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Abstract—Next-generation mobile communication systems sup-
port millimeter Wave (mmWave) transmission and high-mobility
scenarios. To cope with propagation environments with unprece-
dented challenges, data-driven methodologies such as Machine
Learning (ML) are expected to act as a fundamental tool
for decision support in future mobile systems. However, high-
quality measurement datasets need to be made available to the
research community in order to develop and benchmark ML-
based methodologies for next-generation wireless networks. We
present a reliable testbed for collecting channel measurements
at sub-6 GHz and mmWave frequencies. Further, we describe a
rich dataset collected using the presented testbed. Our public
dataset enables the development and testing of innovative ML-
based channel models for both sub-6 GHz and mmWave bands on
real-world data. We conclude this paper by discussing promising
experimental results on two illustrative ML tasks leveraging on
our dataset, namely, channel impulse response forecasting and
synthetic channel transfer function generation, upon which we
propose future exploratory research directions.

Index Terms—machine learning, deep learning, radio channel
prediction, radio channel simulation, vehicular communications,
channel sounding, channel measurements.

I. INTRODUCTION

Adaptive wireless transmission is among the core paradigms
for achieving consistent communication performance close to
the Shannon limit [1]. In particular, to estimate the quality of
a radio link and to adapt the transmission parameters to the
current channel condition, the transmitter needs to know the
Channel State Information at the Transmitter (CSIT), i.e., a
set of channel properties of the radio link. These properties
are strongly affected by several propagation phenomena such
as path loss, scattering, fading and shadowing [2]. Accurate
CSIT knowledge allows optimally tuning several transmission
parameters e.g., the transmit power, constellation size, coding
rate, single- and multiuser-beamforming/precoding, as well as
scheduling and resource allocation. Whenever link adaptation
is based on the assumption of instantaneous CSIT, outdated
CSIT can cause significant performance degradation [3]. For
example, feedback delay and processing delay in frequency-
division duplex (FDD) and time-division duplex (TDD) sys-
tems, respectively, are causes of outdated CSIT. Both feedback
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and processing delays become more severe in rapidly changing
fading channels.

To deal with the problem of outdated CSIT in a data-driven
way, researchers have already proposed several channel predic-
tion methods based on ML. The goal of channel prediction is
to accurately forecast future CSIT in advance with a time span
that counteracts the induced delay. The proposed methods are
mostly based on Recurrent Neural Networks (RNN), as they
are especially suited for processing time-series data [4]. For
example, in [5], authors develop a channel forecaster based on
Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) neural network layers.

In this context, next-generation mobile communication sys-
tems are planned to support mmWave transmission and are
expected to operate in high-mobility scenarios (e.g., vehicular
and high-speed train). Due to much faster channel fading,
abrupt shadowing transitions and larger Doppler spreads, high-
mobility channel prediction poses a significant challenge.
Therefore, high-quality datasets of channel measurements in
high-speed scenarios are required for benchmarking ML-based
techniques in real-world conditions.

However, collecting reliable and self-consistent datasets of
comparative measurements between sub-6 GHz and mmWave
bands is not trivial. For example, sub-6 GHz and mmWave
antennas cannot be placed at the same position at the same
time, due to mechanical constraints. Therefore, one would
need to perform measurements at different times if we want
to conduct measurements over the same measured trace. This
effect may result in different small-scale fading and fast-
fading behavior for different frequency bands. Hence, a fair
comparison between sub-6 GHz and mmWave bands is altered.

In this paper, to address these multifaceted challenges,
we provide the research community with a reliable and rich
high-speed channel measurements dataset for sub-6 GHz and
mmWave frequencies, and we illustrate its potential applica-
tion for ML-based channel forecasting and simulation. Our
contributions are summarized as follows:

e We present the testbed hardware [6] to enable a fair
comparison between sub-6 GHz and mmWave systems in
terms of small-scale and fast-fading in a high-mobility
environment.

o We describe a methodology that allows channel sounding
over the identical measured antenna trace with the same
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Fig. 1. The testbed setup to compare sub-6 GHz and mmWave in a high-
mobility environment. A sub-6 GHz or mmWave Tx antenna is mounted at
the end of the rotary arm.

controlled velocity, but at different frequency bands.

o We provide the measurement dataset obtained by con-
ducting channel measurements at sub-6 GHz (2.55 GHz)
and mmWave (25.5GHz) bands and at velocities of
40 km/h and 100 km/h.

« We present two illustrative use cases of our dataset for the
application of ML-based techniques: RNN-based channel
forecasting and Generative Adversarial Network-based
channel impulse response (CIR) simulation.

II. TESTBED DESIGN AND IMPLEMENTATION

In this section, we provide a detailed description of the
proposed testbed. We focus on the testbed implementation for
sub-6 GHz and mmWave cases, as well as on the necessary
time and frequency synchronization. Then, we elaborate on the
two major advantages of the proposed testbed: reproducibility
and controllability. Finally, we introduce a methodology for
ensuring a fair comparison between measurements performed
at different frequency bands and different velocities.

A. Testbed Hardware

Our testbed setup consists of a moving transmitter and a
static receiver placed in an indoor laboratory environment [7].
Our moving transmitter is based on a rotary unit described

in [8]. This rotary unit spins a transmit antenna around a
central axis up to 1000 rotations per minute (rpm).

Specifically, the transmit antenna is mounted on a rotating
aluminum alloy arm with a length of 1 m and can thereby reach
constant but adjustable velocities up to 400 km/h. The speed
of the rotary arm is controlled through an RS-485 connection
using an off-the-shelf frequency inverter.

Furthermore, the rotary unit is equipped with rotary joints at
each end of the central axis. These rotary joints are required to
connect the two rotating coaxial cables in the arm to the static
cables and the signal source outside the arm. Except for the
rotation, the cables themselves are glued inside the arm and
therefore static to not change their electrical properties due
to bending. The maximum allowed signal frequency for these
rotary joints is 12.4 GHz. Therefore, sub-6 GHz signals can be
directly transmitted to the end of the rotary arm, but mmWave
signals cannot. To our best knowledge, a rotary joint capable of
both mmWave transmission and rotation up to approximately
1000 rpm is not available off-the-shelf. Therefore, the testbed
setup requires hardware modifications to enable mmWave
transmissions.

In the following, for both sub-6 GHz and mmWave cases,
the transmit signal is generated with an Arbitrary Waveform
Generator (AWG) (Keysight M8195A) and the received signal
is sampled with a signal analyzer (Rohde & Schwarz FSW67).

B. Sub-6 GHz Setup

In the sub-6 GHz case, the transmit Intermediate Frequency
(IF) signal is generated offline using Python, and is digitally
up-converted to the center frequency of 2.55 GHz by the AWG.
The up-converted signal is then fed through the rotary joint to
the end of the rotary arm. Finally, the signal is radiated by a
self-built 2.55 GHz monopole antenna (see Fig. 1).

C. Millimeter Wave Setup

In the mmWave case, as previously mentioned, a direct
transmission of the Radio Frequency (RF) signal through the
rotary joint is not possible. Therefore, we perform a frequency
up-conversion by means of a mmWave transmitter at the
end of the arm. During the rotation, the end of the rotary
arm is exposed to significant acceleration forces. Thus, the
mmWave transmitter needs to be lightweight. Therefore, using
commercially available, bulky RF modules with connectors
is not feasible. As a possible solution, we developed our
mmWave transmitter on a 6-layered Printed Circuit Board
(PCB) with the RF dielectric substrate Rogers RO4350B. The
PCB consists of Surface Mount Device (SMD) components
on the bottom side and a monopole antenna with a ground
plane on the top side (see Fig. 1). The mmWave transmitter
consists of an up-converter, a bandpass filter, a power amplifier
and the monopole antenna. The entire PCB has a remarkably
lightweight design, weighing only 43.1 gramms.

As before, the IF signal is generated offline using Python
and digitally up-converted to the center frequency of 5.5 GHz
by the AWG. Moreover, the mmWave transmitter requires a
Local Oscillator (LO) tone to perform the up-conversion of the
IF signal to a RF range. The LO tone at 10 GHz is generated



with a Continuous Wave (CW) signal generator (R&S SMF).
We use one single-channel rotary joint to transmit the IF signal
and the other rotary joint to transmit the LO signal to the
mmWave transmitter placed at the end of the rotary arm.

Other than the IF and LO signals, the mmWave transmitter
requires a +5V and a +10.175V DC power supply. Since
both rotary joints have already been utilized for high-frequency
signals, there are no rotary joints left to transmit the DC supply
during the rotation. As a possible solution, we mounted a
battery power supply on the central rotating axis, such that
it is exposed to small acceleration forces only.

Within the mmWave transmitter, the up-converter Integrated
Circuit (IC) performs LO frequency doubling. The doubled LO
frequency mixed with the IF signal leads to an RF frequency of
25.5 GHz. As the up-converter, we utilize the Macom MAMF-
011024 which operates in the frequency range from 21 to
27 GHz. Besides the desired RF signal at 25.5 GHz, the up-
converter generates additional spectral components such as
higher-order harmonics and intermodulation products. To sup-
press these unwanted components, we use a 25—26 GHz band-
pass filter (B259MCI1S). Another drawback of the up-converter
is the low output power level, which cannot overcome the large
path loss at mmWave frequencies. Therefore, we leverage on a
power amplifier (HMC994APMSE) for increasing the transmit
power level. Finally, the amplified mmWave signal is radiated
by the self-built 25.5 GHz monopole antenna.

For performing a fair comparison between sub-6 GHz and
the mmWave, we require the same receive antenna for both
scenarios. Therefore, we employ 2.55 GHz and 25.5 GHz horn
antennas with the same opening angle as receive antennas for
sub-6 GHz and mmWave, respectively.

D. Synchronization

To reach optimum performance of the proposed channel
sounding system, accurate frequency and timing synchroniza-
tion are required. In a typical vehicular drive-by measurement
setup, the transmitter and the receiver are located far away
from each other [9], hence a cable connection for providing
precise frequency and timing synchronization is not feasible.
Instead, to provide precise frequency synchronization, expen-
sive Rubidium frequency standards are usually employed at
the transmitter and the receiver [9]. As a possible solution for
precise timing synchronization, a preamble with good auto-
correlation properties is often exploited to find the beginning
of the received channel-sounding signal [10].

In the proposed setup, the transmitter and the receiver are
placed only 10 m apart in the indoor laboratory environment.
Therefore, the cable connection is feasible and it represents a
significant advantage of the proposed setup compared to usual
drive-by ones. To provide accurate frequency synchronization,
we interconnect the AWG at the transmitter’s site and the
signal analyzer at the receiver’s site with a 100 MHz reference.
The same applies to time synchronization. The rotary unit is
equipped with a trigger unit based on a Field Programmable
Gate Array (FPGA) and a rotational encoder. The signal of the
rotational encoder is decoded by a counter and a comparator
to form a trigger signal. The trigger signal is thereafter fed

through cables to the arbitrary waveform generator at the
transmitter and the signal analyzer at the receiver. Thereby, it
is possible to repeatably trigger a measurement at a precisely
defined position of a rotary arm once per revolution.

E. Reproducibility and Controllability

Two major advantages of the proposed testbed setup are
reproducibility and controllability. Reproducibility is the abil-
ity to repeat a measurement sample under equal channel
conditions. The reproducibility can hardly be achieved in real-
world drive-by measurements. More precisely, the surround-
ings (moving vehicles and pedestrians) are extremely unlikely
to remain constant over time and it is also very difficult
to drive exactly the same route twice by car. Our testbed
setup achieves reproducibility in the following way. Firstly,
we keep the fading environment static by ensuring that there
are no people or moving objects within the room during a
measurement campaign. This enables us to observe the effect
of a single system parameter (e.g., velocity, Tx power) without
influence of the other ones. Secondly, using the trigger unit,
we ensure that the transmit antenna moves over an identical
circular trace with the same constant velocity, but at different
frequencies. Thirdly, we keep the receive antenna static on a
laboratory table in the neighboring room. Thereby, we allow a
direct comparison of the measured wireless channel in terms
of fading environment and channel statistics.

The second major advantage of our proposed setup is
controllability, i.e., the ability to control environmental and
system parameters. In our setup, we can easily change the
average signal-to-noise ratio (SNR) by adjusting the transmit
power and change the velocity by adjusting the rotation speed
through the frequency inverter.

F. Ensuring Fair Comparisons

To fairly compare measurements performed at different fre-
quency bands and different velocities, we extend the method-
ology proposed in [7]. Firstly, we have to keep the fading
environment static. To this end, the measurement campaign
has been conducted within 2 hours with no people or moving
objects within the room during the measurements. Secondly,
we have to ensure transmitting the same number of channel
sounding symbols along the same measured trace for different
velocities. As a possible solution, we adjust the symbol
duration to the transmitter’s velocity. Specifically, we choose
a short symbol duration for high-velocity measurements and
a long symbol duration for low-velocity measurements. Such
a selection of parameters makes the measurement results
independent of the transmitter’s velocity and therefore leads
to a fair comparison.

III. DATASET

In this section, we first describe our measurement campaign
with all measured scenarios and explain the post-processing
procedure of the measurement results to obtain our dataset.
Subsequently, we show some examples of data extraction and
provide practical guidelines the use of our dataset.
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Fig. 2. Measured indoor laboratory environment. The rotating transmitter and the statical receiver are located in neighboring rooms. The transmitter is placed
on a sliding board, which is moved according to the illustrated rectangular grid for both sub-6 GHz and mmWave.
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Fig. 3. Considered measurement parametrization. The wireless channel is
measured over an identical antenna trace for all measured scenarios.

A. Measurement Campaign

Using the above described testbed and methodology, we per-
form channel sounding measurements in a controlled indoor
environment as shown in Fig. 2. We conduct measurements of
all four combinations of low (40km/h) or high (100km/h)
speed and sub-6 GHz (2.55GHz) or mmWave (25.5GHz)
center frequency, with parameters provided in Fig. 3. The
transmit antenna moves along the same trace (circular arc
segment) at the rotary arm with a constant velocity, while
the receive antenna is static on a laboratory table in the
neighboring room.

We use an Orthogonal Frequency-Division Multiplexing
(OFDM) signal as a transmit signal. To keep the peak-
to-average power ratio (PAPR) low, the transmit signal is

designed using a Zadoff-Chu sequence [11]. We transmit a
measurement sequence of 50000 identical OFDM symbols
(500 snapshots of 100 symbols each) as channel sounding
signal. The measurement sequence is grouped into 500 snap-
shots of 100 symbols each. This grouping is made under the
assumption that the wireless channel between the moving an-
tenna and the static receiver is constant in time for the duration
of one snapshot. The trigger unit initiates the transmission
when the rotating arm passes an angular position of —40°. The
transmission continues as the rotating antenna moves along
the trace (arc segment) from —40° to 40°. We choose a high
subcarrier spacing of 1 MHz for high-velocity measurements
and a low subcarrier spacing of 400kHz for low-velocity
measurements. As previously explained, we thereby achieve
comparability of measurement results.

At the receiver side, we exploit the first OFDM symbol
of each snapshot as a cyclic prefix to eliminate intersymbol
interference (ISI). We discard the first OFDM symbol of each
snapshot and perform averaging of the remaining 99 symbols
to improve the Signal-to-Noise Ratio (SNR) by approximately
20dB. After OFDM processing, we estimate the wireless
channel via least-squares estimation for all subcarriers. In this
way, we obtain a time-variant channel transfer function for
discrete-time (snapshots) and frequency (subcarriers) as the
final result of our measurement campaign.

Using this measurement procedure, we generate a dataset
consisting of different time-variant channel transfer functions.
These functions are generated by conducting measurements at
different positions of the transmitter. In addition to the rotating
in a single position, the transmitter can also be moved in
space. The transmitter (the rotary unit) is placed on a sliding
board, which can be moved by 81 centimeters along the x-axis
and by 33 centimeters along the y-axis. We assume that the
channel is locally stationary within a window of approximately
six wavelengths of motion. For 2.55GHz and 25.5GHz, a
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Fig. 4. Channel transfer function and channel impulse response of the 50th snapshot in all of the measured scenarios. Location on the x-y axis is X0YO.

window of six wavelengths corresponds to approximately
70cm and approximately 0.7 cm, respectively. Considering
these stationarity assumptions, we performed measurements at
126 different positions according to the rectangular grid shown
in Fig. 2. The positions on the x- and y-axis are mutually
separated by 0.4 \. The blue (large) and red (small) rectangles
indicate the measured region for sub-6 GHz and mmWave,
respectively. Thereby, we obtain different realizations of the
same wireless channel for both sub-6 GHz and mmWave.

B. Dataset Description

The dataset is placed on IEEE DataPort [12], and consists of
time-varying channel transfer functions classified in four cat-
egories depending on the measurement scenarios from Fig. 3.
The dataset entries are given as complex-valued numpy (.npy)
files in which rows and columns represent different snapshots
and subcarriers, respectively. For each scenario, there are
126 channel realizations obtained by conducting measure-
ments at different positions according to the rectangular grid
shown in Fig. 2. Each name in the dataset is given in the
format “frequency_velocity_position”. For example, the en-
try “25_5GHz_100kmh_X6Y2.npy” denotes the time-varying
channel transfer function measured at 25.5 GHz at the velocity
of 100 km/h for the position six on the x-axis and position two
on the y-axis.

In addition to the data files, an example Python file called
“example.py” is provided. The example file extracts dataset
entries based on the chosen input parameters, such as scenario,
x- and y-position within the rectangular grid. As a result, the
example file shows the channel transfer function (CTF) and the
channel impulse response (CIR) for the selected parameters.
The CIR is obtained by performing Inverse Fast Fourier
Transform (IFFT) of the CTF over subcarriers. In Fig. 4, we
show the CTF and CIR for the 50*" snapshot and positions
X0YO for all measured scenarios.

IV. ILLUSTRATIVE MACHINE LEARNING USE-CASES AND
EXPLORATORY RESEARCH DIRECTIONS

In this Section, we outline two illustrative ML use-cases for
the presented dataset, namely i) CIR forecasting using recur-
rent neural networks, and ii) CTF simulation using generative
neural networks. For each task we describe a baseline ML
approach, we discuss our main results, and we propose future
research directions.

A. Channel Forecasting with Recurrent Neural Networks

We consider the problem of forecasting CIR values over a
time horizon, given a time-series of past CIRs. In the context
of an adaptive transmission systems, accurate CTF forecasting
can help mitigating the problem of outdated CSIT in the
presence of fast fading [5].

To implement our forecaster we leverage Long Term Short
Memory (LSTM) neural networks with Variational Dropout.
LSTM networks can efficiently learn complex temporal depen-
dencies in the sequence of input CIR. Variational Dropout al-
lows to estimate the uncertainty associated with each forecast,
providing richer information for proactive decision-making.

Our channel forecaster is implemented as a classical
encoder-decoder architecture, which comprises an encoder
neural network and a decoder neural network. More specif-
ically, the encoder and decoder networks consist of multiple
LSTM layers with Variational Dropout [13]. The task of the
encoder is to produce a fixed-dimension feature vector given
an input time-series. The decoder takes as an input the context
vector and the last CIR value, and outputs a forecast for the
CIR value at the next time instant as well as an updated context
vector. The forecasted CIR value and the updated context
vector are recursively fed back to the decoder, and the process
is repeated until the desidered forecast time-horizon is reached.

As an illustrative task, we will consider forecasting the abso-
lute CIR values for a single subcarrier, i.e., we limit ourselves
to a simple univariate forecasting problem. In particular, we
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Fig. 5. Illustrative CIR mean forecasts and 95% confidence bands for a single
OFDM subcarrier, 2.55GHz center frequency and 40km/h transmitter speed.

train our neural network to predict the future 32 CIR snapshots
given 64 past CIR snapshots.

Fig. 5 shows an illustrative CIR forecast for 2.55GHz center
frequency and 40km/h speed. Our encoder-decoder model
correctly captured the CIR time-varying behaviour and it is
able to produce accurate forecasts. In particular, the ground-
truth CIR values are almost always within the predicted 95%
confidence bands, thus providing a truthful interval in which
the ground-truth CIR values are expected to lie.

As exploratory future reseach, joint forecasting of multiple
subcarriers can be investigated. In particular, leveraging on
state-of-the-art attentional models [14], temporal correlations
between different subcarriers can be exploited for producing
more accurate forecasts, and for quantitatively evaluating the
impact of each subcarrier in the output forecasts.

B. Channel Simulation with Generative Neural Networks

We consider the problem of building an approximate chan-
nel simulator given the measurement data. In other words,
we aim at generating synthetic CTF samples whose behaviour
over frequency and time resembles real measurements. Ap-
plications include the design of radio interfaces and systems
in similar propagation environments, and benchmarking trans-
mission and coding techniques in realistic, but diversified
stochastic channel samples.

We propose leveraging on generative neural networks for
building approximate channel models. The learning objective
of generative neural networks is to model the distribution of
a given dataset (in our case, CTF samples). Said distribution
can then be cheaply sampled from, allowing for generating
arbitrarily large volumes of new, synthetic data.

Leveraging on recent advances in synthetic generation
of image data, we implement our generative network as a
Deep Convolutional Generative Adversarial Network (DC-
GAN) [15]. In particular, we consider the task of generating
synthetic samples of the absolute CTF value over time and
frequency. As such, we represent each experimental run in the

(a) Absolute CTF values from real measurements

(b) Absolute CTF measurements generated by a DCGAN

Fig. 6. Illustrative real and synthetic absolute CTF values for 2.55GHz center
frequency and 40km/h speed. Time/frequency are the horizontal/vertical axes.

presented dataset as a single image. At full resolution, each
image will have height equal to the number of OFDM carriers,
and width equal to the number of samples. For keeping training
times reasonably short and facilitating convergence, we resize
our input data down to 64x64.

Fig. 6 illustrates real and synthetic absolute CTF values
for a center frequency of 2.55GHz and velocity equal to
40km/h. The synthetic CTF samples, albeit looking slightly
noisy, are indeed visually resemblant to the real measurements.
We underline that by leveraging off-the-shelf Graphical Pro-
cessing Units (GPUs), large volumes of synthetic data can
be generated in short computational times. Thus, our simple
exercise illustrates the potential of generative neural networks
for building realistic channel simulators.

V. CONCLUSION

In this paper, we describe the testbed hardware for collecting
comparative time-varying channel measurements between sub-
6 GHz and mmWave bands and we provide the corresponding
measurement dataset. We outline in detail practical setup
guidelines for ensuring the repeatability and the controllability
of the experiments. After that, we describe the measurement
campaign that has been conducted for creating the dataset.
Finally, we present two illustrative ML use-cases for our
dataset, namely CIR forecasting with recurrent neural net-
works and synthetic CTF generation with generative adver-
sarial networks, and we suggest future exploratory research
directions. Overall, our dataset provides rich dynamic channel
measurements in highly diversified scenarios, thus enabling
the development of innovative ML-driven methodologies on
challenging real-world propagation environments. We hope



that the research community will find use and inspiration in
our work.
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