
25 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Continual Adaptation for Deep Stereo / Poggi, Matteo; Tonioni, Alessio; Tosi, Fabio; Mattoccia, Stefano; Di
Stefano, Luigi. - In: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. - ISSN
0162-8828. - ELETTRONICO. - 44:9(2022), pp. 4713-4729. [10.1109/TPAMI.2021.3075815]

Published Version:

Continual Adaptation for Deep Stereo

Published:
DOI: http://doi.org/10.1109/TPAMI.2021.3075815

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/819561 since: 2021-04-30

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TPAMI.2021.3075815
https://hdl.handle.net/11585/819561

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

M. Poggi, A. Tonioni, F. Tosi, S. Mattoccia and L. D. Stefano, "Continual Adaptation

for Deep Stereo," in IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 44, no. 9, pp. 4713-4729, 1 Sept. 2022

The final published version is available online at

https://dx.doi.org/10.1109/TPAMI.2021.3075815

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the

publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/TPAMI.2021.3075815

1

Continual Adaptation for Deep Stereo

Matteo Poggi, Member, IEEE, Alessio Tonioni, Member, IEEE, Fabio Tosi, Student Member, IEEE,

Stefano Mattoccia, Member, IEEE, and Luigi Di Stefano, Member, IEEE

Abstract—Depth estimation from stereo images is carried out with unmatched results by convolutional neural networks trained

end-to-end to regress dense disparities. Like for most tasks, this is possible if large amounts of labelled samples are available for

training, possibly covering the whole data distribution encountered at deployment time. Being such an assumption systematically

unmet in real applications, the capacity of adapting to any unseen setting becomes of paramount importance. Purposely, we propose a

continual adaptation paradigm for deep stereo networks designed to deal with challenging and ever-changing environments. We design

a lightweight and modular architecture, Modularly ADaptive Network (MADNet), and formulate Modular ADaptation algorithms (MAD,

MAD++) which permit efficient optimization of independent sub-portions of the entire network. In our paradigm, the learning signals

needed to continuously adapt models online can be sourced from self-supervision via right-to-left image warping or from traditional

stereo algorithms. With both sources, no other data than the input images being gathered at deployment time are needed. Thus, our

network architecture and adaptation algorithms realize the first real-time self-adaptive deep stereo system and pave the way for a new

paradigm that can facilitate practical deployment of end-to-end architectures for dense disparity regression.

Index Terms—Stereo Matching, Deep Learning, Self-supervision, Real-time Adaptation, Continual Learning

✦

1 INTRODUCTION

E stimating dense and accurate depth maps is a key
perception step to pursue scene comprehension tasks

dealing with navigation and interaction with the environ-
ment. Passive, image-based techniques aimed at depth per-
ception compare favourably to active sensors in terms of
cost, bulkiness as well as - more often than not- working
range and flexibility. Among such techniques, stereo vision
[1] is usually the preferred choice, requiring just a pair of
synchronized and calibrated cameras to measure depth by
triangulation between matching pixels.

Akin to most computer vision problems, in the last years
deep learning has entered into solutions for stereo matching,
at first replacing certain specific steps of the pipeline by
neural networks (e.g., matching cost computation [2]) then
rapidly converging toward end-to-end architectures [3], [4].
Although end-to-end networks have established the new
state-of-the-art in challenging benchmarks such as KITTI
[5], [6], they require a large amount of images labelled
with ground-truth disparities, in order to effectively learn
how to tackle stereo. As obtaining ground-truth disparities,
i.e. depths, for real images is particularly challenging and
expensive, computer graphics has became a popular alterna-
tive to gather thousands of synthetic images endowed with
depth labels for free [3]. Although highly realistic, these
images can hardly encompass all the nuisances occurring in
the real world, such as, e.g., sensor noise, reflective surfaces
and challenging illumination conditions. Thus, due to the
domain shift between the training and testing environments
[7], deep networks trained by computer-generated imagery
suffer from a large loss in accuracy when deployed in the
real world. A partial solution to this issue consists in fine-
tuning the stereo network on few labelled samples from
the real domain. Yet, to obtain such ground-truth labels,

• M. Poggi, F. Tosi, S. Mattoccia and L. Di Stefano are with the Department
Computer Science and Engineering, University of Bologna, Italy.

• A. Tonioni is with Google Zurich.

(a) (b)

(c) (d)

Fig. 1. Continual adaptation on real images. We show the reference
image of a stereo pair from DrivingStereo [9] (a) and the disparity
maps computed by MADNet when trained on synthetic data only (b)
or adapted online by either MAD (c) or MAD++ (d).

costly active sensors (e.g., LIDAR) and manual intervention
or post-processing are required [8]. Even more importantly,
despite fine-tuning by a few real-images may address the
synthetic-to-real domain shift, it cannot take into account
the countless diverse environmental conditions that a stereo
network meant to be deployed in-the-wild may encounter,
such as, in autonomous driving scenarios, urban and coun-
tryside roads, tunnels, varying weather and sudden changes
of the surroundings.

In our vision, the only viable approach to practical end-
to-end deep stereo deals with departing from the tradi-
tional training-validation-testing workflow towards a contin-
ual adaptation paradigm, so as to realize neural networks
able to adapt promptly to new situations and environments.
Of course, this novel paradigm cannot leverage standard
supervised learning approaches since ground-truth labels
would not be available for any new setting faced in-the-wild.

In this paper we extend our preliminary work on contin-
ual adaptation for deep stereo [10], which proposed the first-
ever real-time, self-adapting, deep stereo network by relying
on self-supervision obtained from the input pair of frames

ar
X

iv
:2

00
7.

05
23

3v
3

 [
cs

.C
V

]
 3

 M
ay

 2
02

1

2

via a photometric loss [11], [12], [13]. Given a sequence of
stereo pairs, a straightforward continual adaptation scheme
might be realized though the following steps: 1) output
the prediction and compute the loss for the current pair of
frames; 2) update the whole network by back-propagation;
3) move forward to the next pair of frames, with enriched
knowledge encoded in the updated weights. However,
due the computational overhead associated with on-line
back-propagation, most state-of-the-art stereo architectures
would not operate in real-time under a continual adaptation
paradigm mandating full update of the network via back-
propagation. Thus, we designed a Modularly ADaptive
Network (MADNet) architecture that is fast, accurate and
features small memory requirements. Moreover, we de-
veloped a Modular ADaptation (MAD) algorithm that, in
each on-line back-propagation step, enables to select and
update only a portion of the whole MADNet, thereby vastly
reducing the overhead required by online model updating
and permitting prediction alongside self-adaptation in real-
time without a large loss in accuracy compared to back-
propagating errors into the full set of weights of network.

We extend and improve the MADNet-MAD framework
by leveraging on proxy supervision obtained from traditional
stereo algorithms [7], [14]. Indeed, although deep stereo
networks are unmatched when trained and tested on similar
domains, traditional methods, like [15], are largely domain-
agnostic. In fact, they behave similarly and suffer from
the same nuisances (e.g., low-textured regions, occlusions,
repetitive patterns) with both synthetic and real images as
well as across diverse environmental settings. This suggests
that traditional algorithms may be exploited to supervise
online deep stereo networks if matching errors, i.e. out-
liers, are properly detected and filtered out. We show that
this strategy yields a much stronger adaptation ability and
that this results consistently in a significant shrink of the
performance gap between modular and full adaptation of
MADNet, with the former often turning out even more
beneficial than the latter. As a matter of fact, Figure 1 shows
a qualitative comparison between the MAD formulation
described in [10] and the novel approach proposed in this
paper, referred to hereinafter as MAD++. Moreover, we dig
into our continual adaptation paradigm and thoroughly ex-
plore its behaviour across very different datasets, showing,
in particular, that our proposal is not affected by catastrophic
forgetting while, on the contrary, continually adapting the
stereo network is beneficial to performance in case of do-
main changes.

The main contributions of this unabridged paper on
our work on continual adaptation for deep stereo can be
summarized as follows.

• We introduce MAD++ which ameliorates our MAD
framework by leveraging on proxy supervision pro-
vided by traditional stereo algorithms. This novel
approach outperforms the original proposal and
yields often better results than updating all network
weights while running twice faster.

• We extensively evaluate both MAD and MAD++ on
the raw KITTI dataset already considered in [10].
Besides, we include experiments on two additional
datasets, i.e. DrivingStereo [9] and WeanHall [16], so

as to provide stronger evidence on the effectiveness
of our proposed framework in a broader variety of
target domains.

• We test our methods across datasets to highlight how
continual learning is robust to domain shifts. We
find no evidence of catastrophic forgetting in any
experiments. On the contrary, we show that models
adapted elsewhere feature better adaptation ability
when facing new domains.

2 RELATED WORK

In this section, we briefly review the literature relevant to
our work.

Machine learning for stereo. The first attempts to use
machine learning for stereo matching dealt with estimating
confidence measures [17], either by random forest [18], [19],
[20], [21] or CNNs [22], [23], [24], [25], and often with the
purpose of improving the final accuracy when combined
with traditional algorithms. Regarding stereo algorithms,
the first works proposed matching cost functions realized
by patch-based CNNs [2], [26], [27] and allowed to achieve
state-of-the-art performance by replacing handcrafted cost
functions [28] within the SGM pipeline [15]. Later, Batsos
et al. [29] combined traditional matching functions within
a random forest framework to obtain better generalization
across domains. Then, Shaked and Wolf [30] proposed to
rely on deep learning for matching cost computation, dis-
parity selection and confidence prediction, while Gidaris
and Komodakis [31] focused on disparity refinement.

A true paradigm shift did occur with the first end-to-end
stereo network, DispNetC, was proposed alongside large
synthetic training datasets [3]. In [3] a custom correlation
layer was designed to encode the similarities between pixels
as features. Kendall et al. [4] designed GC-Net, switching
towards 3D networks that build a cost volume by means of
features concatenation. These two architectures started the
development of two main families of networks, referred to
as 2D and 3D, respectively. Proposals belonging to the for-
mer class use typically a single or multiple correlation layers
[10], [32], [33], [34], [35], [36], [37], [38], while 3D networks
build 4D volumes by means of concatenation [39], [40],
[41], [42], [43], [44], [45], [46], [47], features difference [48]
or group-wise correlations [49], both combined with active
sensors such as LIDAR in [50]. Although most works focus
on accuracy, others deploy lightweight architectures [10],
[42], [48] aimed at real-time performance, sometimes com-
bining stereo with semantic segmentation [51] or pursuing
scene flow [52], [53]. Unfortunately, however, all end-to-end
stereo networks are prone to domain shift, as performance
decay dramatically when the model is run in environments
different from those observed at training time, as shown in
[7], [10], [14], [54], [55].

Self-supervision from photometric losses. View syn-
thesis has been recently used to train depth estimation
networks in a self-supervised manner by photometric losses
[12], [56]. For monocular depth estimation, multiple images
are deployed at training time in order to replace ground-
truth labels by warping the different views, coming either
from stereo pairs or image sequences, according to the pre-
dicted depth and minimizing the photometric error between

3

Algorithm 1 Full Adaptation (FULL)

1: Require: Stereo model N parametrized by Θ
2: t = 0
3: while not stop do
4: xt ← ReadFrames(t)
5: yt ← ForwardPass(N ,Θt, xt)
6: Lt ← Loss(xt, yt)
7: Θt+1 ← UpdateWeights(Lt,Θt)
8: t← t+ 1
9: end while

real and warped images [12], [56], [57], [58], [59]. Other
recent works follow a similar approach for deep stereo
matching [10], [11], [13], [60], [61], [62]. Unlike monocular
ones, however, in stereo setups the input images used to
compute the photometric loss are available at both training
and testing time, which renders this self-supervised learning
protocol amenable to continual adaptation.

Proxy-supervision from distilled labels. A further ap-
proach consists in sourcing pseudo ground-truth annota-
tions, namely proxy labels, accurate enough to allow for effec-
tive supervision during training. The process to obtain these
annotations is usually referred to as distillation. In the field
of depth estimation, the work by Tonioni et al. [7], [14] was
the first to use traditional stereo algorithms filtered out by
means of confidence measures for offline adaptation of deep
stereo networks. Pang et al. [54] used iterative optimization
over proxy labels of the network itself obtained at higher
resolutions. Recently, these approaches have been applied
to monocular depth estimation, sourcing proxies either from
traditional stereo algorithms [63], a teacher architecture [64]
or the network itself trained in two stages [65].

3 CONTINUAL ADAPTATION

State-of-the-art deep stereo networks are severely chal-
lenged by Out-of-Distribution generalization, frequently ex-
hibiting large accuracy drops when deployed across differ-
ent environments. This issue is typically alleviated by fine-
tuning the network on additional labelled samples from
the target distribution. We argue that this is definitely
unpractical as 1) it requires collecting data and tuning the
model before real deployment for any target environment
and 2) ground-truth labels need to be acquired together with
images.

Self-supervision and distillation allow to circumvent the
need for ground-truth labels, making offline fine-tuning the
main obstacle towards seamless deployment in-the-wild.
This can be addressed by moving from a traditional train-
validation-test procedure to a continual adaptation paradigm,
whereby the distinction between offline training and online
testing is relaxed due to both being performed online and
at once. In Algo 1 we provide a description of a continual
adaptation process referred to as Full Adaptation. Given a
stereo network N parametrized by a set of weights Θ, at
any given time frame t we read a new stereo pair xt, made
out of a left and right image (lt, rt), and predict a disparity
map yt for image lt based on the current set of parameters
θt. Then, a suitable loss function Lt is computed from xt, yt

and used to update the network weights Θ before reading
the next stereo pair xt+1.

Since a train iteration is performed on-the-fly on each
incoming stereo pair, the network always learns and -
potentially- improves by gathering knowledge from the
sensed environment. It is worth pointing out that this
approach is different from standard practice dealing with
updating a network on a batch of images to optimize it
over a set of variegate samples that better approximate the
entire training set and lead to more stable gradients. In our
setting, however, the update steps occur on images that are
acquired closely in time and are, therefore, very similar.
Thus, the gradients provided by the individual samples
are quite similar to the average gradient that would be
computed in a batch. In the supplementary material we
show that updating the network on a batch of samples does
not provide significant benefits.

As shown in [10], our straightforward formulation,
though intuitive and effective, introduces a non-negligible
computational overhead that does increase the network
latency dramatically. To address this drawback, we intro-
duce a modular neural network architecture and a learning
algorithm, which are designed to work in synergy to achieve
effective continual adaptation with a limited computational
overhead.

As pointed out, updating the whole network to achieve
continual adaptation is time consuming and may hinder
applicability to real-word applications calling for tight low-
latency requirements. Due to the time required by back-
propagation being proportional to the number of network
layers to be traversed, we may speed-up the computation by
having fewer layers, i.e. fewer weights, to update. Intuitively
this is similar to accelerating forward inference by early-
stopping the network processing in order to calculate only
a subset of the total number of operations [42], [58]. Our
work leverages on a similar intuition to speed up online
back-propagation, i.e. the main computational overhead in-
troduced by continual adaptation.

We start from the general encoder-decoder architecture
illustrated in Figure 2, which can be thought of as an
abstraction of the majority of deep networks proposed for
stereo matching in the past years. The layers in network N
can be organized into non-overlapping, but inter-connected,
modules [Θ1, . . . ,Θp] according to any arbitrary grouping
policy, e.g., the resolution at which they operate, as shown
in different colors in the figure. Then, we might think of
performing back-propagation on only one module at a time
to speed it up. However, standard network architectures
provide only a prediction amenable to computing the loss at
the very last layer. Therefore to back-propagate the training
signal to each module we would still need to go through the
deeper ones in the architecture. To overcome this limitation,
we introduce shortcut back-propagation routes for each
module. Our network predicts as many outputs as the mod-
ules, [y1, . . . , yp], and includes at least one back-propagation
route from each output to all the layers belonging to the
associated module, i.e.(yi,Θi) with i ∈ [1, . . . , p]. Hence, by
computing a loss Li for each output, yi we can directly back-
propagate into the corresponding module Θi avoiding the
remaining ones by means, for instance, of skip connections
(depicted as arcs in Figure 2). The gradients computed with

4

ϴ𝑝

𝑦1𝑦2𝑦3𝑦𝑝…
…

ϴ𝑝
ϴ3ϴ2ϴ1

…

ϴ1ϴ2ϴ3

𝑟𝑙
Fig. 2. Generic design of a modular adaptive network. The network
N is organized as a set of non-overlapping modules [Θ1, . . . ,Θp] and
is trained to estimate a set of corresponding outputs [y1, . . . , yp]. During
adaptation, a full forward pass (red line) is performed to obtain the
outputs, on which losses [L1, . . . ,Lp] are computed. By selecting a
single Li, only one of the back-propagation routes (dashed lines) is
followed so to update a single module Θi.

this strategy are an approximation of the trues ones, but
they do provide a good training signal, as it will be shown
experimentally.

An example of such a design is detailed in subsection 3.3
and used in the experiments reported in this paper. In this
architecture each yi is a disparity prediction at a different
spatial resolution, with y1 denoting the highest resolution
disparity map delivered as output, while each Θi includes
all the network layers processing features at that resolu-
tion, i.e., both in the encoder and the decoder. Due to all
the layers in Θi being connected through at least a direct
back-propagation path, we can approximate the gradients
for all layers by back-propagating only through the direct
connection and skipping all the other back-propagation
routes. This paradigm approximates back-propagation into
the whole network by updating layers through time, e.g.
in p steps should the modules be sequentially updated,
while providing a fast inference time, as required by many
practical applications.

3.1 Modular ADaptation – MAD

To pursue the modular adaptation approach described in
the previous section as effectively as possible, we have de-
veloped a selection strategy aimed at choosing the module
Θi to be updated at each time step. Purposely, we have
devised the reward/punishment algorithm outlined in Algo
2. At bootstrap (2), a histogram H consisting of p bins
(one per module) is initialized to zero. Then, at each time
step t the disparity maps [y1, . . . , yp]t are predicted (6) and
the corresponding losses [L1, . . . ,Lp]t computed (7). Then,
we select a network module Θφt by sampling an index φt

from the probability distribution associated with H (8) and
perform back-propagation into Θφt only (9). At this point,
our network has been updated and it is ready to process
the next stereo pair. Before moving on, we also update H

Algorithm 2 Modular ADaptation (MAD, MAD++)

1: Require: Stereo model N parametrized by [Θ1, . . . ,Θp]
2: H = [h1, . . . , hp]← 0
3: t = 0
4: while not stop do
5: xt ← ReadFrames(t)
6: [y1, . . . , yp]t ← ForwardPass(N ,Θt, xt)
7: [L1, . . . ,Lp]t ← Loss(xt, [y

1, . . . , yp]t)
8: φt ← Sample(softmax(H))
9: Θφt

t+1 ← UpdateWeights(Lφ
t ,Θ

φt

t)
10: if t == 0 then
11: L1

t−2 ← L
1
t ,

L1
t−1 ← L

1
t

12: end if
13: L̃1

t ← 2 · L1
t−1 − L

1
t−2

14: γ ← L̃1
t − L

1
t

15: H ← δ · H
16: H[φt−1]← H[φt−1] + λ · γ
17: L1

t−2 ← L
1
t−1, L1

t−1 ← L
1
t , φt−1 ← φt

18: t← t+ 1
19: end while

in order to reward or punish the module updated in the
previous time step, namely Θφt−1 , depending on whether
this has proven to be effective or not. To do so, we linearly
extrapolate the expected value for the highest resolution loss
(i.e., that computed on the final output of the network), L̃1,
from the previous ones at times (t − 1) and (t − 2) (13).
Then, we compute the difference, γ, between the expected
and computed losses (14). In case of a positive/negative
difference we deem the update step on the module selected
at time (t− 1) to have been effective/ineffective as at time t
the highest resolution loss turns out smaller/larger than the
value we would have expected had module Θφt−1 not been
updated. Accordingly, we gradually apply a decay factor
δ to all entries in H (15) , then we reward/punish module
φt−1 by adding a contribution γ into histogram bin H[φt−1]
(16). In our experiments, we set δ and λ to 0.99 and 0.01,
respectively, and in the supplementary material we show
how the sensitivity of the algorithm to these parameters is
moderate.

In [10] we realized Algo 2 using as Li, i ∈ [1, . . . , p],
the self-supervised loss provided by the photometric error
between the left image lt and the right image r̃t warped
according to the estimated disparity yit. In particular, ac-
cording to a popular choice in literature, we compute this
photometric error as

Li
t = α ·

1− SSIM(lt, r̃t)

2
+ (1− α)|lt − r̃t| (1)

with α set to 0.85 [12]. Thus the approach refereed to as
MAD) in this paper performs real-time continual adaptation
by deploying a popular self-supervised loss within Algo 2.
Although fast and effective, MAD consists in diluting over
time the network optimization process, thereby requiring
more frames (i.e., update steps) than the straightforward
full adaptation approach (Algo 1) to acquire the knowledge
needed to adapt a model to a novel environment. In the next
section we describe how to leverage on a different kind of

5

loss which deploys a stronger source of supervision while
still being amenable to continual adaptation. In section 4
we will show how this novel formulation can effectively
accelerate a network optimization process distributed over
time according to Algo 2 and reduce the performance gap
with respect to Algo 1 dramatically.

3.2 Proxy-Supervised Modular ADaptation – MAD++

To speed-up the model adaptation process, we move toward
a stronger form of supervision. In particular, we propose to
rely on proxy supervision by leveraging on a reliable external
source of disparities used as proxies for ground-truth labels.
For instance, the use of active sensors, like LIDARs, have
been proposed to supervise a depth prediction network [66].
Yet, a cheaper - and far more practical- source of proxy labels
is described in recent works concerning both stereo [7], [14]
and monocular [63] depth estimation. Accordingly, the noisy
disparities computed by traditional stereo algorithms are
filtered by a confidence estimator and deployed as proxy
ground-truth labels to either adapt or train from scratch
a depth prediction model. Since the procedure described
in Algo 2 is agnostic to the actual loss function, we can
extend our modular adaptation approach so as to rely
on proxy supervision by simply specifying a suitable loss
Li, i ∈ [1, . . . , p]. This novel formulation of Algo 2 will be
referred to hereinafter as MAD++.

Given a generic stereo matching pipeline M, we can
obtain a noisy disparity map zt by processing an input
stereo pair xt = (lt, rt). However, as discussed in [7], [14],
to effectively supervise a depth estimation network it is
crucial to filter out most of the noisy disparities. This can be
achieved by estimating a confidence map, ct, encoding the
reliability of each pixel in zt [7], [14]. Then, supervision for
any estimated yit can be obtained from zt by the following
loss function:

Li
t = ηt · |y

i
t − zt| (2)

where ηt denotes an indicator function that selects the
measurements in zt characterized by a sufficiently high
confidence, e.g.a threshold operator applied to each pixel
p according to the estimated confidence ct(p):

ηt(p) =

{

1 if ct(p) ≥ ε

0 otherwise
(3)

Stereo Matching. Proxy labels can be obtained from
an external stereo algorithm with a negligible overhead
compared to the computational complexity of a deep stereo
network. Indeed, a number of stereo cameras endowed with
on-board processing hardware designed to deliver disparity
maps at 50+ FPS are available nowadays [67], [68], [69], [70],
[71], [72], [73]. As these cameras do not offload the stereo
matching computation to the host device, they are amenable
to distilling knowledge, i.e. proxy ground-truth disparities,
to a deep stereo network so as to run continual adaptation
without slowing down the process. Figure 3 illustrates how
a stereo camera equipped with on-board processing can
be deployed to support our real-time continual adaptation
framework for deep stereo.

Fig. 3. Deployment of on-camera disparity computation within
MAD++. During the forward pass (green arrows) the acquired frames
are processed by MADNet to predict a disparity map as well as, in
parallel, by a dedicated platform on-board the camera (e.g., an FPGA)
to compute proxy disparity labels. During the backward pass (red ar-
rows), the network is updated so as to minimize the loss given by the
discrepancy between the predicted and proxy disparities.

Due to existing hardware platforms relying mainly on
the Semi-Global Matching (SGM) [15] or the basic Block
Matching stereo algorithms, we will consider these two
options in order to distill proxy disparities within MAD++.

Proxy Filtering. As traditional stereo matchers deliver
noisy disparity maps, an effective criterion, η(p) in Equa-
tion 3, is necessary to filter out outliers and provide reliable
supervision to the continual adaptation process. In [7], [14]
confidence estimation came from a large neural network,
which, in our framework, would add a substantial compu-
tational overhead and prevent continual adaptation in real-
time. Thus, in MAD++ we pursue a different approach and
rely on computationally efficient strategies geared toward
the adopted stereo algorithm. Following [74], we deploy a
simple left-right check for SGM and a combination of six
confidence measures proposed in [75] for Block Matching.
From now on, the two settings will be dubbed as SGM and
WILD.

In Figure 4 we show qualitative examples of proxies
obtained with the aforementioned pipelines on the Driv-
ingStereo dataset [9]. We point out that both succeed in
providing reliable proxy labels only, as required by the
framework set forth in [7], [14], with density depending on
the accuracy of the actual stereo matcher.

3.3 Modularly ADaptive Network – MADNet

In this section we detail the network architecture designed
following the abstraction depicted in Figure 2 and de-
ployed throughout the experimental evaluation presented
in section 4. Besides the requirements set forth by mod-
ular adaptation (Algo 2), we have developed Modularly
ADaptive Network (MADNet) to achieve a good balance
between speed and accuracy. Indeed, MADNet has a smaller
memory footprint and delivers disparity maps much more
rapidly with a small loss in accuracy compared to complex
networks such as [4], [33], [39]. To design (MADNet) we took
inspiration from recent architectures for optical flow [76],
[77] and conceived a novel light-weight model for stereo
depth estimation.

6

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Proxy labels by the considered stereo pipelines. The first row
depicts a reference image from DrivingStereo (a) alongside the available
ground-truth disparities (b). The next two rows report the raw disparities
and proxy labels (i.e.filtered disparities) obtained by the WILD (c),(d) and
SGM (e),(f) pipelines.

Layer Kernel Stride Dilate Output
Channels

Input/Output
Resolution

Input

Encoder
f conv1 a 3 2 1 16 1/2 input
f conv1 b 3 1 1 16 1/2 f conv1 a
f conv2 a 3 2 1 32 1/4 f conv1 b
f conv2 b 3 1 1 32 1/4 f conv2 a
f conv3 a 3 2 1 64 1/8 f conv2 b
f conv3 b 3 1 1 64 1/8 f conv3 a
f conv4 a 3 2 1 96 1/16 f conv3 b
f conv4 b 3 1 1 96 1/16 f conv4 a
f conv5 a 3 2 1 128 1/32 f conv4 b
f conv5 b 3 1 1 128 1/32 f conv5 a
f conv6 a 3 2 1 192 1/64 f conv5 b
f conv6 b 3 1 1 192 1/64 f conv6 a

Decoder
d conv1 3 1 1 128 1 input
d conv2 3 1 1 128 1 d conv1
d conv3 3 1 1 96 1 d conv2
d conv4 3 1 1 64 1 d conv3
d conv5 3 1 1 32 1 d conv4
y 3 1 1 1 1 d conv5

Refinement
r conv1 3 1 1 128 1 input
r conv2 3 1 2 128 1 r conv1
r conv3 3 1 4 128 1 r conv2
r conv4 3 1 8 64 1 r conv3
r conv5 3 1 16 32 1 r conv4
r conv6 3 1 1 1 1 r conv5

TABLE 1
MADNet architecture. We detail the layers of the pyramidal features
extractor (Encoder), disparity estimators (Decoder) and refinement

module (Refinement).

We pursue dense disparity regression by a pyramidal
approach amenable to modularize the architecture and con-
ducive to fast processing. Following Figure 2, our network
estimates disparities yi, with i ∈ [1, . . . , 5], ranging from 1

4

to 1

64
resolution, respectively. As for the encoding section,

we design two pyramidal features extractors with shared
weights that process the left and right image through a
cascade of blocks, as detailed in Table 1 (Encoder). Based
on the lowest resolution feature maps, a correlation layer
[3] computes raw matching costs between the left and right
images. Then, we deploy a disparity decoder, detailed in
Table 1 (Decoder), predicting the disparity prediction at the
lowest resolution, i.e. y5.

The lowest resolution disparity map is up-sampled by
bilinear interpolation to 2× the resolution and used to warp
the right features towards the left ones, with both feature
maps then forwarded to a further correlation layer and

another disparity Decoder in order to estimate y4. Again,
this map is up-sampled to the next resolution level and
the same computation as in the previous level is carried in
order to come up with disparity estimate y3. This scheme
is repeated until estimate y1 is reached. The warping
mechanism is instrumental to use a small search range at
any resolution level, i.e. [−2, 2], that is equivalent, at the
lowest scale, to a search range of 128, to which a further 2i

range is added at each up-sampling. The highest resolution
disparity estimate, y1, is further processed by a refinement
module [77], as detailed in Table 1 (Refinement). Finally, the
refined y1 is up-sampled from 1

4
to full resolution by bilinear

interpolation.
With reference to Figure 2, in MADNet a generic module

Θi consists of a block from the encoding section together
with the corresponding disparity decoder, with the arcs
linking together the encoder and decoder within a module
realized by the warping and correlation layers. Yet, due to
y1 being at quarter resolution, Θ1 is slightly different: in
includes the first two of the six encoding blocks alongside
both the disparity decoder and the refinement network.

4 EXPERIMENTAL RESULTS

In this section, we wish to evaluate thoroughly the effective-
ness of our continual adaptation framework. Purposely, we
run a set of experiments on a variegated family of datasets.

4.1 Datasets

Here, we provide a description of the datasets used for the
experiments.

FlyingThings3D. A collection of synthetic images, made
out of about 22k training stereo pairs with dense ground-
truth labels, part of the SceneFlow synthetic dataset [3]. This
dataset has been used to pre-train MADNet before deploy-
ment on real images, according to the standard practice in
recent deep stereo literature outlined in [10]. Specifically, we
perform 1.2M training iterations using Adam Optimizer and
a learning rate of 10−4, halved after 400K steps and further
every 200K until convergence. As loss function, we compute
the L1 difference between disparity maps estimated at each
resolution and downsampled ground-truth labels. The final
loss is a weighted sum of the contributions from the dif-
ferent resolutions, with weights set to 0.005, 0.01, 0.02, 0.08,
0.32 from y2 to y6 according to [77].

KITTI 2015 train set. A collection 200 stereo pairs with
sparse ground-truth maps, obtained from post-processed
LIDAR measurements and 3D CAD objects [6]. This dataset
has been used to fine-tune MADNet for 500K steps with
learning rate 10−4 by computing the loss only on the full-
resolution disparity map and using 0.001 as weight, as
described in [10]. From now on, a MADNet model trained on
FlyingThings3D and fine-tuned on KITTI 2015 with explicit
supervision will be referred to as MADNet-GT.

Raw KITTI. A large dataset featuring 61 stereo se-
quences, for a total of about 43k pairs with different image
resolution. We use a constant resolution of 320 × 1226
pixels by taking central crops of the original frames [10]. As
depth ground-truths, we use filtered LIDAR measurements
[8] converted to disparities through known calibration pa-
rameters [10]. According to the classification reported in

7

LEAStereo CSPN GANet AcfNet HD3 DeepPruner GWCNet Bi3D AANet DispNetC MADNet StereoNet
[46] [45] [43] [44] [37] [38] [49] [78] [47] [3] [10] [48]

D1-all 1.65 1.74 1.81 1.89 2.02 2.15 2.11 2.21 ... 2.55 4.34 4.66 4.83
Time† 0.30 1.00 1.80 0.18 0.48 0.14 0.32 0.48 0.06 0.06 0.02 0.02

TABLE 2
Comparison between stereo architectures on the KITTI 2015 test set without adaptation. Detailed results available in the KITTI online

leader-board. † Times (measured on different GPUs) taken from the online benchmark.

City (8027 frames) Residential (28067 frames) Campus (1149×2 frames) Road (5674 frames)
Starting Model Adapt. Mode Proxy src. D1-all(%) EPE D1-all(%) EPE D1-all(%) EPE D1-all(%) EPE

MADNet No ✗ 37.42 9.96 37.04 11.34 51.98 11.94 47.45 15.71

MADNet FULL ✗ 3.35 1.11 2.38 0.94 10.62 1.78 2.72 1.04
MADNet MAD ✗ 7.51 1.63 4.37 1.32 22.27 3.66 9.38 2.04

(+4.16) (+0.52) (+1.99) (+0.37) (+11.65) (+1.88) (+6.66) (+1.00)
MADNet FULL++ SGM [15] 3.51 1.12 2.27 0.94 9.69 1.63 3.18 1.05
MADNet MAD++ SGM [15] 4.12 1.18 3.31 1.04 11.24 1.76 5.32 1.22

(+0.62) (+0.06) (+1.04) (+0.10) (+1.55) (+0.13) (+2.14) (+0.17)
MADNet FULL++ WILD [75] 5.11 1.23 2.82 0.99 11.79 1.89 4.28 1.11
MADNet MAD++ WILD [75] 5.75 1.30 2.88 0.99 13.93 2.04 5.39 1.24

(+0.65) (+0.07) (+0.06) (-0.01) (+2.13) (+0.15) (+1.11) (+0.13)

TABLE 3
Online adaptation within a single domain. Results on the City, Residential, Campus and Road sequences from KITTI [79].

the official website, we group sequences into four main
categories: Road, Residential, Campus and City. Then, we
concatenate the sequences belonging to the same category so
as to obtain new, longer sequences of 5674, 28067, 1149×21

and 8027 frames for the above mentioned categories, respec-
tively. In this manner, we simulate four macro environments
characterised by different peculiarities, i.e. City and Resi-
dential mostly show roads surrounded by buildings, while
Road images are collected while driving in highways and
country roads, thus mainly depicting cars and vegetation.
The dataset provides also raw LIDAR measurements.

DrivingStereo. A recent dataset [9] collecting about 170k
stereo images grouped in 38 sequences with average resolu-
tion of 384×832 pixels. ground-truth is obtained by iterative
filtering of LIDAR labels by means of a stereo CNN. We
select three challenging sequences, namely 2018-08-17-09-45,
2018-10-11-17-08 and 2018-10-15-11-43, consisting of 1667,
1119 and 4950 frames, respectively. We rename the above
mentioned sequences as Rainy, Cloudy and Country, respec-
tively, according to their main peculiarities, We selected
these sequences to 1) evaluate short-term adaptation (i.e.,
after few hundreds frames) in challenging conditions (e.g.,
rainy) and 2) assess the impact of prior continual adaptation
(e.g., on KITTI) when moving to a new environment.

WeanHall. An indoor dataset [16] which includes 6510
stereo pairs. As the working environment is very different
from the autonomous driving scenarios addressed by previ-
ous datasets, we deem it worth evaluating performance also
when continually adapting MADNet in so diverse settings.
Unfortunately, no ground-truth disparities/depths are pro-
vided in WeanHall, neither are we aware of any other indoor
stereo dataset providing sequences of real images alongside
with the corresponding ground-truth labels. Therefore, we
rely on the photometric error (Equation 1) to provide quan-
titative performace figures on WeanHall.

1. About Campus, it represents the most challenging environment
characterized by low-textured buildings, yet the shortest sequence. For
this reason, we loop twice over the sequence as in [10].

4.2 Experimental protocol

To assess the performance of our continual adaptation
schemes, we run disparity prediction on the stereo pairs of
a given sequence according to their order, i.e. as if they were
acquired online in the field. On KITTI and DrivingStereo
we measure the D1-all error rate as the percentage of pixels
having absolute disparity error larger than 3 and relative
error larger than 5%, as well as the End-Point-Error (EPE),
whilst on WeanHall we measure the photometric error upon
reprojection, as detailed in Equation 1. In case of baseline
performance dealing with prediction without adaptation,
we simply compute error metrics for each stereo frame
and average them across the entire sequence. In case of
adaptation, we process stereo pair xt to predict a disparity
map yt and compute the error metrics on it, then we
update the network according to either Algo 1 (FULL) or
Algo 2 (i.e.MAD or MAD++). As a consequence, the impact
of the continual adaptation step at time t will affect the
error metrics from time (t + 1). Akin to baseline perfor-
mance, per-sequence metrics are computed by averaging
across frames those dealing with the per-frame predictions
yt. During adaptation, we use a momentum optimizer,
with a constant learning rate of 10−4 and a momentum
of 0.9. Different optimizers or learning rate schedules re-
sulted in minor fluctuations in our experiments. All exper-
iments have been carried out using the source code and
trained models available at github.com/CVLAB-Unibo/
Real-time-self-adaptive-deep-stereo.

4.3 Comparison with state-of-the-art stereo networks

We start by comparing MADNet to the current state-of-the-
art networks on the standard KITTI 2015 benchmark setting,
i.e. without performing online adaptation. Table 2 collects
performance figures retrieved from the online benchmark
(to which we refer the reader for a complete overview) for
both accuracy and runtime, although the latter is measured
on GPUs belonging to different hardware generations. We
can notice that the most accurate architectures trade preci-
sion for speed, whereas MADNet can operate in real-time
with a modest increase of the error rate (about 3% with

github.com/CVLAB-Unibo/Real-time-self-adaptive-deep-stereo
github.com/CVLAB-Unibo/Real-time-self-adaptive-deep-stereo

8

Starting Model Adapt. Mode Proxy src. D1-all(%) EPE
MADNet No ✗ 38.84 11.68
MADNet FULL ✗ 2.43 0.95
MADNet MAD ✗ 4.09 1.19

(+1.66) (+0.24)
MADNet FULL++ SGM [15] 2.28 0.95
MADNet MAD++ SGM [15] 2.46 0.98

(+0.18) (+0.03)
MADNet FULL++ WILD [75] 2.64 0.98
MADNet MAD++ WILD [75] 2.44 0.96

(-0.20) (-0.02)

TABLE 4
Online adaptation across different domains. Results on the

sequence Campus → City → Residential → Road (∼43k frames, the
whole KITTI dataset)

0 500 1000 1500 2000
Frames

0

50

100

D1
-a

ll

FULL
MAD

FULL++ (SGM)
MAD++ (SGM)

None

Fig. 5. Adaptation speed on Campus. MAD++ adapts much faster than
MAD, rapidly converging to the same error level as FULL and FULL++
(blue and red solid lines, almost completely overlapped).

respect to the top-performing network). The focus of our
work concern deployingMADNet alongside suitable online
adaptation strategies to maximize accuracy while running
in real-time in unknown environments.

4.4 Evaluation on KITTI

We begin our evaluation by studying different aspects of
continual adaptation on the KITTI dataset. First, we address
short-term adaptation within a domain by considering the
KITTI sequences belonging to the same category indepen-
dently. Then, we tackle a setup dealing with long-term
adaptation across domains by concatenating together the
sequences belonging to the different categories. We report
results obtained by both the continual adaptation schemes
discussed in section 3, namely full adaptation (Algo 1)
and the more efficient - though approximated- modular
adaptation approach (Algo 2). We also assess upon steering
both adaptation schemes by either self-supervision of proxy
supervision. As for the latter source of supervision, we con-
sider proxy labels yielded by the previously described SGM
and WILD pipelines. As in KITTI raw LIDAR measurements
are available alongside stereo pairs, we also investigate
on the effectiveness of this form of proxy supervision.
Finally, we dig deeper into our framework by analysing
the distribution of the update steps across the modules
in modular adaptation (Algo 2 and investigating on the
computational savings that may be achieved by employing
slower adaptation rates.

Online adaptation in-the-wild. We address here the
reference scenario concerning practical deployment in-the-
wild: a stereo network pre-trained on synthetic data is
run in a wholly unknown environment. In this setting,
the experimental results reported in Table 3 and Table 4
deals with adaptation within a single domain and across
different domains, respectively, both tables following the
same organization. The first row highlights the baseline

(a)

(b)

(c)

Fig. 6. Comparison between different proxy labels. We show a refer-
ence image (a) from the City domain and proxy labels sourced by SGM
(b) and WILD (c).

Starting Model Adapt. Mode D1-all(%) EPE

MADNet-Synthia FULL (baseline) 2.76 1.03
MADNet-Synthia-FOL2A [55] FULL 2.60 1.01
MADNet-Synthia FULL++ (ours) 2.23 0.95

TABLE 5
Comparison of online adaptation strategies across different

domains. Results on the sequence Campus → City → Residential →
Road. Comparison between MADNet trained on FlyingThings3D and

finetuned on Synthia, with (FOL2A) or without meta-learning
optimization.

performance measured by pre-training MADNet on Fly-
ingThings3D and then running the model without any kind
of online adaptation. Then, we report the results achieved
by the two online adaptation schemes, i.e. FULL (Algo 1)
and MAD (Algo 2), realized by self-supervision through
the photometric error loss, as formulated in our previous
work [10]. The next rows concern the novel formulation
described in this paper, which exploits different sources of
proxy supervision, namely SGM and WILD. Again, FULL++
and MAD++ refer to Algo 1 and Algo 2, respectively. For
each source of supervision, we report in blue the difference
in terms of D1-all and EPE between the MAD and FULL
adaptation schemes, so as to highlight the gap between
modular and full adaptation when relying on the same form
of supervision. The difference between the two Tables deals
with the KITTI sequences belonging to the same category
having been processed individually in Table 3, after concate-
nation according to the order Campus → City → Residential
→ Road, in Table 4.

Firstly, the comparison between the baseline perfor-
mance reported in the first row of both Tables and the
figures in the successive ones highlights the dramatic error
drops yielded by all considered methods and vouches for
the utmost effectiveness of adapting online a stereo model
pre-trained on synthetic data and run in a wholly unknown
environment. As expected, between the two schemes, full
adaptation (FULL/FULL++) consistently outperforms mod-
ular adaptation (MAD/MAD++) when steered by the same
kind of supervision. Then, as for the former scheme, self-
supervision (FULL) and proxy supervision (FULL++) seem,
overall, rather equivalent options, one or the other perform-
ing slightly better in some experiments: e.g., in Table 3
FULL provides the lowest D1-all error in City and Road,
FULL++(SGM) in Residential and Campus, whereas in Ta-
ble 4 FULL++(SGM) yields smaller errors than FULL which,
in turn, outperforms FULL++(WILD).

9

City (8027 frames) Residential (28067 frames) Campus (1149×2 frames) Road (5674 frames)
Starting Model Adapt. Mode Proxy src. D1-all(%) EPE D1-all(%) EPE D1-all(%) EPE D1-all(%) EPE

MADNet-GT No ✗ 2.08 0.80 2.55 0.91 6.51 1.31 1.63 0.83

MADNet-GT FULL ✗ 1.60 0.89 1.87 0.86 4.70 1.31 1.14 0.81
MADNet-GT MAD ✗ 1.62 0.90 1.54 0.85 4.81 1.28 1.28 0.84

(+0.02) (+0.01) (-0.33) (-0.01) (+0.10) (-0.03) (+0.14) (+0.03)
MADNet-GT FULL++ SGM [15] 1.59 0.92 1.49 0.84 3.50 1.05 1.24 0.85
MADNet-GT MAD++ SGM [15] 1.59 0.92 1.52 0.86 3.73 1.14 1.35 0.86

(-0.01) (0.00) (+0.03) (+0.02) (+0.22) (+0.09) (+0.11) (+0.01)
MADNet-GT FULL++ WILD [75] 1.58 0.90 1.50 0.85 4.19 1.13 1.24 0.83
MADNet-GT MAD++ WILD [75] 1.57 0.91 1.79 0.87 4.26 1.23 1.30 0.85

(-0.01) (+0.01) (+0.29) (+0.02) (+0.07) (+0.10) (+0.06) (+0.02)

TABLE 6
Online adaptation within a single domain after fine-tuning. Results on the City, Residential, Campus and Road sequences from KITTI [79].

-GT denotes fine-tuning by ground-truths on the KITTI training set after pre-training on synthetic imagery.

Starting Model Adapt. Mode Proxy src. D1-all(%) EPE
MADNet-GT No ✗ 2.45 0.89
MADNet-GT FULL ✗ 1.83 0.88
MADNet-GT MAD ✗ 1.94 0.86

(+0.11) (-0.01)
MADNet-GT FULL++ SGM [15] 1.46 0.85
MADNet-GT MAD++ SGM [15] 1.76 0.89

(+0.30) (+0.03)
MADNet-GT FULL++ WILD [75] 1.48 0.85
MADNet-GT MAD++ WILD [75] 1.64 0.86

(+0.16) (+0.01)

TABLE 7
Online adaptation across different domains after fine-tuning.

Results on the sequence Campus → City → Residential → Road. -GT
denotes fine-tuning by ground-truths on the KITTI training set after

pre-training on synthetic imagery.

However, when dealing with modular adaptation,
proxy supervision (MAD++) consistently outperforms self-
supervision (MAD), often by a very large margin. Indeed,
unlike self-supervision, proxy supervision allows for re-
ducing the performance gap between full and modular
adaptation dramatically, as highlighted by the figures re-
ported in blue in Table 3. We also point out that this is
particularly evident in short sequences, such as Campus in
Table 3, for which the gap is reduced from about 11.83%
to less than 3%. Indeed, as shown in Figure 5, MAD++ is
much faster than MAD in reaching the same accuracy level
as FULL/FULL++, which suggests performance differences
measured by error metrics averaged along a sequence likely
showing up more evidently in shorter ones. Similar to
Table 3, proxy supervision turns out particularly beneficial
to improve modular adaptation with respect to the for-
mulation based on self-supervision in the long-term, cross-
domain adaptation experiments considered in Table 4, with
MAD++ turning out almost as effective as FULL++ while
observing a substantial gap between MAD and FULL.

When it comes to reasoning on the different proxy
sources adopted with either FULL++ or MAD++, we can
notice that, more often than not, SGM delivers a more
effective supervision than WILD. In fact, the latter provides
better performance only with MAD++ in the Residential
domain (Table 3) and, though rather slightly, in case of cross-
domain adaptation ((Table 4). We ascribe this to the much
higher density of proxy labels featured by the SGM pipeline
compared to WILD, as illustrated qualitatively in Figure 6.

Proxy supervision vs meta-learning. We compare proxy
supervision to the meta-learning framework proposed in
[55]. Purposely, according to the setting suggested in [55],
we take the MADNet model trained on FlyingThings3D

and 1) fine-tune it on Synthia in a traditional, supervised
manner or 2) using the First Order approximation variant
of L2A (FOL2A). Thus, for this experiment, 1) provides
the baseline with respect to which we evaluate the adap-
tation performance provided by FOL2A and our proposed
approach dealing with proxy labels gathered by SGM. In
both cases, we use a learning rate of 10−5 and a batch
size of 16 for 10K steps. For meta-learning optimization we
choose FOL2A [55], since all other strategies resulted un-
stable when coupled with MADNet, and use 3 consecutive
frames. Table 5 collects the outcome of this experiment. We
can notice how using L2A during pre-training can improve
the performance with respect to the baseline. However,
our proposal turns out significantly more effective, i.e.proxy
supervision is more effective than L2A pre-training. A thor-
ough comparison dealing with all the individual sequences
is reported in the supplementary material.

Online adaptation after fine-tuning. As proposed in
[10], we also investigate on the effectiveness of the different
on-line adaptation schemes in case the pre-trained model
may be fine-tuned by real stereo pairs with ground-truths
before running inference. Indeed, this is the case of some
research datasets like KITTI.

Thus, in Table 6 and Table 7 we report the results dealing
with adaptation on each of the four KITTI domains and
across domains, the only difference with respect to Table 3,
Table 4 being that now MADNet has been pre-trained on
FlyingThings3D and then fine-tuned on the KITTI 2015
training set before undergoing online adaptation by the
considered schemes and forms of supervision.

The first row in Table 6 and Table 7 show the baseline
performance yielded by running the pre-trained and fine-
tuned model with online adaptation turned off. As now
the network has been fine-tuned by samples endowed with
ground-truth disparities, the baseline model performs con-
siderably better than in Table 3 and Table 4. Nevertheless,
both full adaptation (FULL/FULL++) as well as modu-
lar adaptation (MAD/MAD++) allow to further improve
over this strong baseline in all the considered experiments,
typically yielding substantial relative performance gains.
For instance, in Table 6, FULL++(SGM) and MAD++(SGM)
can provide a relative D1-all error reduction of about
46% and 42% on Campus (the shortest sequence), whereas
FULL can decrease such error by about 30% in Road and
MAD++(WILD) by about 24% in City. Similarly, in Table 7,
the relative D1-all error reduction ranges from about 20%
(MAD) to as much as 40% (FULL++(SGM)).

10

City (8027 frames) Residential (28067 frames) Campus (1149×2 frames) Road (5674 frames)
Starting Model Adapt. Mode Proxy src. D1-all(%) EPE D1-all(%) EPE D1-all(%) EPE D1-all(%) EPE

MADNet No ✗ 37.42 9.96 37.04 11.34 51.98 11.94 47.45 15.71
MADNet FULL++ LIDAR 3.66 0.97 2.94 0.89 9.10 1.54 3.24 0.93
MADNet MAD++ LIDAR 4.63 1.12 3.99 1.06 19.33 2.32 4.74 1.12

(+0.97) (+0.15) (+1.05) (+0.18) (+10.23) (+0.78) (+1.50) (+0.20)

MADNet-GT No ✗ 2.08 0.80 2.55 0.91 6.51 1.31 1.63 0.83
MADNet-GT FULL++ LIDAR 2.00 0.67 2.17 0.75 4.29 0.96 1.59 0.66
MADNet-GT MAD++ LIDAR 3.16 0.88 2.86 0.92 4.96 1.20 1.89 0.79

(+1.15) (+0.21) (+0.69) (+0.17) (+0.67) (+0.23) (+0.30) (+0.14)

TABLE 8
Online adaptation within a single domain with proxy supervision from raw LIDAR. Results on the City, Residential, Campus and Road

sequences from KITTI [79]. -GT denotes fine-tuning by ground-truths on the KITTI training set after pre-training on synthetic imagery.

Starting Model Adapt. Mode Proxy src. D1-all(%) EPE
MADNet No ✗ 38.84 11.68
MADNet FULL++ LIDAR 2.87 0.87
MADNet MAD++ LIDAR 3.86 1.02

(+0.99) (+0.15)

MADNet-GT No ✗ 2.45 0.89
MADNet-GT FULL++ LIDAR 2.06 0.73
MADNet-GT MAD++ LIDAR 2.86 0.89

(+0.81) (+0.16)

TABLE 9
Online adaptation across different domains with proxy

supervision from raw LIDAR. Results on the sequence Campus →

City → Residential → Road. -GT denotes fine-tuning by ground-truths
on the KITTI training set after pre-training on synthetic imagery.

Besides, due to the base model undergoing adaptation
being stronger, full and modular adaptation tend to exhibit
a much smaller gap when driven by the same form of
supervision (figures in blue). Moreover, unlike the previous
experiment, in most cases proxy supervision provides better
performance than self-supervision non only with modular
adaptation (MAD++ vs. MAD) but also with full adaptation
(FULL++ vs FULL).

As for the two kinds of proxy labels, the WILD pipeline
seems now competitive with respect to SGM, as it can
provide better or equivalent performance also in case of
full adaptation (City and Road in Table 6) and turns out
generally more effective when the model undergoes modu-
lar adaptation, in particular in the long-term, cross-domain
experiment (Table 7). We would be led to ascribe this
finding to the fact that, although fewer in number, the
proxies extracted by WILD are more accurate and thus
more amenable to refine the already good disparities pre-
dicted by a strong base model fine-tuned by real images
equipped with ground-truths. Conversely, as observed in
the previous experiment, denser proxies seem instrumental
to break down the gross errors spread throughout the image
delivered by a baseline prone to the synthetic-to-real domain
shift.

Proxy supervision by LIDAR. We also inquire about the
effectiveness of continual adaptation in case proxy super-
vision may be obtained from raw measurements provided
by a LIDAR sensor, as it is the case of the KITTI dataset.
Akin to previous experiments, we consider both a baseline
MADNet pre-trained on FlyingThings3D as well as a model
further fine-tuned by labelled stereo pairs from the KITTI
2015 training set (MADNet-GT). Table 8 and Table 9 collect
the results dealing with online adaptation on each of the
four KITTI domains and across them, respectively. We can
notice a trend similar to previous experiments relatively

(a)

(b)

Fig. 7. Raw LIDAR for proxy supervision. We show a reference image
(a) from the City domain alongside proxy labels sourced by raw Lidar
(b), with the latter exhibiting wrong measurements at depth boundaries.

to several key findings. Indeed, in the in-the-wild scenario,
online adaptation does matter a lot as in both Tables we
observe a dramatic reduction of errors compared to the
baseline model pre-trained on synthetic imagery. Besides,
FULL++ consistently outperform MAD++, the margin turn-
ing out generally higher than with proxy supervision by
SGM and WILD (Table 3 and Table 4). In case stereo pairs
with ground-truth are available to fine-tune the pre-trained
model, online adaptation by LIDAR proxies and full adapta-
tion (FULL++) is still beneficial, whilst modular adaptation
(MAD++) tend to perform worse than the baseline. Hence,
we are lead to conclude that modular adaptation (Algo 2)
with supervision by LIDAR is less effective than in case the
proxy labels are gathered by the SGM and WILD pipeline.

Moreover, by comparing Table 8 and Table 9 to Tables
1-4, we can notice that, in general, both MADNet and
MADNet-GT exhibit a lower EPE when steered by LIDAR
supervision thanks to the higher depth resolution provided
by the sensor. Yet, the D1-all error tends to be higher. We
ascribe this to raw LIDAR measurements featuring a larger
number of outliers compared to SGM and WILD because
both the latter pipelines include a filtering step to disregard
low-confidence disparities. In particular, it is worth observ-
ing how raw LIDAR measurements often yield gross errors
near depth discontinuities, as illustrated in Figure 7.

Complementing low-density supervision. As shown
in both Figure 6 and Figure 7, we can notice how differ-
ent the density of the labels is by changing the source,
with WILD, in particular, resulting the method providing
sparser supervision. To obtain denser supervision, we might
combine WILD with self-supervision [10] or with LIDAR
measurements, that often results complementary to it. We
show this experiment in the supplementary material.

Distribution of update steps in modular adaptation.
We dig deeper into the behavior of Algo 2 in order to study
the distribution of the update steps across the modules

11

Fig. 8. Percentage of update steps across MADNet ’s modules over
time. Update frequency (%) for Θi, i ∈ [2, . . . , 6] MAD (top) and MAD++
with SGM proxy labels (bottom) as function of the processed frames.
Experiment dealing with continual adaptation from synthetic pre-training
on Campus → City → Residential → Road.

of MADNet. Figure 8 plots the distribution of update
steps (expressed as a percentage of the processed frames)
occurring for each module during continual adaptation in-
the-wild across the four KITTI domains (same setting as in
Table 4): in the top and bottom figures we show the results
achieved by running MAD and MAD++ with SGM labels,
respectively. We can notice how, with the original MAD
strategy based on self-supervision by the photometric error,
most of the steps concern Θ5, which shows consistently a
higher percentage with respect to the other modules, while
Θ6 results the module less frequently updated. Conversely,
MAD++ steered by SGM yields a more balanced distribution
of updates across the modules, with almost no gap between
the percentages observable after 20K frames. We argue that
the more even distribution of the update steps featured by
MAD++ leads to a better approximation of continual adap-
tation by back-propagation into the whole network (Algo 1),
which, indeed, updates all modules in each step. A round-
robin strategy would allow for uniform sampling of the
modules alike, but such a fixed sampling schedule proved to
be less effective than MAD [10]. MAD++, seems to provide a
balanced update distribution without being bound to a fixed
schedule, which, in fact, turns out beneficial to the continual
adaptation process. As such, Figure 8 may help explaining
why, as observed in Table 3 and Table 4, MAD++ is more
effective than MAD in filling the performance gap between
modular adaptation and full adaptation.

Experiments with different adaptation rates. To pursue
further computational efficiency in continual adaptation,
we investigate on updating the model on only a subset
of the incoming frames, so as to reduce the computational
overhead due to continuously gathering knowledge about
the sensed environment. Purposely, we consider a more
general adaptation approach, whereby the model is up-
dated every K frames, and evaluate the speed-performance
trade-off yielded by Algo 1 and Algo 2 while varying
K . Figure 9 plots the D1-all error as a function of the
frame-rate2 achieved with K = 1, 2, 5, 10 by considering
self-supervision (FULL and MAD) and proxy supervision

2. Ideal performance measured on a 1080Ti GPU.

15 20 25 30 35
Framerate (FPS)

2

4

6

8

10

12

14

D1
-a

ll k=
1

k=
1

k=
2

k=
2

k=
5

k=
5

k=
10

k=
10

Alg. 1:
Alg. 2:

FULL
MAD

FULL++ (SGM)
MAD++ (SGM)

Fig. 9. Performance vs. speed with different adaptation rates. FPS
vs. D1-all measurements for Algo 1 (blue) and Algo 2 (red) when adapt-
ing every K=1,2,5,10 frames. Solid lines represent linear interpolations
between measurements. Results dealing with continual adaptation from
synthetic pre-training on Campus → City → Residential → Road.

(FULL++ and MAD++ with SGM proxies).
Performing adaptation at every frame (K=1) allows

MADNet to run at about 14 FPS with FULL and FULL++,
while the network can achieve more than 25 FPS by MAD
and MAD++. By increasing the interval between subsequent
adaptations, we observe a corresponding increase of both
speed and disparity prediction errors for all the considered
methods.

We can appreciate the better performance-speed trade-
off provided by MAD++ by fixing a target frame-rate and
comparing the accuracy yielded by the different methods,
or vice-versa. For instance, considering 30 FPS as the target
speed requirement, we can notice that this is met by Algo
2 and Algo 1 with K=2 and k=10, respectively. In these
settings, MAD++ achieves the lowest D1-all error, with
FULL and FULL++ running faster but yielding higher errors
and the original MAD formulation resulting both slower
and less accurate than both variants of Algo 1. Should
the application demand a lower real-time requirement, i.e.
25 FPS, MAD++ would turn out again the most accurate
method to meet the given target speed. On the other hand,
we may compare methods achieving close D1-all scores,
e.g. MAD++ and FULL++, both with K=1, and highlight
how MAD++ can run much faster with equivalent accuracy.
Likewise, by considering Algo 1 with K=5 and Algo 2 with
K=2, we can observe how MAD would turn out significantly
less accurate than FULL and FULL++, whilst MAD++ can
provide equivalent accuracy and faster speed.

Thus, we are lead to conclude that MAD++ achieves a
more favourable performance-speed trade-off with respect
to the other continual adaptation methods, as also suggested
in Figure 9 by the trend of the interpolating curves (the
lower the better).

4.5 Evaluation on DrivingStereo

Here we move to a different dataset dealing with au-
tonomous driving scenarios in order to assess the perfor-
mance of continual adaptation in diverse weather condi-
tions. Purposely, we select three sequences from the Driv-
ingStereo dataset [9]: Rainy and Dusky are short videos
featuring less than 2k frames, while Cloudy counts about
5k frames. Moreover, Rainy depicts imagery acquired in
presence of rain and wet road surface, making it particu-
larly hard for traditional stereo algorithms too. These three
sequences have been selected to study: 1) how continual

12

Rainy (1667 frames) Dusky (1119 frames) Cloudy (4950 frames)
Starting Model Adapt. Mode Proxy src. D1-all(%) EPE D1-all(%) EPE D1-all(%) EPE

MADNet No ✗ 31.40 4.46 39.04 5.77 25.37 3.13
LEAStereo [46] No ✗ 22.14 3.90 22.99 3.45 8.64 1.61

MADNet FULL ✗ 19.64 2.71 20.40 2.48 9.54 1.57
MADNet MAD ✗ 26.11 3.67 33.23 5.43 16.03 2.83

(+6.47) (+0.97) (+12.84) (+2.96) (+6.49) (+1.25)
MADNet-K-FULL FULL ✗ 15.75 2.46 9.21 1.43 8.09 1.48
MADNet-K-MAD MAD ✗ 12.22 1.82 9.81 1.43 7.32 1.41

(-3.53) (-0.63) (+0.60) (0.00) (-0.77) (-0.06)

MADNet FULL++ SGM [15] 17.28 2.62 12.86 1.73 6.63 1.33
MADNet MAD++ SGM [15] 17.70 2.48 13.61 1.84 7.76 1.45

(+0.42) (-0.15) (+0.76) (+0.11) (+1.13) (+0.12)
MADNet-K-FULL++ FULL++ SGM [15] 12.97 2.50 6.99 1.47 6.61 1.66
MADNet-K-MAD++ MAD++ SGM [15] 12.65 2.32 5.93 1.40 6.26 1.72

(-0.33) (-0.18) (-1.06) (-0.07) (-0.35) (+0.06)
SGM [15] ✗ ✗ 17.88 6.55 11.83 2.60 7.31 2.33

(4.59) (1.25) (4.49) (1.01) (2.10) (0.86)
(66.90% density) (77.35% density) (79.53% density)

MADNet FULL++ WILD [75] 17.93 2.60 19.04 2.32 8.31 1.49
MADNet MAD++ WILD [75] 17.71 2.40 19.24 2.48 8.38 1.52

(-0.22) (-0.20) (+0.20) (+0.16) (+0.07) (+0.03)
MADNet-K-FULL++ FULL++ WILD [75] 14.01 2.24 7.94 1.30 6.21 1.30
MADNet-K-MAD++ MAD++ WILD [75] 13.70 2.09 7.50 1.27 5.96 1.29

(-0.31) (-0.15) (-0.44) (-0.03) (-0.25) (-0.01)
WILD [75] ✗ ✗ 36.55 17.85 33.55 13.83 22.89 9.77

(2.45) (1.03) (1.92) (0.87) (1.13) (0.83)
(23.37% density) (25.12% density) (28.21% density)

TABLE 10
Online adaptation on DrivingStereo. Results on the Rainy, Dusky and Cloudy sequences. -K denotes prior adaption on KITTI (Campus → City

→ Residential → Road) before further adaptation on DrivingStereo.

adaptation performs in presence of challenging weather
conditions (e.g., rain), 2) how prior continual adaptation
does affect performance when facing a new environment.
Short sequences allow to better investigate on the latter
issue, as long ones would hide the effects of prior adaptation
on the initial frames due to performance figures being
averaged across all frames. As for experiments concerning
prior continual adaptation, we use the MADNet instance
trained on synthetic images and adapted on Campus →
City → Residential → Road, dubbed as MADNet-K-A, with
A being the specific adaptation mode adopted.

Keep adapting! Table 10 collects the experimental results
on DrivingStereo. In the first row we report the base-
line performance achieved by running MADNet after pre-
training on synthetic imagery and without any further adap-
tation, followed by the results achieved by the current top-1
method on the KITTI online benchmark pre-trained on the
same synthetic data, i.e.LEAStereo [46], that highlights how
current state-of-the-art methods are prone to the domain-
shift issue. The three successive sub-tables, i.e. rows 2-7, 8-16
and 17-25, collect results dealing with continual adaptation
realized through self-supervision by the photometric error
loss, proxy supervision by SGM and proxy supervision by
WILD, respectively. For the two sources of proxy labels we
also show the errors yielded by the pipeline providing the
supervision, both before and after the outlier removal step
(rows 14-15 and 23-24), alongside the resulting label density
(rows 16 and 25). We do not consider supervision by LIDAR
as such measurements are not provided in DrivingStereo.

Considering self-supervision, we first adapt on a se-
quence by FULL and MAD (rows 2 and 3). As observed on
KITTI, both strategies are effective, though a large margin
between the two exists. In rows 5 and 6 we report the
results achieved by FULL (MADNet-K-FULL) and MAD
(MADNet-K-MAD) with model instances obtained through

prior continual adaptation on KITTI (i.e., the models saved
after the experiments in Table 4). Hence, by keep adapting
to the current domain we achieve much better results, as
highlighted by the comparison between rows 5 and 2 as
well as 6 and 3. In particular, prior adaptation is particularly
effective in the short-term, as shown by the Dusky sequence
where the error rate is roughly halved with FULL and
brought down by about 70% with MAD, while the benefit
tends to be smaller in longer sequences, such as Cloudy,
in particular with FULL. These experimental findings show
that continual adaptation realized through both FULL and
MAD is always beneficial. Interestingly, we point out how
prior adaptation turns out much more effective with MAD,
allowing it to even outperform FULL in several sequences
(as shown by row 7).

Moving to the experiments dealing with proxy super-
vision by SGM, we can notice, in general, a substantial
performance improvement. In particular, when adapting
MADNet starting from pre-training on synthetic imagery,
SGM proxies (rows 8 and 9) consistently outperform self-
supervision by the photometric error loss (rows 2 and 3)
and allow for breaking down the margin between Algo 1
and Algo 2 (row 10 vs row 4). By keep adapting from KITTI
(rows 11 and 12), results get much better on all sequences
and SGM neatly outperforms adoption by the photometric
loss in the same training protocol (rows 5 and 6). In this case,
moreover, MAD++ outperforms FULL++ on all sequences
(as highlighted in row 13).

Finally, by analyzing the experimental results obtained
by WILD proxies, we can observe a trend similar to that
already discussed for SGM. In particular, keep adapting
on DrivingStereo following prior adaptation on KITTI is
highly beneficial and MAD++ turns out more effective than
FULL++ in this setting (row 22).

Proxy labels comparison. We use DrivingStereo se-

13

Starting Model Adapt. Mode Proxy src. Photometric Error
MADNet No ✗ 0.124

MADNet FULL ✗ 0.084
MADNet MAD ✗ 0.094

(+0.010)
MADNet-K-FULL FULL ✗ 0.080
MADNet-K-MAD MAD ✗ 0.083

(+0.003)

MADNet FULL++ SGM [15] 0.086
MADNet MAD++ SGM [15] 0.088

(+0.002)
MADNet-K-FULL++ FULL++ SGM [15] 0.082
MADNet-K-MAD++ MAD++ SGM [15] 0.082

(0.000)

MADNet FULL++ WILD [75] 0.087
MADNet MAD++ WILD [75] 0.088

(+0.001)
MADNet-K-FULL++ FULL++ WILD [75] 0.082
MADNet-K-MAD++ MAD++ WILD [75] 0.082

(0.000)

TABLE 11
Online adaptation on WeanHall. Results on the Rainy, Dusky and
Cloudy sequences. -K denotes prior adaption on KITTI (Campus →

City → Residential → Road) before further adaptation on WeanHall.

quences also to further evaluate proxy labels. Rows 14-16
and 23-25 report the accuracy and density of the labels
produced by SGM and WILD. In particular, we show first
the error rates achieved without filtering out the outliers,
then, in brackets, those computed only on the final labels
used to provide the supervision and finally the density of
the filtered labels. We can notice that the SGM pipeline
extracts much more labels at the cost of a lower accuracy.
This confirms the finding already discussed in subsection 4.4
about the different traits of the two pipelines deployed to
attain proxy supervision.

Eventually, we point out that MADNet models adapted
by high-confidence (i.e.filtered) SGM and WILD proxies
tend to consistently outperform the dense (i.e., without fil-
tering) pipeline providing the supervision, more often than
not by a large margin. Indeed, only with Dusky (the shortest
sequence) the SGM pipeline (row 14) slightly outperforms
MADNet adapted from synthetic pre-training (rows 8 and
9), though when keep adapting the model following prior
adaptation on KITTI the latter turns out about 40-50% more
accurate (rows 11 and 12).

However, the accuracy of the filtered points remains
higher, yet much sparser and thus less amenable for prac-
tical applications. Although approaches to restore density
exists [74] and might represent an alternative to our frame-
work, in the supplementary material we show that, in
practise, using the sparse proxies to adapt MADNet often
leads to better results.

4.6 Evaluation on WeanHall

Finally, we make a further step into evaluating the effective-
ness of continual adaptation across very different domains
by moving to an indoor environment, like that featured by
the WeanHall dataset. As previously pointed out, given the
absence of ground-truth labels for this set of images, we
measure the photometric error according to Equation 1.

Table 11 collects the outcome of the experiments carried
out on WeanHall following the same protocol adopted in
subsection 4.5 for DrivingStereo. Although the margins in
terms of photometric error are smaller compared to the
D1-all and EPE metrics, we observe findings consistent to

Before WeanHall After WeanHall After WeanHall
(adapting)

Adapt. Mode Proxy src. D1-all(%) EPE D1-all(%) EPE D1-all(%) EPE

FULL ✗ 2.43 0.95 2.03 0.93 1.49 0.87
MAD ✗ 4.09 1.19 1.34 0.77 2.43 0.95

(+1.66) (+0.24) (-0.69) (-0.16) (+0.94) (+0.08)
FULL++ SGM 2.28 0.95 2.45 0.94 1.51 0.88
MAD++ SGM 2.46 0.98 2.52 0.95 1.94 0.91

(+0.18) (+0.03) (+0.07) (+0.01) (+0.43) (+0.03)

TABLE 12
Experimental results concerning catastrophic forgetting. Results
on the City→ Residential→ Campus→ Road sequences from KITTI.
From left to right, results from first adaptation on KITTI (Table 4) and

from a second run on KITTI after having adapted on WeanHall,
respectively without and with adaptation enabled during the second

run. Starting model: MADNet .

previous experiments. Indeed, continual adaptation yields a
significant improvement with respect to the baseline, with
the adoption of proxy labels rather than self-supervision
shrinking the gap between Algo 1 and Algo 2, and MAD++
always outperforming MAD. More importantly, starting
from models previously adapted on KITTI always lead
to better results, despite the successive adaptation being
conducted in a totally different environment (i.e.indoor vs.
outdoor).

4.7 Catastrophic forgetting experiment

Finally, to highlight how our framework is not affected by
catastrophic forgetting during continuous adaptation across
very different domains, we perform a second adaptation
run on the entire KITTI raw dataset, after having adapted
the model first on KITTI and then on WeanHall. Should
catastrophic forgetting occur, the accuracy of MADNet dur-
ing this second run would dramatically drop. Table 12
collects the outcome of this experiment, showing the results
achieved by MADNet with different adaptation strategies.
In particular, we report, from left to right, the results
concerning 1) the first run over KITTI (i.e., those shown
in Table 4, 2) the second run over KITTI after having
adaptation on WeanHall, without further adaption on KITTI
and 3) the second run over KITTI while keeping adapting.
For FULL++/MAD++, we show the results achieved when
using SGM proxy labels. We can notice how, even without
adapting a second time to KITTI, the accuracy is comparable
to that achieved during the first run, highlighting that
catastrophic forgetting has not occurred, i.e.upon adaptation
on WeanHall the network has not forgotten how to predict
disparities on KITTI. Indeed, with FULL/MAD the results
are improved, while with FULL++/MAD++ we observe a
negligible drop. By turning adaptation on in the second run
on KITTI we observe how performance can further improve,
except for MAD.

5 QUALITATIVE RESULTS

To conclude, we refer the reader to a video available
at https://www.youtube.com/watch?v=YnPGbQE2dLQ
which shows the disparity maps and associated error
curves for the methods and datasets considered throughout
the paper. Starting from KITTI, we point out that, after
20-30 frames of instability due to the domain shift (i.e., less
than 3 seconds in the video), MAD++ rapidly adapts to

https://www.youtube.com/watch?v=YnPGbQE2dLQ

14

F
ra

m
e

0
LEFT MAD K-MAD

NONE MAD++ K-MAD++

F
ra

m
e

30
0

LEFT MAD K-MAD

NONE MAD++ K-MAD++

F
ra

m
e

90
0

LEFT MAD K-MAD

NONE MAD++ K-MAD++

Fig. 10. Qualitative results for different continual adaptation strate-
gies. We show, across time, the reference image of a stereo pair
from DrivingStereo Dusky sequence and different adaptation strategies
among those reported in Table 10 (MAD++ uses SGM labels).

the new environment, outperforming MAD. When moving
across KITTI sequences, we observe steps in the error curve
upon scene changes, with MAD++ consistently yielding
better performance, i.e.faster adaptation to the new scene
and smaller error. When moving to DrivingStereo and
WeanHall, we point out how keeping adapting from KITTI
(K-MAD and K-MAD++) turns out more effective than
starting the adaptation process from scratch (MAD and
MAD++). On DrivingStereo, where the adopted metric is
the disparity error with respect to the ground-truth, we
observe how K-MAD++ provides better performance than
K-MAD. A qualitative example is shown in Figure 10.
On WeanHall, K-MAD++ behaves quite equivalently to
K-MAD, although it is worth pointing out that, due to
the lack of ground-truth disparities, the metric adopted
to assess performance is exactly the photometric error
minimized by the latter to pursue continual adaptation. A
qualitative example is shown in Figure 11.

6 CONCLUSION

We have presented a novel continual adaptation paradigm
for deep stereo networks conceived to deal with challenging
and ever-changing environments. By coupling a Modularly
ADaptive Network with a Modular ADaptation strategy
leveraging on either proxy labels sourced from traditional
algorithms or self-supervision via the photometric error,
our framework realizes the first-ever real-time and self-
adaptive deep stereo network. Experimental results on a
variety of datasets support the effectiveness of our proposal,
highlighting in particular how proxy supervision is more

F
ra

m
e

0

LEFT MAD K-MAD

NONE MAD++ K-MAD++

F
ra

m
e

30
0

LEFT MAD K-MAD

NONE MAD++ K-MAD++

F
ra

m
e

90
0

LEFT MAD K-MAD

NONE MAD++ K-MAD++

Fig. 11. Qualitative results for different continual adaptation strate-
gies. We show, across time, the reference image of a stereo pair from
WeanHall sequence and different adaptation strategies among those
reported in Table 11 (MAD++ uses SGM labels).

beneficial than self-supervision and that continual adapta-
tion holds the potential to address the unavoidable domain
shifts that would occur when deploying deep stereo in
many practical applications. The experimental findings also
provide evidence on the ability of our paradigm to learn
knowledge that can transfer well across domains, avoiding,
in particular, catastrophic forgetting.

Acknowledgments. We gratefully acknowledge the sup-
port of NVIDIA Corporation with the donation of the Titan
Xp GPU used for this research.

REFERENCES

[1] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms,” International
journal of computer vision, vol. 47, no. 1-3, pp. 7–42, 2002.

[2] J. Zbontar and Y. LeCun, “Stereo matching by training a convo-
lutional neural network to compare image patches,” Journal of
Machine Learning Research, vol. 17, no. 1-32, p. 2, 2016.

[3] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy,
and T. Brox, “A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2016.

[4] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy,
A. Bachrach, and A. Bry, “End-to-end learning of geometry and
context for deep stereo regression,” in The IEEE International
Conference on Computer Vision (ICCV), Oct 2017.

[5] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012,
pp. 3354–3361.

15

[6] M. Menze and A. Geiger, “Object scene flow for autonomous
vehicles,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[7] A. Tonioni, M. Poggi, S. Mattoccia, and L. Di Stefano, “Unsu-
pervised adaptation for deep stereo,” in The IEEE International
Conference on Computer Vision (ICCV), Oct 2017.

[8] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and
A. Geiger, “Sparsity invariant cnns,” in International Conference on
3D Vision (3DV), 2017.

[9] G. Yang, X. Song, C. Huang, Z. Deng, J. Shi, and B. Zhou, “Driv-
ingStereo: A large-scale dataset for stereo matching in autonomous
driving scenarios,” in CVPR, 2019.

[10] A. Tonioni, F. Tosi, M. Poggi, S. Mattoccia, and L. Di Stefano, “Real-
time self-adaptive deep stereo,” in CVPR, June 2019.

[11] C. Zhou, H. Zhang, X. Shen, and J. Jia, “Unsupervised learning of
stereo matching,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 1567–1575.

[12] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised
monocular depth estimation with left-right consistency,” in CVPR,
vol. 2, no. 6, 2017, p. 7.

[13] Y. Zhang, S. Khamis, C. Rhemann, J. Valentin, A. Kowdle,
V. Tankovich, M. Schoenberg, S. Izadi, T. Funkhouser, and
S. Fanello, “Activestereonet: End-to-end self-supervised learning
for active stereo systems,” in 15th European Conference on Computer
Vision (ECCV 2018), 2018.

[14] A. Tonioni, M. Poggi, S. Mattoccia, and L. Di Stefano, “Unsuper-
vised domain adaptation for depth prediction from images,” 2019.

[15] H. Hirschmuller, “Accurate and efficient stereo processing by
semi-global matching and mutual information,” in Computer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, vol. 2. IEEE, 2005, pp. 807–814.

[16] H. Alismail, B. Browning, and M. B. Dias, “Evaluating pose
estimation methods for stereo visual odometry on robots,” in the
11th International Conference on Intelligent Autonomous Systems (IAS-
11), 2011.

[17] M. Poggi, F. Tosi, and S. Mattoccia, “Quantitative evaluation of
confidence measures in a machine learning world,” in The IEEE
International Conference on Computer Vision (ICCV), Oct 2017.

[18] R. Haeusler, R. Nair, and D. Kondermann, “Ensemble learning for
confidence measures in stereo vision,” in CVPR. Proceedings, 2013,
pp. 305–312, 1.

[19] A. Spyropoulos, N. Komodakis, and P. Mordohai, “Learning to
detect ground control points for improving the accuracy of stereo
matching.” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2014, pp. 1621–1628.

[20] M. G. Park and K. J. Yoon, “Leveraging stereo matching with
learning-based confidence measures,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2015.

[21] M. Poggi and S. Mattoccia, “Learning a general-purpose confi-
dence measure based on o(1) features and a smarter aggregation
strategy for semi global matching,” in Proceedings of the 4th Inter-
national Conference on 3D Vision, 3DV, 2016.

[22] ——, “Learning from scratch a confidence measure,” in Proceedings
of the 27th British Conference on Machine Vision, BMVC, 2016.

[23] A. Seki and M. Pollefeys, “Patch based confidence prediction for
dense disparity map,” in British Machine Vision Conference (BMVC),
2016.

[24] F. Tosi, M. Poggi, A. Benincasa, and S. Mattoccia, “Beyond local
reasoning for stereo confidence estimation with deep learning,”
in 15th European Conference on Computer Vision (ECCV), September
2018.

[25] S. Kim, S. Kim, D. Min, and K. Sohn, “LAF-Net: Locally adaptive
fusion networks for stereo confidence estimation,” in CVPR, 2019.

[26] Z. Chen, X. Sun, L. Wang, Y. Yu, and C. Huang, “A deep visual
correspondence embedding model for stereo matching costs,”
in The IEEE International Conference on Computer Vision (ICCV),
December 2015.

[27] W. Luo, A. G. Schwing, and R. Urtasun, “Efficient deep learning
for stereo matching,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 5695–5703.

[28] H. Hirschmüller and D. Scharstein, “Evaluation of stereo matching
costs on images with radiometric differences,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 31, pp. 1582–1599, 08
2008.

[29] K. Batsos, C. Cai, and P. Mordohai, “Cbmv: A coalesced bidi-
rectional matching volume for disparity estimation,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[30] A. Shaked and L. Wolf, “Improved stereo matching with constant
highway networks and reflective confidence learning,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July
2017.

[31] S. Gidaris and N. Komodakis, “Detect, replace, refine: Deep struc-
tured prediction for pixel wise labeling,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.

[32] J. Pang, W. Sun, J. S. Ren, C. Yang, and Q. Yan, “Cascade residual
learning: A two-stage convolutional neural network for stereo
matching,” in The IEEE International Conference on Computer Vision
(ICCV), Oct 2017.

[33] Z. Liang, Y. Feng, Y. G. H. L. W. Chen, and L. Q. L. Z. J. Zhang,
“Learning for disparity estimation through feature constancy,” in
The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[34] E. Ilg, T. Saikia, M. Keuper, and T. Brox, “Occlusions, motion and
depth boundaries with a generic network for disparity, optical
flow or scene flow estimation,” in The European Conference on
Computer Vision (ECCV), September 2018.

[35] X. Song, X. Zhao, H. Hu, and L. Fang, “Edgestereo: A context
integrated residual pyramid network for stereo matching,” in
ACCV, 2018.

[36] G. Yang, H. Zhao, J. Shi, Z. Deng, and J. Jia, “Segstereo: Exploiting
semantic information for disparity estimation,” in ECCV, 2018, pp.
636–651.

[37] Z. Yin, T. Darrell, and F. Yu, “Hierarchical discrete distribution
decomposition for match density estimation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 6044–6053.

[38] S. Duggal, S. Wang, W.-C. Ma, R. Hu, and R. Urtasun, “Deep-
pruner: Learning efficient stereo matching via differentiable patch-
match,” in ICCV, 2019.

[39] J.-R. Chang and Y.-S. Chen, “Pyramid stereo matching network,”
in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[40] G.-Y. Nie, M.-M. Cheng, Y. Liu, Z. Liang, D.-P. Fan, Y. Liu,
and Y. Wang, “Multi-level context ultra-aggregation for stereo
matching,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[41] S. Tulyakov, A. Ivanov, and F. Fleuret, “Practical deep stereo (pds):
Toward applications-friendly deep stereo matching,” in Advances
in Neural Information Processing Systems, 2018, pp. 5871–5881.

[42] Y. Wang, Z. Lai, G. Huang, B. H. Wang, L. van der Maaten,
M. Campbell, and K. Q. Weinberger, “Anytime stereo image depth
estimation on mobile devices,” in ICRA, 2019.

[43] F. Zhang, V. Prisacariu, R. Yang, and P. H. Torr, “Ga-net: Guided
aggregation net for end-to-end stereo matching,” in CVPR, 2019,
pp. 185–194.

[44] Y. Zhang, Y. Chen, X. Bai, S. Yu, K. Yu, Z. Li, and K. Yang, “Adap-
tive unimodal cost volume filtering for deep stereo matching,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 07, 2020, pp. 12 926–12 934.

[45] X. Cheng, P. Wang, and R. Yang, “Learning depth with convo-
lutional spatial propagation network,” IEEE transactions on pattern
analysis and machine intelligence, vol. 42, no. 10, pp. 2361–2379, 2019.

[46] X. Cheng, Y. Zhong, M. Harandi, Y. Dai, X. Chang, H. Li, T. Drum-
mond, and Z. Ge, “Hierarchical neural architecture search for
deep stereo matching,” Advances in Neural Information Processing
Systems, vol. 33, 2020.

[47] H. Xu and J. Zhang, “Aanet: Adaptive aggregation network for ef-
ficient stereo matching,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 1959–1968.

[48] S. Khamis, S. Fanello, C. Rhemann, A. Kowdle, J. Valentin, and
S. Izadi, “Stereonet: Guided hierarchical refinement for real-time
edge-aware depth prediction,” in 15th European Conference on
Computer Vision (ECCV 2018), 2018.

[49] X. Guo, K. Yang, W. Yang, X. Wang, and H. Li, “Group-wise
correlation stereo network,” in CVPR, 2019.

[50] M. Poggi, D. Pallotti, F. Tosi, and S. Mattoccia, “Guided stereo
matching,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[51] P. L. Dovesi, M. Poggi, L. Andraghetti, M. Martı́, H. Kjellström,
A. Pieropan, and S. Mattoccia, “Real-time semantic stereo match-
ing,” in IEEE International Conference on Robotics and Automation
(ICRA), 2020.

[52] H. Jiang, D. Sun, V. Jampani, Z. Lv, E. Learned-Miller, and J. Kautz,
“Sense: A shared encoder network for scene-flow estimation,”

16

in The IEEE International Conference on Computer Vision (ICCV),
October 2019.

[53] F. Aleotti, M. Poggi, F. Tosi, and S. Mattoccia, “Learning end-to-
end scene flow by distilling single tasks knowledge,” in Thirty-
Fourth AAAI Conference on Artificial Intelligence, 2020.

[54] J. Pang, W. Sun, C. Yang, J. Ren, R. Xiao, J. Zeng, and L. Lin, “Zoom
and learn: Generalizing deep stereo matching to novel domains,”
The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[55] A. Tonioni, O. Rahnama, T. Joy, L. Di Stefano, A. Thalaiyasingam,
and P. Torr, “Learning to adapt for stereo,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2019.

[56] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised
learning of depth and ego-motion from video,” in CVPR, vol. 2,
no. 6, 2017, p. 7.

[57] R. Garg, V. K. BG, G. Carneiro, and I. Reid, “Unsupervised cnn for
single view depth estimation: Geometry to the rescue,” in European
Conference on Computer Vision. Springer, 2016, pp. 740–756.

[58] M. Poggi, F. Aleotti, F. Tosi, and S. Mattoccia, “Towards real-time
unsupervised monocular depth estimation on cpu,” in IEEE/JRS
Conference on Intelligent Robots and Systems (IROS), 2018.

[59] M. Poggi, F. Tosi, and S. Mattoccia, “Learning monocular depth
estimation with unsupervised trinocular assumptions,” in 6th
International Conference on 3D Vision (3DV), 2018.

[60] Y. Zhong, H. Li, and Y. Dai, “Open-world stereo video matching
with deep rnn,” in 15th European Conference on Computer Vision
(ECCV 2018), 2018.

[61] Y. Wang, P. Wang, Z. Yang, C. Luo, Y. Yang, and W. Xu, “Unos:
Unified unsupervised optical-flow and stereo-depth estimation by
watching videos,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 8071–8081.

[62] H.-Y. Lai, Y.-H. Tsai, and W.-C. Chiu, “Bridging stereo matching
and optical flow via spatiotemporal correspondence,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[63] F. Tosi, F. Aleotti, M. Poggi, and S. Mattoccia, “Learning monocular
depth estimation infusing traditional stereo knowledge,” in The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

[64] A. Pilzer, S. Lathuiliere, N. Sebe, and E. Ricci, “Refine and distill:
Exploiting cycle-inconsistency and knowledge distillation for un-
supervised monocular depth estimation.” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

[65] M. Poggi, F. Aleotti, F. Tosi, and S. Mattoccia, “On the uncertainty
of self-supervised monocular depth estimation,” in The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2020.

[66] Y. Kuznietsov, J. Stuckler, and B. Leibe, “Semi-supervised deep
learning for monocular depth map prediction,” in The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), July 2017.

[67] C. Banz, S. Hesselbarth, H. Flatt, H. Blume, and P. Pirsch, “Real-
time stereo vision system using semi-global matching disparity
estimation: Architecture and fpga-implementation.” in ICSAMOS,
2010, pp. 93–101.

[68] S. K. Gehrig, F. Eberli, and T. Meyer, “A real-time low-power stereo
vision engine using semi-global matching,” in ICVS, 2009, pp. 134–
143.

[69] K. Schmid and H. Hirschmuller, “Stereo vision and imu based real-
time ego-motion and depth image computation on a handheld
device,” in ICRA, 2013.

[70] S. Mattoccia and M. Poggi, “A passive rgbd sensor for accurate
and real-time depth sensing self-contained into an fpga,” in 9th
ICDSC, 2015.

[71] O. Rahnama, T. Cavallari, S. Golodetz, A. Tonioni, T. Joy, L. Di Ste-
fano, S. Walker, and P. H. Torr, “Real-time highly accurate dense
depth on a power budget using an fpga-cpu hybrid soc,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 5,
pp. 773–777, 2019.

[72] O. Rahnama, T. Cavalleri, S. Golodetz, S. Walker, and P. Torr,
“R3sgm: Real-time raster-respecting semi-global matching for
power-constrained systems,” in 2018 International Conference on
Field-Programmable Technology (FPT). IEEE, 2018, pp. 102–109.

[73] D. Honegger, H. Oleynikova, and M. Pollefeys, “Real-time and
low latency embedded computer vision hardware based on a
combination of fpga and mobile cpu,” in IROS, 2014.

[74] F. Aleotti, F. Tosi, L. Zhang, M. Poggi, and S. Mattoccia, “Reversing
the cycle: self-supervised deep stereo through enhanced monoc-
ular distillation,” in 16th European Conference on Computer Vision
(ECCV). Springer, 2020.

[75] F. Tosi, M. Poggi, A. Tonioni, L. Di Stefano, and S. Mattoccia,
“Learning confidence measures in the wild,” in 28th British Ma-
chine Vision Conference (BMVC 2017), September 2017.

[76] A. Ranjan and M. J. Black, “Optical flow estimation using a spatial
pyramid network,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

[77] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “Pwc-net: Cnns for
optical flow using pyramid, warping, and cost volume,” in The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[78] A. Badki, A. Troccoli, K. Kim, J. Kautz, P. Sen, and O. Gallo, “Bi3d:
Stereo depth estimation via binary classifications,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 1600–1608.

[79] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets
robotics: The kitti dataset,” International Journal of Robotics Research
(IJRR), 2013.

Continual Adaptation for Deep Stereo –

Supplementary material

Matteo Poggi1 Alessio Tonioni2 Fabio Tosi1

Stefano Mattoccia1 Luigi Di Stefano1

1University of Bologna, Italy 2Google Inc.

In this document, we provide additional experiments concerning “Continual Adaptation for Deep Stereo”, complementing

those reported in the main paper.

1. Batched adaptation

As discussed in the main paper, updating the network using batches of images instead of individual ones might improve

performance. However, this usually happens because building a batch allows to optimize the network over a set of variegate

samples, that should better approximate the entire training set and thus lead to more stable gradients compared to those

computed on a single sample. In our setting, however, the update steps occur on images that are acquired closely in terms

of time and are, therefore, very similar. Thus, the gradients provided by the individual samples are quite similar the average

gradient that would be computed in a batch. We show an experiment to investigate on whether updating the network based

on a batch of 10 samples, which slows down the inference rate by a factor of about 4, may bring in significant improvements.

The results are shown in Table 1: by comparing the first and second column pairs, one can observe how batch-updating

(second column pair) provides just a very small performance improvement wrt our approach (first pair). On the other hand,

one might recover full-speed by updating the network every 10 frames based on a batch of 10 samples, but this deteriorates

accuracy significantly, as shown in the third column pair of Table 1.

step=1 step=1 step=10

batch=1 batch=10 batch=10

Adapt. Mode Proxy src. D1 EPE D1 EPE D1 EPE

FULL ✗ 2.43 0.95 2.35 0.95 4.43 1.21

FULL++ SGM 2.28 0.95 2.25 0.95 4.44 1.18

MAD ✗ 4.09 1.19 4.03 1.18 11.37 2.31

MAD++ SGM 2.46 0.98 2.43 0.97 7.36 1.41
Table 1. Adaptation on image batches. Experiment dealing with continual adaptation from synthetic pretraining on Campus → City →

Residential → Road. We perform updates with single images (batch=1) or stacking the latest 10 (batch=10), at any time a new sample is

available (step=1) or after collecting 10 new samples (step=10). Pretraining on synthetic images.

1

2. Sensitivity of parameters δ and λ of Algorithm 2

The two parameters δ and λ, respectively a decay and an update weight, are introduced in Section 3.1 to gradually decay

the probability distribution over time and balance the impact of a successful update, respectively. We have tuned them to

0.99 and 0.01 after an analysis carried out on Campus (the shortest and hardest sequence) and starting from MADNet weights

trained on synthetic data. Table 2 shows D1 error for different decay-weight configurations, highlighting better results with

0.99, 0.01. However, as also noticeable in Table 2, we found that these hyper-parameters are not critical for making adaptation

work.

decay

w
ei

g
h
t

1 0.99 0.75 0.50

1 22.86 22.35 22.59 22.72

0.1 22.59 22.31 22.55 22.62

0.01 22.35 22.27 22.37 22.36

0.001 22.40 22.40 22.46 22.68

decay

w
ei

g
h
t

1 0.99 0.75 0.50

1 12.35 12.78 12.70 14.31

0.1 11.70 12.69 13.35 11.53

0.01 13.65 11.50 13.24 13.00

0.001 12.38 12.02 11.95 11.80

MAD MAD++
Table 2. Hyper-parameters tuning on Campus sequence (1149×2 frames), with MADNet pretrained on synthetic data.

3. Proxy supervision vs meta-learning.

Following the L2A paper, we take a MADNet model trained on FlyingThings3D and 1) fine-tune it on Synthia in a

traditional, supervised manner or 2) using the First Order approximation variant of L2A (FOL2A). We tried also to use the

full meta learning formulations without approximation (L2A and L2A-Wad), but unfortunately, the training of the network

was very unstable and always lead to diverging models. Thus, for this experiment, 1) provides the baseline with respect to

which we evaluate the adaptation performance provided by FOL2A and our proposed approach dealing with proxy labels

gathered by SGM. Table 3 collects the outcome of this experiment on the KITTI raw dataset. We can notice how using L2A

during pre-training can improve the performance with respect to the baseline. However, our proposal turns out significantly

more effective, i.e.proxy supervision is more effective than L2A pre-training. For the sake of space, we report in the main

paper only the numbers obtained over the whole dataset (All entry in Table 3), while Table 3

City (8027 frames) Residential (28067 frames) Campus (1149×2 frames) Road (5674 frames) All

Starting Model Adapt. Mode D1-all(%) EPE D1-all(%) EPE D1-all(%) EPE D1-all(%) EPE D1-all(%) EPE

MADNet-Synthia FULL (baseline) 3.99 1.26 3.14 1.10 15.09 2.55 3.89 1.19 2.76 1.03

MADNet-Synthia-FOL2A [1] FULL 3.90 1.25 2.93 1.06 13.98 2.49 3.76 1.21 2.60 1.01

MADNet-Synthia FULL++ (ours) 3.58 1.14 2.29 0.95 10.62 1.79 3.04 1.05 2.23 0.95

Table 3. Comparison of online adaptation strategies across different domains. Results on the City, Residential, Campus and Road

sequences from KITTI. Comparison between MADNet trained on FlyingThings3D and finetuned on Synthia, with (FOL2A) or without

meta-learning optimization.

4. Complementing low-density supervision.

We have carried out additional experiments by combining WILD labels with LIDAR as well with self-supervision, so as to

study whether one might effectively complement the low density supervision provided by WILD. As for the former setting,

we use LIDAR measurements where WILD proxy labels are missing due to low confidence. This allows to consider LIDAR

points only where WILD does not provide labels (e.g., untextured regions), while using WILD where LIDAR usually fail,

i.e. close to object boundaries. In the latter, we just add the two losses, as also proposed in previous works [2, 3]. Results

are collected in Table 4. We can notice that complementing WILD with LIDAR supervision consistently improves accuracy.

As for self-supervision, this tend to be the case mostly for FULL, while MAD seems to benefit when adapted by the stronger

supervision provided by a regression loss, based on either proxy labels, LIDAR measurements or both.

City (8027 frames) Residential (28067 frames) Campus (1149×2 frames) Road (5674 frames) All

Adapt. Mode Source D1-all(%) EPE D1-all(%) EPE D1-all(%) EPE D1-all(%) EPE D1-all(%) EPE

FULL++ WILD+Self-Sup. 3.08 1.06 2.13 0.91 8.04 1.49 2.34 0.96 2.04 0.92

FULL++ WILD+LIDAR 3.58 1.02 2.37 0.91 9.09 1.47 3.17 0.92 2.18 0.89

MAD++ WILD+Self-Sup. 5.56 1.29 4.30 1.13 12.13 1.87 5.16 1.20 3.09 1.00

MAD++ WILD+LIDAR 4.10 1.08 2.66 0.93 11.28 1.76 4.71 1.15 2.43 0.91

Pretraining on synthetic data

FULL++ WILD+Self-Sup. 1.51 0.88 1.75 0.85 3.80 1.11 1.08 0.80 1.66 0.85

FULL++ WILD+LIDAR 1.48 0.79 1.28 0.76 3.26 0.95 1.19 0.75 1.25 0.75

MAD++ WILD+Self-Sup. 1.65 0.91 2.97 0.95 4.22 1.25 1.34 0.85 2.20 0.91

MAD++ WILD+LIDAR 1.43 0.80 1.67 0.80 3.68 1.10 1.19 0.76 1.34 0.77

Pretraining on synthetic data, fine-tuning on KITTI 2015 GT.

Table 4. Online adaptation within a single domain (WILD+Lidar labels). Results on the City, Residential, Campus and Road sequences

from KITTI.

5. Comparison with sparse (and filled) SGM

As we have observed in the experiments on the DrivingStereo sequences, the sparse proxy labels generated by SGM

and WILD are very accurate, although they have low density. However, we point out that lower density might be rather

undesirable in real applications. For instance, let us consider an autonomous driving scenario, as depicted in Figure 1 below

from the Rainy sequence used in our experiments. Although selecting the proxy algorithm with higher density, the sparse

SGM map lacks measurements in critical areas close to the vehicle, whilst the smooth and dense map perceived by our

method seems quite more amenable to support high-level tasks dealing with planning and navigation.

Reference image SGM (before filtering) SGM (after filtering) MADNet-K (MAD++)
Figure 1. Qualitative results achieved by SGM and MADNet. Example taken from Rainy sequence.

Given the good accuracy provided by SGM sparse proxies, one might try to densify these sparse depth measurements

in order to use them in practical applications. Thus. we have performed depth completion on the sparse SGM maps by a

standard hand-crafted interpolation method (i.e., the hole-filling algorithm used to densify disparity maps when submitting

to the KITTI online banchmark) and a recent learning-based solution (the network used in [4]) trained on the same synthetic

data as MADNet. We report the results of this experiment in Table 5. We notice that hole-filling can outperform our proposal

in the Cloudy sequence only, i.e. the one where SGM achieves the lowest error among the three sequences, as shown in

the main paper. However, more challenging conditions (as observed in the Rainy and Dusky sequences) are better tackled

by MADNet thanks to online adaptation. We would also like to highlight, that, as shown in Figure 2, standard hand-crafted

hole filling is particularly prone to yield gross artifacts that do not affect the error metrics due to the sparsity of the ground-

truth provided with DrivingStereo (filtered LIDAR). Yet, more advanced learning-based depth densification methods seem

significantly affected by the domain shift, as vouched by the second row in Table 5.

Rainy (1667 frames) Dusky (1119 frames) Cloudy (4950 frames)

Completion method D1-all(%) EPE D1-all(%) EPE D1-all(%) EPE

SGM + Hole-filling† 12.68 3.05 7.88 1.30 4.50 1.19

SGM + ECCV 2020 17.90 3.91 14.53 1.91 9.74 1.83

MADNet-K-MAD++ (SGM) 12.65 2.32 5.93 1.40 6.26 1.72

Table 5. Comparison between online adaptation and SGM densification on DrivingStereo. Results on the Rainy, Dusky and Cloudy

sequences. Learned methods are trained on synthetic data. †means non-learned algorithm.

✖✕
✗✔ ✍✌

✎☞✍✌
✎☞

✖✕
✗✔ ✍✌

✎☞✍✌
✎☞

✖✕
✗✔ ✍✌

✎☞✍✌
✎☞

✖✕
✗✔ ✍✌

✎☞✍✌
✎☞

Reference image SGM (filled) MADNet-K GT

(adapted with MAD++)
Figure 2. Comparison between SGM densification and online adaptation. Example taken from Rainy sequence.

References

[1] A. Tonioni, O. Rahnama, T. Joy, L. Di Stefano, A. Thalaiyasingam, and P. Torr, “Learning to adapt for stereo,” in The

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019. 2

[2] A. Tonioni, M. Poggi, S. Mattoccia, and L. Di Stefano, “Unsupervised domain adaptation for depth prediction from

images,” 2019. 3

[3] F. Tosi, F. Aleotti, M. Poggi, and S. Mattoccia, “Learning monocular depth estimation infusing traditional stereo knowl-

edge,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019. 3

[4] F. Aleotti, F. Tosi, L. Zhang, M. Poggi, and S. Mattoccia, “Reversing the cycle: self-supervised deep stereo through

enhanced monocular distillation,” in 16th European Conference on Computer Vision (ECCV). Springer, 2020. 3

