consider a time-harmonic force per unit length 𝑄ei𝜔𝑡 applied normal to the free surface of an isotropic elastic medium. We
resort to a two-dimensional (2D) plane-strain formulation in the 𝑥−𝑧 plane, where the 𝑥-axis is directed along the wave propagation
and the 𝑧-axis is perpendicular to the free surface (see Fig. 1). In absence of resonators, free stress boundary conditions (𝜎𝑧𝑧 = 𝜏𝑧𝑥 = 0)
characterize the elastic half-space along its whole surface except for the source location where:

𝜎𝑧𝑧(𝑥, 𝑧, 𝑡) = 𝑄𝛿(𝑥)ei𝜔𝑡, 𝜏𝑧𝑥(𝑥, 𝑧, 𝑡) = 0, for 𝑥 = 0, 𝑧 = 0 (1)

Given the plane-strain conditions, the displacement vector lies in the plane 𝑥−𝑧 with non-null components denoted as 𝒖(𝑥, 𝑧, 𝑡) =
[𝑢,𝑤]. It is here convenient to use the Helmholtz decomposition 𝒖 = ∇𝛷 + ∇ × 𝜳 and to express the displacement components as:

𝑢 = 𝜕𝛷
𝜕𝑥

−
𝜕𝛹𝑦

𝜕𝑧
, 𝑤 = 𝜕𝛷

𝜕𝑧
+

𝜕𝛹𝑦

𝜕𝑥
(2)

where 𝛷(𝑥, 𝑧, 𝑡) is a scalar potential and 𝛹𝑦(𝑥, 𝑧, 𝑡) is a component of the vector potential 𝜳 .
Restricting our interest to the steady-state condition, the potentials assume the form:

𝛷(𝑥, 𝑧, 𝑡) = 𝛷(𝑥, 𝑧)ei𝜔𝑡, 𝛹𝑦(𝑥, 𝑧, 𝑡) = 𝛹𝑦(𝑥, 𝑧)ei𝜔𝑡 (3)

and satisfy the wave equations (Achenbach, 1973):

∇2𝛷 + 𝑘2𝑝𝛷 = 0, ∇2𝛹𝑦 + 𝑘2𝑠𝛹𝑦 = 0 (4)
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Fig. 1. Schematic of Rayleigh wave interacting with resonators on an elastic half-space.

in which 𝑘𝑝 and 𝑘𝑠 denote, respectively, the wave number of pressure and shear waves in the substrate, namely:

𝑘𝑝 =
𝜔
𝑐𝑝
, 𝑘𝑠 =

𝜔
𝑐𝑠

(5)

where:

𝑐𝑝 =

√

𝜆 + 2𝜇
𝜌

, 𝑐𝑠 =
√

𝜇
𝜌

(6)

are the pressure and shear wave velocities, respectively, 𝜆 and 𝜇 the Lamé constants and 𝜌 the mass density of the substrate.
According to the Hooke’s law and employing the Helmholtz decomposition in Eq. (2), the in-plane components of the stress

tensor 𝝈 can be expressed as function of the potentials:

𝜎𝑧𝑧 = −𝜇

[

𝑘2𝑠𝛷 + 2

(

𝜕2𝛷
𝜕𝑥2

−
𝜕2𝛹𝑦

𝜕𝑥𝜕𝑧

)]

, 𝜏𝑧𝑥 = −𝜇

[

𝑘2𝑠𝛹𝑦 − 2

(

𝜕2𝛷
𝜕𝑥𝜕𝑧

−
𝜕2𝛹𝑦

𝜕𝑧2

)]

(7)

At this stage, we seek for the solutions of the wave Eqs. (4) by means of the Fourier transform along the 𝑥-direction:

{∇2𝛷 + 𝑘2𝑝𝛷} = 𝜕2�̄�
𝜕𝑧2

− (𝑘2 − 𝑘2𝑝)�̄� = 0, {∇2𝛹𝑦 + 𝑘2𝑠𝛹𝑦} =
𝜕2�̄�𝑦

𝜕𝑧2
− (𝑘2 − 𝑘2𝑠 )�̄�𝑦 = 0 (8)

which admit general solutions of the form:

�̄�(𝑘, 𝑧) = 𝐴1e−𝑝𝑧 + 𝐵1e𝑝𝑧, �̄�𝑦(𝑘, 𝑧) = 𝐴2e−𝑞𝑧 + 𝐵2e𝑞𝑧 (9)

with:

𝑝 =
√

𝑘2 − 𝑘2𝑝, 𝑞 =
√

𝑘2 − 𝑘2𝑠 (10)

and where the coefficients 𝐴1 and 𝐴2 in Eq. (9) must be equal to zero to avoid unbounded responses at increasing depth 𝑧. The
remaining coefficients 𝐵1 and 𝐵2 are determined by imposing the boundary conditions.

Fourier transforming the stress components in Eq. (7), and making use of the boundary conditions in Eq. (1), lead to the following
expressions:

(2𝑘2 − 𝑘2𝑠 )𝐵1 + 2i𝑘𝑞𝐵2 = 𝑄∕𝜇 (11a)

− 2i𝑘𝑝𝐵1 + (2𝑘2 − 𝑘2𝑠 )𝐵2 = 0 (11b)

Solutions of Eqs. (11a) and (11b) provide the coefficients:

𝐵1 =
𝑄
𝜇
(2𝑘2 − 𝑘2𝑠 )

𝑅(𝑘)
, 𝐵2 =

𝑄
𝜇

2i𝑘𝑝
𝑅(𝑘)

(12)

where 𝑅(𝑘) denotes the so-called Rayleigh function:

𝑅(𝑘) ≡ (2𝑘2 − 𝑘2𝑠 )
2 − 4𝑘2𝑝𝑞 (13)
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The inverse Fourier transform of Eq. (9) provides the expression of the potentials in the plane 𝑥 − 𝑧:

𝛷(𝑥, 𝑧) = −1{�̄�} = 𝑄
2𝜋𝜇 ∫

∞

−∞

2𝑘2 − 𝑘2𝑠
𝑅(𝑘)

e𝑝𝑧+i𝑘𝑥 d𝑘 (14a)

𝛹𝑦(𝑥, 𝑧) = −1{�̄�𝑦} = 𝑄
2𝜋𝜇 ∫

∞

−∞

2i𝑘𝑝
𝑅(𝑘)

e𝑞𝑧+i𝑘𝑥 d𝑘 (14b)

At last, by substituting Eqs. (14a) and (14b) into Eq. (2), the displacement components of the wavefield induced by the time-harmonic
line load are obtained as:

𝑢(𝑓 )(𝑥, 𝑧) = i𝑄
2𝜋𝜇 ∫

∞

−∞

𝑘(2𝑘2 − 𝑘2𝑠 )e
𝑝𝑧 − 2𝑘𝑝𝑞e𝑞𝑧

𝑅(𝑘)
ei𝑘𝑥 d𝑘 (15a)

𝑤(𝑓 )(𝑥, 𝑧) = 𝑄
2𝜋𝜇 ∫

∞

−∞

𝑝(2𝑘2 − 𝑘2𝑠 )e
𝑝𝑧 − 2𝑘2𝑝e𝑞𝑧

𝑅(𝑘)
ei𝑘𝑥 d𝑘 (15b)

where the superscript (𝑓 ) is used to label these displacement components of the free field (no resonators). From Eqs. (15a) and
(15b) the free field displacement components at 𝑧 = 0 can be expressed as (Lamb, 1904):

𝑢(𝑓 )(𝑥, 0) = i𝑄
2𝜋𝜇 ∫

∞

−∞

𝑘(2𝑘2 − 𝑘2𝑠 − 2𝑝𝑞)
𝑅(𝑘)

ei𝑘𝑥 d𝑘 (16a)

𝑤(𝑓 )(𝑥, 0) = − 𝑄
2𝜋𝜇 ∫

∞

−∞

𝑘2𝑠𝑝
𝑅(𝑘)

ei𝑘𝑥 d𝑘 (16b)

2.2. Dynamics of surface resonators

We now consider the steady-state dynamics of mass–spring–dashpot resonators located atop an elastic half-space under harmonic
motion. The set  = {𝑥1, 𝑥2,… , 𝑥𝑁 ∣ 𝑁 ∈ Z+} ⊂ R is introduced to collect the 𝑥-coordinate of the resonators. For each resonator we
identify a footprint area 𝑆 with a length 2𝑎 along the 𝑥-direction.

The dynamic equilibrium equation of each resonator reads:

𝑚𝑛�̈�𝑛 + 𝑐𝑛(�̇�𝑛 − ̇̃𝑤(𝑥𝑛, 0)) +𝐾𝑛(𝑊𝑛 − �̃�(𝑥𝑛, 0)) = 0 for 𝑥𝑛 ∈  (17)

where 𝑚𝑛, 𝑐𝑛 and 𝐾𝑛 are the 𝑛th resonator mass, viscous damping coefficient and spring stiffness, 𝑊𝑛 is the absolute vertical
displacement of the 𝑛th mass, and �̃�(𝑥𝑛, 0) is the average vertical displacement of the resonator footprint:

�̃�(𝑥𝑛, 0) =
1
2𝑎 ∫

𝑥𝑛+𝑎

𝑥𝑛−𝑎
𝑤(𝑥, 0) d𝑥 for 𝑥𝑛 ∈  (18)

The use of an average base displacement is motivated by both physical and mathematical arguments. From a physical point, the
average displacement represents the mean motion at the finite-size base of the oscillator. Mathematically, it allows to eliminate the
divergence of the Green’s function at the origin.

According to Eq. (18), the absolute vertical displacement of the generic 𝑛th resonator excited by a harmonic base motion �̃�(𝑥𝑛, 0)
of circular frequency 𝜔 reads:

𝑊𝑛 =
𝑚𝑛𝜔2

𝑟𝑛 + i𝜔𝑐𝑛
𝑚𝑛(𝜔2

𝑟𝑛 − 𝜔2) + i𝜔𝑐𝑛
�̃�(𝑥𝑛, 0) ≡ 𝑇𝑅𝑛�̃�(𝑥𝑛, 0) for 𝑥𝑛 ∈  (19)

where 𝑇𝑅𝑛 denotes the so-called transmissibility (Chopra et al., 2012) of a damped resonator, and where 𝜔𝑟𝑛 =
√

𝐾𝑛∕𝑚𝑛 is the
angular resonant frequency of the 𝑛th resonator. Accordingly, the normal force applied by the resonator to the substrate can be
written as:

𝐹𝑛 = 𝑚𝑛𝜔
2𝑊𝑛 =

𝑚𝑛𝜔2(𝑚𝑛𝜔2
𝑟𝑛 + i𝜔𝑐𝑛)

𝑚𝑛(𝜔2
𝑟𝑛 − 𝜔2) + i𝜔𝑐𝑛

�̃�(𝑥𝑛, 0) ≡ 𝛺𝑛�̃�(𝑥𝑛, 0) for 𝑥𝑛 ∈  (20)

and the uniform stress exerted by each resonator over the contact area reads:

𝜎𝑧𝑧(𝑥, 0) =
𝐹𝑛
𝑆

=
𝛺𝑛�̃�(𝑥𝑛, 0)

2𝑎
, 𝜏𝑧𝑥(𝑥, 0) = 0, for 𝑥 ∈ (𝑥𝑛 − 𝑎, 𝑥𝑛 + 𝑎), 𝑥𝑛 ∈  (21)

These harmonic normal stresses behave as sources of additional wavefields in the half-space and interact with the free field
generated by the source. The nature and implication of this interaction is described in the next section.

2.3. Surface resonators coupled to the half-space

As anticipated in the previous section, the resonators excited by a harmonic base motion generate additional wavefields in the
half-space. We label the 𝑗th resonator-induced wavefield 𝒖(𝑠)𝑗 (𝑥, 𝑧), where the superscript (𝑠) is used to denote the scattered field, so
that the total displacement field of the coupled problem can be written as:

𝒖(𝑥, 𝑧) = 𝒖(𝑓 )(𝑥, 𝑧) +
𝑁
∑

𝑗=1
𝒖(𝑠)𝑗 (𝑥, 𝑧) ≡ 𝒖(𝑓 )(𝑥, 𝑧) + 𝒖(𝑠)(𝑥, 𝑧) (22)
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where 𝒖(𝑠)(𝑥, 𝑧) is the total scattered wavefield. In doing so, we basically apply a multiple scattering technique for randomly
distributed scatterers (Foldy, 1945).

The free wavefield 𝒖(𝑓 )(𝑥, 𝑧), except for the point of application of the harmonic force (𝑥 = 0), is characterized by null stress
components at the surface:

𝜎(𝑓 )𝑧𝑧 (𝑥, 0) = 𝜏(𝑓 )𝑧𝑥 (𝑥, 0) = 0 for 𝑥 ∈ R ⧵ {0} (23)

hence, the stress at each resonator footprint depends only on the scattered wavefield, namely:

𝜎𝑧𝑧(𝑥, 0) = 𝜎(𝑓 )𝑧𝑧 (𝑥, 0) + 𝜎(𝑠)𝑧𝑧 (𝑥, 0) = 𝜎(𝑠)𝑧𝑧 (𝑥, 0) for 𝑥 ∈ (𝑥𝑛 − 𝑎, 𝑥𝑛 + 𝑎), 𝑥𝑛 ∈  (24a)

𝜏𝑧𝑥(𝑥, 0) = 𝜏(𝑓 )𝑧𝑥 (𝑥, 0) + 𝜏(𝑠)𝑧𝑥 (𝑥, 0) = 0 for 𝑥 ∈ (𝑥𝑛 − 𝑎, 𝑥𝑛 + 𝑎), 𝑥𝑛 ∈  (24b)

In force of Eqs. (21) and (22), the scattered normal stress at the resonator footprint in Eq. (24a) can be written as:

𝜎(𝑠)𝑧𝑧 (𝑥, 0) =
𝛺𝑛�̃�(𝑥𝑛, 0)

2𝑎
=

𝛺𝑛[�̃�(𝑓 )(𝑥𝑛, 0) + �̃�(𝑠)(𝑥𝑛, 0)]
2𝑎

for 𝑥 ∈ (𝑥𝑛 − 𝑎, 𝑥𝑛 + 𝑎), 𝑥𝑛 ∈  (25)

where the average free-field vertical displacement �̃�(𝑓 )(𝑥𝑛, 0) at the footprint of the 𝑛th resonator can be obtained exploiting Eq. (16b)
as:

�̃�(𝑓 )(𝑥𝑛, 0) =
1
2𝑎

−𝑄
2𝜋𝜇 ∫

𝑥𝑛+𝑎

𝑥𝑛−𝑎
∫

∞

−∞

𝑘2𝑠𝑝
𝑅(𝑘)

ei𝑘𝑥 d𝑥d𝑘 = −𝑄
2𝜋𝜇 ∫

∞

−∞

𝑘2𝑠𝑝
𝑅(𝑘)

sin(𝑘𝑎)
𝑘𝑎

ei𝑘𝑥𝑛 d𝑘 for 𝑥𝑛 ∈  (26)

The average scattered field �̃�(𝑠)(𝑥𝑛, 0) can be instead obtained as described in the following. First Eqs. (15a) and (15b) are used
as Green’s functions to express the displacement components of the scattered field 𝒖(𝑠)𝑗 (𝑥, 𝑧) generated by the normal stress exerted
by the 𝑗th resonator:

𝑢(𝑠)𝑗 (𝑥, 𝑧) = i∫

𝑥𝑗+𝑎

𝑥𝑗−𝑎

𝜎(𝑠)𝑧𝑧 (𝜂, 0)
2𝜋𝜇 ∫

∞

−∞

𝑘(2𝑘2 − 𝑘2𝑠 )e
𝑝𝑧 − 2𝑘𝑝𝑞e𝑞𝑧

𝑅(𝑘)
ei𝑘(𝑥−𝜂) d𝜂d𝑘

=
i𝛺𝑗 [�̃�(𝑓 )(𝑥𝑗 , 0) + �̃�(𝑠)(𝑥𝑗 , 0)]

2𝜋𝜇 ∫

∞

−∞

𝑘(2𝑘2 − 𝑘2𝑠 )e
𝑝𝑧 − 2𝑘𝑝𝑞e𝑞𝑧

𝑅(𝑘)
sin(𝑘𝑎)
𝑘𝑎

ei𝑘(𝑥−𝑥𝑗 ) d𝑘 for 𝑥𝑗 ∈ 

(27a)

𝑤(𝑠)
𝑗 (𝑥, 𝑧) = ∫

𝑥𝑗+𝑎

𝑥𝑗−𝑎

𝜎(𝑠)𝑧𝑧 (𝜂, 0)
2𝜋𝜇 ∫

∞

−∞

𝑝(2𝑘2 − 𝑘2𝑠 )e
𝑝𝑧 − 2𝑘2𝑝e𝑞𝑧

𝑅(𝑘)
ei𝑘(𝑥−𝜂) d𝜂d𝑘

=
𝛺𝑗 [�̃�(𝑓 )(𝑥𝑗 , 0) + �̃�(𝑠)(𝑥𝑗 , 0)]

2𝜋𝜇 ∫

∞

−∞

𝑝(2𝑘2 − 𝑘2𝑠 )e
𝑝𝑧 − 2𝑘2𝑝e𝑞𝑧

𝑅(𝑘)
sin(𝑘𝑎)
𝑘𝑎

ei𝑘(𝑥−𝑥𝑗 ) d𝑘 for 𝑥𝑗 ∈ 

(27b)

note that the calculation of each scattered wavefield 𝑢(𝑠)𝑗 (𝑥, 𝑧), and 𝑤(𝑠)
𝑗 (𝑥, 𝑧), as per Eqs. (27a) and (27b), requires only the knowledge

of the average vertical displacement, free �̃�(𝑓 )(𝑥𝑗 , 0) and scattered �̃�(𝑠)(𝑥𝑗 , 0), at the contact points 𝑥𝑗 ∈ .
Since the free field component �̃�(𝑓 )(𝑥𝑗 , 0) is known from Eq. (26), the only left unknowns in Eqs. (27a) and (27b) are the vertical

scattered displacements �̃�(𝑠)(𝑥𝑗 , 0). To calculate them, we expand the average vertical scattered displacement field at the contact
points 𝑥𝑛 according to Eq. (22):

�̃�(𝑠)(𝑥𝑛, 0) =
𝑁
∑

𝑗=1
�̃�(𝑠)

𝑗 (𝑥𝑛, 0) for 𝑛 = 1, 2,… , 𝑁 (28)

which can be equivalently rewritten as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̃�(𝑠)(𝑥1, 0) = �̃�(𝑠)
1 (𝑥1, 0) + �̃�(𝑠)

2 (𝑥1, 0) +⋯ + �̃�(𝑠)
𝑁 (𝑥1, 0)

�̃�(𝑠)(𝑥2, 0) = �̃�(𝑠)
1 (𝑥2, 0) + �̃�(𝑠)

2 (𝑥2, 0) +⋯ + �̃�(𝑠)
𝑁 (𝑥2, 0)

⋮

�̃�(𝑠)(𝑥𝑁 , 0) = �̃�(𝑠)
1 (𝑥𝑁 , 0) + �̃�(𝑠)

2 (𝑥𝑁 , 0) +⋯ + �̃�(𝑠)
𝑁 (𝑥𝑁 , 0)

(29)

Then, we substitute Eq. (27b) into Eq. (29) and obtain the following equations:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̃�(𝑠)(𝑥1, 0) = 𝛽11[�̃�(𝑓 )(𝑥1, 0) + �̃�(𝑠)(𝑥1, 0)] + 𝛽12[�̃�(𝑓 )(𝑥2, 0) + �̃�(𝑠)(𝑥2, 0)] +⋯ + 𝛽1𝑁 [�̃�(𝑓 )(𝑥𝑁 , 0) + �̃�(𝑠)(𝑥𝑁 , 0)]
�̃�(𝑠)(𝑥2, 0) = 𝛽21[�̃�(𝑓 )(𝑥1, 0) + �̃�(𝑠)(𝑥1, 0)] + 𝛽22[�̃�(𝑓 )(𝑥2, 0) + �̃�(𝑠)(𝑥2, 0)] +⋯ + 𝛽2𝑁 [�̃�(𝑓 )(𝑥𝑁 , 0) + �̃�(𝑠)(𝑥𝑁 , 0)]

⋮

�̃�(𝑠)(𝑥𝑁 , 0) = 𝛽𝑁1[�̃�(𝑓 )(𝑥1, 0) + �̃�(𝑠)(𝑥1, 0)] + 𝛽𝑁2[�̃�(𝑓 )(𝑥2, 0) + �̃�(𝑠)(𝑥2, 0)] +⋯ + 𝛽𝑁𝑁 [�̃�(𝑓 )(𝑥𝑁 , 0) + �̃�(𝑠)(𝑥𝑁 , 0)]

(30)

where:

𝛽𝑛𝑗 =
−𝛺𝑗

2𝜋𝜇
1
2𝑎 ∫

∞

−∞

𝑘2𝑠𝑝
𝑅(𝑘)

sin(𝑘𝑎)
𝑘𝑎

d𝑘∫

𝑥𝑛+𝑎

𝑥𝑛−𝑎
ei𝑘(𝑥−𝑥𝑗 ) d𝑥

=
−𝛺𝑗

2𝜋𝜇 ∫

∞

−∞

𝑘2𝑠𝑝
𝑅(𝑘)

sin2(𝑘𝑎)
(𝑘𝑎)2

ei𝑘(𝑥𝑛−𝑥𝑗 ) d𝑘 for 𝑛, 𝑗 = 1, 2,… , 𝑁

(31)
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For simplicity, we express Eq. (30) in matrix form as:

𝑨𝒙 = 𝒃 (32)

where the corresponding coefficients are:

𝑨 =

⎡

⎢

⎢

⎢

⎢

⎣

(1 − 𝛽11) −𝛽12 ⋯ −𝛽1𝑁
−𝛽21 (1 − 𝛽22) ⋯ −𝛽2𝑁
⋮ ⋮ ⋱ ⋮

−𝛽𝑁1 −𝛽𝑁2 ⋯ (1 − 𝛽𝑁𝑁 )

⎤

⎥

⎥

⎥

⎥

⎦

∈ C𝑁×𝑁 (33a)

𝒙 =

⎡

⎢

⎢

⎢

⎢

⎣

�̃�(𝑠)(𝑥1, 0)
�̃�(𝑠)(𝑥2, 0)

⋮
�̃�(𝑠)(𝑥𝑁 , 0)

⎤

⎥

⎥

⎥

⎥

⎦

∈ C𝑁×1, 𝒃 =

⎡

⎢

⎢

⎢

⎢

⎣

𝛽11�̃�(𝑓 )(𝑥1, 0) + 𝛽12�̃�(𝑓 )(𝑥2, 0) +⋯ + 𝛽1𝑁 �̃�(𝑓 )(𝑥𝑁 , 0)
𝛽21�̃�(𝑓 )(𝑥1, 0) + 𝛽22�̃�(𝑓 )(𝑥2, 0) +⋯ + 𝛽2𝑁 �̃�(𝑓 )(𝑥𝑁 , 0)

⋮
𝛽𝑁1�̃�(𝑓 )(𝑥1, 0) + 𝛽𝑁2�̃�(𝑓 )(𝑥2, 0) +⋯ + 𝛽𝑁𝑁 �̃�(𝑓 )(𝑥𝑁 , 0)

⎤

⎥

⎥

⎥

⎥

⎦

∈ C𝑁×1 (33b)

The solution of Eq. (32) provides the sought average vertical displacement components of the scattered field at the resonator footprint
locations 𝑥𝑛. When the matrix 𝑨 has a nonzero determinant, the system in Eq. (32) has a unique solution 𝒙 with components:

�̃�(𝑠)(𝑥𝑛, 0) = (𝑨−1𝒃)𝑛 for 𝑛 = 1, 2,… , 𝑁 (34)

At this stage, by substituting Eq. (34) into Eqs. (27a), (27b), we can obtain the 𝑗th scattered field components 𝑢(𝑠)𝑗 (𝑥, 𝑧) and
𝑤(𝑠)

𝑗 (𝑥, 𝑧) at any point of the 𝑥 − 𝑧 plane. The total wavefield is then obtained as the summation of the free and scattered fields:

𝑢(𝑥, 𝑧) = 𝑢(𝑓 )(𝑥, 𝑧) + 𝑢(𝑠)(𝑥, 𝑧) = 𝑢(𝑓 )(𝑥, 𝑧) +
𝑁
∑

𝑗=1
𝑢(𝑠)𝑗 (𝑥, 𝑧) (35a)

𝑤(𝑥, 𝑧) = 𝑤(𝑓 )(𝑥, 𝑧) +𝑤(𝑠)(𝑥, 𝑧) = 𝑤(𝑓 )(𝑥, 𝑧) +
𝑁
∑

𝑗=1
𝑤(𝑠)

𝑗 (𝑥, 𝑧) (35b)

Eqs. (35a) and (35b) can be rewritten in integral form as follows:

𝑢(𝑥, 𝑧) = i𝑄
2𝜋𝜇 ∫

∞

−∞

𝑘(2𝑘2 − 𝑘2𝑠 )e
𝑝𝑧 − 2𝑘𝑝𝑞e𝑞𝑧

𝑅(𝑘)
ei𝑘𝑥 d𝑘

+ i
2𝜋𝜇

𝑁
∑

𝑗=1
𝛺𝑗

[

−𝑄
2𝜋𝜇 ∫

∞

−∞

𝑘2𝑠𝑝
𝑅(𝑘)

sin(𝑘𝑎)
𝑘𝑎

ei𝑘𝑥𝑗 d𝑘 + (𝑨−1𝒃)𝑗

]

∫

∞

−∞

𝑘(2𝑘2 − 𝑘2𝑠 )e
𝑝𝑧 − 2𝑘𝑝𝑞e𝑞𝑧

𝑅(𝑘)
sin(𝑘𝑎)
𝑘𝑎

ei𝑘(𝑥−𝑥𝑗 ) d𝑘
(36)

𝑤(𝑥, 𝑧) = 𝑄
2𝜋𝜇 ∫

∞

−∞

𝑝(2𝑘2 − 𝑘2𝑠 )e
𝑝𝑧 − 2𝑘2𝑝e𝑞𝑧

𝑅(𝑘)
ei𝑘𝑥 d𝑘

+ 1
2𝜋𝜇

𝑁
∑

𝑗=1
𝛺𝑗

[

−𝑄
2𝜋𝜇 ∫

∞

−∞

𝑘2𝑠𝑝
𝑅(𝑘)

sin(𝑘𝑎)
𝑘𝑎

ei𝑘𝑥𝑗 d𝑘 + (𝑨−1𝒃)𝑗

]

∫

∞

−∞

𝑝(2𝑘2 − 𝑘2𝑠 )e
𝑝𝑧 − 2𝑘2𝑝e𝑞𝑧

𝑅(𝑘)
sin(𝑘𝑎)
𝑘𝑎

ei𝑘(𝑥−𝑥𝑗 ) d𝑘
(37)

The above Eqs. (36) and (37) can be specified at the coordinate 𝑧 = 0 to obtain the surface displacement components:

𝑢(𝑥, 0) = i𝑄
2𝜋𝜇 ∫

∞

−∞

𝑘(2𝑘2 − 𝑘2𝑠 − 2𝑝𝑞)
𝑅(𝑘)

ei𝑘𝑥 d𝑘

+ i
2𝜋𝜇

𝑁
∑

𝑗=1
𝛺𝑗

[

−𝑄
2𝜋𝜇 ∫

∞

−∞

𝑘2𝑠𝑝
𝑅(𝑘)

sin(𝑘𝑎)
𝑘𝑎

ei𝑘𝑥𝑗 d𝑘 + (𝑨−1𝒃)𝑗

]

∫

∞

−∞

𝑘(2𝑘2 − 𝑘2𝑠 − 2𝑝𝑞)
𝑅(𝑘)

sin(𝑘𝑎)
𝑘𝑎

ei𝑘(𝑥−𝑥𝑗 ) d𝑘
(38)

𝑤(𝑥, 0) = −𝑄
2𝜋𝜇 ∫

∞

−∞

𝑘2𝑠𝑝
𝑅(𝑘)

ei𝑘𝑥 d𝑘

− 1
2𝜋𝜇

𝑁
∑

𝑗=1
𝛺𝑗

[

−𝑄
2𝜋𝜇 ∫

∞

−∞

𝑘2𝑠𝑝
𝑅(𝑘)

sin(𝑘𝑎)
𝑘𝑎

ei𝑘𝑥𝑗 d𝑘 + (𝑨−1𝒃)𝑗

]

∫

∞

−∞

𝑘2𝑠𝑝
𝑅(𝑘)

sin(𝑘𝑎)
𝑘𝑎

ei𝑘(𝑥−𝑥𝑗 ) d𝑘
(39)

The closed-form Eqs. (36), (37), (38), (39) are evaluated numerically via Gauss–Kronrod quadrature. In the next section we
use the developed approach to predict the wavefield of half-spaces with different sets of resonators including uniform, graded and
disordered arrays.

3. Case studies

In this section, we discuss the behavior of a single resonator, a couple of resonators, and a graded array of resonators placed atop
an elastic half-space and excited by a far field source. Our aim is twofold: (i) to test and validate the accuracy of our formulation
against a numerical (Finite Element) solution; (ii) to discuss the coupling between free and scattered wavefields for different
mechanical parameters and layout of the resonators.

Before tackling these tasks, let us provide some useful parameters to facilitate our calculations and ease the further discussions:
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Table 1
Mechanical parameters of the resonators and the elastic half-space.
Source: The elastic parameters are taken from Ref. Pu and Shi (2020).

Parameter Value

Line load amplitude, 𝑄 106 N∕m
First resonator frequency, 𝑓𝑟1 2 Hz
Footprint length of each resonator, 2𝑎 1 m
Damping ratio of resonators, 𝜁 1%
Mass density of substrate, 𝜌 1800 kg/m3

Young modulus of substrate, 𝐸 46 MPa
Poisson ratio of substrate, 𝜈 0.25
Hysteretic damping ratio of substrate, 𝜉 1%

• to generalize our conclusions, we introduce the dimensionless mass parameter �̂�𝑗 = 𝑚𝑗∕(𝜌𝑆𝜆𝑟𝑗 ), with 𝜌 being the density of
the half-space and 𝜆𝑟𝑗 = 𝑐𝑅∕𝑓𝑟𝑗 the Rayleigh wavelength at resonant frequency 𝑓𝑟𝑗 ; this parameter compares the mass of the
resonator to the mass of a portion of substrate under the resonator footprint area, with volume 𝑉 = 𝑆 × 𝜆𝑟𝑗 . Additionally, we
introduce the parameter 𝑑𝑚𝑛 = 𝑑𝑚𝑛∕𝜆𝑟𝑗 = (𝑥𝑛 − 𝑥𝑚)∕𝜆𝑟𝑗 to denote the normalized distance between the 𝑚th and 𝑛th resonator;

• to account for wave energy dissipation, we assume a non-null damping ratio 𝜁 for the resonator response and a non-null
hysteretic damping 𝜉 for the elastic substrate. The damping coefficient of the 𝑗th resonator is calculated as 𝑐𝑗 = 2𝑚𝑗𝜔𝑟𝑗𝜁 (Chopra
et al., 2012), while the complex moduli of the substrate as 𝜆′ = 𝜆(1 + 2i𝜉) and 𝜇′ = 𝜇(1 + 2i𝜉) (Philippacopoulos, 1988); the
introduction of damping in the system allows also to avoid numerical instabilities by removing the poles of the integrands in
Eqs. (38), (39);

• to quantify the contribution of the resonators scattered field at the half-space surface (𝑧 = 0), we introduce the following
amplitude ratio (𝐴𝑅) (Woods, 1968):

𝐴𝑅 =
𝑤(𝑥, 0)

𝑤(𝑓 )(𝑥, 0)
= 1 +

𝑤(𝑠)(𝑥, 0)
𝑤(𝑓 )(𝑥, 0)

(40)

and the normalized distance between the receiver and the first resonator 𝑑 = 𝑑∕𝜆𝑟1 = (𝑥−𝑥1)∕𝜆𝑟1 where 𝐴𝑅 will be computed.

3.1. Single resonator scenario

We begin our investigation considering the case of a single surface oscillator. The resonator has a normalized mass �̂�1 = 1, is
located at a distance 𝑥1 = 6𝜆𝑟1 from the harmonic source, and lies over a half-space characterized by the mechanical properties
collected in Table 1.

The total wavefield generated by a harmonic source at 𝑓 = 𝑓𝑟1, computed by using Eqs. (36) and (37), is shown in Fig. 2a in the
domain 𝑥 = [4, 8]𝜆𝑟1, 𝑧 = [−2, 0]𝜆𝑟1. The analytically predicted wavefield is in excellent agreement with the one displayed in Fig. 2b,
calculated with harmonic FE simulations (see Appendix A for details on the FE model). To quantify the effect of the resonator on
the surface wavefield, we calculate and show in Fig. 2c the amplitude ratio |𝐴𝑅| for harmonic sources with frequencies 𝑓 = [0, 3]𝑓𝑟1
at two positions, namely 𝑑 = 0.1 (blue line), in the scattered near field, and at 𝑑 = 6 (red line), in the scattered far field.

In the near field response we observe a low-frequency region where the surface motion is amplified with respect to the free
field, namely |𝐴𝑅| > 1, followed by a higher frequency region with a significant deamplification of the signal. The two regimes are
separated by the frequency 𝑓𝑐1 which corresponds to the resonance of the oscillator coupled to the elastic substrate. In the far field
the signal amplification disappears and we observe only a deamplification of the signal with a maximum drop occurring exactly at
the coupled frequency 𝑓𝑐1.

To interpret the different responses observed near and far from the resonator, we expand the expression of |𝐴𝑅| given in Eq. (40)
as:

|𝐴𝑅| =

√

1 +
|

|

|

|

𝑤(𝑠)

𝑤(𝑓 )

|

|

|

|

2
+ 2Re

(

𝑤(𝑠)

𝑤(𝑓 )

)

=

√

1 +
|

|

|

|

𝑤(𝑠)

𝑤(𝑓 )

|

|

|

|

2
+ 2

|

|

|

|

𝑤(𝑠)

𝑤(𝑓 )

|

|

|

|

cos(𝛥𝜃) (41)

where 𝛥𝜃 is the relative phase between the scattered and free vertical displacements, namely, 𝑤(𝑠)∕𝑤(𝑓 ).
According to the Eq. (41), both the amplitude and the relative phase of the scattered field play a role in the amplitude ratio

|𝐴𝑅|: the scattered field amplitude shows a similar trend both in the near and in the far field and reaches its peak exactly at the
coupled frequency 𝑓𝑐1 (see Fig. 2d); conversely, the relative phase 𝛥𝜃 significantly changes depending on the receiver location. In
the near field, around the coupling frequency, the relative phase (see inset in Fig. 2d) shows that the scattered and free responses
are approximately orthogonal. Hence, the contribution of the scattered waves to the value of |𝐴𝑅| is negligible. Conversely, in the
far field, scattered and free responses are out-of-phase, leading to destructive interference between the two wavefields and to a
minimum value of the amplification ratio |𝐴𝑅|.

Let us now investigate in more detail the variation of the coupled frequency 𝑓𝑐1 with respect to the mechanical parameters
of the system, namely substrate and oscillator. To this purpose, we calculate the absolute vertical displacement 𝑊 of a resonator
located on the half-space surface at distance 𝑑 = 0 from the source and compare its response to the one of an identical resonator
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Fig. 2. Rayleigh wave interaction with a single resonator on an elastic half-space (�̂�1 = 1, 𝑥1 = 6𝜆𝑟1). Total wavefield for a harmonic source at 𝑓 = 𝑓𝑟1 computed
using the (a) proposed analytical solution, (b) FE simulation. (c) Amplitude ratio |𝐴𝑅| in the near 𝑑 = 0.1 (blue line) and far field 𝑑 = 6 (red line). (d) Spectrum
and phase of the scattered field vs. the free field. (e) Dynamic amplification factor of the resonator on a rigid (dashed line) and elastic substrate (red line). (f)
Coupled frequency 𝑓𝑐1 vs. the mass of the resonator. For comparison, in (c), (d) and (e) we also provide the FE solutions denoted by dots. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

placed on a rigid substrate. The two resonators vertical responses, normalized with respect to the relative base displacements, are
plotted in Fig. 2e. As expected, the response of the resonator on a rigid substrate provides the transmissibility factor |𝑇𝑅| (dashed
line), whereas the maximum amplitude response of the resonator lying on the half-space (red continuous line) does not occur at its
natural frequency 𝑓𝑟1 but is shifted towards the coupled resonant frequency 𝑓𝑐1. This frequency shift can be predicted utilizing a
lumped-mass model, in which the contribution of the half-space is lumped in the additional stiffness 𝐾ℎ (see schematic in Fig. 2f).
Hence, the coupled frequency can be calculated as:

𝑓𝑐1 = 𝑓𝑟1

√

𝐾ℎ

𝑚1𝜔2
𝑟1 +𝐾ℎ

(42)
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where the equivalent substrate stiffness 𝐾ℎ can be estimated from Eq. (27b) by considering the averaged stress over the contact
area (𝑧 = 0) and a null source-response distance (𝑥 = 𝑥𝑗):

1
𝐾ℎ

= −1
2𝜋𝜇 ∫

∞

−∞

𝑘2𝑠𝑝
𝑅(𝑘)

sin2(𝑘𝑎)
(𝑘𝑎)2

d𝑘 (43)

Note that the integral in Eq. (43) is frequency dependent, so strictly speaking the coupling frequency 𝑓𝑐1 in Eq. (42) is frequency
dependent too. As an approximation, here we calculate the value of 𝐾ℎ at 𝑓 = 𝑓𝑟1 and use it to predict the value of 𝑓𝑐1 for different
resonator mass.

The value of the coupled frequency vs. the resonator mass as predicted from Eq. (42) is plotted in Fig. 2f as a continuous black
line. The prediction agrees well with the frequency values at which the response of the different resonators reach its maximum
amplitude as calculated from Eq. (19) (marked in Fig. 2f by colored circles). In particular, the color of the circles shows the value
of the amplification factor (𝑊 ∕𝑤(𝑓 )) at resonance, and highlights that a change of mass produces a change in the effective quality
factor of the resonator too. To conclude this section, we remark that all these results have been validated with FE models (see black
dots superimposed onto all the curves in Figs. 2c,d,e).

3.2. Two resonators scenario

Studies on the dynamics of coupled oscillators on elastic supports are receiving renovate attention both in the geophysical
context, to assess the response of close buildings and their influence on ground vibrations, and in the design of SAW devices,
where micro/nano resonators are proposed for application in classical and quantum information processing (Raguin et al., 2019). In
what follows, we show how our analytical formulation allows to properly analyze the mutual interaction between close resonators
and to quantify its effects on the half-space and resonator responses.

We begin our investigation considering two identical resonators, with parameters given in Table 1 and with a relative spacing
𝑑12 = 0.1𝜆𝑟1, excited by a far field (𝑥1 = 6𝜆𝑟1) harmonic source. We calculate the amplitude ratio |𝐴𝑅| for a receiver located at
𝑑 = 6 from the first resonator. The presence of two oscillators atop the half-space leads to a significant reduction in the amplitude
ratio which shows its minimum value at a frequency different from the resonator coupled frequency (𝑓𝑐1 = 𝑓𝑐2). Note that the
system response differs from the envelope of the uncoupled responses, which neglect the cross-coupling interaction between the
two resonators (see the |𝐴𝑅| of each single resonator scenario (blue lines) in Fig. 3a). To investigate further the coupling between
the responses of the resonators, we expand the expression of the amplitude ratio as:

|𝐴𝑅| =
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where 𝛥𝜃1 and 𝛥𝜃2 denote the phase of 𝑤(𝑠)
1 ∕𝑤(𝑓 ) and 𝑤(𝑠)

2 ∕𝑤(𝑓 ), respectively. The above equation clearly highlights the presence of
the cross-coupling contribution, namely, the last term in Eq. (44), in addition to the independent contributions of each resonator.

Overall, the mutual interaction between the resonators modifies also their responses, as highlighted by Fig. 3b where the
uncoupled and coupled oscillators amplification factors are shown. In particular, by looking at the maximum of the |𝐴𝑅| factor, one
can observe a shift in the resonance of both oscillators. Additionally, the first resonator shows a characteristic ‘‘frequency splitting’’
behavior, recently observed experimentally in couples of micropillars attached to an elastic substrate (Raguin et al., 2019).

An effective mutual interaction requires resonators with similar (possibly identical) resonance frequencies located at a relatively
short distance. That is because the scattered fields are maximized at the coupled resonance frequencies and in the near fields of
the resonators, as shown in Fig. 2d for a single resonator. To evidence this effect, let us consider a configuration of two resonators
with different natural frequencies, e.g., 𝑓𝑟2 = 2𝑓𝑟1, keeping the other parameters unchanged. Fig. 3c shows the amplitude ratio at
𝑑 = 6. The reader can appreciate that the system response is now simply the envelope of the two single case scenarios. Similarly, the
amplification factors of the two resonators, reported in Fig. 3d, confirm that no significant shift occurs in the coupled frequencies
of each resonator.

Finally, let us remark that the response of the coupled system cannot be reconstructed from the simple superposition of the
single resonator scenarios (see Appendix B). Note that the extraction of all these features is eased by our analytical framework
which allows to investigate and distinguish the contribution of each scattered field to the total response.

3.3. Cluster of resonators

So far we have gained some physical insights into the behavior of single and coupled oscillators lying over an elastic substrate.
When the number of resonators increases to form a cluster, or a so-called metasurface, the propagation of surface waves in the elastic
substrate can be characterized by intriguing phenomena, such as surface-to-bulk wave conversions from classical (Boechler et al.,
2013) and Umklapp scattering (Chaplain, De Ponti, Colombi et al., 2020) and wave localization via classical (Colombi et al., 2016)
and topological rainbow trapping (Chaplain, De Ponti, Aguzzi et al., 2020). Although the extraction of the dispersive properties of
such graded clusters can be typically inferred from analytical models developed for infinite regular arrays (Colquitt et al., 2017),
the evaluation of the related wavefields require the use of numerical schemes. In what follows, we will show that our analytical
framework can properly capture these phenomena.
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Fig. 3. Rayleigh wave interaction with two resonators on an elastic half-space (�̂�1 = �̂�2 = 1, 𝑥1 = 6𝜆𝑟1 , 𝑑12 = 0.1𝜆𝑟1). (a) Amplitude ratio |𝐴𝑅| computed at
𝑑 = 6 for two identical resonators (𝑓𝑟2 = 𝑓𝑟1). (b) Uncoupled and coupled amplification factors for two identical resonators (𝑓𝑟2 = 𝑓𝑟1). (c) Amplitude ratio |𝐴𝑅|

computed at 𝑑 = 6 for two different resonators (𝑓𝑟2 = 2𝑓𝑟1). (d) Uncoupled and coupled amplification factors for two different resonators (𝑓𝑟2 = 2𝑓𝑟1). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

We begin by considering an array of 40 identical resonators (�̂�𝑗 = 0.5, 𝑓𝑟𝑗 = 𝑓𝑟1), arranged periodically with a lattice
spacing 0.1𝜆𝑟1 (see Fig. 4a). Similar arrays have been analyzed to assess the surface wave filtering capabilities of a periodic
metasurface (Colombi et al., 2016; Pu et al., 2020). For such a configuration, we expect the existence of a band gap in a narrow
frequency region above the oscillator resonance and the occurrence of surface-to-shear wave conversion.

To visualize this phenomenon, we consider an incident Rayleigh wave with frequency 𝑓 = 1.1𝑓𝑟1, namely in the metasurface
band gap, which is excited by the harmonic source 𝑄ei𝜔𝑡 sufficiently far away from the metasurface (𝑥1 = 6𝜆𝑟1). The displacement
wavefield is displayed in Fig. 4a and shows how the incident Rayleigh wave is converted into a downward propagating shear wave.

The same wave-conversion phenomenon can be extended over a broader frequency range by utilizing a series of resonators with
a graded variation of frequency along the array (Colombi et al., 2016). To achieve this purpose, we model an array of 40 resonators
(�̂�𝑗 = 0.5) with resonant frequencies linearly increasing along the array with a step 𝛥𝑓𝑟 = 0.05𝑓𝑟1, for an overall working bandwidth
between 𝑓𝑟1 and 3𝑓𝑟1. Alike the periodic metasurface previously discussed, we set a constant spacing between the resonators. Indeed,
this graded configuration, also known in the literature as metawedge (Colombi et al., 2016), supports both a mode conversion and
a wave localization, depending on the direction of the incoming excitation. These two distinct wavefields, as calculated using our
analytical framework, are shown respectively in Fig. 4b and c.

As last example, we calculate the wavefield of a disordered metasurface, constructed by randomly changing the order of
resonators considered in the discussed metawedge. The investigation of such a non-periodic resonant system is attracting increasing
interest in the research community as a design strategy to enlarge the filtering bandwidth of metamaterials (Cao et al., 2020; Celli,
Yousefzadeh, Daraio, & Gonella, 2019). Note that a random configuration can be easily modeled using the proposed analytical
approach which allows to set frequency and location of the resonating scatters at will. In Fig. 4d the reader can appreciate the
related wavefield for an incident Rayleigh wave at 𝑓 = 1.1𝑓𝑟1.

We also provide a comparison of the amplitude ratio |𝐴𝑅| calculated at 𝑑 = 6 in the frequency range 𝑓 = [0, 3]𝑓𝑟1. The result is
shown in Fig. 4e and highlights that the disordered metasurface provides similar filtering performance to the two analyzed graded
systems.
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Fig. 4. Rayleigh wave interaction with finite-size metasurfaces (𝑁 = 40) on an elastic half-space (�̂� = 0.5, resonator spacing 0.1𝜆𝑟1, incident frequency 𝑓 = 1.1𝑓𝑟1).
Calculated wave field for: (a) a periodic metasurface. (b) an inverse metawedge. (c) a classical metawedge. (d) a disordered metasurface. In the schematics the
length of the resonators represents the value of the related natural frequencies. (e) Amplitude ratio |𝐴𝑅| computed at 𝑑 = 6 in the frequency range 𝑓 = [0, 3]𝑓𝑟1
of the four considered cases.

4. Conclusions

This work proposes an analytical formulation to model and study the interaction of vertically polarized elastic waves with surface
resonators. In particular, we have exploited the Green’s functions of the canonical Lamb’s problem to set up a coupled problem
between the incident field generated by the source and the scattered wavefields generated by a set of resonators placed atop the
half-space. The formulation can handle an arbitrary number of resonators arranged on the surface of the half-space in a generic
configuration. The capabilities of the developed methodology have been discussed by modeling the dynamics of a single, a couple
and a cluster of resonators arranged over an isotropic homogeneous half-space, and have been validated against finite element
simulations.

The method allows to capture the frequency shift of a resonator coupled to the elastic substrate, the mutual interaction between a
couple of close resonators in terms of frequency splitting and amplitude variation and the collective response of arrays of resonators,
e.g., metasurfaces interacting with Rayleigh waves. Future research efforts will be devoted to extend the methodology to a 3D
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Fig. A.1. Schematic of the FE model.

Fig. B.1. Schematics of: (a) superposition, (b) coupled model.

scenario and exploit its capability to design SAW devices, waveguides and interpret the dynamics of a cluster of buildings interacting
with seismic waves and urban vibrations.
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Fig. B.2. Amplitude ratio |𝐴𝑅| obtained at 𝑑 = 6 for two identical resonators (�̂�1 = �̂�2 = 1, 𝑓𝑟2 = 𝑓𝑟1 , 𝑥1 = 6𝜆𝑟1) from the superposition of single resonator
scenarios and the coupled model. (a) 𝑑12 = 0.1𝜆𝑟1. (b) 𝑑12 = 0.5𝜆𝑟1. (c) 𝑑12 = 1𝜆𝑟1. (d) 𝑑12 = 2𝜆𝑟1.

Appendix A. Details on the FE model

In this Appendix, we provide details of the FE model (see Fig. A.1) used to validate our analytical solutions in Section 3.1. First,
to simulate the uniform vertical force imposed on the footprint, the mass–dashpot–spring oscillator is discretized as an ensemble
of 11 truss elements, namely the truss spacing 0.2𝑎 ≪ 𝜆𝑟. This procedure results in each point mass 𝑚𝑝 = 𝑚∕11, and the Young
modulus of each truss 𝐸𝑡 = (𝑚𝑝𝜔2

𝑟 + i𝜔𝑐)∕𝐴𝑡, where 𝐴𝑡 is the cross-sectional area of a truss. The incident Rayleigh wave is excited by
the harmonic load with amplitude 𝑄 at a sufficient distance (6𝜆𝑟) from the oscillator. To model the elastic half-space and to avoid
unnecessary reflections, we add Perfectly Matched Layers (PMLs) to the vertical and bottom edges.

Appendix B. Superposition vs. coupled model

In this Appendix, we compare the amplitude ratio (𝐴𝑅) as obtained from the linear superposition of single resonator configura-
tions (see Fig. B.1), with the amplitude ratio obtained from our analytical formulation. For the linear superposition, the 𝐴𝑅 can be
expressed as:

𝐴𝑅 = 1 +
𝑁
∑

𝑗=1

𝑤(𝑠)
𝑗 (𝑥, 0)

𝑤(𝑓 )(𝑥, 0)
(B.1)

Note that 𝑤(𝑠)
𝑗 here denotes the scattered field generated by the 𝑗th resonator in a single resonator configuration. In other words,

the resonators contributing to the superposition do not interact with each other. We next show that results obtained from such
superposition cannot accurately reproduce the response of the actual coupled system. To this purpose, we consider a scenario with
two identical resonators (𝑓𝑟1 = 𝑓𝑟2) placed at increasing relative distance 𝑑12 = [0.1, 0.5, 1, 2]𝜆𝑟1, and a scenario with two resonators
with different natural frequencies (𝑓𝑟1, 𝑓𝑟2 = [1.5, 2, 2.5, 3]𝑓𝑟1) placed at a given distance 𝑑12 = 0.1𝜆𝑟1. For both the configurations
we calculate and compare the amplitude ratio as obtained from the superposition in Eq. (B.1) and from the coupled formulation
in Eq. (44). The results of the two comparisons are collected, respectively, in Figs. B.2, and B.3. We observe that the superposition
fails in reproducing the results of the coupled model (validated via FE simulations) in the frequency range close to the oscillators
resonances, i.e., where the scattered fields and the mutual interaction between the resonators are maximized.
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Fig. B.3. Amplitude ratio |𝐴𝑅| obtained at 𝑑 = 6 for two different resonators (�̂�1 = �̂�2 = 1, 𝑥1 = 6𝜆𝑟1 , 𝑑12 = 0.1𝜆𝑟1) from the superposition of single resonator
scenarios and the coupled model. (a) 𝑓𝑟2 = 1.5𝑓𝑟1. (b) 𝑓𝑟2 = 2𝑓𝑟1. (c) 𝑓𝑟2 = 2.5𝑓𝑟1. (d) 𝑓𝑟2 = 3𝑓𝑟1.
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