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Abstract

We present two characterizations of bivariate discrete Schur-constant models corre-

sponding to continuous case statements.

Keywords: 2-monotone function, Laplace transform.

This note is motivated by Kozlova and Salminen (2004) who characterize the bivariate

continuous Schur-constant models in terms of the bivariate Laplace transform as follows.

Lemma 0.1. The continuous random vector (X, Y ) is Schur-constant if and only if there exists

a positive random variable V such that

E
(
e−aX−b Y

)
=

1

a− b

∫ a

b

E
(
e−t V

)
dt for a > 0, b > 0, a 6= b, (1)

when V
d
= X + Y .

In the proof, Kozlova and Salminen (2004) used the fact that the continuous Schur-constant

random vector (X, Y ) can be specified by the relation

(X, Y )
d
= (U V, (1− U)V ) , (2)

where the random variable U is uniformly distributed on [0, 1], to be denoted by U ∼ U(0, 1),

and V is an arbitrary positive random variable independent of U . An alternative proof of

Lemma 0.1 can be found in Ta and Van (2017). Relation (2) can be rewritten as (X, Y )
d
=

1



(U1, V − U1) , where U1 ∼ U(0, V ) and V is an arbitrary positive random variable. Notice that

in both the stochastic representations the random variable V shares the same distribution as

that of the sum X + Y .

Recently, the properties of multivariate Schur-constant discrete distributions and their ap-

plications have been investigated extensively by several authors, e.g., see Castaner et al. (2015)

and Lefevre at al. (2018). In what follows, we will present two characterizations of bivariate

discrete Schur-constant models corresponding to continuous case relations (2) and (1).

Let us introduce the discrete counterpart of the stochastic representation (2), considering

Schur-constant survival models for a discrete random vector (X, Y ) whose marginals take values

in the set N0 = {0, 1, 2, . . .}. Denote by SD(·, ·) the joint survival function of the non-negative

integer-valued random vector (X, Y ), i.e., SD(x, y) = P(X ≥ x, Y ≥ y) for x, y ∈ N0. According

to Proposition 2.2 in Castaner et al. (2015), the bivariate discrete Schur-constant distribution

is specified by the assumption

SD(x, y) = GD (x + y) , x, y ∈ N0 (3)

for a 2-monotone on N0 univariate survival function GD(.). We remind that a function f :

N0 → R is 2-monotone if f(x) ≥ 0, f(x + 1) ≤ f(x) and f(x + 2) − 2f(x + 1) + f(x) ≥ 0 for

all x ∈ N0.

Set W = X + Y and define a discrete random variable UD as

UD
d
=

 X
W
, if (X, Y ) 6= (0, 0);

0, if X = Y = 0.
(4)

The range of values of UD is the set of rational numbers in [0, 1] and we obtain the stochastic

representation

(X, Y )
d
= (UDW, (1− UD)W ), (5)

which can be considered as the discrete version of (2).

It follows our first characterization of a discrete bivariate Schur-constant random vector.

Theorem 0.1. The discrete random vector (X, Y ) taking values in N0 ×N0 is Schur-constant

if and only if there exists a non-negative integer-valued random variable W for which (5) holds

with UD uniformly distributed on the set {0, 1
W
, . . . , W−1

W
, 1} if W 6= 0 and UD = 0, if W = 0.

2



Proof. Necessity: We assume that (X, Y ) is Schur-constant and we set W = X + Y . Clearly

P (UD = 0|W = 0) = 1. Thanks to Lemma 3.1 in Lefèvre et al. (2018), we have that

P (X = x, Y = y) = GD(x + y)− 2GD(x + y + 1) + GD(x + y + 2),

and therefore

P (W = w) =
w∑

j=0

P (X = w − j, Y = j) = (w + 1) [GD(w)− 2GD(w + 1) + GD(w + 2)] .

It follows that, by (4), if w > 0 and u = 0, 1, . . . , w,

P
(
UD =

u

w

∣∣∣ W = w
)

=
P (X = u, Y = w − u)

P (W = w)
=

1

w + 1

and (5) holds with UD uniformly distributed on
{

0, 1
W
, . . . , W−1

W
, 1
}

.

Sufficiency: Let (5) be true with UD being uniformly distributed on {0, 1
W
, . . . , W−1

W
, 1} when

W > 0 and UD = 0 when W = 0. Then, if (x, y) 6= (0, 0),

SD(x, y) =
∞∑

w=x+y

P
(
UD ≥

x

w
, 1− UD ≥

y

w

∣∣∣W = w
)
P (W = w)

=
∞∑

w=x+y

w−y∑
u=x

P
(
UD =

u

w

∣∣∣W = w
)
P (W = w) .

Since UD is uniformly distributed on {0, 1
W
, . . . , W−1

W
, 1}, then

SD(x, y) =
∞∑

w=x+y

(
1− x + y

w + 1

)
P (W = w) .

Under the substitution t = x + y, the joint survival function SD(·, ·) can be rewritten as

GD(t) = P (W ≥ t)− tE
[

1

W + 1
1{W≥t}

]
, (6)

where 1{.} is the indicator function, i.e., relation (3) holds.

From the proof one can conclude that relation (6) provides a characterization of any 2-

monotone survival function on N0. Also, unlike the continuous case, the random variables UD

and W in the stochastic representation (5) are no more independent.

We are ready to prove the discrete version of Lemma 0.1 as follows.
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Theorem 0.2. The discrete random vector (X, Y ) taking values in N0 ×N0 is Schur-constant

if and only if there exists a nonnegative discrete random variable W with values in N0 such that

the joint Laplace transform E[e−aX−b Y ] is given as follows:

E
[
e−aX−bY

]
=

1

e−b − e−a

∫ a

b

E[e−t(W+1)]dt, for a > 0, b > 0, a 6= b, (7)

where W
d
= X + Y .

Proof. Necessity: Assume that the discrete random vector (X, Y ) with values in N0 × N0 is

Schur-constant and let a, b > 0. By Theorem 0.1 there exists a non-negative integer-valued ran-

dom variable W for which (5) holds with UD uniformly distributed on the set {0, 1
W
, . . . , W−1

W
, 1}

if W 6= 0 and UD = 0, if W = 0. Then

E[e−aX−bY ] = E
[
e−W [(a−b)UD+b]

]
=
∞∑

w=0

E
[
e−w[(a−b)UD+b]|W = w

]
P(W = w). (8)

Taking into account that UD is uniformly distributed on {0, 1
W
, . . . , W−1

W
, 1} yields

E[e−aX−bY ] =
∞∑

w=0

w∑
u=0

e−[(a−b)u+bw]P(W = w)

w + 1
=
∞∑

w=0

P(W = w)

w + 1
e−wb

w∑
u=0

e−(a−b)u.

If a 6= b,

E[e−aX−bY ] =
∞∑

w=0

P(W = w)e−wb[1− e−(a−b)(w+1)]

(w + 1)[1− e−(a−b)]
=

1

e−b − e−a

∞∑
w=0

∫ a

b

P(W = w)e−t(w+1)dt.

However
∞∑

w=0

∫ a

b

P(W = w)e−t(w+1)dt =

∫ a

b

E[e−t(W+1)]dt

and hence relation (7) is established for a 6= b.

If a = b then, from (8) we get that

E[e−b(X+Y )] = E
[
e−bW

]
and X + Y

d
= W .

Sufficiency: Vice versa, if (7) is true with W
d
= X + Y , let UD be a random variable uniformly

distributed on
{

0, 1
W
, . . . , 1− 1

W
, 1
}

if W > 0 and UD = 0 when W = 0. Repeating the same

computations showed in the necessity part of the proof, one obtains that the Laplace transform

of the vector (UDW, (1− UD)W ) coincides with that of the vector (X, Y ) and thus, taking into

account the uniqueness of a distribution by its Laplace transform, (5) holds and the discrete

vector (X, Y ) is Schur-constant.

4



The necessity part of Theorem 0.1 helps to find the distribution of the marginal random

variable X as a function of the distribution of the sum W
d
= X + Y .

Corollary 0.3. If the discrete vector (X, Y ) is Schur-constant and W
d
= X +Y , the probability

mass function of the marginal distribution of X is given by

P(X = x) =
∞∑

w=x

P(W = w)

w + 1
= E

[
1

W + 1
1{W≥x}

]
for x ∈ N0,

where 1{.} is the indicator function. Moreover,

SD(x, y) = P(X ≥ x, Y ≥ y) = P(W ≥ x + y)− (x + y)P(X = x + y).

Finally note that if (X, Y ) is a discrete Schur-constant vector and the Laplace transform

of the marginal X is known, one can easily compute the joint Laplace transform E[e−aX−b Y ].

Indeed, denoting E[e−aX ] =: L(a) and letting b tend to zero in (7), we get∫ a

0

E[e−t(W+1)]dt = (1− e−a)L(a),

i.e.
∫ a

b
E[e−t(W+1)]dt = (1− e−a)L(a)− (1− e−b)L(b) for a 6= b.

Thus, from (7) we obtain

E[e−aX−bY ] =
(1− e−a)L(a)− (1− e−b)L(b)

e−b − e−a
.
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