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A B S T R A C T

In this paper, we propose FrankenMask, a novel framework that allows swapping and rearranging face parts
in semantic masks for automatic editing of shape-related facial attributes. This is a novel yet challenging task
as substituting face parts in a semantic mask requires to account for possible spatial misalignment and the
adaptation of surrounding regions. We obtain such a feature by combining a Transformer encoder to learn
the spatial relationships of facial parts, with an encoder–decoder architecture, which reconstructs a complete
mask from the composition of local parts. Reconstruction and attribute classification results demonstrate the
effective synthesis of facial images, while showing the generation of accurate and plausible facial attributes.
Code is available at https://github.com/TFonta/FrankenMask_semantic.
1. Introduction

Semantic image synthesis refers to the task of generating photo-
realistic images conditioned on a semantic segmentation mask. Given a
pixel-wise segmentation mask and a reference style image, it is possible
to generate an image with a spatial layout corresponding to that defined
by the mask, and the style defined by the image. A major breakthrough
in this field was achieved by Park et al. [1], who proposed SPADE,
a conditional de-normalization layer that modulates the activations
through transformations learned from the input semantic layouts. Since
then, several variants have been subsequently proposed [2–5]. This
surge of interest is motivated by the astonishing generation results
achieved, and the versatility that this solution brings along. In fact,
using a segmentation mask allows controlling the image generation
in many ways and at different levels of detail. It becomes possible to
locally control and transfer styles [5], or manipulate attributes [2]. In
such a framework, different styles can be applied both globally and
locally by simply picking them from different semantic classes [5].
Oppositely though, performing local shape manipulations is more dif-
ficult, since local regions of the semantic mask need to be changed.
To do so, current models either allow manipulating mask parts using

∗ Corresponding author.
E-mail addresses: tomaso.fontanini@unipr.it (T. Fontanini), claudio.ferrari2@unipr.it (C. Ferrari), giuseppe.lisanti@unibo.it (G. Lisanti),

leonardo.galteri@unipegaso.it (L. Galteri), stefano.berretti@unifi.it (S. Berretti), massimo.bertozzi@unipr.it (M. Bertozzi), andrea.prati@unipr.it (A. Prati).

some graphical interface, or swapping parts across masks, yet only
in case of a very precise alignment. For example, to perform smiling
transfer Lee et al. [2] selected suitable pairs of masks with the aid
of a pose estimator, and simply exchanged the mouth parts on the
masks to transfer the smile. As we will show, doing so on random pairs
of masks and/or parts would introduce severe artifacts due to spatial
inconsistencies in the masks.

Given the above limitation, the capability of automatically manip-
ulating and rearranging semantic parts without strict alignment con-
straints or manual intervention could represent an important improve-
ment for semantic image synthesis approaches. Addressing this problem
though requires facing several challenges. In fact, other than spatial
misalignment, substituting a face part in a semantic mask demands for
adapting the surrounding regions accordingly. This becomes even more
challenging if we wish to change several parts simultaneously.

In this paper, we propose a solution to the above problem by
introducing FrankenMask, an encoder–decoder network that allows us
to locally manipulate the shape of local parts in semantic masks on
an individual basis. This module is completely independent from the
image generators, and can be ideally applied on top of most of the
vailable online 21 October 2023
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Fig. 1. Automatic manipulation of face images: firstly, different parts of the face (hair, mouth, etc.) are selected from different subjects using multiple semantic masks (the parts
are highlighted in the RGB images using their original semantic mask color). A direct combination of the parts (Hard Swap) would result in inconsistent masks. FrankenMask
instead reorganizes the selected parts in a consistent way so that a realistic RGB image can be produced using any pre-trained model.
current semantic face image synthesis models, making them fully and
automatically controllable in terms of both style and shape. Some
examples of the possibilities enabled by the proposed method are
shown in Fig. 1, where we generate a face image by combining the
shape of face parts from several semantic masks, with the style of the
input image (leftmost column). Our network is composed of an encoder,
a transformer encoder and a decoder. The encoder processes each part
of the semantic segmentation mask independently, encoding it into a
latent vector. Once all the 𝑁 mask parts are encoded, they are stacked
to form a sequence. The most peculiar characteristic of our architecture
is the transformer encoder, which takes the above sequence as input to
learn the relationships across different parts. It then outputs a sequence
of 𝑁 latent vectors that are finally concatenated and fed to the decoder,
which outputs the complete semantic mask. The output of FrankenMask
can then be used as an input to any state-of-the-art semantic image
synthesis generators like [2] or [5], unlocking several new editing
possibilities.

It is worth noticing that, differently from modern vision Transform-
ers [6] (ViTs), where visual encodings are directly learned on image
patches, in our work the transformer encoder is used to learn shape
and spatial relationships among face parts, represented as sequences
of latent vectors obtained through a CNN. We exploit the fact that
each face part is an independent channel in the input data. Hence,
each latent encoding captures the parts shape, and the transformer can
effectively learn their relationships, ultimately allowing us to obtain
realistic outputs even in case of strong manipulation of the input.

Overall, the main contributions of this paper are as follows:

• We propose an alternative way of disentangling face parts in
semantic image synthesis, introducing the problem of semantic
mask manipulation;

• A new model, called FrankenMask, capable of automatically re-
arranging any number of parts from multiple segmentation masks
without requiring alignment constraints;

• The possibility of enriching multiple state-of-the-art methods for
mask-to-RGB face synthesis, allowing for fully automatic manip-
ulation without any architectural change.

The proposed solution has been extensively evaluated both quanti-
tatively and qualitatively. Qualitative results demonstrate the effective
capability of synthesizing pleasant target images, where multiple re-
gions of the face are changed based on source masks taken from
different individuals. On the other hand, measures of reconstruction
error and attribute classification evidence that processing the masks
with our network does not compromise the image generation quality,
while obtaining good results in terms of shape-related attribute transfer.

2. Related work

The task of generating and manipulating face images was deeply
explored in the recent years with a large corpus of different approaches
15
that were proposed [7–11]. Among all these, Semantic Image Synthesis
(SIS) methods are all based on similar frameworks, which are composed
of two main modules: a Style Encoder and a Generator network. The
latter takes the semantic mask as input, while the style encoder is
used to encode the style, i.e. texture, which is used to condition the
generator so to output the final image. Style can be either extracted
from an RGB image, or generated from noise. This difference leads to
further divide methods in diversity, and quality driven. In their seminal
work, Park et al. [1] first addressed this problem by noticing that in
conventional synthesis architectures that stack convolutional, normal-
ization, and non-linearity layers [12,13], the normalization layers tend
to remove information contained in the input semantic masks. To solve
this problem, they proposed the SPatially-Adaptive (DE)normalization
(SPADE) method, where a conditional normalization layer modulates
the generator activations through a spatially adaptive, learned transfor-
mation. The same model, also known as GauGAN [14] was deployed in
a GAN-based framework. However, in SPADE only a single style code
is used to control the entire style of an image, resulting in a lack of
fine-grained style control. To solve this issue, Zhue et al. [5] proposed
an architecture that extracts one style code per semantic class with
a dedicated style encoder. Further, they designed a SEmantic region-
Adaptive Normalization block (SEAN) that can use style input images
to create spatially varying normalization parameters per semantic class.
Simultaneously, Lee et al. [2] proposed MaskGAN to enable diverse and
interactive face manipulation. The main idea is that of learning the face
manipulation process as traversing on the mask manifold, rather than
directly transforming images in the pixel space. This produces more
diverse results with respect to facial components, shapes, and poses.
Tan et al. [4] proposed the INstance-Adaptive DEnormalization (IN-
ADE) approach that is capable of producing diverse results at semantic
or instance level. The intuition is to treat each semantic class as one
distribution so that each instance of this class could be drawn from this
distribution as a discrete sample. In [15], Tan et al. proposed a CLass-
Adaptive (DE)normalization layer (CLADE) that, differently from the
spatially adaptive solution of SPADE, uses the input semantic mask to
modulate the normalized activation in a class-adaptive manner. Along
this line, several other works were proposed [3,16–19].

The proposed FrankenMask positions itself upstream, providing an
automatic tool to manipulate the semantic masks prior to input them
to a SIS generator. All the aforementioned methods, instead, are not
suited to handle heavy and automatic editing of the semantic masks.
On the other side, the proposed FrankenMask allows us to change the
shape of the masks locally by performing swaps of multiple parts and
rearranging them to create a realistic result. This novel ability could
lead us to, and inspire, significant improvements in semantic image
synthesis methods.

3. FrankenMask network

Our goal is to train a network capable of manipulating, or swap-
ping, local face regions of semantic segmentation masks, in order to
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Fig. 2. FrankenMask (the dotted blue rectangle in the figure) takes a semantic segmentation mask 𝑚 as an input, and uses the encoder 𝐄 to encode one by one each channel 𝑚𝑖 of
the mask corresponding to a face part. We interpret the encoded channels 𝑧𝑖 as a sequence, and feed them to a transformer encoder 𝐓𝐸 , producing a new sequence. A decoder 𝐃
takes the concatenated and reshaped sequence and outputs a new segmentation mask. The generated mask can be used as input to any Semantic Image Synthesis (SIS) generator,
so to output a manipulated RGB face image.
enable fully automatic face editing. A challenge here is that obtaining
sufficient training data, i.e., manipulated masks, to train such a module
would require huge manual effort. In addition, differently from natural
images, segmentation masks contain only shape/silhouette information,
making it difficult to disentangle possible factors of variation. To over-
come these issues, we devised a model that, in a totally unsupervised
manner, is capable of learning relationships across face parts and ma-
nipulating the masks. The main design intuition consists of processing
each mask channel, i.e., face part, separately, producing a sequence of
part embeddings. Before decoding the embeddings to reconstruct the
mask, those are passed through a transformer encoder. The latter is
designated to learn relationships among face parts, while the encoder–
decoder learns to reconstruct, or re-compose, the input mask from its
parts. In this way, when changing one or more parts, all the others are
adjusted accordingly in order to output a rearranged mask, without the
need of supervising the process.

The proposed network architecture is rather simple, and it is illus-
trated in Fig. 2. It is composed of three main modules: the encoder
𝐄, the transformer encoder 𝐓𝐸 and the decoder 𝐃. The model takes as
input a segmentation mask 𝑚 ∈ R𝐻×𝑊 ×𝐶 and produces as output a new
segmentation mask �̂� ∈ R𝐻×𝑊 ×𝐶 . The mask 𝑚 is an image composed
of 𝐶 = 18 channels, one for each face part. The background channel is
not considered and is subsequently added to the reconstructed mask by
simple difference with respect to the other channels.

More in detail, each mask channel 𝑚𝑖 ∈ R𝐻×𝑊 is fed to the encoder
separately. The encoder is composed of a series of convolutional layers
that iteratively down-sample the input in order to obtain a compressed
representation 𝑧𝑖 for each part of the mask. The resulting embeddings
𝐳 = [𝑧1,… , 𝑧𝐶 ] are arranged and interpreted as a sequence and used as
input to the transformer encoder, which produces a new representation
�̂� = [�̂�1,… , �̂�𝐶 ]. In this way, each element �̂�𝑖 of the new sequence
depends on all the other elements thanks to the attention mechanism
of the transformer. Then, �̂� is concatenated into a single latent code
and reshaped by passing through a fully connected layer. Finally, the
decoder produces a complete output mask �̂� ∈ R𝐻×𝑊 ×𝐶 . The decoder
is composed of a series of upsampling blocks and convolutions that
revert the latent vector to the original input image shape producing the
output. The main advantage of this architecture is the capability of the
transformer encoder 𝐓𝐸 of modeling the relationship between all of the
different mask parts. In particular, the transformer will rearrange the
latent space allowing impressive robustness when swapping multiple
parts of the input mask 𝑚. Ultimately, this leads the decoder to produce
varied yet realistic and plausible results.
16
3.1. Transformer encoder

As previously mentioned, the encoder 𝐄 produces a set of embed-
dings, corresponding to the different segmentation mask parts. Then, in
order to provide the model with meaningful order information between
each mask part, a fixed positional encoding (as used in [20]) is summed
to each embedding. Therefore, the input sequence is defined as:

𝐳 = [𝐄(𝑚1) + 𝑃𝐸(𝑚1),… ,𝐄(𝑚𝐶 ) + 𝑃𝐸(𝑚𝐶 )], (1)

where 𝑃𝐸 is the positional encoding, which has the same dimension as
the embedding produced by the encoder.

The sequence 𝐳 is fed to the transformer encoder 𝐓𝐸 , which is
composed of six layers of stacked multi-head self-attention and fully
connected layers. In particular, the self-attention models dependencies
and relationships between the different elements in the sequence and,
therefore, between each of the parts that compose the segmentation
mask 𝑚. We will show that this property of the transformer is crucial
for guiding the decoder to output consistent and realistic masks without
noticeable artifacts. On the other hand, a possible negative outcome of
the manipulation performed by the transformer is that of changing their
shape. However, since the network is trained to correctly reconstruct
the shape of the parts so as to build a consistent mask, it will also fix
inaccurate parts arrangement. Minor shape changes though occur in the
case of unrealistic compositions. For example, if the swapped mouth is
too large to fit the face, the involved parts will be slightly modified so
that they are placed in a plausible face-like configuration, ultimately
looking more realistic.

3.2. Loss function

FrankenMask is trained only to self-reconstruct the input mask from
its parts using a reconstruction loss, and no swap is performed during
its optimization. The only training supervision is a pixel-wise cross-
entropy loss 𝐶𝐸 between the input and the output of the model:

𝐶𝐸 = −

∑𝐻
𝑗=1

∑𝑊
𝑘=1 𝑚

𝑗,𝑘 log �̂�𝑗,𝑘

𝐻 ×𝑊
, (2)

where 𝐻 × 𝑊 is the number of pixels in the input mask and �̂� =
Softmax(�̂�). Using only a reconstruction loss and no additional super-
vision proved to be enough to allow robustness during the swapping,
showing the learning capability of the transformer encoder. Despite its
simplicity, we will show that this framework allows us to consistently
manipulate, swap or interpolate one or more face parts across different
masks.
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Table 1
Reconstruction metrics using FrankenMask in conjunction with different generators,
namely SEAN, MaskGAN, SC-GAN and INADE.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ FRD ↑

SEAN [5] 18.03 0.566 0.204 21.09 0.574
FrankenMask+SEAN 17.87 0.546 0.216 22.55 0.555

MaskGAN [2] 9.03 0.272 0.546 47.59 0.334
FrankenMask+MaskGAN 9.02 0.274 0.545 55.11 0.328

V-Inade [4] 13.33 0.437 0.342 22.21 0.567
FrankenMask+V-Inade 13.23 0.431 0.348 23.93 0.537

SCGAN [17] 15.74 0.508 0.286 20.23 0.639
FrankenMask+SCGAN 15.50 0.493 0.297 22.03 0.599

3.3. Composing new masks with FrankenMask

In order to swap or compose new masks with FrankenMask, at
inference time, we select: (i) a target mask 𝑚𝑡𝑟𝑔 ; (ii) one (or more)
ource mask 𝑚𝑠𝑟𝑐 ; (iii) a set of 𝑡 parts 𝐩 = [𝑝0,… , 𝑝𝑡] to be swapped.

Given the FrankenMask model, 𝐹𝑀 , we define the swapping operation
as �̂�𝑠𝑤 = 𝐹𝑀(𝑚𝑠𝑟𝑐 , 𝑚𝑡𝑟𝑔 ,𝐩). More in detail, we embed the mask parts
through the encoder i.e. 𝑧𝑖 = 𝐄(𝑚𝑖) ∀𝑖, choosing the part(s) 𝐩 to be
swapped from the source mask(s) 𝑚𝑠𝑟𝑐 , and picking all the others from
𝑚𝑡𝑟𝑔 . For example, when swapping the part 𝑖, the sequence to be used
as input to the transformer encoder becomes: 𝐳 = [𝑧𝑡𝑟𝑔1 ,… , 𝑧𝑠𝑟𝑐𝑖 ,… , 𝑧𝑡𝑟𝑔𝐶 ].
Note that, as shown in Fig. 1, having a target mask is not strictly
necessary, and it is also possible to compose a new mask by mixing
parts from 𝐶 different masks. The complete mask is obtained by feeding
𝐳 to the decoder, i.e., �̂�𝑠𝑤 = 𝐃(𝐳). When generating the final image by
means of a synthesis network, different styles can be picked from other
faces as well.

4. Experimental results

In the following, we report both quantitative (Sections 4.1 and 4.2)
and qualitative (Section 4.3) results along with an ablation study to
highlight the importance of the transformer encoder (Section 4.4).

Training details. Training was performed on an NVIDIA Quadro RTX
6000 for 50 epochs. We employed Adam [21] with a learning rate of
0.00001. We did not perform any data augmentation except for random
horizontal flipping.

Dataset . We conducted all our experiments on the CelebAMask-HQ
[2], which is a face dataset built upon CelebA-HQ [22]. It contains
30,000 segmentation masks and face images, divided into 28k for
training, and 2k for testing.

Network configuration. The parameters used in all the experiments
are the following: the size of each embedding 𝑧𝑖 was set to 512;
the transformer encoder 𝐓𝐸 is composed of 6 layers, and 8 attention
heads; finally, both the encoder and decoder have 7 downsampling and
upsampling layers, respectively.

4.1. Reconstruction results

First, we aim at showing that FrankenMask can reconstruct accu-
rate masks such that the performance of synthesis generators is not
degraded if using reconstructed masks in place of ground-truth ones.
The idea is: the closer the generated masks to real ones, the smaller the
gap in the reconstruction metrics of the synthesized face images. To this
end, in Table 1 we report results for some widely used reconstruction
metrics (e.g., PSNR, SSIM, LPIPS [23] and FID [24]). For comparison,
we considered four state-of-the-art semantic image synthesis methods,
namely SEAN [5], MaskGAN [2], SCGAN [17] and INADE [4], when
equipped with a variational autoencoder to encode the styles (V-Inade).
Note that absolute values of the metrics change depending on the
17
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Table 2
Attribute classification; for each attribute, transfer results are averaged over 5 different
randomly chosen reference masks 𝑚𝑎

𝑟𝑒𝑓 . Considered attributes: Big Nose (B.N.), Oval
Face (O.F.), Smiling (S.), Narrow Eyes (N.E.), Arched Eyebrows (A.E.) and Eyeglasses
(E.).

Method Attribute classification % (Sensitivity)

B.N. O.F. S. N.E. A.E. E.

Num. Samples 555 601 916 216 684 129
GT 66.8 47.4 92.8 39.1 79.9 99.2

FrankenMask + MaskGAN 67.2 32.8 99.8 31.5 88.7 94.6
FrankenMask + SEAN 84.8 50.9 98.9 69.9 87.8 99.2
FrankenMask + V-Inade 62.7 36.8 99.7 16.2 87.3 96.9
FrankenMask + SCGAN 75.7 48.8 100 13.4 94.4 96.2

specific generator; we remark that we are specifically interested in
verifying the stability of the results in case original or reconstructed
masks are used. Using semantic masks obtained with FrankenMask has
a small degrading effect when provided as input to any of the above
generators. In addition, we also used a Face Recognition Distance (FRD)
metric to verify the reconstructed masks do not change the perceived
identity when generating face images from them, highlighting that
shape properties are correctly preserved. To compute FRD, we calculate
the cosine similarity between deep embeddings obtained from the
original and generated face images using a InceptionV1 model pre-
trained on VggFace2 [25]. The FRD remains stable, indicating that
FrankenMask compromises the face generation to a little extent.

4.2. Attribute classification

Standard metrics normally employed for assessing generative mod-
els are hardly applicable to semantic masks. A possible solution is to
evaluate the accuracy of a facial attribute classifier when applied to face
images generated by using masks in which face parts are swapped using
FrankenMask. In this way, we can evaluate how accurately our network
can maintain shape properties of swapped face parts, and generate
semantic masks that lead to the generation of face images containing
a given attribute. Clearly, we are not interested in attributes that are
related to style, e.g., pale skin, or heavy makeup. Some examples of
suitable attributes are smiling, big nose, or eyeglasses. It would look
natural in this scenario to apply this strategy to all the available test
masks. Practically though, manipulating an attribute is not always pos-
sible, for instance in case of occlusions. In such cases, the classification
would be necessarily incorrect. To ensure a meaningful assessment, for
each attribute we only consider images that originally included it, in
order to make sure the attribute can be manipulated. In this way, we
can compare the classifier performance on the original images, against
that obtained after transferring the attributes.

The chosen test attributes are the following: big nose, oval face,
smiling, narrow eyes, arched eyebrows and eyeglasses. These were
selected in order to include all the relevant face parts, i.e., nose,
face, mouth, eyes, eyebrows. For each one, following [2], we fine-
tune a ResNet-18 model as binary classifier on the training set of
CelebMask-HQ. Table 2 reports the classifiers sensitivity obtained on
the ground-truth images of the test set. We underline that we report
the sensitivity and not the accuracy since all the samples should include
the attribute, thus being positive instances.

To perform the transfer, for each attribute 𝑎, we first identify
which semantic parts 𝐩𝑎 of the mask are responsible for its detection,
e.g., smiling is defined by mouth, upper lip and lower lip. A set of
𝑘 = 5 random reference masks 𝑚𝑎

𝑟𝑒𝑓 containing 𝑎 are then selected
rom the test set of CelebMask-HQ. The reference masks are chosen
uch that the corresponding ground-truth image is classified correctly.
e then use FrankenMask to swap face parts 𝐩𝑎𝑟𝑒𝑓 from the reference
asks 𝑚𝑎

𝑟𝑒𝑓 across other masks 𝑚𝑡𝑟𝑔 , and generate manipulated masks
𝑎 𝑎 𝑎
hat contain 𝑎, that is �̂�𝑠𝑤 = 𝐹𝑀(𝑚𝑟𝑒𝑓 , 𝑚𝑡𝑟𝑔 ,𝐩𝑟𝑒𝑓 ). Finally, we use these
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Fig. 3. Examples of interpolation of different swapped parts. The first two results (from left) were obtained by combining FrankenMask and SEAN, while the third and fourth
results were obtained by combining FrankenMask and MaskGAN.
Fig. 4. Examples of manipulation using FrankenMask to swap multiple parts from different masks of various shapes and orientations.
new masks �̂�𝑎
𝑠𝑤 as input to a semantic image synthesis network and

generate images to be used for attribute classification.
Table 2 reports the attribute recognition sensitivity. It turns clearly

out that, by using FrankenMask, the manipulated masks are precise
enough to generate faces for which the transferred attribute is easily
recognizable. Among the tested ones, results for two specific attributes
i.e. Oval Face and Narrow Eyes, show a decreased sensitivity except in
case the SEAN generator is used. Such attributes though are challenging
to detect, due to the minimal change that is applied to the mask after
the swapping (e.g., ‘‘skin’’ always involves most of the face region,
while for ‘‘narrow eyes’’ the difference is itself tiny, and could not be
noticed). One can indeed observe that even the sensitivity obtained
using the ground-truth masks is itself low, if compared to attributes
like Big Nose, Smiling, Arched Eyebrows and Eyeglasses, which instead
exhibit more noticeable differences in the final mask. The fact that
SEAN can instead render images that lead to higher detection is due to
its improved generation precision. Finally, FrankenMask contribution
and ability to preserve shape properties can be better appreciated in
Fig. 5.

4.3. Qualitative results

Qualitative results are presented in Figs. 3 and 4. In Fig. 3, we show
multiple interpolation results of different mask parts. The interpolation
can be obtained thanks to the FrankenMask architecture. In particular,
given two different masks 𝑚′ and 𝑚′′, and the index 𝑖 of the part(s) we
wish to swap, the interpolation is performed as:

𝑧𝑖𝑛𝑡𝑖 = 𝛼𝑧′𝑖 + (1 − 𝛼)𝑧′′𝑖 , (3)

where 𝛼 is a scalar going from 0 to 1, and 𝑧′𝑖 and 𝑧′′𝑖 are the embeddings
of the parts obtained from 𝑚′ and 𝑚′′, respectively. Once the interpola-
tion is performed, 𝑧𝑖𝑛𝑡𝑖 is inserted into the sequence of embeddings 𝐳 at
position 𝑖, then the whole sequence is fed to the transformer encoder.
Looking at Fig. 3, we can observe that FrankenMask allows us to in-
dependently control different parts, resulting in an impressive freedom
in generating the face images. Such behavior was not possible using
previous methods like SEAN or MaskGAN. Indeed, we can effectively
interpolate single or multiple parts simultaneously.
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Table 3
Classification results for different configurations of FrankenMask combined with SEAN
[5]. Attributes: Big Nose (B.N.), Oval Face (O.F.), Smiling (S.), Narrow Eyes (N.E.),
Arched Eyebrows (A.E.), Eyeglasses (E.).

Method Attribute classification % (Sensitivity)

B.N. O.F. S. N.E. A.E. E.

Hard Swap 84.1 27.9 97.2 32.8 86.5 99.0
Swap with AE 67.4 56.1 96.6 29.2 89.8 97.7
FrankenMask (w/o 𝐓𝐸 ) 83.6 48.0 97.8 59.2 91.0 98.4
FrankenMask (Full) 84.8 50.9 98.9 69.9 87.8 99.2

Finally, Fig. 4 shows some masks produced by the proposed
FrankenMask. Each of the results is obtained by first selecting different
parts from multiple semantic masks, then swapping them with the
corresponding parts in the target mask using FrankenMask. Indeed,
the selection is made with no particular care of imposing the same
orientation. On the contrary, often these masks are not aligned at
all, which makes the FrankenMask task more difficult. In addition, a
difficulty is that the swapped parts, being taken from different faces, are
not correlated, making their composition even more problematic. Even
in this challenging setting, the proposed architecture is able to generate
realistic results by adjusting the shape and orientation of the swapped
parts to fit in the target masks. In particular, eyeglasses and the whole
mouth (composed of upper lip, mouth and lower lip parts) are swapped
convincingly even when the target mask presents a completely opposite
orientation. This outperforms previous methods like [2], where auto-
matic swapping was only possible in a very constrained setting with
the source and target masks completely aligned. In addition, the model
is able to handle a large number of swaps at the same time, without
affecting the quality of the generation.

4.4. Ablation study

In Fig. 5 and Table 3, we report the results of an ablation study
aimed at assessing the importance of the transformer in our archi-
tecture. In particular, the following alternatives are evaluated: the
first simply consists of swapping one mask channel, without further
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Fig. 5. Mask and RGB results in different scenarios when swapping different parts: first, the hard swap was performed without passing the resulting mask to FrankenMask; second,
the full hard-swapped mask was passed through a simple Autoencoder; then, FrankenMask was used removing the transformer encoder; finally, the full FrankenMask was employed.
Table 4
Ablation study on different sizes of the mask embeddings. Results are reported as
differences with respect to our final configuration for clarity (embedding size 512).
Smaller embedding sizes lead to slightly worse results (red colored), while using a
1024 embedding size leads to only very slightly increased (green colored) or equal (=
symbol) performance, at the cost of increased computational burden.

Size PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ FRD ↑ L1 ↓

512 (Ours) 17.87 0.546 0.216 22.55 0.555 0.0034

128 −0.07 −0.003 +0.001 +0.42 −0.005 −0.0005
256 −0.03 −0.002 +0.002 +0.20 −0.002 −0.0003
1024 +0.02 = −0.001 −0.13 +0.001 =

processing (Hard Swap). This is intended to highlight how changing
two mask channels leads to more or less severe spatial misalignment,
which in turn results in holes appearing in the output mask. Then,
we train a simple autoencoder to re-arrange the swapped channels
(Swap with AE). Finally, we also train our architecture without the
Transformer Encoder 𝐓𝐸 . Given the results of Sections 4.1 and 4.2,
we used SEAN [5] as image generator for this experiment. Looking
at Fig. 5, it can be observed that, when swapping the hair part,
FrankenMask is able to adapt the new shape also in the presence
of overlapping parts (like the hat in the first row), while the other
configurations drastically fail. Also, in the third row, the whole face is
swapped from the source to the target mask and, since the source mask
face is obstructed by an helmet, FrankenMask needs to reconstruct a
large portion of the face. Indeed, the transformer encoder allows for
generating the missing portion of the face much more convincingly.
One could argue that a simple hole-filling or similar approaches would
suffice to fix the misalignment resulting from hard-swapping two mask
channels. However, this is not the case since uniquely determining the
correct class with which filling the holes is not possible, and might
change depending on which part is swapped.

Table 3 instead reports classification results obtained as described in
Section 4.2. Whereas the performance of different baselines are quite
similar and might perform slightly better in cases where the source-
target alignment is easier to maintain, the sensitivity of FrankenMask
is way more stable across attributes and particularly pronounced when
considering face parts that are more subject to misalignment, e.g., nar-
row eyes, which require stronger re-arrangement. In these cases, simply
swapping the parts is not suitable, and the ability of FrankenMask to
correctly rearrange the semantic parts turns out fundamental.

Finally, in Table 4 an ablation of different part embedding sizes
is performed. From the table, it turns out clearly that there is not
much difference in the performance if changing the embedding size;
generally, performance monotonically increases as we enlarge the em-
bedding size, as expected. Visually, the generated images do not reveal
19
Fig. 6. Results when swapping parts with large pose variations between source and
target mask.

significant changes, and so we eventually chose 512 as final size as
it represents a good trade-off. Note that an additional reconstruction
metric (L1) is added, which was not reported in Table 1 that is cal-
culated directly between the reconstructed and ground-truth semantic
masks rather than the synthesized RGB images. This specific metric
further highlights that there is not much advantage is going beyond
a size of 512, while a little accuracy is lost if using smaller embedding
sizes.

5. Limitations and future perspectives

The proposed work is the first attempt of automatically manipulat-
ing semantic segmentation masks. On the one hand, we proposed an
alternative way to disentangle face parts in semantic image synthesis,
which can open the way to several interesting applications and im-
provements; on the other hand, there are still limitations and issues
that need to be solved.

A major limitation is that of swapping larger parts such as hair or
skin in case of large pose variations, i.e., difference in head orientation.
Whereas the transformer encoder can rearrange smaller parts to a large
extent even in case of large pose differences (see for example Fig. 4
and in particular Fig. 6, where swaps are performed across multiple
face masks with clear pose differences), larger ones are still difficult to
handle.Arguably, the larger the portion of mask that is covered by a
specific face part, the bigger its influence in defining the orientation
and disposition of the others. Thus, in this scenario, it becomes am-
biguous to determine the correct face orientation. Another limitation
of the proposed framework design is that the semantic manipulation is
performed at the class level, which partially prevents extending the use
of our network to other datasets, where object classes might have one
or more instances like for cars or pedestrians.



Pattern Recognition Letters 176 (2023) 14–20T. Fontanini et al.
Finally, with the current framework, the manipulation of parts can
be done only if a target mask is available. An extension of this work
that we aim at exploring will include the possibility of manipulating the
latent space using other external information such as attribute labels.

6. Conclusions

In this paper, we have proposed FrankenMask, an architecture that
allows performing fine-grained editing on semantic masks by swapping
any number of parts with no need for strict constraints over alignment
and shape. The model is able to reorganize all the different parts
consistently on the target semantic mask in order to produce a realistic
output. This is achieved thanks to an encoder–decoder architecture
with the notable addition of a transformer encoder. The latter helps
learn the relationship between the semantic image parts and greatly
boosts the generation quality. Indeed, the proposed network combined
with semantic face image synthesis generators is able to unlock new
possibilities in automatic face editing. We believe this novel alternative
to disentangle shape and appearance modeling can open the way to
several interesting applications.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data used for this research is publicly available at https://
github.com/switchablenorms/CelebAMask-HQ for research purposes.
Code can be found at https://github.com/TFonta/FrankenMask_sema
ntic.

Acknowledgments

This work was partially supported by the Programme ‘‘FIL-Quota
Incentivante’’ of University of Parma, co-sponsored by Fondazione
Cariparma, Italy, and PRIN 2020 ‘‘LEGO.AI: LEarning the Geometry
of knOwledge in AI systems’’, grant no. 2020TA3K9N funded by the
Italian MIUR. All authors approved the final version of manuscript to
be published’ to Acknowledgment section.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.patrec.2023.10.010.

References

[1] T. Park, M.-Y. Liu, T.-C. Wang, J.-Y. Zhu, Semantic image synthesis with
spatially-adaptive normalization, in: IEEE/CVF Conf. on Computer Vision and
Pattern Recognition, 2019, pp. 2337–2346.

[2] C.-H. Lee, Z. Liu, L. Wu, P. Luo, Maskgan: Towards diverse and interactive
facial image manipulation, in: IEEE/CVF Conf. on Computer Vision and Pattern
Recognition, 2020, pp. 5549–5558.
20
[3] X. Liu, G. Yin, J. Shao, X. Wang, H. Li, Learning to predict layout-to-image
conditional convolutions for semantic image synthesis, in: Int’L. Conf. on Neural
Information Processing Systems, 2019.

[4] Z. Tan, M. Chai, D. Chen, J. Liao, Q. Chu, B. Liu, G. Hua, N. Yu, Diverse semantic
image synthesis via probability distribution modeling, in: IEEE/CVF Conf. on
Computer Vision and Pattern Recognition, 2021, pp. 7962–7971.

[5] P. Zhu, R. Abdal, Y. Qin, P. Wonka, Sean: Image synthesis with semantic region-
adaptive normalization, in: IEEE/CVF Conf. on Computer Vision and Pattern
Recognition, 2020, pp. 5104–5113.

[6] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., An image is worth 16x16
words: Transformers for image recognition at scale, 2020, arXiv preprint arXiv:
2010.11929.

[7] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, T. Aila, Analyzing
and improving the image quality of stylegan, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp. 8110–8119.

[8] B. Zeno, I. Kalinovskiy, Y. Matveev, B. Alkhatib, CtrlFaceNet: Framework
for geometric-driven face image synthesis, Pattern Recognit. Lett. 138 (2020)
527–533.

[9] B. Huang, W. Chen, X. Wu, C.-L. Lin, P.N. Suganthan, High-quality face
image generated with conditional boundary equilibrium generative adversarial
networks, Pattern Recognit. Lett. 111 (2018) 72–79.

[10] T. Fontanini, L. Donati, M. Bertozzi, A. Prati, Unsupervised discovery and manip-
ulation of continuous disentangled factors of variation, ACM Trans. Multimed.
Comput., Commun. Appl. 19 (6) (2023) 1–25.

[11] C. Ferrari, S. Berretti, P. Pala, A. Del Bimbo, Rendering realistic subject-
dependent expression images by learning 3DMM deformation coefficients, in:
Proceedings of the European Conference on Computer Vision (ECCV) Workshops,
2018.

[12] P. Isola, J. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with conditional
adversarial networks, in: IEEE/CVF Conf. on Computer Vision and Pattern
Recognition, 2017, pp. 5967–5976.

[13] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, B. Catanzaro, High-resolution
image synthesis and semantic manipulation with conditional GANs, in: IEEE/CVF
Conf. on Computer Vision and Pattern Recognition, 2018, pp. 8798–8807.

[14] T. Park, M.-Y. Liu, T.-C. Wang, J.-Y. Zhu, GauGAN: Semantic image synthesis
with spatially adaptive normalization, in: ACM SIGGRAPH 2019 Real-Time Live!,
2019.

[15] Z. Tan, D. Chen, Q. Chu, M. Chai, J. Liao, M. He, L. Yuan, G. Hua, N. Yu,
Efficient semantic image synthesis via class-adaptive normalization, IEEE Trans.
Pattern Anal. Mach. Intell. (2021).

[16] Y. Li, Y. Li, J. Lu, E. Shechtman, Y.J. Lee, K.K. Singh, Collaging class-specific
GANs for semantic image synthesis, in: IEEE/CVF International Conference on
Computer Vision, 2021, pp. 14418–14427.

[17] Y. Wang, L. Qi, Y.-C. Chen, X. Zhang, J. Jia, Image synthesis via semantic
composition, in: IEEE/CVF International Conference on Computer Vision, 2021,
pp. 13749–13758.

[18] H. Ling, K. Kreis, D. Li, S.W. Kim, A. Torralba, S. Fidler, EditGAN: High-precision
semantic image editing, in: Advances in Neural Information Processing Systems,
2021.

[19] Y. Shi, X. Yang, Y. Wan, X. Shen, SemanticStyleGAN: Learning compositional
generative priors for controllable image synthesis and editing, 2021, arXiv
preprint arXiv:2112.02236.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser,
I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017).

[21] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv
preprint arXiv:1412.6980.

[22] T. Karras, T. Aila, S. Laine, J. Lehtinen, Progressive growing of gans for improved
quality, stability, and variation, 2017, arXiv preprint arXiv:1710.10196.

[23] R. Zhang, P. Isola, A.A. Efros, E. Shechtman, O. Wang, The unreasonable
effectiveness of deep features as a perceptual metric, in: IEEE/CVF Conf. on
Computer Vision and Pattern Recognition, 2018, pp. 586–595.

[24] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, S. Hochreiter, Gans trained
by a two time-scale update rule converge to a local nash equilibrium, Adv. Neural
Inf. Process. Syst. 30 (2017).

[25] Q. Cao, L. Shen, W. Xie, O.M. Parkhi, A. Zisserman, Vggface2: A dataset for
recognising faces across pose and age, in: IEEE Int’L. Conf. on Automatic Face
& Gesture Recognition, 2018, pp. 67–74.

https://github.com/switchablenorms/CelebAMask-HQ
https://github.com/switchablenorms/CelebAMask-HQ
https://github.com/switchablenorms/CelebAMask-HQ
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://github.com/TFonta/FrankenMask_semantic
https://doi.org/10.1016/j.patrec.2023.10.010
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb1
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb1
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb1
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb1
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb1
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb2
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb2
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb2
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb2
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb2
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb3
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb3
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb3
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb3
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb3
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb4
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb4
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb4
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb4
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb4
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb5
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb5
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb5
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb5
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb5
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb7
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb7
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb7
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb7
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb7
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb8
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb8
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb8
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb8
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb8
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb9
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb9
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb9
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb9
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb9
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb10
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb10
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb10
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb10
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb10
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb11
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb11
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb11
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb11
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb11
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb11
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb11
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb12
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb12
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb12
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb12
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb12
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb13
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb13
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb13
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb13
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb13
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb14
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb14
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb14
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb14
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb14
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb15
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb15
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb15
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb15
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb15
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb16
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb16
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb16
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb16
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb16
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb17
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb17
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb17
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb17
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb17
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb18
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb18
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb18
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb18
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb18
http://arxiv.org/abs/2112.02236
http://arxiv.org/abs/2112.02236
http://arxiv.org/abs/2112.02236
http://arxiv.org/abs/2112.02236
http://arxiv.org/abs/2112.02236
http://arxiv.org/abs/2112.02236
http://arxiv.org/abs/2112.02236
http://arxiv.org/abs/2112.02236
http://arxiv.org/abs/2112.02236
http://arxiv.org/abs/2112.02236
http://arxiv.org/abs/2112.02236
http://arxiv.org/abs/2112.02236
http://arxiv.org/abs/2112.02236
http://arxiv.org/abs/2112.02236
http://arxiv.org/abs/2112.02236
http://arxiv.org/abs/2112.02236
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb20
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb20
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb20
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb23
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb23
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb23
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb23
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb23
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb24
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb24
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb24
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb24
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb24
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb25
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb25
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb25
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb25
http://refhub.elsevier.com/S0167-8655(23)00282-9/sb25

	FrankenMask: Manipulating semantic masks with transformers for face parts editing
	Introduction
	Related Work
	FrankenMask Network
	Transformer encoder
	Loss function
	Composing new masks with FrankenMask

	Experimental Results
	Reconstruction Results
	Attribute Classification
	Qualitative Results
	Ablation Study

	Limitations and Future Perspectives
	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References


