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A B S T R A C T

The GARCH models developed so far do not take into account the interaction between the volatility of asset
returns and the dynamics of the interest rate. In this paper, we propose a bivariate GARCH model in which
interest rate movements and asset price volatility are fully coupled. This approach yields explicit and simple to
implement recursion formulas for the moment generating function, which can be exploited to compute option
prices by applying the fast Fourier transform or other convolution techniques. We perform a thorough and
comprehensive empirical analysis based on real S&P500 return and option data showing the usefulness and
robustness of the suggested methodology. Both in-sample and out-of-sample results reveal the superiority of
our approach over the GARCH model with constant interest rates.
1. Introduction

Since the seminal papers of Engle (1982) and Bollerslev (1986),
ARCH and GARCH models, as well as their nonlinear specifications,
see Nelson (1991) and Glosten et al. (1993), have become standard
statistical tools for capturing the well-known serial correlation of the
conditional variance of asset returns and modeling volatility clustering.
A remarkable advantage of GARCH-type models is that they can be
easily estimated and filtered leveraging past return observations. In
fact, unlike stochastic volatility models, which, due to the unobserv-
able variance, require complex simulation-based techniques (such as
Markov chain Monte Carlo methods, see Shephard (2005) for a compre-
hensive review), GARCH models can be readily estimated by maximum
likelihood (ML), since the conditional variance is a measurable function
of past observations.

Motivated by the advantages of GARCH models, Duan (1995) was
the first to provide an option pricing framework combining the theory
developed by Black and Scholes (1973) and Merton (1973) and GARCH
models with normal innovations. However, as argued by Duan (1995),
since the multi-period distribution of the traditional GARCH process is
not known, the calculation of GARCH option prices requires a Monte
Carlo approach, see for instance Menn and Rachev (2005) and Badescu
et al. (2015). Nevertheless, standard Monte Carlo simulation proce-
dures are very time-consuming, especially if a high degree of accuracy
is desired, and, as Duan and Simonato (1998) pointed out, they could
also lead to simulated samples that violate the martingale property of
the discounted asset prices under the risk-neutral measure. A general
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overview of the pricing performances of various nonlinear GARCH
specifications can be found in Christoffersen and Jacobs (2004).

To avoid the use of the aforementioned simulation-based proce-
dures, Heston and Nandi (2000) introduce an alternative nonlinear
GARCH model (hereafter GARCH-HN) with normal innovations that
yields closed-form recursions for pricing options. This approach has
been extended in several directions, see for instance Christoffersen et al.
(2006), Christoffersen et al. (2008) and Escobar-Anel et al. (2021).

A major drawback of all these works is that the interest rate is
assumed to be constant or predetermined, even if several empirical
studies document that the stochastic dynamics of stock returns and
of the interest rate are closely intertwined. For example, Fama (1981)
argues that returns on the stock market are negatively correlated with
the expected inflation, which, in turn, is strongly interconnected with
the interest rate. Campbell (1987) provides evidence that the interest
rate term structure plays a crucial role in predicting excess returns on
the US stock market. Furthermore, Breen et al. (1989) find a statistically
significant and negative relationship between the monthly Treasury-Bill
return and a value weighted index of stocks of the NYSE. Very recently,
using panel Johansen cointegration analysis, Eldomiaty et al. (2020)
show that interest rates and stock prices are positively correlated, and
that changes in the former Granger cause significant variations in the
latter.

To analyze the dynamic properties of the short-term interest rate
and its volatility, a variety of models have been proposed in both the
discrete and the continuous time setting. Chan et al. (1992) presents a
vailable online 1 December 2023
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model in continuous time that encompasses the popular Vasicek (1977)
and Cox et al. (1985) square-root models as particular cases.

Continuous time models with stochastic interest rates are also very
popular for option pricing. Amin and Jarrow (1991) propose a four-
factor model to price foreign currency options under stochastic interest
rates. Choi and Marcozzi (2003) develop a finite element method
for foreign currency options when interest rates are stochastic. Trolle
and Schwartz (2008) price interest rates derivatives using a general
stochastic volatility model. Grzelak and Oosterlee (2011) and Recchioni
and Sun (2016) extend the popular Heston stochastic volatility model
to allow for stochastic interest rates. Moreover, Recchioni and Tedeschi
(2017) introduce an interest rate model with stochastic volatility to
describe government bonds. Grzelak et al. (2012) present an extension
of stochastic volatility models based on a stochastic Hull–White interest
rate component. For a review of continuous time models for stochastic
interest rates the reader is referred to Brigo and Mercurio (2007)
and Schmidt (2011).

Amin and Bodurtha (1995) combine a discrete version of the Heath
et al. (1992) term structure model with the binomial model. Ho et al.
(1997) use multivariate binomial trees and extrapolation techniques to
value American-option in a stochastic interest rate environment. Bren-
ner et al. (1996), considering an Euler–Maruyama discrete time ap-
proximation of the Chan et al. (1992) model, assume that the volatil-
ity of the interest rate follows a GARCH-type specification. Further-
more, Cvsa and Ritchken (2001) provide an analytic solution for pricing
bonds under a general GARCH-level dependent interest rate model.
More recently, to reduce possible model misspecifications, Hou and
Suardi (2011) have proposed a semiparametric GARCH alternative
approach for the interest rate volatility. In sum, the clear advantage of
GARCH specifications is that they can be easily filtered and estimated,
while still allowing for complex dynamic features such as time-varying
volatility and asymmetric effects. Yet, GARCH models that exploit
the close relationship between the volatility of stock returns and the
dynamics of the interest rate are still lacking.

To fill this gap, in this paper we propose a bivariate GARCH frame-
work to simultaneously model the coupled movements of asset returns
and of the short-term interest rate. In particular, returns are modeled
by a GARCH process in which the drift component that depends on
the interest rate is assumed to follow a separate GARCH specification.
Such an approach allows us to incorporate the correlation between the
volatility of the returns and the volatility of the interest rate while still
providing closed-form expressions for option valuation. To the best of
our knowledge, no other studies consider a GARCH model in which the
drift of the stock price is described by a GARCH specification itself. It is
also worth noting that our methodology encompasses the GARCH-HN
model as a special case.

We test the proposed model on both the S&P500 time series and a
rich sample of Call and Put S&P500 option values, and we show that
it fits realized prices much better than the more traditional GARCH-
HN specification and the component GARCH of Christoffersen et al.
(2008) (hereafter GARCH-C), which incorporates both short- and long-
term volatilities. Then, the model developed in this paper turns out to
be an efficient, tractable and easy to implement approach for managing
asset price risk and valuing options.

The remainder of the paper is organized as follows: In Section 2,
we provide some empirical insights about the dynamics of the S&P500
Index and the 3-month Treasury Bill interest rate, which further moti-
vate the proposed model. In Section 3, we present our bivariate GARCH
approach with dynamic interest rates. In Section 4, we perform an
empirical analysis in which we estimate the model and compare it with
the GARCH-HN. In Section 5, we derive analytical recursion formulas
for the moment generating function and use them to fit and forecast
prices of Call and Put S&P500 options. Finally, Section 6 concludes. All
the mathematical proofs are reported in Appendix.
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Fig. 1. S&P500 log-return time series from January 01, 1975 to December 31, 2022
(12522 daily observations).

Fig. 2. 3-month Treasury Bill interest rate time series from January 01, 1975 to
December 31, 2022 (12522 daily observations).

2. S&P500 return and short-term interest rate empirics

In this Section we start by reporting some descriptive statistics of
the S&P500 daily log-returns (in percentage) and the 3-month Treasury
Bill interest rate time series. We collect data from January 01, 1975 to
December 31, 2022 (12522 daily observations), which are displayed in
Figs. 1 and 2.

Fig. 1 clearly shows the time-varying feature of the volatility of the
S&P500 index. In particular, as the time series is very long, we note sev-
eral volatility clusters, which tend to start with the upward/downward
variations of the interest rate (see Fig. 2). For example, the clusters
beginning in the years 1983, 1987, 1998, 2008, 2016 and 2019 follow
either an upward or a downward movement of the interest rate. Such a
stylized fact is also shown by Fig. 3, where we plot the first-differenced
series of the 3-month Treasury Bill interest rate. As we can easily see,
the interest rate exhibits conditional heteroskedasticity. In what fol-
lows, we will show that all of these empirical findings are well-captured
by the model introduced in Section 3.

Table 1 reports descriptive statistics for the three time series. In
particular, the S&P500 return is significantly and negatively skewed,
whereas the 3-month Treasury Bill interest rate is significantly and
positively skewed. Its first-differenced series, however, does not have
a significant skewness coefficient. All the time series have a kurto-
sis coefficient that is significantly higher than that of the normal
distribution.

To further motivate the model proposed in this paper from an
empirical standpoint, we have computed the empirical volatility of
both the S&P500 returns and the first-differenced 3-month Treasury Bill
interest rate, along with the their correlation, using a rolling window
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Fig. 3. First-differenced 3-month Treasury Bill interest rate time series from January
01, 1975 to December 31, 2022 (12522 daily observations).

Table 1
Descriptive statistics of the S&P500 daily log-return (𝑦𝑡), 3-month Treasury Bill interest
rate (𝑟𝑡) and first-differenced interest rate (𝛥𝑟𝑡).
Variable Mean Std deviation Skewness Kurtosis

𝑦𝑡 0.032 1.089 −1.083 28.686
𝑟𝑡 4.271 3.527 0.775 3.433
𝛥𝑟𝑡 −0.002 0.089 0.401 40.044

of 50 days. The results are displayed in Fig. 4. We observe that the two
volatility time series show some commonalities. For instance, common
peaks appear around the years 1988, 2003 and 2008, and overall there
is a significant amount of correlation between the volatilities, ranging
from −0.63 to 0.63.

3. The model

In this Section, we introduce a novel bivariate GARCH model to
capture the simultaneous time-variations of the volatility of log-returns
and the dynamics of the volatility of the short-term interest rate.
This model will be labeled Bivariate GARCH with Dynamic Interest Rate
(B-GARCH-DIR).

Let 𝑆𝑡 denotes the price of an asset at time 𝑡 and let us define
𝑥𝑡 = ln(𝑆𝑡) and 𝑦𝑡 = ln(𝑆𝑡) − ln(𝑆𝑡−1). According to Heston and Nandi
(2000), we specify the daily log-price process {𝑥𝑡}𝑡∈Z as follows:

𝑥𝑡+1 = 𝑥𝑡 + 𝑟𝑡+1 + 𝜆ℎℎ𝑡+1 +
√

ℎ𝑡+1𝑍𝑡+1, 𝑍𝑡+1 ∼ 𝒩 (0, 1), (1)

where 𝑟𝑡+1 and ℎ𝑡+1 are the time-varying short-term interest rate and the
conditional variance, respectively, 𝜆ℎ is the premium parameter for the
volatility risk and 𝒩 (0, 1) denotes the standard normal distribution.

To model the dynamic behavior of the short-term interest rate,
we follow Chan et al. (1992) and Brenner et al. (1996) and use the
following discrete time process

𝛥𝑟𝑡+1 = 𝑟𝑡+1 − 𝑟𝑡 = 𝑟̄ + 𝛽𝑟𝑟𝑡 + 𝜆𝑣𝑣𝑡 +
√

𝑣𝑡𝜖𝑡, 𝜖𝑡 ∼ 𝒩 (0, 1). (2)

The drift of the process {𝑟𝑡+1}𝑡∈Z is captured by 𝑟̄ + 𝛽𝑟𝑟𝑡, while 𝑣𝑡
represents the conditional variance of 𝑟𝑡, and the innovations 𝜖𝑡 and
𝑍𝑡 are independent. For the conditional variance process 𝑣𝑡 we adopt a
nonlinear GARCH dynamics as in Heston and Nandi (2000), so that

𝑣𝑡+1 = 𝜔𝑣 + 𝛽𝑣𝑣𝑡 + 𝛼𝑣
(

𝜖𝑡 − 𝜓𝑣
√

𝑣𝑡
)2
. (3)

It is well-known that the parameter 𝜓𝑣 captures the leverage effect,
i.e., the asymmetric response of the conditional variance.

Finally, we model the conditional variance of the return process by
an augmented version of the previous nonlinear GARCH, namely

ℎ = 𝜔 + 𝛽 ℎ + 𝛼
(

𝑍 − 𝛾
√

ℎ
)2

+ 𝜅
(

𝜖 − 𝜓
√

𝑣
)2
. (4)
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𝑡+1 ℎ ℎ 𝑡 ℎ 𝑡 ℎ 𝑡 ℎ 𝑡 𝑣 𝑡
Table 2
Maximum likelihood estimation results. The estimation period spans from January 01,
1975 to December 31, 2022 (12 522 daily observations). The standard errors reported
in parenthesis are computed by inverting the negative Hessian matrix evaluated at the
optimum parameter values.

B-GARCH-DIR GARCH-HN GARCH-C

Interest rate
𝑟̄ −0.000 (−) (−)

(0.004)

𝛽𝑟 0.000 (−) (−)
(0.001)

𝜆𝑣 0.000 (−) (−)
(0.028)

𝜔𝑣 0.001** (−) (−)
(0.000)

𝛼𝑣 0.001** (−) (−)
(0.000)

𝛽𝑣 0.909** (−) (−)
(0.335)

𝜓𝑣 -0.234** (−) (−)
(0.019)

S&P500 log-return
𝜆ℎ 0.015* −0.018 −0.016

(0.009) (0.037) (0.036)

𝜔ℎ -0.002** -0.013** (−)
(0.001) (0.000)

𝛼ℎ 0.044** 0.044** 0.045**
(0.001) (0.000) (0.000)

𝛽ℎ 0.895** 0.903** 0.661**
(0.015) (0.006) (0.004)

𝛾ℎ 1.257** 1.215** 2.045**
(0.171) (0.141) (0.246)

𝜅ℎ 0.004** (−) (−)
(0.001)

𝜔𝑞 (−) (−) 0.102**
(0.001)

𝛼𝑞 (−) (−) 0.019**
(0.001)

𝛽𝑞 (−) (−) 0.989**
(0.013)

𝛾𝑞 (−) (−) 0.653**
(0.198)

Volatility persistence
Interest rate 0.909 (−) (−)
S&P500 log-return 0.965 0.968 0.989

In-Sample log-likelihood
Interest rate 89 728.48 (−) (−)
S&P500 log-return −16388.52 −16508.97 −16427.12

Out-of-sample log-likelihood
S&P500 log-return −772.57 −782.12 −776.89

** Denote statistical significance at the 0.01 levels, respectively.
* Denote statistical significance at the 0.05 levels, respectively.

Note that, in the dynamics of ℎ𝑡+1, we have explicitly included the
leverage term of 𝑣𝑡 through the additional parameter 𝜅ℎ. By substituting
(4) in (1), and by the orthogonality of {𝑍𝑡}𝑡∈Z and {𝜖𝑡}𝑡∈Z, we can easily
compute

Cov𝑡[𝑦𝑡+1, 𝑟𝑡+1] = 𝑣𝑡(1 − 2𝜆ℎ𝜅ℎ𝜓𝑣),

where Cov𝑡[ ⋅ , ⋅ ] denotes the conditional covariance given the informa-
tion available at time 𝑡.

4. Maximum likelihood (ML) estimation

The model described in Section 3 can be estimated by standard ML,
see Bollerslev and Wooldridge (1992). In fact, upon Eq. (2), the log-
likelihood function of the interest rate at time 𝑡 + 1 conditional on the
information at time 𝑡 is given by

𝓁𝑟,𝑡+1(𝜽𝑟) = −1 ln(2𝜋𝑣𝑡) −

(

𝛥𝑟𝑡+1 − 𝑟̄ − 𝛽𝑟𝑟𝑡 − 𝜆𝑣𝑣𝑡
)2

,

2 2𝑣𝑡
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Fig. 4. Empirical volatilities and correlation computed using a rolling window of 50 days. Empirical volatility of the S&P500 log-return (top panel) and the first-differenced 3-month
Treasury Bill (middle panel) time series, and their correlation. The time series span from January 01, 1975 to December 31, 2022 (12522 daily observations).
where 𝜽𝑟 = (𝑟̄, 𝛽𝑟, 𝜆𝑣, 𝜔𝑣, 𝛼𝑣, 𝛽𝑣, 𝜓𝑣)⊤. Similarly, Eq. (1) yields the log-
likelihood function of the return process at time 𝑡 conditional on the
information at time 𝑡 − 1

𝓁𝑦,𝑡(𝜽𝑥) = −1
2
ln(2𝜋ℎ𝑡) −

(

𝑦𝑡 − 𝑟𝑡 − 𝜆ℎℎ𝑡
)2

2ℎ𝑡
,

where 𝜽𝑥 = (𝜆ℎ, 𝜔ℎ, 𝛼ℎ, 𝛽ℎ, 𝜅ℎ)⊤. Then, the log-likelihood function of the
bivariate model reads

𝓁𝑟,𝑦(𝜽) =
𝑇
∑

𝑡=1
(𝓁𝑟,𝑡(𝜽𝑟) + 𝓁𝑦,𝑡(𝜽𝑥)), (5)

where 𝜽 = (𝜽⊤𝑟 ,𝜽
⊤
𝑦 )
⊤. As the noise processes {𝑍𝑡}𝑡∈Z and {𝜖𝑡}𝑡∈Z are

uncorrelated, we can maximize (5) in two steps, that is, first we
maximize the sum of 𝓁𝑟,𝑡(𝜽𝑟) with respect to 𝜽𝑟 and then the sum 𝓁𝑦,𝑡(𝜽𝑥)
with respect to 𝜽𝑦.

4.1. Estimation results

We have applied the model developed in Section 3 to the S&P500
daily time series from January 01, 1975 to December 31, 2022. The
short-term interest rate is proxied with the 3-month Treasury Bill
rate. The data for the S&P500 are retrieved from Refinitiv Datastream,
whereas the data for the 3-month Treasury Bill rate are gathered from
the Federal Funds Effective Rate (FRED) dataset. The ML estimation
results are presented in Table 2, where we show both the in-sample
and the out-of-sample likelihoods. As mentioned earlier, to compute the
out-of-sample likelihoods, we re-estimate all the GARCH models using
the time series data in the period from January 01, 1975 to December
31, 2020, and compute the out-of-sample log-likelihood on the time
period from January 01, 2021 to December 31, 2022.

We start by considering the coefficients of the B-GARCH-DIR for the
interest rate. The parameters 𝑟̄ and 𝛽𝑟 are very close to zero and are not
statistically significant, implying that the degree of mean reversion is
very weak. In particular, the fact that 𝛽𝑟 is not statistically significant
would suggest that the considered interest rate time series has a unit
root. On the other hand, in the literature there is no clear and definitive
consensus on whether interest rate time series are stationary (see,
e.g., Engle and Granger (1987), Rose (1988), Perron (1989), Rapach
and Weber (2004)). Therefore, to shed further light on this, we perform
some unit root tests. In particular, the augmented Dickey–Fuller test
provides a statistic equal to −1.907, failing to reject the unit root
hypothesis. However, the plot in Fig. 3, the parameters 𝜔𝑣, 𝛼𝑣, 𝛽𝑣 and
𝜓𝑣, and the interest rate volatility persistence in Table 2 show a strong
evidence of conditional heteroscedasticity. This is confirmed by the
Engle’s test, which we performed up to the order ten and gave a 𝑝-value
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< 1.0𝑒−10 (see Engle (1982)). Therefore, we use a more appropriate unit
root test, namely, the one presented by Seo (1999), who has shown
that, if a time series is conditional heteroscedastic, the asymptotic
distribution of the 𝑡-statistic for the autoregressive unit root is a mixture
of the Dickey–Fuller 𝑡-distribution and the standard normal. Then, the
test proposed by Seo (1999) is more robust then the Dickey–Fuller test
for establishing if the considered interest rate time series is stationary.
The resulting statistic is −2.535, which, according to the critical values
provided by Seo (1999), allows us to reject the unit root hypothesis.

Next, we focus on the estimated coefficients of the B-GARCH-DIR
process for the return, described by Eqs. (1) and (4). All the coefficients
are statistically significant. The volatility persistence is very high,
showing a value of 0.966, which is a typical feature of the S&P500 log-
returns. Finally, it is also worth noting that the parameter 𝜅ℎ, which
is not present in standard GARCH models, is statistically significant,
which highlights that the leverage term of 𝑣𝑡 (the conditional vari-
ance of the interest rate error term) is an important predictor of the
log-return variance.

As benchmarks, we have also estimated the GARCH-HN and the
GARCH-C models. Each of these approaches performs worse, both in
terms of in-sample and out-of-sample log-likelihood, confirming again
that for the S&P500 Index there is an advantage to using a model that
also incorporates information about the 3-month Treasury Bill interest
rate time series.

Figs. 5 and 6 display the filtered one-step ahead conditional volatil-
ities of the S&P500 log-returns and the 3-month Treasury Bill interest
rate, respectively. The volatility paths look rather different between the
three models. In fact, we observe that both the GARCH-HN and the
GARCH-C models do not provide a good reproduction for most of the
volatility dynamics in the S&P500 log-returns time series, especially in
the period from the early 1970’s to the 1990’s, as they fail to capture
several high-volatility regimes. Finally, Fig. 6 shows the significant
activity of the time-varying volatility of the 3-month Treasury Bill
interest rate, which is captured by our B-GARCH-DIR.

4.1.1. Other non-linear GARCH models
As suggested by an anonymous Referee, we have compared the

in-sample performances of our model with other popular non-linear
GARCH models, reporting the log-likelihood in Table 3. Specifically
we consider the GJR-GARCH of Glosten et al. (1993), the AGARCH
originally considered by Engle (1990) and the APARCH as proposed
by Ding et al. (1993). Furthermore, we also report the out-of-sample
log-likelihood computed using a procedure analogous to that detailed
in Section 4.1. Again, our B-GARCH-DIR still provides slightly higher
likelihood values, for both in-sample and out-of-sample data.
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Fig. 5. Filtered conditional volatility of the S&P500 log-return from January 01, 1975 to December 31, 2022 (12522 daily observations), B-GARCH-DIR (blue line), GARCH-C (green
line) and GARCH-HN (cyan line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Filtered conditional volatility of the 3-month Treasury Bill interest rate from January 01, 1975 to December 31, 2022 (12522 daily observations).
Table 3
Maximum likelihood estimation results. The estimation period spans from January 01,
1975 to December 31, 2022 (12 522 daily observations).

GJR-GARCH AGARCH APARCH

In-sample log-likelihood
S&P500 log-return −16398.72 −16400.91 −16439.37

Out-of-sample log-likelihood
S&P500 log-return −785.38 −795.14 −789.95

5. Option valuation

In this Section, we apply the model presented in Section 3 to option
pricing. To this aim, we first derive the moment generating function
of the bivariate process {𝑥𝑡, 𝑟𝑡}, and then we use it to develop suitable
pricing formulas. In particular, a closed-form solution for European Call
and Put options is obtained based on the inversion theorem of Gil-
Pelaez (1951). Moreover, we show that the problem of pricing options
under the bivariate model (1)–(4) can be reduced to computing a
univariate expectation, which can be easily done by applying fast con-
volution techniques (see, e.g., Fang and Oosterlee (2009) and Jackson
et al. (2007)).

We conduct both an in-sample and an out-of-sample exercise in
which we consider Call and Put options on the S&P500 Index. Again,
both the GARCH-HN and GARCH-C models are used as benchmarks.
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5.1. The moment generating function

From the analytical standpoint, a great advantage of our model is
that the moment generating function has an exponentially-affine struc-
ture which is available in closed-form and can be computed through a
set of recursive coefficients, as stated in the next proposition.

Proposition 1. Let us define

𝑌𝑡,𝑇 =

{

𝑟𝑡+1 +⋯ + 𝑟𝑇 𝑡 < 𝑇 ,
0 𝑡 = 𝑇 .

(6)

Moreover, let us consider the moment generating function of the process
{𝑥𝑡, 𝑌𝑡,𝑇 }

𝑓 (𝑡, 𝑇 , 𝜙, 𝜉) = E𝑡[exp{𝜙𝑥𝑇 + 𝜉𝑌𝑡,𝑇 }].

Then, we have

𝑓 (𝑡, 𝑇 , 𝜙, 𝜉) = exp
{

𝜙𝑥𝑡 + 𝐴𝑡 + 𝐵𝑡ℎ𝑡+1 + 𝐶𝑡𝑟𝑡+1 +𝐷𝑡𝑣𝑡+1
}

, (7)

where the coefficients 𝐴𝑡, 𝐵𝑡, 𝐶𝑡 and 𝐷𝑡 satisfy the following backward
recursions:

𝐴𝑡 =𝐴𝑡+1 + 𝐵𝑡+1𝜔ℎ + 𝐶𝑡+1 𝑟̄ +𝐷𝑡+1𝜔𝑣 −
1
2
ln(1 − 2𝐵𝑡+1𝛼ℎ)

−1 ln[1 − 2(𝐵 𝜅 +𝐷 𝛼 )], (8)

2 𝑡+1 ℎ 𝑡+1 𝑣
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𝐵𝑡 =𝐵𝑡+1𝛽ℎ + 𝜙(𝜆ℎ + 𝛾ℎ) +
𝜙(𝜙 − 2𝛾ℎ)∕2 + 𝐵𝑡+1𝛼ℎ𝛾2ℎ

1 − 2𝐵𝑡+1𝛼ℎ
, (9)

𝐶𝑡 =𝐶𝑡+1(𝛽𝑟 + 1) + 𝜙 + 𝜉, (10)
𝐷𝑡 =𝐶𝑡+1𝜆𝑣 +𝐷𝑡+1𝛽𝑣 + 𝐶𝑡+1𝜓𝑣

+
𝐶𝑡+1(𝐶𝑡+1 − 2𝜓𝑣)∕2 + (𝐵𝑡+1𝜅ℎ +𝐷𝑡+1𝛼𝑣)𝜓2

𝑣
1 − 2(𝐵𝑡+1𝜅ℎ +𝐷𝑡+1𝛼𝑣)

, (11)

ith final conditions 𝐴𝑇 = 0, 𝐵𝑇 = 0, 𝐶𝑇 = 0 and 𝐷𝑇 = 0.

roof. See Appendix. □

.2. Option pricing

To compute option prices we need to risk-neutralize the model (1)–
4). To risk-neutralize the equations in (1) and (4), we follow the same
pproach as in Heston and Nandi (2000), according to which the risk
remium 𝜆ℎ and the 𝛾ℎ parameter are simply replaced by 𝜆∗ℎ = −1∕2
nd 𝛾∗ℎ = 𝛾ℎ + 𝜆ℎ + 1∕2, respectively. Among the many probability
easures that can describe the risk-neutral dynamics of the interest

ate, for the sake of simplicity, we choose the same under which we
pecified the model, that is, we assume that processes (2) and (3) are
lready risk-neutralized.

To this aim, we assume that the market premium for the interest
ate is zero, i.e., that Eqs. (2) is already written under the risk-neutral
easure. Note that the GARCH process (2)–(3) is calibrated based on

he time series of the 3-Month Treasury Bills, which can reasonably be
onsidered risk-free since they are a US government security with a
ery short maturity.

From now on, 𝑓 (𝑡, 𝑇 , 𝜙, 𝜉) will denote the moment generating func-
ion of risk-neutralized process {𝑥𝑡, 𝑟𝑡}.

roposition 2. The price at time 𝑡 of a European Call option with maturity
and strike price 𝐾 is given by

(𝑆𝑡, 𝑡) = 𝑓 (𝑡, 𝑇 , 0,−1)∫

+∞

−∞
max(𝑒𝑥𝑇 −𝐾, 0)𝑝⋆⋆𝑡 (𝑥𝑇 )d𝑥𝑇 , (12)

here

⋆⋆
𝑡 (𝑥𝑇 ) = ∫

+∞

−∞

𝑒−𝑌𝑡,𝑇 𝑝(𝑥𝑇 , 𝑌𝑡,𝑇 |𝑥𝑡, 𝑟𝑡)
𝑓 (𝑡, 𝑇 , 0,−1)

d𝑌𝑡,𝑇 , (13)

and 𝑝(𝑥𝑇 , 𝑌𝑡,𝑇 |𝑥𝑡, 𝑟𝑡) is the probability density function of the risk-neutralized
bivariate process {𝑥𝑇 , 𝑌𝑡,𝑇 } given 𝑥𝑡 and 𝑟𝑡. Similarly, for a Put option we
have

𝑃 (𝑆𝑡, 𝑡) = 𝑓 (𝑡, 𝑇 , 0,−1)∫

+∞

−∞
max(𝐾 − 𝑒𝑥𝑇 , 0)𝑝⋆⋆𝑡 (𝑥𝑇 )d𝑥𝑇 . (14)

Proof. See Appendix. □

Formulas (12) and (14) require knowledge of the univariate proba-
bility density function 𝑝⋆⋆𝑡 (𝑥𝑇 ), which, unfortunately, is not available in
closed-form. Nevertheless, we can easily obtain the moment generating
function associated to it, as shown in the following proposition.

Proposition 3. The moment generating function associated to the proba-
bility density function in (13) is as follows:

𝑓⋆⋆(𝑡, 𝑇 , 𝜙) = ∫

+∞

−∞
𝑒𝜙𝑥𝑇 𝑝⋆⋆𝑡 (𝑥𝑇 )d𝑥𝑇 =

𝑓 (𝑡, 𝑇 , 𝜙,−1)
𝑓 (𝑡, 𝑇 , 0,−1)

. (15)

Proof. See Appendix. □

Based on relations (12), (14) and (15), we can efficiently compute
the price of Call and Put options by using past convolution techniques.
Moreover, it is also possible to obtain an integral representation of Call
and Put option values by applying the inversion theorem of Gil-Pelaez
1190

(1951), as in the following proposition.
Proposition 4. The prices of European Call and Put options are given by

𝐶(𝑆𝑡, 𝑡) =𝑓 (𝑡, 𝑇 , 1,−1)
[

1
2

− 1
2𝜋 ∫

+∞

0

𝐾 𝑖𝜙𝑓 (𝑡, 𝑇 ,−𝑖𝜙 + 1,−1) −𝐾−𝑖𝜙𝑓 (𝑡, 𝑇 , 𝑖𝜙 + 1,−1)
𝑖𝜙𝑓 (𝑡, 𝑇 , 1,−1)

d𝜙
]

−𝐾𝑓 (𝑡, 𝑇 , 0,−1)
[

1
2

− 1
2𝜋 ∫

+∞

0

𝐾 𝑖𝜙𝑓 (𝑡, 𝑇 ,−𝑖𝜙,−1) −𝐾−𝑖𝜙𝑓 (𝑡, 𝑇 , 𝑖𝜙,−1)
𝑖𝜙𝑓 (𝑡, 𝑇 , 0,−1)

d𝜙
]

, (16)

𝑃 (𝑆𝑡, 𝑡) =𝐾𝑓 (𝑡, 𝑇 , 0,−1)
[

1
2

+ 1
2𝜋 ∫

+∞

0

𝐾 𝑖𝜙𝑓 (𝑡, 𝑇 ,−𝑖𝜙,−1) −𝐾−𝑖𝜙𝑓 (𝑡, 𝑇 , 𝑖𝜙,−1)
𝑖𝜙𝑓 (𝑡, 𝑇 , 0,−1)

d𝜙
]

− 𝑓 (𝑡, 𝑇 , 1,−1)
[

1
2

+ 1
2𝜋 ∫

+∞

0

𝐾 𝑖𝜙𝑓 (𝑡, 𝑇 ,−𝑖𝜙 + 1,−1) −𝐾−𝑖𝜙𝑓 (𝑡, 𝑇 , 𝑖𝜙 + 1,−1)
𝑖𝜙𝑓 (𝑡, 𝑇 , 1,−1)

d𝜙
]

,

(17)

here 𝑖 is the imaginary unit.

roof. See Appendix. □

.2.1. Price sensitivities
Based on Eqs. (16) and (17) in Proposition 4 we can easily calculate

he first- and second-order derivatives of the option price with respect
o the underlying asset price. According to (7) we have
𝜕𝑓 (𝑡, 𝑇 , 𝜙, 𝜉)

𝜕𝑆𝑡
=
𝜙
𝑆𝑡
𝑓 (𝑡, 𝑇 , 𝜙, 𝜉).

hus, by straightforward differentiation in (16), we obtain

(𝑆𝑡, 𝑡) ∶=
𝜕𝐶(𝑆𝑡, 𝑡)
𝜕𝑆𝑡

= 1
𝑆𝑡

[

1
2
𝑓 (𝑡, 𝑇 , 1,−1)

− 1
2𝜋

∫

+∞

0

(−𝑖𝜙 + 1)𝐾 𝑖𝜙𝑓 (𝑡, 𝑇 ,−𝑖𝜙 + 1,−1) − (𝑖𝜙 + 1)𝐾−𝑖𝜙𝑓 (𝑡, 𝑇 , 𝑖𝜙 + 1,−1)
𝑖𝜙

d𝜙

+𝐾 1
2𝜋

∫

+∞

0

−𝑖𝜙𝐾 𝑖𝜙𝑓 (𝑡, 𝑇 ,−𝑖𝜙,−1) − 𝑖𝜙𝐾−𝑖𝜙𝑓 (𝑡, 𝑇 , 𝑖𝜙,−1)
𝑖𝜙

d𝜙
]

, (18)

and

𝛤 (𝑆𝑡, 𝑡) ∶=
𝜕2𝐶(𝑆𝑡, 𝑡)
𝜕𝑆2

𝑡

= 1
𝑆2
𝑡

[

1
2𝜋

∫

+∞

0

(−𝑖𝜙 + 1)𝐾 𝑖𝜙𝑓 (𝑡, 𝑇 ,−𝑖𝜙 + 1,−1) − (𝑖𝜙 + 1)𝐾−𝑖𝜙𝑓 (𝑡, 𝑇 , 𝑖𝜙 + 1,−1)
𝑖𝜙

d𝜙

−𝐾 1
2𝜋

∫

+∞

0

−𝑖𝜙𝐾 𝑖𝜙𝑓 (𝑡, 𝑇 ,−𝑖𝜙,−1) − 𝑖𝜙𝐾−𝑖𝜙𝑓 (𝑡, 𝑇 , 𝑖𝜙,−1)
𝑖𝜙

d𝜙

− 1
2𝜋

∫

+∞

0

(−𝑖𝜙 + 1)2𝐾 𝑖𝜙𝑓 (𝑡, 𝑇 ,−𝑖𝜙 + 1,−1) − (𝑖𝜙 + 1)2𝐾−𝑖𝜙𝑓 (𝑡, 𝑇 , 𝑖𝜙 + 1,−1)
𝑖𝜙

d𝜙

+𝐾 1
2𝜋

∫

+∞

0

(−𝑖𝜙)2𝐾 𝑖𝜙𝑓 (𝑡, 𝑇 ,−𝑖𝜙,−1) − (𝑖𝜙)2𝐾−𝑖𝜙𝑓 (𝑡, 𝑇 , 𝑖𝜙,−1)
𝑖𝜙

d𝜙
]

. (19)

Analogous relations can be retrieved for the sensitivities of the put
option price by differentiating (17).

In Figs. 7 and 8 we plot 𝛥(𝑆𝑡, 𝑡) and 𝛤 (𝑆𝑡, 𝑡) computed using Eqs. (18)

and (19), respectively, as a function of the strike price 𝐾 and the
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Fig. 7. Delta surface.

Fig. 8. Gamma surface.

option maturity 𝑇 . The model parameters are those reported in Table 2.
Moreover, we set 𝑆𝑡 = 3000.

5.3. Joint model estimation

Several studies document the importance of calibrating asset pric-
ing models based on both stock and option values, see Chernov and
Ghysels (2000), Pan (2002), Santa-Clara and Yan (2010). As argued
by Ornthanalai (2014), fitting and evaluating a dynamic model with
both of the two sources of uncertainty can be challenging. However, we
note that the joint estimation method proposed by Ornthanalai (2014)
can be easily adapted for our bivariate process, and provides a feasible
and efficient procedure for gaining more insights about option pricing
performances.

To apply this method, we need to define a suitably weighted log-
likelihood function which takes into account both the daily time series
of log-returns and the panel of option contracts. While for the daily
returns the log-likelihood 𝓁𝑦,𝑟(𝜽) is already available in (5), further as-
sumptions are required for the option pricing error structure. Formally,
if we have 𝑁 option prices, we define the error on the 𝑖th option price,
𝑢𝑖, 𝑖 = 1,… , 𝑁 , as follows:

𝑢𝑖 =
𝐼𝑉𝑀𝐾𝑇

𝑖 − 𝐼𝑉𝑀𝑂𝐷
𝑖

𝐼𝑉𝑀𝐾𝑇
𝑖

, (20)

where 𝐼𝑉𝑀𝐾𝑇
𝑖 and 𝐼𝑉𝑀𝑂𝐷

𝑖 denote the market and the model implied
volatilities of the 𝑖th option, respectively, computed according to the
popular Black–Scholes model, see Black and Scholes (1973). Then,
following Christoffersen et al. (2012), Ornthanalai (2014) and Ballestra
1191
et al. (2023), the likelihood associated to the error on the implied
volatility is computed by using a Gaussian specification:

𝓁𝑢(𝜽) = −𝑁
2
(2𝜋𝜎2𝑢 ) −

1
2

𝑁
∑

𝑖=1

𝑢2𝑖
𝜎2𝑢
.

It is worth noting that the number 𝑁 of data points available in
the option panel could be different from the number 𝑇 of daily re-
turns. Therefore, according to Christoffersen et al. (2012), Ornthanalai
(2014) and Ballestra et al. (2023), to assign an equal weight to returns
and option prices, we consider the following weighted joint (total)
log-likelihood:

𝓁𝑗𝑜𝑖𝑛𝑡(𝜽) =
𝑇 +𝑁

2
𝓁𝑟,𝑦(𝜽)
𝑇

+ 𝑇 +𝑁
2

𝓁𝑢(𝜽)
𝑁

. (21)

5.4. Option valuation results

We consider European Call and Put options on the S&P500 index,
with data retrieved from Thomson Reuters Eikon Datastream. We select
the S&P500 options expiring from 2016 to 2022, and we take the time
series of their daily prices from January 14, 2016 to January 14,
2023. We conduct both an in-sample analysis, based on the options
expiring from 2016 2020, and an out-of-sample exercise, where we use
the options with maturity in years 2021 and 2022. The joint estimation
results are reported in Table 4.

As a common approach, we apply several filters to obtain the final
panel of Call and Put option contracts. Specifically, following Bormetti
et al. (2020) and Ballestra et al. (2023), we keep only the options with
time-to-maturity between 14 and 365 days. Moreover, as in Christof-
fersen et al. (2012), we only consider out-of-the-money Call and Put
options (we define the moneyness as 𝑆𝑡∕𝐾), and, following Bakshi
et al. (1997), we remove price quotes lower than 3∕8$. Finally, as
in Christoffersen et al. (2012), for the options expiring in year 2020 we
exclude illiquid quotes by selecting only the six most liquid strikes at
each maturity (we do not apply this last filter for the options expiring
in year 2021, in order to have a significant amount of option prices for
the out-of-sample analysis).

To asses the performances of the four competing models, we fol-
low Majewski et al. (2015) and Alitab et al. (2019), and we employ
the (percentage) implied volatility root mean square error:

𝐼𝑉 𝑅𝑀𝑆𝐸(%) =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝐼𝑉𝑀𝐾𝑇

𝑖 − 𝐼𝑉𝑀𝑂𝐷
𝑖 )2 × 100. (22)

Finally, for the B-GARCH-DIR and both the GARCH-HN and GARCH-C,
we evaluate the model implied option prices based on formulas (12)
and (14), and by numerical integration.

We first discuss the in-sample results, which are reported in Table 5.
The overall pricing performance (Panel A) indicates that our B-GARCH-
DIR provides a much better fit than the GARCH-HN and better than
the GARCH-C. In fact, for the B-GARCH-DIR the in-sample IVRMSE is
equal to 11.35%, whereas for the GARCH-HN and the GARCH-C it is
equal to 16.99% and to 12.52, respectively. Moreover, the B-GARCH-
DIR emerges as superior to both the GARCH-HN and the GARCH-C even
if we split the options by moneyness (Panel B) or maturity (Panel C).
In particular, for options with large time-to-maturity (between 150 and
365 days), the B-GARCH-DIR yields a pricing error that is almost one-
half the pricing error of the GARCH-HN. Therefore, the use of a GARCH
asset pricing model with stochastic interest rates provides a high degree
of flexibility, which is crucial to obtaining a better pricing performance.

The out-of-sample results, which are reported in Table 6, confirm
the in-sample analysis. In fact, the B-GARCH-DIR is superior to both
the GARCH-HN and GARCH-C models for all the considered levels of
moneyness and maturity.

We conclude that, also when pricing options, the B-GARCH-DIR is
more suitable than the other considered benchmarks, and that taking
into account a stochastic interest rate is essential for an accurate
description of the volatility surface implied by S&P500 options.



European Journal of Operational Research 314 (2024) 1185–1194L.V. Ballestra et al.

T

T
m
p

t
d
b

B

E

B

E

Table 4
Joint maximum likelihood estimation results. Normalized values are divided by the
respective joint log-likelihood from B-GARCH-DIR. The estimation period spans from
January 01, 1975 to December 31, 2022 (12 522 daily observations), and the time
series of the options spans from January 14, 2016 to January 14, 2023. The standard
errors reported in parenthesis are computed by inverting the negative Hessian matrix
evaluated at the optimum parameter values.

B-GARCH-DIR GARCH-HN GARCH-C

Interest rate
𝑟̄ −0.000 (−) (−)

(0.004)

𝛽𝑟 0.000 (−) (−)
(0.001)

𝜆𝑣 0.000 (−) (−)
(0.028)

𝜔𝑣 0.001** (−) (−)
(0.000)

𝛼𝑣 0.001** (−) (−)
(0.000)

𝛽𝑣 0.914** (−) (−)
(0.338)

𝜓𝑣 -0.213** (−) (−)
(0.016)

S&P500 log-return
𝜆ℎ −0.031* −0.003 −0.000

(0.009) (0.037) (0.036)

𝜔ℎ -0.002** -0.001** (−)
(0.001) (0.000)

𝛼ℎ 0.008** 0.006** 0.008**
(0.001) (0.001) (0.001)

𝛽ℎ 0.908** 0.781** 0.750**
(0.015) (0.006) (0.004)

𝛾ℎ 2.707** 1.090** 2.803**
(0.241) (0.178) (0.324)

𝜅ℎ 0.049** (−) (−)
(0.001)

𝜔𝑞 (−) (−) 0.001**
(0.001)

𝛼𝑞 (−) (−) 0.011**
(0.001)

𝛽𝑞 (−) (−) 0.998**
(0.005)

𝛾𝑞 (−) (−) 0.778**
(0.308)

Joint log-likelihood
Normalized 1.00 1.235 1.067

** Denote statistical significance at the 0.01 levels, respectively.
* Denote statistical significance at the 0.05 levels, respectively.

Table 5
In-sample implied volatility root mean squared error in percentage points (IVRMSE(%)).

he options’ time series spans from January 14, 2016 to January 14, 2020.
Panel A: IVRMSE(%) overall

B-GARCH-DIR GARCH GARCH-C

11.35 16.99 12.52

Panel B: IVRMSE(%) sorted by moneyness

Moneyness B-GARCH-DIR GARCH GARCH-C

0.8 ≤ 𝑆𝑡∕𝐾 ≤ 0.9 5.63 7.83 5.92
0.9 < 𝑆𝑡∕𝐾 ≤ 1.02 7.07 11.26 7.54
1.02 < 𝑆𝑡∕𝐾 ≤ 1.2 9.66 15.28 10.88

Panel C: IVRMSE(%) sorted by day-to-maturity (DTM)

Maturity B-GARCH-DIR GARCH GARCH-C

14 ≤DTM≤ 50 21.09 25.67 21.71
50 <DTM≤ 150 12.87 18.73 13.03
150 <DTM≤ 365 6.13 11.34 7.57

6. Conclusions

We have introduced a novel bivariate GARCH process to model the
interaction between the volatility of stock returns and the short-term
interest rate. The proposed framework uses a linear specification for
1192
Table 6
Out-of-sample implied volatility root mean squared error in percentage points
(IVRMSE(%)). The options’ time series spans from January 14, 2020 to January 14,
2023.
Panel A: IVRMSE(%) overall

B-GARCH-DIR GARCH-HN GARCH-C

20.87 26.17 22.06

Panel B: IVRMSE(%) sorted by moneyness

Moneyness B-GARCH-DIR GARCH-HN GARCH-C

0.8 ≤ 𝑆𝑡∕𝐾 ≤ 0.9 5.01 8.45 5.81
0.9 < 𝑆𝑡∕𝐾 ≤ 1.02 6.63 10.55 7.02
1.02 < 𝑆𝑡∕𝐾 ≤ 1.2 13.99 20.82 15.31

Panel C: IVRMSE(%) sorted by day-to-maturity (DTM)

Maturity B-GARCH-DIR GARCH-HN GARCH-C

14 ≤DTM≤ 50 21.09 24.94 21.81
50 <DTM≤ 150 23.64 30.03 24.84
150 <DTM≤ 365 16.24 20.74 18.01

the drift of the interest rate and a nonlinear asymmetric GARCH for its
conditional variance. Accordingly, the conditional variance of the asset
returns is specified by an augmented version of the nonlinear GARCH,
which combines the innovations that drive both the returns and the
interest rate.

An empirical analysis is carried out on the S&P500 and the 3-month
reasury Bill daily time series. The results obtained reveal that our
odel provides both a better in-sample fitting and a higher predictive
erformance than the GARCH-HN and GARCH-C.

Furthermore, we derive analytical backward recursions to compute
he moment generating function, which allow for fast and accurate
erivative pricing. We present an option pricing application in which,
y considering a rich sample of Call and Put S&P500 option values,

we show that our novel approach yields significantly more accurate in-
sample and out-of-sample implied volatility surfaces that the GARCH
model of Heston and Nandi (2000). Therefore, the methodology pro-
posed in the present paper turns out to be an efficient, tractable and
easy to implement approach for managing asset price risk and valuing
options.

Appendix

Proof of Proposition 1. We guess that the moment generating function
takes the log-linear form in (7). Therefore, by the law of iterated
expectation, we have

𝑓 (𝑡, 𝑇 , 𝜙, 𝜉) = E𝑡
[

exp
{

𝜙𝑥𝑡+1+𝐴𝑡+1+𝐵𝑡+1ℎ𝑡+2+𝐶𝑡+1𝑟𝑡+2+𝐷𝑡+1𝑣𝑡+2+𝜉𝑟𝑡+1
}]

.

y considering Eqs. (1), (2), (3), and(4), we obtain

𝑡[exp{𝜙𝑥𝑡+1 + 𝐴𝑡+1 + 𝐵𝑡+1ℎ𝑡+2 + 𝐶𝑡+1𝑟𝑡+2 +𝐷𝑡+1𝑣𝑡+2 + 𝜉𝑟𝑡+1}]

= E𝑡

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

exp

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜙(𝑥𝑡 + 𝑟𝑡+1 + 𝜆ℎℎ𝑡+1 +
√

ℎ𝑡+1𝑍𝑡+1) + 𝐴𝑡+1

+𝐵𝑡+1

(

𝜔ℎ + 𝛽ℎℎ𝑡+1 + 𝛼ℎ
(

𝑍𝑡+1 − 𝛾ℎ
√

ℎ𝑡+1
)2

+ 𝜅ℎ
(

𝜖𝑡+1 − 𝜓𝑣
√

𝑣𝑡+1
)2

)

+𝐶𝑡+1

(

𝑟̄ + (𝛽𝑟 + 1)𝑟𝑡+1 + 𝜆𝑣𝑣𝑡+1 +
√

𝑣𝑡+1𝜖𝑡+1

)

+𝐷𝑡+1

(

𝜔𝑣 + 𝛽𝑣𝑣𝑡+1 + 𝛼𝑣
(

𝜖𝑡+1 − 𝜓𝑣
√

𝑣𝑡+1
)2

)

+ 𝜉𝑟𝑡+1

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

y simple algebra, we have

𝑡[exp{𝜙𝑥𝑡+1 + 𝐴𝑡+1 + 𝐵𝑡+1ℎ𝑡+2 + 𝐶𝑡+1𝑟𝑡+2 +𝐷𝑡+1𝑣𝑡+2 + 𝜉𝑟𝑡+1}] (23)
=E𝑡
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

exp

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝜙𝑥𝑡 + 𝐴𝑡+1 + 𝐵𝑡+1𝜔ℎ + 𝐶𝑡+1 𝑟̄ +𝐷𝑡+1𝜔𝑣

+𝐵𝑡+1𝛼ℎ

[

𝑍2
𝑡+1 + 𝛾

2
ℎℎ𝑡+1 −

(

2𝛾ℎ −
𝜙

𝐵𝑡+1𝛼ℎ

)

√

ℎ𝑡+1𝑍𝑡+1

]

+
(

𝐵𝑡+1𝛽ℎ + 𝜙𝜆ℎ
)

ℎ𝑡+1 +
(

𝐶𝑡+1(𝛽𝑟 + 1) + 𝜙 + 𝜉
)

𝑟𝑡+1 + (𝐶𝑡+1𝜆𝑣 +𝐷𝑡+1𝛽𝑣)𝑣𝑡+1

+
(

𝐵 𝜅 +𝐷 𝛼
)

[

𝜖2 + 𝜓2𝑣 −
(

2𝜓 − 𝐶𝑡+1
)

√

𝑣 𝜖
]

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

.

⎣ ⎩

𝑡+1 ℎ 𝑡+1 𝑣 𝑡+1 𝑣 𝑡+1 𝑣 𝐵𝑡+1𝜅ℎ+𝐷𝑡+1𝛼𝑣 𝑡+1 𝑡+1
⎭⎦
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N

E

S
c

E

w

n
w

P
v

𝐶

L

𝑝

a

𝑝

E

𝐶

0

P

∫

E𝑡[exp{𝜙𝑥𝑡+1 + 𝐴𝑡+1 + 𝐵𝑡+1ℎ𝑡+2 + 𝐶𝑡+1𝑟𝑡+2 +𝐷𝑡+1𝑣𝑡+2 + 𝜉𝑟𝑡+1}] (25)

= exp

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜙𝑥𝑡 + 𝐴𝑡+1 + 𝐵𝑡+1𝜔ℎ + 𝐶𝑡+1 𝑟̄ +𝐷𝑡+1𝜔𝑣 −
1
2 ln(1 − 2𝐵𝑡+1𝛼ℎ) −

1
2 ln[1 − 2(𝐵𝑡+1𝜅ℎ +𝐷𝑡+1𝛼𝑣)]

+
(

𝐵𝑡+1𝛽ℎ + 𝜙𝜆ℎ + 𝜙𝛾ℎ −
𝜙2

4𝐵𝑡+1𝛼ℎ
+

𝐵𝑡+1𝛼ℎ(𝛾ℎ−
𝜙

2𝐵𝑡+1𝛼ℎ
)2

1−2𝐵𝑡+1𝛼ℎ

)

ℎ𝑡+1

+
(

𝐶𝑡+1(𝛽𝑟 + 1) + 𝜙 + 𝜉
)

𝑟𝑡+1
(

𝐶𝑡+1𝜆𝑣 +𝐷𝑡+1𝛽𝑣 + 𝜓𝑣𝐶𝑡+1 −
𝐶2
𝑡+1

4(𝐵𝑡+1𝜅ℎ+𝐷𝑡+1𝛼𝑣)
+

(𝐵𝑡+1𝜅ℎ+𝐷𝑡+1𝛼𝑣)(𝜓𝑣−
𝐶𝑡+1

2(𝐵𝑡+1𝜅ℎ+𝐷𝑡+1𝛼𝑣)
)2

1−2(𝐵𝑡+1𝜅ℎ+𝐷𝑡+1𝛼𝑣)

)

𝑣𝑡+1

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

,

Box I.
w

𝑝

a

S
E
(

𝐶

w

𝑝

a

ow, by completing the square in (23), we achieve

𝑡[exp{𝜙𝑥𝑡+1 + 𝐴𝑡+1 + 𝐵𝑡+1ℎ𝑡+2 + 𝐶𝑡+1𝑟𝑡+2 +𝐷𝑡+1𝑣𝑡+2 + 𝜉𝑟𝑡+1}] (24)

= E𝑡

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

exp

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜙𝑥𝑡 + 𝐴𝑡+1 + 𝐵𝑡+1𝜔ℎ + 𝐶𝑡+1 𝑟̄ +𝐷𝑡+1𝜔𝑣

+𝐵𝑡+1𝛼ℎ

[

𝑍𝑡+1 −
(

𝛾ℎ −
𝜙

2𝐵𝑡+1𝛼ℎ

)

√

ℎ𝑡+1

]2

+
(

𝐵𝑡+1𝛽ℎ + 𝜙𝜆ℎ + 𝜙𝛾ℎ −
𝜙2

4𝐵𝑡+1𝛼ℎ

)

ℎ𝑡+1
+
(

𝐶𝑡+1(𝛽𝑟 + 1) + 𝜙 + 𝜉
)

𝑟𝑡+1
(

𝐵𝑡+1𝜅ℎ +𝐷𝑡+1𝛼𝑣
)

[

𝜖𝑡+1 −
(

𝜓𝑣 −
𝐶𝑡+1

2(𝐵𝑡+1𝜅ℎ+𝐷𝑡+1𝛼𝑣)

)

√

𝑣𝑡+1

]2

(

𝐶𝑡+1𝜆𝑣 +𝐷𝑡+1𝛽𝑣 + 𝜓𝑣𝐶𝑡+1 −
𝐶2
𝑡+1

4(𝐵𝑡+1𝜅ℎ+𝐷𝑡+1𝛼𝑣)

)

𝑣𝑡+1

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

ince 𝑍𝑡 and 𝜖𝑡 are independent and normally distributed ∀𝑡 ∈ Z, we
an simplify (24) by using the well-known result

[exp{𝑎(𝑤 + 𝑏)2}] = exp
{

−1
2
ln(1 − 2𝑎) + 𝑎𝑏2

1 − 2𝑎

}

,

here 𝑤 ∼ 𝒩 (0, 1).
Therefore Eq. (25) (see Box I), and, finally, by equating homoge-

eous terms of (7) and (25), the relations in (8)–(11) are obtained,
hich concludes the proof. □

roof of Proposition 2. The option price is the expected discounted
alue of the option payoff:

(𝑆𝑡, 𝑡) = ∫

+∞

−∞ ∫

+∞

−∞
𝑒−𝑌𝑡,𝑇 max(𝑒𝑥𝑇 −𝐾, 0)𝑝(𝑥𝑇 , 𝑌𝑡,𝑇 |𝑥𝑡, 𝑟𝑡)d𝑌𝑡,𝑇 d𝑥𝑇 . (26)

et us define the bivariate density function

⋆⋆
𝑡 (𝑥𝑇 , 𝑌𝑡,𝑇 ) =

𝑒−𝑌𝑡,𝑇 𝑝(𝑥𝑇 , 𝑌𝑡,𝑇 |𝑥𝑡, 𝑟𝑡)
E𝑡[exp {−𝑌𝑡,𝑇 }]

, (27)

nd its marginal

⋆⋆
𝑡 (𝑥𝑇 ) = ∫

+∞

−∞
𝑝⋆⋆𝑡 (𝑥𝑇 , 𝑌𝑡,𝑇 )d𝑌𝑡,𝑇 . (28)

q. (26) can be rewritten as follows:

(𝑆𝑡, 𝑡) = E𝑡[exp {−𝑌𝑡,𝑇 }]

∫

+∞

−∞ ∫

+∞

−∞
max(𝑒𝑥𝑇 −𝐾, 0)

𝑒−𝑌𝑡,𝑇 𝑝(𝑥𝑇 , 𝑌𝑡,𝑇 |𝑥𝑡, 𝑟𝑡)
E𝑡[exp {−𝑌𝑡,𝑇 }]

d𝑌𝑡,𝑇 d𝑥𝑇 .

By using (27) and (28), and by noticing that E𝑡[exp {−𝑌𝑡,𝑇 }] = 𝑓 (𝑡, 𝑇 ,
,−1), Eq. (12) is readily obtained. □

roof of Proposition 3. Using (13), we have

+∞

−∞
𝑒𝜙𝑥𝑇 𝑝⋆⋆𝑡 (𝑥𝑇 )d𝑥𝑇 =∫

+∞

−∞
𝑒𝜙𝑥𝑇 ∫

+∞

−∞

𝑒−𝑌𝑡,𝑇 𝑝(𝑥𝑇 , 𝑌𝑡,𝑇 |𝑥𝑡, 𝑟𝑡)
𝑓 (𝑡, 𝑇 , 0,−1)

d𝑌𝑡,𝑇 d𝑥𝑇

=
E𝑡[𝑒𝜙𝑥𝑇 −𝑌𝑡,𝑇 ]
𝑓 (𝑡, 𝑇 , 0,−1)

=
𝑓 (𝑡, 𝑇 , 𝜙,−1)
𝑓 (𝑡, 𝑇 , 0,−1)

. □
1193
Proof of Proposition 4. Eq. (26) can be rewritten as follows

𝐶(𝑆𝑡, 𝑡) =𝑓 (𝑡, 𝑇 , 1,−1)∫

+∞

ln𝐾 ∫

+∞

−∞
𝑝⋆𝑡 (𝑥𝑇 , 𝑌𝑡,𝑇 )d𝑌𝑡,𝑇 d𝑥𝑇

−𝐾𝑓 (𝑡, 𝑇 , 0,−1)∫

+∞

ln𝐾 ∫

+∞

−∞
𝑝⋆⋆𝑡 (𝑥𝑇 , 𝑌𝑡,𝑇 )d𝑌𝑡,𝑇 d𝑥𝑇 , (29)

here

⋆
𝑡 (𝑥𝑇 , 𝑌𝑡,𝑇 ) =

𝑒−𝑌𝑡,𝑇 𝑒𝑥𝑇 𝑝(𝑥𝑇 , 𝑌𝑡,𝑇 |𝑥𝑡, 𝑟𝑡)
𝑓 (𝑡, 𝑇 , 1,−1)

, (30)

and 𝑝⋆⋆𝑡 (𝑥𝑇 , 𝑌𝑡,𝑇 ) is given by (27).
The characteristic function associated to 𝑝(𝑥𝑇 , 𝑌𝑡,𝑇 |𝑥𝑡, 𝑟𝑡) is 𝑓 (𝑡, 𝑇 , 𝑖𝜙,

𝑖𝜉). Then, from (27) and (30) it is easy to see that the characteristic
function associated to 𝑝⋆𝑡 (𝑥𝑇 , 𝑌𝑡,𝑇 ) is 𝑓 (𝑡, 𝑇 , 𝑖𝜙 + 1, 𝑖𝜉 − 1)∕𝑓 (𝑡, 𝑇 , 1,−1),
whereas the characteristic function associated to 𝑝⋆⋆𝑡 (𝑥𝑇 , 𝑌𝑡,𝑇 ) is 𝑓 (𝑡, 𝑇 ,
𝑖𝜙, 𝑖𝜉 − 1)∕𝑓 (𝑡, 𝑇 , 0,−1), because

∫

+∞

ln𝐾 ∫

+∞

−∞
𝑝⋆𝑡 (𝑥𝑇 , 𝑌𝑡,𝑇 )d𝑌𝑡,𝑇 d𝑥𝑇

= 1
𝑓 (𝑡, 𝑇 , 1,−1)

∫

+∞

ln𝐾 ∫

+∞

−∞
𝑒(𝜙+1)𝑥𝑇 +(𝜉−1)𝑌𝑡,𝑇 𝑝𝑡(𝑥𝑇 , 𝑌𝑡,𝑇 |𝑥𝑡, 𝑟𝑡)d𝑌𝑡,𝑇 d𝑥𝑇 ,

nd

∫

+∞

ln𝐾 ∫

+∞

−∞
𝑝⋆⋆𝑡 (𝑋𝑡,𝑇 , 𝑌𝑡,𝑇 )d𝑌𝑡,𝑇 d𝑥𝑇

= 1
𝑓 (𝑡, 𝑇 , 0,−1)

∫

+∞

ln𝐾 ∫

+∞

−∞
𝑒𝜙𝑥𝑇 +(𝜉−1)𝑌𝑡,𝑇 𝑝(𝑥𝑇 , 𝑌𝑡,𝑇 |𝑥𝑡, 𝑟𝑡)d𝑌𝑡,𝑇 d𝑥𝑇 .

ince 𝑓 (𝑡, 𝑇 , 𝜙, 𝜉) = E𝑡[exp {𝜙𝑥𝑇 + 𝜉𝑌𝑡,𝑇 }] and 𝑓 (𝑡, 𝑇 , 𝜙, 𝜉 − 1) =
𝑡[exp {𝜙𝑥𝑇 + (𝜉 − 1)𝑌𝑡,𝑇 }], we can marginalize the double integral in
29) by fixing 𝜉 = 1, so that

(𝑆𝑡, 𝑡) = 𝑓 (𝑡, 𝑇 , 1,−1)∫

+∞

ln𝐾
𝑝⋆𝑡 (𝑥𝑇 )d𝑥𝑇

−𝐾𝑓 (𝑡, 𝑇 , 0,−1)∫

+∞

ln𝐾
𝑝⋆⋆𝑡 (𝑥𝑇 )d𝑥𝑇 , (31)

here

⋆
𝑡 (𝑥𝑇 ) = ∫

+∞

−∞
𝑝⋆𝑡 (𝑥𝑇 , 𝑌𝑡,𝑇 )d𝑌𝑡,𝑇 ,

nd 𝑝⋆⋆𝑡 (𝑥𝑇 ) is given by (28).
Then, by using the well-known result of Gil-Pelaez (1951), we have

∫

+∞

ln𝐾
𝑝⋆𝑡 (𝑥𝑇 )d𝑥𝑇 = 1

2
− 1

2𝜋

∫

+∞

0

𝐾 𝑖𝜙𝑓 (𝑡, 𝑇 ,−𝑖𝜙 + 1,−1) −𝐾−𝑖𝜙𝑓 (𝑡, 𝑇 , 𝑖𝜙 + 1,−1)
𝑖𝜙𝑓 (𝑡, 𝑇 , 1,−1)

d𝜙,
(32)
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A

A

B

B

B

B

B

B

B

B

C

C

C

C

C

D

D

D

E

H

R

R

R

S

S

S

S

T

V

∫

+∞

ln𝐾
𝑝⋆⋆𝑡 (𝑥𝑇 )d𝑥𝑇 = 1

2
− 1

2𝜋

∫

+∞

0

𝐾 𝑖𝜙𝑓 (𝑡, 𝑇 ,−𝑖𝜙,−1) −𝐾−𝑖𝜙𝑓 (𝑡, 𝑇 , 𝑖𝜙,−1)
𝑖𝜙𝑓 (𝑡, 𝑇 , 0,−1)

d𝜙. (33)

Finally, by substituting (32) and (33) into (31) we obtain (16). Relation
(17) can be derived by using an analogous procedure, which is omitted
to save space. □
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