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ABSTRACT
We propose a dynamic semiparametric framework to study time variation in tail parameters. The framework
builds on the Generalized Pareto Distribution (GPD) for modeling peaks over thresholds as in Extreme Value
Theory, but casts the model in a conditional framework to allow for time-variation in the tail parameters. We
establish parameter regions for stationarity and ergodicity and for the existence of (unconditional) moments
and consider conditions for consistency and asymptotic normality of the maximum likelihood estimator for
the deterministic parameters in the model. Two empirical datasets illustrate the usefulness of the approach:
daily U.S. equity returns, and 15-min euro area sovereign bond yield changes.

ARTICLE HISTORY
Received March 2022
Accepted September 2023

KEYWORDS
Dynamic tail risk; Extreme
value theory;
Observation-driven models;
Securities Markets
Programme (SMP); Stock
return tails

1. Introduction

This article proposes a dynamic semiparametric framework to
study time variation in tail fatness for long univariate time
series. The new method builds on ideas from Extreme Value
Theory (EVT) and uses a conditional Generalized Pareto Dis-
tribution (GPD) with time-varying parameters to approximate
the tail beyond a given threshold. The GPD is an appropriate
tail approximation for most heavy-tailed densities used in finan-
cial economics, econometrics, and actuarial sciences; see, for
example, Embrechts, Klüppelberg, and Mikosch (1997), Coles
(2001), McNeil, Frey, and Embrechts (2010, chap. 7), and Rocco
(2014). As a result, the GPD plays a central role in the study
of extremes, comparable to the role of the normal distribution
when studying observations in the center of the distribution.
Our framework allows for studying time-variation in the inci-
dence of such extremes.

The time-varying tail shape and tail scale parameters in our
model are driven by the score of the GPD density; see Creal,
Koopman, and Lucas (2013) and Harvey (2013). As a result, the
model is observation-driven in the terminology of Cox (1981)
and its time-varying parameters are perfectly predictable one
step ahead. In addition, the log-likelihood function is known in
closed form and allows for parameter estimation and inference
via standard maximum likelihood methods. Our results show
that our model is able to recover the time-varying tail shape and
tail scale parameters well in both simulated and empirical data.
In addition, the model recovers time-variation in EVT-based
market risk measures such as Value-at-Risk (VaR) and Expected
Shortfall (ES). This is the case even if the model is misspecified
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or the GPD approximation is not exact. The latter is particu-
larly important in our finite sample setting, where the limiting
EVT result of the GPD can only hold approximately given
the choice of a finite exceedance threshold in any particular
dataset.

We illustrate our modeling framework using two applica-
tions: U.S. equity log-returns, and changes in euro area sovereign
bond yields.1 Each dataset consists of two time series that we
model separately. We first consider daily log-returns for a stock
index (S&P500) and an individual stock (IBM). The S&P500
log-returns range from July 3, 1962 to December 31, 2020,
while the IBM stock returns range from January 2, 1926 to
December 31, 2020. Focusing on the left tail, and controlling
for potential time-variation in the EVT thresholds, we find that
both GPD parameters vary significantly over time. The tail
shape varies between approximately 0.05 and 0.25 for the S&P
500, and between 0.05 and 0.35 for IBM. These values imply a
maximum moment of order 1/0.25 = 4 to 1/0.05 = 20 for
the S&P 500, and 3 to 20 for IBM. Confidence bands around
the filtered time-varying tail shape parameters suggest that the
tail shape parameter is almost always far from the thin-tailed
setting.

Our second illustration demonstrates how additional control
variables can be included to capture time-variation in tail shapes
and tail scales. Specifically, we study changes in Italian and
Portuguese five-year benchmark bond yields, sampled at a 15-

1The web appendix considers additional applications to exchange rates and
commodity prices.

© 2023 The Authors. Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by
the author(s) or with their consent.

https://doi.org/10.1080/07350015.2023.2260439
https://crossmark.crossref.org/dialog/?doi=10.1080/07350015.2023.2260439&domain=pdf&date_stamp=2023-10-18
http://orcid.org/0000-0002-6040-8783
http://orcid.org/0000-0003-2807-1102
http://orcid.org/0000-0003-4283-5228
mailto:a.lucas@vu.nl
http://www.tandfonline.com/UBES
http://creativecommons.org/licenses/by/4.0/


2 E. D’INNOCENZO ET AL.

min frequency, during the extremely adverse euro area sovereign
debt crisis between 2010 and 2012. Again, we find that both
GPD parameters vary significantly over time. The tail shape
varies between 0.1 and 0.4 for Italy and between 0.05 and 0.6
for Portugal, implying moment ranges of 2.5–10 and 1.7–20,
respectively, and thus incidences of extreme fat tails. We also
find that part of the variation can be explained by including
central bank bond purchases as an additional covariate, and
provide a way to translate the estimated impact coefficients into
their economically-interpretable impact on market risk mea-
sures such as VaR.

Our article is closely related to a growing strand of literature
on modeling time-variation in EVT tail parameters. Several
papers propose methodology to study time variation in the tail
index. Davidson and Smith (1990), Coles (2001, chap. 5.3), and
Wang and Tsai (2009), among others, also index the GPD tail
parameters with time subscripts and equip them with a param-
eterized structure. Our approach is different in that their “tail
index regression” approach requires conditioning variables that
explain (all of) the tail variation. Such variables are not always
available. By contrast, our “filtering approach” does not require
such conditioning variables, and is arguably better suited for the
real-time monitoring of extreme equity or bond market risks.
Second, Quintos, Fan, and Phillips (2001), Einmahl, de Haan,
and Zhou (2016), Hoga (2017), and Lin and Kao (2018) derive
formal tests for a structural break in the tail index. A number
of subsequent studies applied such tests to financial time series
data. Werner and Upper (2004) identify a break in the tail behav-
ior of high-frequency German Bund future returns. Galbraith
and Zernov (2004) argues that certain regulatory changes in U.S.
equity markets have altered the tail index dynamics of equities
returns. de Haan and Zhou (2021) propose a nonparametric
approach to estimating the extreme value index locally. Our arti-
cle adds to the literature by proposing a framework that allows
us to study both the tail shape and tail scale dynamics directly in
a semiparametric way. Explanatory covariates can be included
in the dynamics of both parameters, and likelihood ratio tests
are available to test economically relevant hypotheses. Finally,
unlike Patton, Ziegel, and Chen (2019), our tail VaR and ES
dynamics explicitly account for fat tail shape beyond a threshold
as emerging from EVT. The dynamics based on the score for
the GPD contain weights for extreme observations. Such weights
are absent in the elicitable score functions of Patton, Ziegel, and
Chen (2019). The resulting dynamics in our model are more
robust, particularly for the ES.

Whereas de Haan and Zhou (2021) take a nonparametric per-
spective, the methodological part of this article is closest to Mas-
sacci (2017), who also proposes a dynamic parametric model for
the GPD parameters. Our framework is different from Massacci
(2017) in that we specify both GPD parameters as functions of
their respective scores. Massacci (2017), by contrast, uses only
the score of the first (tail index) parameter to drive both param-
eters. This is not optimal in the sense of Blasques, Koopman,
and Lucas (2015), who require that each time-varying parameter
is associated to its own score. Our article further differs from
Massacci (2017) in that we suggest time-varying EVT thresholds
to locate the boundary between the center of the distribution and
its tail. This implies that we do not need to assume that the time
series at hand has no volatility clustering, nor that we need to

pre-filter for such volatility clustering. Absence of conditional
heteroscedasticity would be hard to defend for the financial data
considered in this article. Finally, we differ from Massacci (2017)
in that we discuss inference on both deterministic and time-
varying parameters by considering the asymptotic properties of
the maximum likelihood estimator, provide sufficient conditions
for the stationarity and ergodicity and the existence of moments
of the factor process and observations, explain how to introduce
additional conditioning variables into the model and assess
their usefulness in economic terms, and provide Monte Carlo
evidence on the model’s performance in a range of challenging
settings.

We proceed as follows. Section 2 presents our statistical
model, the asymptotic statistical properties of the model and the
maximum likelihood estimator. Section 3 discusses simulation
results. Section 4 illustrates the model using U.S. equity data and
euro area sovereign yields data. Section 5 concludes. Derivations
and more results are in the web appendix.

2. Statistical Model

2.1. Time-Varying Tail Shape and Tail Scale

2.1.1. Conditional EVT Framework
Consider a univariate time series yt , t = 1, . . . , T, where T
denotes the number of observations. This section then describes
our model for yt with time-varying tail shape and scale. We
assume yt is generated by a conditional probability density
function (pdf) g(yt |Ft−1), where Ft−1 = {yt−1, yt−2, . . . , y1}
denotes the information set containing all past data. By keeping
the conditional density of yt in its current general form, we stay
close to the semiparametric nature of an extreme value-based
approach and make no modeling assumptions about the center
of the distribution. Alternatively, we could specify a parametric
distribution for yt with for instance a time-varying conditional
location μt and scale σt . The μt and σt could then be used to
pre-filter the raw yt . We do not pursue such an approach here.
First, modeling the center of the conditional distribution leads
away from the focus on the tails only, which is the key aspect in
an EVT-based approach. Second, designing an additional model
for time-varying location and scale would create another layer
of complexity to the model, with accompanying model risk and
parameter uncertainty. We therefore keep the general form of
g(yt |Ft−1) and focus on its tail using a dynamic extension of
arguments from extreme value theory (EVT), similar to Patton’s
(2006) extension of copula theory to the dynamic, observation
driven setting.

We assume g(yt |Ft−1) has heavy tails with time-varying
tail index αt > 0. A familiar example is when g(yt |Ft−1)
is a univariate Student’s t distribution with νt = αt degrees of
freedom. Other examples include the Pareto, inverse gamma,
log-gamma, log-logistic, F, Fréchet, and Burr distribution with
one or more time-varying shape parameters (for details and fur-
ther discussion see e.g., Johnson, Kotz, and Balakrishnan 1994;
Embrechts, Klüppelberg, and Mikosch 1997; McNeil, Frey, and
Embrechts 2010, chap. 7.3). Rather than modeling the (dynamic)
tail shape of an arbitrarily chosen parametric family of distribu-
tions, we appeal to well-known results from the EVT literature:
the conditional cumulative distribution function (cdf) G(yt |



JOURNAL OF BUSINESS & ECONOMIC STATISTICS 3

Ft−1) of yt can under very general conditions be approximated
by G(yt | Ft−1) ≈ G(τt | Ft−1)+ (1 − G(τt | Ft−1))P(xt ; δt , ξt)
with xt = yt − τt for sufficiently high thresholds τt ∈ R+. More
precisely, we have

lim
τt→∞ sup

xt≥0

∣∣P [Yt ≤ xt + τt | Yt > τt , Ft−1] − P(xt ; δt , ξt)
∣∣

= lim
τt→∞ sup

xt≥0

∣∣∣∣G(xt + τt | Ft−1) − G(τt | Ft−1)

1 − G(τt | Ft−1)

− P(xt ; δt , ξt)

∣∣∣∣ = 0, (1)

for parameters ξt = α−1
t and δt , both possibly depending on

τt , and with Yt denoting the random variable corresponding
to the realization yt . Here, P(xt ; δt , ξt) denotes the cdf of the
Generalized Pareto Distribution (GPD), with cdf and pdf given
by

P(xt ; δt , ξt) = 1 −
(

1 + ξt
xt
δt

)−ξ−1
t

, (2)

p(xt ; δt , ξt) = δ−1
t ·

(
1 + ξt

xt
δt

)−ξ−1
t −1

, (3)

respectively (see, e.g., McNeil, Frey, and Embrechts 2010). The
quantity xt = yt − τt > 0 is the so-called peak-over-
threshold (POT), or exceedance, of heavy-tailed data yt over
a pre-determined threshold τt , and δt > 0 and ξt > 0 are
the tail scale and tail shape parameter of the GPD, respectively.
Most continuous distributions used in statistics and the actuarial
sciences lie in the Maximum Domain of Attraction (MDA) of the
GPD (see McNeil, Frey, and Embrechts 2010, chap. 7.1), mean-
ing that they allow for the above tail shape approximation. By
focusing on the tail area directly using EVT arguments, we avoid
having to make more ad-hoc assumptions on the parametric
form of the tail.

The result in (1) is a limiting result. In any finite sam-
ple, the threshold τt has to be set to a specific, finite value,
such that the GPD approximation will be inexact and the
distribution is in that sense misspecified. This will also be
the case in our setting. The score-driven updates that we
define later on for ξt and δt , however, still ensure that the
expected Kullback-Leibler divergence between the approximate
GPD model and the true, unknown conditional distribution
P [Yt ≤ xt + τt | Yt > τt , Ft−1] is improved on average at every
step for sufficiently small steps, even if the GPD model is (par-
tially) misspecified; see Blasques, Koopman, and Lucas (2015).

The choice of the threshold τt is subject to a well-known
bias-variance tradeoff; see, for instance, McNeil and Frey (2000).
In theory, the GPD tail approximation only becomes exact for
τt → +∞. A high threshold, however, also implies a smaller
number of exceedances yt > τt , and more estimation error for
the parameters of the GPD. Common choices for τt from the
literature are the unconditional 90%, 95%, and 99% empirical
quantiles of yt ; see Chavez-Demoulin, Embrechts, and Sardy
(2014). In our setting, such choices are less useful as τt varies
over time. As we explain later, we use the approach of Patton,
Ziegel, and Chen (2019) to set τt dynamically in line with the
data.

2.1.2. Time-Varying Parameters
A key step in (1)–(2) is that we use the conditional probabil-
ities based on the information set Ft−1. As a result, the tail
parameters ξt and δt become time-varying. To capture this time-
variation, we model (ξt , δt)′ using the score-driven dynamics
introduced by Creal, Koopman, and Lucas (2013) and Harvey
(2013). In our time series setting, this implies that both δt and
ξt are measurable with respect to Ft−1. We ensure positivity of
δt and ξt by using an (element-wise) exponential link function
(ξt , δt)′ = exp(ft) for ft = (f ξ

t , f δ
t )′ ∈ R

2. The transition
dynamics for ft are given by

ft+1 = ω +
q−1∑
i=0

Aist−i +
p−1∑
j=0

Bjft−j, (4)

st = St∇t , ∇t = ∂ ln p(xt | Ft−1; ft , θ)/∂ft ,

where vector ω = ω(θ) and matrices Ai = Ai(θ) and Bj = Bj(θ)

depend on the deterministic parameter vector θ , which needs
to be estimated. The scaling matrix St may depend both on θ ,
ft , and Ft−1. Effectively, the recursion (4) updates ft at every
point in time via a scaled steepest ascent step to improve the
expected fit to the GPD; see Creal, Koopman, and Lucas (2013)
and Blasques, Koopman, and Lucas (2015). The score of (2)
required in (4) is given by

∇t =

⎡⎢⎢⎣ξ−1
t · ln

(
1 + ξt δ−1

t xt
)− (1 + ξ−1

t
) ξtxt

δt + ξtxt
xt − δt

δt + ξtxt

⎤⎥⎥⎦ , (5)

where ln(·) denotes the natural logarithm; see Web
Appendix A.1 for a derivation. We take Ai and Bj as diagonal
matrices.

Following Creal et al. (2014) we select the square-root inverse
conditional Fisher information of the conditional observation
density to scale (5), that is, St = L′

t , with Lt the choleski
decomposition of the inverse conditional Fisher information
matrix It = (LtL′

t)
−1 = E[∇t∇′

t | Ft−1; ft , θ ] = E[−∂∇t/∂f ′
t |

Ft−1; ft , θ ]. Compared to so-called inverse information matrix
scaling, the current scaling matrix has the advantage that the
conditional variance of the scaled score st is the unit matrix, that
is, E[sts′t | Ft−1] = I2. This gives the parameters Ai a more
natural interpretation, similar to the standard deviations of the
state innovations in a nonlinear state-space model. For the GPD,
we have

Lt =
[

1 + ξ−1
t 0

−1
√

1 + 2ξt

]
, (6)

see Web Appendix A.2 for a derivation. Combining terms yields
the scaled score

st = L′
t∇t =

⎡⎢⎢⎣ξ−2
t (1 + ξt) · ln

(
1 + ξt δ−1

t xt
)+ δt − (ξt + 3 + ξ−1

t ) · xt

δt + ξtxt√
1 + 2ξt

xt − δt

δt + ξtxt

⎤⎥⎥⎦ .

(7)

Though the first element of the scaled score in (7) seems unstable
for ξt near zero, the expression actually has a finite left limit equal
to limξt↓0 s1,t = 1 − 2δ−1

t xt + 1
2δ−2

t x2
t .
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Figure 1. News impact curves.

The first element (left panel) and second element (right panel) of st in (7) is plotted against xt for different values of ξt and δt .

Figure 1 plots the two elements of (7) as a function of xt for
different values of ξt and δt . The behavior of the scaled score is
intuitive: large xts imply that both ξt and δt are adjusted upwards
and tails thus become fatter. The adjustments are largest when
the current tail index ξt and tail scale δt are low. It is precisely
in such cases that observing a large xt is unlikely. If it occurs
nonetheless, the parameters are (strongly) adjusted to account
better for similar effects in the future.

The news impact curves become increasingly concave for
lower values of ξt . For such parameters, large xt values are
already more likely due to the fat-tailed nature of the GPD itself.
As a result, the parameters need to be adjusted less if a large xt
actually materializes. This resembles the well-known robustness
properties of score-driven updates in the context of time-varying
volatility modeling; see Creal, Koopman, and Lucas (2013) and
Harvey (2013). It also distinguishes our current set-up sharply
from an approach directly based on quantile functions; see
Patton, Ziegel, and Chen (2019) and Catania and Luati (in press),
in particular for risk measures such as ES. In Patton, Ziegel,
and Chen (2019), ES reacts linearly rather than concavely to
the VaR exceedance. This can result in noisy or unstable ES
estimates. Figure 1 illustrates that the score-driven approach is
less susceptible to such instabilities and can therefore result in
more interpretable parameter paths.

We also note that small realizations of xt imply downward
adjustments of both ξt and δt , up to the point where xt becomes
very small. For very small xt > 0, ξt is adjusted upward: observa-
tions near the center of a fat-tailed distribution signal increased
peakedness (=leptokurtosis) and thus higher ξt ; compare Lucas
and Zhang (2016) for a similar effect in the Student’s t setting.

When there is no tail observation, that is xt = yt − τt ≤ 0,
the new observation carries no information about ξt and δt ;
see (McNeil, Frey, and Embrechts 2010, Chapter 7). In such
cases we set the score to zero and continue to use (4) to update
ft . Long consecutive stretches of zero scores could potentially
lead to mean-reverting paths for ft , and thus (ξt , δt), with only
discrete “jumps” when new observations xt > 0 arrive following
such stretches.2 If so, smoothing the scaled score (7) can help to

2Alternatively, one could opt to not update ft at all until a new xt > 0 arrives.
Empirically, both approaches seem to work equally well.

spread out the impact of the new information in xt . Smoothing
the scaled scores can also help when additional conditioning
variables zt are available at every t = 1, . . . , T; see (9) and
(11) below. Lagged values of the scaled score can be taken into
account via an exponentially-weighted moving average specifi-
cation

ft+1 = ω + As̃t + Bft , s̃t = (1 − λ)st + λs̃t−1, ⇒
ft+1 = (1 − λ)ω + (1 − λ)Ast + (λI2 + B)ft − λBft−1,

(8)

where λ ∈ [0, 1) is an additional parameter to be estimated or
to be fixed ex-ante; see Web Appendix A.3 for the derivation.
This alters the values of (p, q) = (1, 1) in (4) to (p, q) = (2, 1).
While st is most often zero, s̃t is not. Clearly, (4) is a special case
of (8) for λ = 0. The smoothing approach in (8) is similar to
the approach in Patton (2006), who uses up to 10 lags of the
driver (in our case the score) to smooth the dynamics of the
time-varying parameter.

The transition equation for ft can be extended further if
additional conditioning variables are available by respecifying
(8) as

ft+1 = ω + As̃t + Bft + Czt , (9)

where all explanatory variables are stacked into the column
vector zt , and C is a conformable matrix of impact coefficients
that needs to be estimated. We illustrate this in our second
application in Section 4.

2.1.3. Time-Varying Thresholds
For the dynamic thresholds τt , we use the specification suggested
by Patton, Ziegel, and Chen (2019),

τt+1 = ωτ + aτ · (1{yt > τt} − (1 − κ)
)+ bτ τt , (10)

where ωτ ≡ (1 − bτ ) · q̂κ , q̂κ is the (observed) unconditional
κ-quantile of yt , aτ > 0 and 0 < bτ < 1 are two parameters
to be estimated, and (1 − κ) is a sufficiently small tail prob-
ability corresponding to the dynamic quantile τt , such as, for
example, 10% or 5%. We initialize τt at τ1 = q̂κ . The recursive
specification (10) is driven by a zero mean innovation process
since E[1{yt > τt} | Ft−1, θτ ] = (1 − κ). The threshold τt+1
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responds to quantile exceedances in an intuitive way: the next
quantile value τt+1 receives a positive shock of aτ κ if yt > τt ,
that is, if the previous quantile was exceeded, and a negative
shock of −aτ (1 − κ) otherwise. For 0 < bτ < 1, the empirical
unconditional quantile q̂κ serves as a long-term attractor for
(10). The transition equation for τt can also easily be extended
to include exogenous variables zt as in

τt+1 = ωτ + aτ · (1{yt > τt}− (1 −κ)
)+ bτ · τt + cτ ′ · zt , (11)

for a suitable column vector of coefficients cτ .

2.1.4. Interpretation of Time-Varying Parameters
It is important to briefly comment on parameter interpretability.
The tail shape parameter ξt can always be interpreted as obser-
vation yt ’s inverse conditional tail index α−1

t . By contrast, the
estimated tail scale parameter δt need not have a straightforward
interpretation in terms of yt ’s conditional scale σt . For example,
assume that yt has a GPD conditional distribution with time-
varying tail shape parameter α−1

t and scale σt . Web Appendix
B.1 demonstrates that the conditional tail probability P[Yt ≤
yt + τt | Yt > τt ,Ft−1] then also has a GPD shape (exactly,
not only approximately). The tail shape parameter is the same as
that of the center: ξt = α−1

t . However, the tail scale parameter
δt is very different from the scale parameter σt that applies to
the center, in particular δt = σt + α−1

t · τt . As a result, δt
increases with the threshold τt , varies positively with the tail
shape parameter ξt , and, importantly, should not be expected to
provide a good estimate of the scale parameter σt that applies to
the center of the distribution of yt. A similar result can be derived
if yt were Student’s t-distributed with scale σt and degrees of
freedom parameter αt when the tail probability P[Yt ≤ yt +
τt | Yt > τt ,Ft−1] only has an approximate GPD shape; see
Web Appendix B.2. We return to this issue in our simulation
Section 3, where we consider pseudo-true values for ξt and δt
to benchmark how well the model performs in terms of tracking
an unknown data generating process.

2.2. Stationarity and Moments

The score-driven dynamics for ξt and δt are highly nonlinear.
Still, the structure of the model allows us to obtain sufficient
conditions for the stationarity and ergodicity (SE) of ft and xt ,
and for the existence of unconditional moments of ft. To this end,
we look at our statistical model in (4)–(8) as a data generating
process (DGP).

Given the bivariate structure of our time-varying parameter
model, the process

{
ft
}

t∈Z can be viewed as a stochastic recur-
rence equation (SRE) of the form

ft+1 = t
(
ft ; θ0

) = 
(
ft , xt ; θ0

)
, t ∈ Z, (12)

where  : R
2 × R

+ × � �→ R
2 is a Borel measurable

function, and θ0 ∈ � is the true parameter vector contained
in the parameter space � ⊂ R

6. We make the following two
assumptions.

Assumption 1. Assume that xt is drawn from the GPD dis-
tribution defined in (2), such that the random variable εt :=

ξ−1
t ln (1 + ξt xt/δt) is an independent and identically dis-

tributed noise term with unit exponential distribution, εt
iid∼

Exp(1).

Assumption 2. For some integer r ≥ 1, let

E

[
ln sup

f

∥∥∥∥∥
r∏

i=1
̇t−i

(
ft−i; θ0

)∥∥∥∥∥
]

< 0, (13)

where ‖M‖ = √
trace (M′M) is the Frobenius norm of a real-

valued matrix M ∈ R
m×n, and where ̇t

(
ft ; θ0

)
:= B+A ∂ s̃t

∂s′t
· ∂st
∂f ′

t
,

such that

̇t
(
ft ; θ0

)
:=
⎛⎜⎝ bξ + aξ (1 − λ) · ∂sξt

∂f ξ
t

0

aδ (1 − λ) · ∂sδt
∂f ξ

t
bδ

⎞⎟⎠ , (14)

with

∂sξt
∂f ξ

t
= −ξ−1

t εt − ξtεt exp(−ξtεt) + (3ξ−1
t + 2ξ−2

t )

× (1 − exp(−ξtεt)) − (ξt + 3 + ξ−1
t )εt exp(−ξtεt)

∂sδt
∂f ξ

t
= 1√

1 + 2ξt

(
1 − exp(−ξtεt) − ξt exp(−ξtεt)

)
+√1 + 2ξt · (−ξ−1

t (1 − exp(−ξtεt)) + εt exp(−ξtεt)

+ξtεt exp(−ξtεt)
)

.

Assumption A1 considers the model as the data generating
process. By inverting the GPD cdf in (2), we obtain that εt =
ξ−1

t ln (1 + ξt xt/δt) = − ln(1 − ut) ∼ Exp(1) for a standard
uniformly distributed ut . Assumption A1 requires that these
uniform random variables constitute an iid process.

Assumption A2 requires contraction properties of the bivari-
ate stochastic recurrence equation. We note that we use the
general form of the r-fold contractions, that is, r iterations of the
transition equation of ft . In univariate models, sharp contraction
conditions (that ensure stationarity and ergodicity of the model)
can usually be found by assuming that r = 1; see, for example,
Blasques et al. (2022). In multivariate systems, however, the
contraction condition with r = 1 is often violated, resulting in
very small or uninteresting stationarity regions. Working with
the more general condition is therefore important. We also show
this in Figure 2. The idea behind A2 is that, when working with
a multivariate system, one can still ensure the existence of an
SE solution if the system becomes contractive eventually, that
is, after a sufficiently large number of r iterations. The contrac-
tion condition in A2 results in a meaningful (nondegenerate)
SE region, because the supremum of ̇t

(
ft ; θ0

)
over f has no

degeneracies.
Using A1 and A2, we can verify the conditions of (Bougerol

1993, Theorem 3.1). This allows us to show that a unique SE
solution exists for the bivariate score-driven process {ft}t∈Z, and
for the data {xt}t∈Z as generated by the DGP in Section 2.1. We
summarize this in the following theorem.

Theorem 1. Consider the model as defined by (2) and (4). Then
under A1 and A2, the SRE in (12) admits a unique stationary and
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Figure 2. Stationarity and moments regions.

Top row: the combinations of aξ and bξ that satisfy A2 (left panel), and (15) for p = 2 (middle panel) and p = 4 (right panel), for an increasing number of iterations r ≥ 1.
Bottom row: similar, but for combinations of aδ and bδ instead. Other deterministic parameters for each panel are fixed at their empirical estimates for S&P500 returns; see
Section 4.1.

ergodic solution {f̃t}t∈Z such that, for each fixed initial condition
f0 ∈ R

2, ∥∥∥ft − f̃t
∥∥∥ e.a.s.−−→ 0 as t → ∞,

where e.a.s.−−→ denotes exponentially fast and almost sure conver-
gence (Straumann and Mikosch 2006). In addition, the process
{xt}t∈Z generated by the model evaluated at θ0 is stationary and
ergodic.

Web Appendix C.1 presents the proof of Theorem 1. Next
to the SE properties of the ft process, we can also establish
the existence of unconditional moments. This can be useful for
proving the existence of moments of the log-likelihood function
and its derivatives. We note that the contraction condition stated
in A2 by its own is insufficient to ensure bounded unconditional
moments of ft in the DGP. Requiring the existence of moments
typically makes the admissible parameter space smaller. We also
note that the existence of unconditional moments of ft does not
imply the same (un)conditional moments for xt . For instance,
even if ft has a finite 4th order moment, xt may not if ξt can reach
levels higher than 1/4. We have the following result.

Theorem 2. Consider the model as defined by (2) and (4), and
let A1 and A2 be true. If in addition

E

[
sup

f

∥∥∥∥∥
r∏

i=1
̇t−i

(
ft−i; θ0

)∥∥∥∥∥
p]

< 1, (15)

for some p ≥ 1, then the unique stationary and ergodic solution
{f̃t}t∈Z to the SRE in (12) satisfies E[‖f̃t‖p] < ∞.

Web Appendix C.2 provides the proof of Theorem 2. Again,
Theorem 2 makes use of r-fold contraction conditions rather
than the standard r = 1 case.

To give some insight into the size of the SE and moments
regions, we compute them numerically in Figure 2. We let two
(out of the six) parameters in � vary at a time. Computing the
regions is far from trivial. It requires numerically solving a max-
imization problem embedded inside an integration problem. As
a result, the maximization problem has to be solved for every
value of the integration variable. Details are provided in Web
Appendix D.

Figure 2 clearly illustrates the importance of multiple unfold-
ings of the SRE. If only r = 1 iteration is used, the SE and
finite-moments regions are typically small, or even empty; see
for instance the small darkest blue region in panel 2(a) for r = 1,
or the fact that panel 2(d) only shows contracting behavior for
r ≥ 17 iterations given the empirical estimates. For r = 1,
empirical estimates typically lie outside the SE region. However,
by iterating the SRE forward, the SE and finite-moments regions
grow considerably to the extent that they also encompass the
empirical estimates. For instance, the model may not be SE when
evaluated at the empirical estimates for r = 1. For r = 20, 40,
or even larger, however, the model’s SE region at the empirical
estimates increases such that even fourth order moments of ft
exist. Given the S&P500 data (on which Figure 2 is based) are
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at a daily frequency, we conclude that a time-varying parameter
model may not have guaranteed contraction properties at the
daily frequency, but may still have such contraction properties
at a monthly (r = 22) or lower frequency. The numerical
results in the figure stress that analytical conditions for SE, as
often encountered in the literature for r = 1, may be quite
uninteresting if not accompanied by a numerical check for the
size of the resulting parameter space.

2.3. Parameter Estimation

Observation-driven time series models such as (1)–(11) have
the appealing feature that the log-likelihood is known in closed
form. For a given set of time series observations xt = 1{yt >

τt} ·(yt −τt) for t = 1, . . . , T, the vector of unknown parameters
θ can then be estimated by maximizing the log-likelihood func-
tion of the GPD with respect to θ . The average log-likelihood
function is given by

L (θ |FT) = 1
T∗

T∑
t=1

1{xt > 0} · ln p(xt ; δt , ξt)

= 1
T∗

T∑
t=1

1{xt > 0}

·
[
− ln(δt) −

(
1 + 1

ξt

)
ln
(

1 + ξt
xt
δt

)]
, (16)

where T∗ = ∑T
t=1 1{xt > 0} is the number of POT values

in the sample. Maximization of (16) can be carried out using
a conveniently chosen quasi-Newton optimization method.

To establish consistency and asymptotic normality of the
maximum likelihood estimator (MLE), we define the MLE θ̂ as

θ̂ := argmax
θ∈�

L (θ |FT) . (17)

We establish these asymptotic properties by showing that the
conditions for Lemma 1 in Jensen and Rahbek (2004) are sat-
isfied. The main point to note is that the first three derivatives of
the log-likelihood function (and of ft) with respect to θ are sta-
tionary and ergodic stochastic recurrence equations that satisfy
specific moment conditions. We make the following additional
assumption on the parameter space �.

Assumption 3. The parameter vector θ ∈ � for a compact
parameter space � ⊂ R

6, and the true parameter vector θ0 ∈
int(�). Additionally, for each θ ∈ �, the starting value f0(θ) =
(ln (ξ0) , ln (δ0))

′ ∈ R
2 is fixed to the true value.

Finally, we impose conditions on the score vector ∇t , as
defined in (5), and its derivatives up to third-order. Let ∇t(θ),
∇2

t (θ) and ∇3
t (θ) denote the score vector and first two deriva-

tives with respect to f ξ
t (θ) and f δ

t (θ), evaluated at some θ ∈
V(θ0), where V(θ0) denotes a small neighborhood of the true
parameter vector θ0. By imposing the conditions in Assump-
tion 4, we can rule out explosive behavior of the first three
derivatives of the log-likelihood function with respect to θ .
Similar boundedness assumptions have been used in for instance
Hetland, Pedersen, and Rahbek (in press) or Hafner and Wang

(in press). Effectively, this further reduces the size of the parame-
ter space (see also Blasques et al. 2022). Web Appendix E.1 pro-
vides the explicit analytic expressions for each of these deriva-
tives.

Assumption 4. The score vector ∇t(θ), and its derivatives ∇2
t (θ),

and ∇3
t (θ) are p-dominated uniformly in V(θ0) and t by domi-

nating functions D1,t , D2,t , and D3,t , respectively, such that

sup
θ∈V(θ0)

‖∇t(θ)‖ ≤ D1,t , sup
θ∈V(θ0)

∥∥∇2
t (θ)

∥∥ ≤ D2,t , and

sup
θ∈V(θ0)

∥∥∇3
t (θ)

∥∥ ≤ D3,t ,

where D1,t , D2,t , and D3,t are p-integrable uniformly in t for
p > 0, that is

∥∥D1,t
∥∥p ≤ �1 < ∞,

∥∥D2,t
∥∥p ≤ �2 < ∞, and∥∥D3,t

∥∥p ≤ �3 < ∞.

The following theorem establishes the asymptotic properties of
our MLE.

Theorem 3. Consider the model as defined by (2) and (4). Let
Assumptions 1–3 hold true. Then θ̂

P−→ θ0 as T∗ → ∞.
If, in addition, Assumption 4 holds true, as well as the con-
traction condition (15) in Theorem 2 for p = 4, then√

T∗
(
θ̂ − θ0

)
⇒N

(
0, �−1

I
)

as T∗ → ∞, where �I denotes
the Fisher information matrix evaluated at the true parameter
vector θ0.

The proof of Theorem 3, together with detailed derivations
of the derivatives up to the third-order of the log-likelihood
function L(θ |FT), and of the (bivariate) score-driven process
{ft(θ)}t∈Z, for each θ ∈ � can be found in Web Appendix E.2.

All our results are conditional on the time-varying thresholds
τt . The parameters aτ and bτ for τt in (10) cannot be estimated
using (16). Another objective function is needed in this case.
We suggest using the average quantile regression check function
of (Koenker 2005, chap. 3). The optimization problem can be
formulated as

min
{aτ , bτ }

1
T

T∑
t=1

ρκ

(
yt − τt

)
(18)

⇐⇒ min
{aτ , bτ }

1
T

T∑
t=1

(yt − τt)
(
κ − 1{yt < τt}

)
⇐⇒ max

{aτ , bτ }
1
T

T∑
t=1

(yt − τt)
(
(1 − κ) − 1{yt > τt}

)
,

where ρκ(ut) = ut (κ − 1{ut < 0}), and τt evolves as in (10).
See also Engle and Manganelli (2004) and Catania and Luati (in
press) for the use of this objective function in a different dynamic
context. In practice, we estimate all thresholds τt via (18) before
maximizing (16).

2.4. Confidence Bands for Tail Shape and Tail Scale

Given the maximum likelihood estimate θ̂ , confidence (or stan-
dard error) bands around f̂t = ft(θ̂) allow us to visualize the
impact of estimation uncertainty. Quantifying the uncertainty
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of the estimated parameter paths is important, as classical EVT
estimators of time-invariant tail shape parameters can have
sizeable standard errors; see for example, Hill (1975) and Huis-
man et al. (2001). Web Appendix F explains how simulation-
based and in-sample analytic confidence bands around f̂t can be
obtained. These bands are conditional on the estimated time-
varying thresholds τ̂t , and do not incorporate the associated
estimation uncertainty of the thresholds.

2.5. Market Risk Measures

Market risk measurement is a major application of EVT methods
in practice; see for example, McNeil, Frey, and Embrechts (2010).
The GPD approximation (1)–(2) yields useful closed-form esti-
mators of the VaR and ES for high upper quantiles γ > G(τt |
Ft−1); see McNeil and Frey (2000) and Rocco (2014). We can
estimate the 1−γ tail probability of yt based on the GPD cdf for

xt , obtaining VaRγ (yt | Ft−1, θ) = τt+δtξ
−1
t

[(
1−γ
t∗/t

)−ξt − 1
]

,

where t∗ is the number of observations with xt > 0 up to time t,
that is, the number of ys for s = 1, . . . , t for ys > τs.

The conditional ES is the average conditional VaR in the
tail across all quantiles γ (see McNeil, Frey, and Embrechts
2010, chap. 2), provided ξt < 1. The closed-form expression
is ESγ (yt | Ft−1, θ) = VaRγ (yt |Ft−1,θ)

1−ξt
+ δt−ξtτt

1−ξt
, see Web

Appendix G for a derivation of the equations. Maximum likeli-
hood estimators of the conditional VaR and conditional ES can
be obtained by inserting filtered estimates of ξt and δt into the
VaR and ES equations, respectively.

3. Simulation Study

3.1. Simulation Design

This section investigates the ability of our dynamic EVT model
to simultaneously recover (i) the time variation in tail shape
and tail scale parameters ξt and δt , (ii) EVT-based market risk
measures VaRγ (yt ; τt , ξt , δt) and ESγ (yt ; τt , ξt , δt) at high confi-
dence levels such as γ = 99%, and (iii) parameter estimates and
their standard errors for all deterministic parameters collected
in θ . We do so using two sets of data generating processes
(DGPs). The first set of DGPs is discussed in the main text,
while the second set of DGPs is discussed in Web Appendix H.
In our experiments, we track the performance of our score-
driven modeling approach when putting it into a variety of
challenging settings, such as when the conditional density is
only approximately correct, the time-varying parameter process
is misspecified or features (near)-unit roots, and/or when both
tail parameters follow similar paths. We also investigate whether
the market risk estimates that follow from the model are reliable.

In our first set of DGPs, we consider D = 2 different densities
(GPD and Student’s t), P = 4 different parameter paths for
tail shape and scale, and H = 3 different ways to obtain the
appropriate thresholds τt . This yields 2 × 4 × 3 = 24 simulation
experiments. In each experiment, we draw S = 100 univariate
simulation samples of length T = 25,000. We focus on the upper
1 − κ = 5% tail. As a result, approximately 25,000 · 0.05 =

1250 observations are available in each simulation to compute
informative POTs xt > 0.

We first simulate yt from a GPD(α−1
t , σt) distribution with

time-varying tail shape α−1
t and scale σt . In a second set-up,

we consider a Student’s t distribution with time-varying scale σt
and degrees of freedom αt . In the GPD case, our score-driven
model uses the exact conditional density for xt , while in the t
case the GPD conditional density for xt is only approximately
correct (given finite thresholds τt in any given sample); see Web
Appendix B.

We consider four different paths for the tail shape α−1
t and

scale σt parameters. For both the GPD and Student’s t densities
we consider

1. Constant: α−1
t = 0.5, σt = 1;

2. Sine and constant: α−1
t = 0.5 + 0.3 sin(4π t/T), σt = 1;

3. Slow sine and frequent sine: α−1
t = 0.5 + 0.3 sin(4π t/T),

σt = 1 + 0.5 sin(16π t/T);
4. Synchronized sines: α−1

t = 0.5 + 0.3 sin(4π t/T), σt = 1 +
0.5 sin(4π t/T).

Consequently, paths (1) considers the special case of time-
invariant tail shape and scale parameters. Naturally, we would
want our dynamic framework to cover constant parameters as a
special case. Paths (2) allows the tail shape to vary considerably
between 0.2 and 0.8, while keeping the scale (volatility) of the
data constant. Paths (3) stipulates that both parameters vary
over time. Finally, paths (4) considers the case of synchronized
variation in both parameters.

Next, we consider three ways to construct the thresholds τt .
First, we use the true time-varying 95%–quantile based on our
knowledge of the true density and of αt and σt . This constitutes
an infeasible best benchmark. Second, we construct τt as the
95%–quantile of the expanding window of data up to time t,
that is τt = Q0.95

1:t
({y1, . . . , yt}

)
. Finally, we use the recursive

specification (10), initialized at the full-sample quantile τ1 =
Q0.95

1:T .
Our main evaluation metric for evaluating model

performance is the root mean squared error RMSE =
1
S
∑S

s=1

√
1
T
∑T

t=1(ξ̂
s
t − ξ̄ s

t )
2, where ξ̂ s

t is the estimated tail
shape parameter in simulation s, ξ̄ s

t is the corresponding
(pseudo-)true tail shape, s = 1, . . . , S denotes the simulation
run, and t = 1, . . . , T is the number of observations in each
draw. The RMSE for the tail scale parameter δt is obtained
analogously. The pseudo-true values ξ̄ s

t and δ̄s
t are obtained

by numerically minimizing the Kullback-Leibler divergence
between the GPD and the data generating process beyond the
true time-varying 95% quantile τt . As the true conditional
density is known at all times in a simulation setting, these
pseudo-true benchmarks are easily computed numerically for
each s and t. Particularly the GPD tail scale parameter δ̄t may
have very different dynamics from σt , as it combines dynamics
in αt and σt via the EVT limiting expression in (1); see also
Section 2.1.4.

3.2. Simulation Results

For the first set of DGPs, we are particularly interested in two
issues: first, what is the effect of increasing misspecification by
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Table 1. RMSE outcomes for DGP1.

Model GPD(τt ) GPD(τ̂t ) GPD(τ̂∗
t ) t(τt ) t(τ̂t ) t(τ̂∗

t )
(infeasible) (infeasible)

RMSE ξ̂t
(1) 0.000 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
(2) 0.171 0.177 0.178 0.182 0.188 0.189

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
(3) 0.182 0.188 0.189 0.190 0.197 0.197

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
(4) 0.177 0.186 0.183 0.188 0.195 0.192

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

RMSE δ̂t
(1) 0.005 0.014 0.068 0.005 0.010 0.034

(0.003) (0.006) (0.013) (0.002) (0.004) (0.006)
(2) 1.646 1.774 1.753 0.580 0.589 0.588

(0.034) (0.040) (0.036) (0.013) (0.012) (0.013)
(3) 2.421 2.913 2.813 0.836 0.960 0.924

(0.054) (0.054) (0.049) (0.015) (0.020) (0.017)
(4) 2.608 2.904 2.844 0.925 0.970 0.964

(0.057) (0.059) (0.059) (0.020) (0.020) (0.022)

NOTE: Root mean squared error (RMSE) statistics for two different distributions (GPD and t, in columns) and for four different parameter paths for tail shape ξt and tail
scale δt (paths (1)–(4), in rows). Thresholds τt , τ̂t , and τ̂∗

t denote, respectively, (i) the infeasible true time-varying threshold, (ii) the empirical quantile associated with an
expanding window of observations y1, . . . , yt , and (iii) the estimated conditional quantile using (18) and a suitably calibrated aτ = 0.25 to speed up the computations.
We consider 100 simulations for each DGP, and a time series of 25,000 observations in each simulation. Model performance is measured by the RMSE from the true ξ̄t and
δ̄t in each draw.

Figure 3. Simulation results: an example.

Time series data is here generated as yt ∼t(0, σt , αt), where α−1
t = 0.5+0.3 sin(4π t/T) and σt = 1+0.5 sin(16π t/T). This is Path 3 in Section 3.1. Pseudo-true parameter

values are reported in solid red. The four panels report estimates of ξt , δt , VaRt , and ESt , respectively. Median filtered values are plotted in solid black. The first two panels
also indicate the lower 5% and upper 95% quantiles of the estimates (black dots). The time-varying threshold τ̂t is estimated based on the recursive specification (10) in
conjunction with the objective function (18).

moving from a GPD to a Student’s t density in the data gener-
ating process of yt , and second, how accurately can we recover
high-confidence market risk measures when the conditional
GPD density is only approximately correct.

Table 1 presents the corresponding results. It reports RMSE
statistics for tail shape ξ̂t and tail scale δ̂t . Figure 3 provides a
representative example of the simulation outcomes where we
compare median estimated parameter paths for ξ̂t , δ̂t , V̂aR0.99,
and ÊS0.99 to their (pseudo)-true values. Full results are found in
Web Appendix H.1. The true parameters in Figure 3 follow Path
3 from Section 3.1, and time-varying thresholds are estimated
based on the recursive specification (10) and objective function
(18).

We focus on three main findings. First, all models seem to
work well in recovering the true underlying ξt and δt dynamics.
The median estimates in Figure 3 tend to be close to their

(pseudo)-true values. The full results in in Web Appendix H.1
confirm this. Even the highly nonlinear patters of δt are recov-
ered well. The model also captures the peaks of ξt , which cor-
respond to the episodes with the fattest tails. The model needs
some time to recognize that the extreme tail has become more
benign, that is, that ξt has gone down. The good fit is corrobo-
rated by Table 1. We also note that both estimation methods for
τt only loose about 10% RMSE for ξt and δt compared to the use
of the true (infeasible) τt .

Second, when comparing the results for ξt and δt based on
the recursive estimate τ̂t and the dynamic estimate τ ∗

t of Patton,
Ziegel, and Chen (2019), Table 1 shows differences are mostly
small and insignificant. If there is no time-variation (Path 1),
the estimates of δ̂t based on a recursive τ̂t fare slightly better (as
expected). The converse is true for if the true parameters vary
over time (Paths 2–4).
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Third, Figure 3 shows that EVT-based market risk measures
such as high-confidence level (γ = 0.99) VaRs and ESs tend
to be estimated sufficiently accurately with our dynamic EVT
approach. Again, this is confirmed by the full results in Web
Appendix H.1. Both the low and high frequency dynamics of
VaR and ES are captured well. There only appears some under-
estimation of the ES at its highest peak, where tails are extremely
fat. Overall, we conclude that the model captures the dynamics
of the tails accurately, even in cases where the model does not
coincide with the true, unobserved data generating process and
the model is thus misspecified.

We conclude this section by briefly summarizing the main
simulation results from our second set of DGPs in Web
Appendix H.2. Empirical estimates of the autoregressive param-
eters bξ and bδ can be close to one; see Section 4. For this reason,
we investigate the effect of (near-)unit root type dynamics and
of additional covariates on the parameter estimates and their
standard errors. We find that models with (near-)unit root type
dynamics continue to work reliably. The estimated δ̂, ξ̂t , and δ̂t
continue to be closely aligned to their true values. The usual
asymptotic standard error estimates based on the inverse Hes-
sian or sandwich estimates, however, are not always reliable then.
In our set-up, these common estimates of the standard errors
are typically too large, providing too conservative inference. A
bootstrap procedure tailored to integrated processes could then
be used to avoid this issue.3

4. Empirical Illustrations

4.1. Equity Log-Returns

To illustrate our approach, we obtain end-of-day prices for the
S&P500 index and for IBM stock as two easily and publicly
available series from the CRSP database.4 The S&P500 data
range from July 3, 1962 to December 31, 2020, yielding 14,726
daily observations. The IBM stock data range from January 2,
1926 to December 31, 2020, yielding 25,028 daily observations.
To model the adverse left tail of equity log-returns we consider
negative log-returns yt = −100 × (ln pt − ln pt−1), with pt the
price level, before applying our methodology.

4.1.1. Deterministic Parameter Estimates
We rely on the time-variation in the thresholds τt to accommo-
date time-variation in any parameters describing the center of
the distribution. The thresholds evolve over time according to
(10), at (1 − κ) = 10%, and are initialized at τ1 = q̂0.9, the 90%
empirical quantile of yt . The factor process ft = (ln ξt , ln δt)

′ is
initialized at f1 = (I2 − B)−1 ω.

The first two columns in Table 2 present our estimates of
the deterministic parameters of model (1)–(10). The estimates
of aτ > 0 and bτ < 1 suggest that the thresholds are time-
varying and mean-reverting. Parameters aξ and aδ are statis-
tically significant at any reasonable significance level, for both
S&P500 and IBM. These parameters can be interpreted as the
average size of the scores driving ln ξt and ln δt , respectively; see

3See for instance Boswijk et al. (2021).
4Web Appendix I provides two additional illustrations to other asset classes:

exchange rates (GBP/USD) and commodities (Brent crude oil).

the statements above (6). Parameters bξ and bδ are estimated
to be close to one for both series, implying that shocks to each
time-varying parameter die out only slowly. A numerical check
reveals that the deterministic parameters aξ and bξ lie within
the SE region implied by the sufficient conditions of Theorems 1
and 2. A diagnostic check in Web Appendix J suggests that the
bivariate filter (4) is also invertible at these estimates.

4.1.2. Tail Parameter Estimates
Figure 4 presents the raw log-returns (top panels) along with
filtered estimates of ξt and δt (middle and bottom panels). The
filtered tail shape varies between approximately 0.05 and 0.25 for
the S&P 500 index, and between approximately 0.05 and 0.35 for
IBM. The filtered tail scales vary roughly between 0.2 and 2.0
for the S&P 500 and IBM. The confidence bands around each
filtered parameter suggest that both are reasonably precisely
estimated, and that the tail shape parameter is often far from
zero. The reported confidence bands are conditional on the
estimated thresholds τ̂t .

The filtered estimates of ξt and δt suggest that one-off,
extremely negative returns affect the filtered tail shape more than
the filtered tail scale. Longer-lasting crises, by contrast, appear
to affect the tail scale more than the tail shape. For example,
the stock market crash on October 19, 1987, also known as
“Black Monday,” considerably increases ξ̂t but not δ̂t . Similarly,
the 2010 “flash-crash” on May 6, 2010 increases ξ̂t more than
δ̂t . By contrast, the global financial crisis between 2008 and
2009, and the Covid-19 pandemic recession in early 2020, both
temporarily increase δ̂t while leaving ξ̂t less affected.

Figure 4 also plots estimates of VaRt and ESt at a 99% confi-
dence level. We checked that indeed 1.0% of the log-returns lie
beyond V̂aRt in the case of the S&P 500 index (0.9% for IBM
stock). The average value of −yt conditional on it exceeding its
VaR is −3.54% for the S&P 500, and −4.85% for IBM. These val-
ues are approximately in line with the time series average of ÊSt
at −3.12% for the S&P 500, and −4.59% for IBM, respectively.

4.2. Changes in Sovereign Yields

In our second application we illustrate the inclusion of explana-
tory variables in the dynamics of ξt and δt as in (9). To do so, we
study whether there was any tail risk impact of central bank asset
purchases on changes in Italian (IT) and Portuguese (PT) five-
year bond yields between 2010 and 2012. Both Italy and Portugal
were in the “epicenter” of the existential euro area sovereign debt
crisis at that time; see for example, Eser and Schwaab (2016),
and Ghysels et al. (2017). Italy is an example for a large euro
area country that was affected by the crisis relatively late (in
mid-2011), and that benefited from Eurosystem bond purchases
only during a relatively short period of time, between August
2011 and March 2012. Portugal, by contrast, is an example for
a smaller euro area country that was affected relatively early
(already in 2010), and that benefited from Eurosystem bond
purchases more uniformly over time, between May 2010 and
March 2012.

Eurosystem bond purchases undertaken during the sovereign
debt crisis predominantly targeted the 1- to 10-year maturity
bracket, with the 5-year maturity approximately in the middle
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Table 2. Parameter estimates.

First illustration Second illustration

S&P500 IBM IT 5y yield PT 5y yield

aξ 0.025 0.018 0.018 0.023 0.028 0.028
(0.01) (0.00) (0.003) (0.002) (0.003) (0.004)
[0.00] [0.00] [0.000] [0.000] [0.000] [0.000]

aδ 0.112 0.088 0.079 0.076 0.092 0.089
(0.01) (0.01) (0.003) (0.003) (0.004) (0.004)
[0.00] [0.00] [0.000] [0.000] [0.000] [0.000]

bξ 0.9993 0.9997 0.9997a 0.9997a 0.9997a 0.9997a

(0.00) (0.00)
[0.00] [0.00]

bδ 0.995 0.994 0.9997a 0.9997a 0.9997a 0.9997a

(0.001) (0.001)
[0.00] [0.00]

cξ −7.696 −47.855
(2.225) (22.555)
[0.001] [0.034]

cδ 0.144 −10.782
(0.737) (4.323)
[0.845] [0.013]

λ 0 0 0.911 0.911 0.911 0.911
aτ 0.241 0.260 0.221 0.221 0.773 0.773
bτ 0.989 0.990 0.999 0.999 0.998 0.998
cτ 0.017 0.017 −0.141 −0.141
T 14,726 25,028 24,416 24,416 24,576 24,576
T∗ 1495 2532 2448 2448 2490 2490
loglik −22,028.4 −62,727.4 −80,535.8 −80,513.9 −196,068.0 −196,031.0
AIC 44,068.7 125,466.9 161,079.7 161,039.8 392,143.9 392,074.0
BIC 44,114.3 125,515.7 161,112.1 161,088.4 392,176.3 392,122.7

NOTE: Parameter estimates for the dynamic tail shape model. The second and third columns refer to the first application (equity log-returns of the S&P500 index and IBM
stock). The estimation samples range from July 3, 1962 to December 31, 2020 for the S&P500 index, and from January 2, 1926 to December 31, 2020 for IBM stock. The
remaining columns refer to the second application (changes in sovereign yields). Columns labeled IT 5y and PT 5y refer to yield changes for Italy and Portuguese five-year
benchmark bonds sampled at the 15-min frequency. The estimation samples range from January 4, 2010, 9 a.m., to December 31, 2012, 5 p.m. For the second application,
bξ and bδ are estimated indistinguishably different from, but still slightly below one. To be in line with theory, we fix the coefficients slightly below 1 at 0.9997a for
a = 1/32, such that at a daily (8 hr = 32 quarters) the coefficient is comparable to the highest IBM coefficient, bξ . Standard error estimates are in round brackets, p-values
are in square brackets. Standard errors and p-values are based on a sandwich covariance matrix estimator for the first application, and on a bootstrap procedure for the
second application.

of that spectrum; see for example Eser and Schwaab (2016).
We consider the impact on five-year sovereign benchmark bond
yields for this reason.

The bond yields yt are sampled at the 15-min frequency,
between 9 a.m. and 5 p.m., and are obtained from Bloomberg.
We do not consider overnight changes in yield, such that the first
15-min interval covers 9 a.m. to 9:15 a.m. Our sample ranges
from January 04, 2010 to December 31, 2012. This yields 32
intra-daily observations per trading day, with T ≈ 3 × 260 ×
32 ≈ 25,000 observations per country.

Finally, we construct time series data zt of country-specific
bond purchases at the high (15-min) frequency. Observations
zt contain all sovereign bond purchases at par (nominal) value
between t − 1 and t for the respective country, not only pur-
chases of the five-year benchmark bond. Disaggregated data on
Eurosystem SMP purchases sampled at a high-frequency are still
confidential at the time of writing. At the end of our sample, the
Eurosystem helde99.0 bn in Italian sovereign bonds ande21.6
bn in Portuguese bonds; see the ECB Annual Report 2013. We
including these as an additional conditioning variable in (9) to
see whether they mitigated extreme tail behavior or not.

4.2.1. Deterministic Parameter Estimates
We continue to rely on the time-variation in the thresholds τt
to control for time-variation in any parameters describing the
center of the distribution. The thresholds now evolve according

to (11), also taking account of the SMP purchases zt . We choose
(1 − κ) = 10%, and initialize τ1 = q̂0.9, the 90% empirical
quantile of yt .

Analyzing changes in the tail shape and tail scale parameters
for high-frequency data is challenging given the high persis-
tence of parameters at such frequencies. We therefore introduce
two simplifications. First, we fix the smoothing parameter λ at
0.051/32 ≈ 0.911, such that 95% of the smoothing materializes
within one day (i.e., 32 15-min intervals). As there are only log-
likelihood contribution for the GPD for xt = zt − τt > 0,
it is hard to identify λ empirically. Second, to keep the model
in line with the theory from Section 2.2, we fix bξ and bδ to a
value close to the unit boundary, as otherwise they are estimated
indistinguishably different from 1. We choose (bξ )32 = (bδ)32 =
0.9997, which implies a similar persistence level as (IBM) equity
returns at a daily (= 8h = 32 quarters) frequency. Fixing λ, bξ ,
or bδ at other reasonable values has little effect on the empirical
findings.

Columns three to six of Table 2 present our estimates of
the deterministic parameters for the model (1)–(11). Columns
three and five refer to a baseline model without central bank
purchases. Table 2 reports bootstrapped standard errors for the
deterministic parameters using the procedure outlined in Web
Appendix K.

The estimates of aτ > 0 and bτ < 1 suggest that the thresh-
olds are time-varying and mean-reverting. Parameter cτ is
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Figure 4. Filtered tail parameters for S&P500 (left) and IBM (right) log-returns.
Top panels: daily log-returns for the S&P500 index (left) and IBM common stock (right). Middle and bottom panels: filtered tail shape (ξt , middle) and tail scale (δt , bottom)
parameters. The thresholds τt are reported at a 90% confidence level; Value-at-Risk (VaR) and Expected Shortfall (ES) are plotted at an extreme 99% confidence level (top
panels). The thresholds τt , VaR, and ES are mirrored at the horizontal axis to correspond to log-returns (instead of percentage losses). The estimation samples range from
July 3, 1962 to December 31, 2020 for the S&P500 index, and from January 2, 1926 to December 31, 2020 for the IBM stock. The reported samples range from July 3, 1962
to December 31, 2020.

estimated to be negative for Portuguese bonds, and close to zero
for Italian bonds. Parameters aξ and aδ suggest pronounced
and statistically significant time series variation in both the
tail shape ξt and tail scale δt parameters, both of which are
captured by our time-varying parameter model. The impact
parameters cξ and cδ of bond purchases on tail shape and
scale are estimated to be negative in both cases. The log-
likelihood increases by 21.9 points for IT, and 37.0 points for
PT. A comparison of model selection criteria (AIC, BIC) fur-
ther supports the inclusion of central bank asset purchases
as a useful covariate to explain each time series’ extreme tail
dynamics.

4.2.2. Tail Parameter Estimates and VaR Impact
Figure 5 plots the corresponding filtered estimates for time-
varying tail shape ξt and tail scale δt . Time series variation is
present and pronounced in both parameters. The filtered tail
shape varies between approximately 0.1 and 0.4 for Italian yields,
and between 0.05 and 0.6 for Portuguese yields. The filtered tail
scale varies between approximately 1 and 10.0 for Italian yields,
and between approximately 1 and 40 for Portuguese yields.
The standard error bands around each time-varying parameter
suggest that both parameters are estimated reasonably precisely,
and that the tail shape is often far from the Gumbel case of
ξt = 0.
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Figure 5. The tail shape and tail scale estimates.
Top row: Five-year sovereign benchmark bond yields for Italy (IT, left column) and Portugal (PT, right column) between 2010 and 2012. Middle row: filtered tail shape (ξt )
parameter. Bottom row: filtered tail scale (δt) parameter. Standard error bands are simulated at a 95% confidence level.

As was clear from Table 2, the coefficients cξ and cδ measure
the impact of bond purchases on the tail behavior of yield
changes. As these parameters are difficult to interpret by them-
selves, we show in Web Appendix L how they can be translated
into an impact on VaR via their link to τt , δt , and ξt . For Italy,
we obtain a total VaR impact of 0.0 (tail threshold) +0.8 (tail
scale) − 5.9 (tail shape) = −5.1 bps for a e1 bn Eurosystem
intervention. For Portugal, we obtain a larger impact of −0.1 (tail
threshold) − 172.5 (tail scale) − 176.4 (tail shape) = −349.0 bps.
These point estimates are of course subject to substantial esti-
mation uncertainty; see Table 2. The 95% confidence intervals
for VaR impact can be bootstrapped along with the parameters.
They equal [−17.6, 11.6] for IT and [−664.0, −38.8] for PT. The
stronger impact for Portugal than for Italy is likely due to a e1
bn intervention constituting a larger share of the overall market.

5. Conclusion

We introduced a semiparametric modeling framework to
study time variation in tail parameters for long univariate time
series. To this end we modeled the time variation in the shape
and scale parameters of the Generalized Pareto Distribution,
which approximates the tail of most heavy-tailed densities
used in econometrics and the actuarial sciences. We discussed
the handling of nontail time series observations, inference
on deterministic and time-varying parameters, and how to
relate tail variation to observed covariates if such variables are
available. We also established conditions for stationarity and
ergodicity of the model and conditions for consistency and
asymptotic normality of the maximum likelihood estimator.
The model therefore complements and extends recent work
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based on different methodologies, such as the nonparametric
approach to tail index variation of de Haan and Zhou (2021), the
time-varying quantile (and ES) approaches of Patton, Ziegel,
and Chen (2019) and Catania and Luati (in press), and the
parametric approach of Massacci (2017). We applied the model
to study variation in the left tail of U.S. equity log-returns, and
in the right tail of changes in euro area sovereign bond yields at
a high frequency. In the latter case we also studied the impact
of Eurosystem bond purchases, concluding that these had a
beneficial impact on tail parameters, leaning against the risk of
extremely adverse market outcomes.

Evidently, our model for time-varying tail parameters is
focussed on capturing marginal features. In many applications
it may also be of interest to study the time-varying nature of
joint extremes; see for example, Castro-Camilo, de Carvalho,
and Wadsworth (2018), Escobar-Bach et al. (2018), and Mhalla,
de Carvalho, and Chavez-Demoulin (2019). In terms of our first
illustration, for example, one could wonder whether extremely
negative log-returns for the S&P 500 and IBM stock were more
dependent at certain points in time. We leave such research for
future work (see also Lucas, Schwaab, and Zhang 2014; Oh and
Patton 2018; Hautsch and Herrera 2020).

Supplementary Materials

Supplementary materials contain proofs and technical details, additional
simulation and empirical results, and computer code (language: Ox) for
the implementation of the method. The latter is also obtainable via
www.gasmodel.com.
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