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and separable Fréchet spaces over a separable complete non-
Archimedean valued field.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

The category of abelian groups with a Polish cover and Borel-definable group homo-
morphisms was recently introduced in collaboration with Bergfalk and Panagiotopoulos 
[6,7]. In this work, we showed that several classical invariants from homological algebra 
and algebraic topology, including Ext of countable groups, Steenrod homology of com-
pact metrizable spaces, and Čech cohomology of locally compact metrizable spaces can 
be seen as functors to the category of abelian groups with a Polish cover. These provide 
definable refinements of such invariants that are finer, richer, and more rigid than the 
purely algebraic ones.

In this paper we prove that the category M of abelian groups with a Polish cover and 
Borel-definable group homomorphisms is an abelian category. The category A of abelian 
Polish groups is a full subcategory of M, such that the inclusion functor A → M is 
finitely continuous and exact. Furthermore, M is characterized up to equivalence by the 
following universal property: a functor from the category A of abelian Polish groups to 
an abelian category is finitely continuous and exact if and only if it is isomorphic to a 
functor that extends to a finitely continuous exact functor on M, in which case such an 
extension is unique up to isomorphism. In other words, M together with the inclusion 
A → M is a universal arrow [36, Section III.1] from A to the forgetful functor from 
the category of abelian categories and finitely continuous exact functors (identified up to 
isomorphism) to the category of quasi-abelian categories and finitely continuous exact 
functors (identified up to isomorphism). This universal property also identifies M as 
the left heart LH(A) of the quasi-abelian category A (where “left heart of A” stands 
for “the heart of the derived category of A with respect to its canonical left truncation 
structure”) as constructed in [44,46]; see also [5,10,45].

The core of the proof consists in showing that M is indeed an abelian category, which 
is far from obvious. This is obtained by means of tools from descriptive set theory, 
including a selection theorem for Borel relations of Kechris and Macdonald [26], and a 
dichotomy theorem for coset equivalence relations of Solecki [48]. After it is established 
that M is abelian, this category can be recognized as the left heart of A by means of 
the characterization of the left heart provided in [46, Proposition 1.2.36].

It is natural to consider the left heart of A, rather than the dual notion of right heart. 
Indeed, LH (A) has the property that the inclusion A → LH (A) preserves finite limits, 
and in particular maps monomorphisms to monomorphisms (but does not map epimor-
phisms to epimorphisms, in general). This is desirable, since A already has the “right” 
monomorphisms, which are the injective continuous group homomorphisms. However, 
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A has in some sense “too many” epimorphisms, being these the continuous group ho-
momorphisms with dense image. This is corrected in LH(A), where the epimorphisms 
are precisely the surjective Borel-definable homomorphisms. The fact that the forgetful 
functor from A to the category Ab of discrete abelian groups is not finitely cocontin-
uous can be seen as a manifestation of the fact that A has “too many” epimorphisms. 
In particular, the forgetful functor A → Ab does not extend to a functor on the right 
heart of A. However, being exact and finitely continuous, it extends to a forgetful functor 
LH (A) → Ab. This shows that the objects of LH(A) can be regarded as groups with 
additional structure, but the same cannot be said for the objects of the right heart.

We provide similar descriptions of the left heart of several naturally occurring quasi-
abelian categories, including:

• the category of non-Archimedean abelian Polish groups;
• the category of locally compact abelian Polish groups;
• the category of totally disconnected locally compact Polish groups;
• the category of Polish R-modules, for a given Polish group or Polish ring R;
• the categories of separable Fréchet spaces and separable Banach spaces over a Polish 

non-Archimedean valued field K.

The left heart of a quasi-abelian category is also described in [5,46] as a category 
of formal quotients; see also the work of Waelbroeck and Vasilescu on spaces of formal 
quotients of Banach, Fréchet, or bornological spaces [10,52–60]. However, in that con-
text the morphisms are defined abstractly by formally inverting certain arrows. In this 
context, we identify the morphisms as a concrete collection of group homomorphisms 
that satisfy the natural requirement of being Borel-definable. This provides for each of 
the quasi-abelian categories mentioned above a description of the left heart as a concrete 
category.

These results make available to the study of abelian Polish groups and groups with 
a Polish cover tools from category theory and homological algebra. Furthermore, they 
provide the foundation stone for the study of homological functors on abelian Polish 
groups and their derived functors. Homological algebra in the context of locally compact 
abelian Polish groups has been studied in [12,21,39,43]. The concrete description of the 
left heart of abelian Polish groups provided in this paper has already found a number of 
applications. These include the characterization of the injective and projective objects 
in the left heart of locally compact Polish abelian groups [8], and the calculation of 
the potential Borel complexity of the classification problem for extensions of countable 
abelian groups [32,33].

In this paper we begin by recalling in Section 2 the notions of abelian category, 
quasi-abelian category, and the left heart of a quasi-abelian category. We then present 
in Section 3 the notions of Borel-definable set and Borel-definable group from [6,30,31], 
and the more restrictive notion of group with a Polish cover from [7]. In Section 4.1 we 
introduce the notion of Polishable subgroup of a group with a Polish cover. The main 
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result here is that images and preimages of Polishable subgroups of abelian groups with 
a Polish cover are Polishable; see Proposition 4.4. In Section 4.2 we reformulate in this 
context some results concerning the Borel complexity of Polishable subgroups from [34]. 
In Section 4.3 we describe a canonical chain of Polishable subgroups of a given abelian 
group with a Polish cover, which we call Solecki subgroups. These were originally defined 
by Solecki in [47], and have also been considered in [13,48]. Section 4.4 explains how all 
the results obtained up to that point apply more generally to Polish R-spaces for a fixed 
Polish group or Polish ring R, and in particular to Polish K-vector spaces for a Polish 
field K.

In Section 5 we show that in certain circumstances a Borel-definable R-homomorphism 
has a lift that is well-behaved with respect to the algebraic structure. Finally, in Sec-
tion 6.1 we prove the characterization of the left heart of the category of Polish R-modules 
(Theorem 6.3), and in Section 6.1 a more general result describing the left heart of 
a strictly full quasi-abelian subcategory of the category of Polish R-modules (Theo-
rem 6.14). The latter is applied in Section 6.3 to describe the left heart of a number of 
categories of algebraic structures endowed with a topology, including: non-Archimedean 
Polish R-modules, locally compact Polish R-modules, locally bounded vector spaces over 
a Polish field, separable Banach spaces and separable Fréchet spaces over a separable 
non-Archimedean valued field; see Theorem 6.18.
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2. Category theory background

In this section we recall some notions and results from category theory that are needed 
in the rest of the paper. For an introduction to category theory, see [3,36].

2.1. Additive categories

Recall that a preadditive category, also called an Ab-category, is a category C in 
which each hom-set HomC (A,B) for objects A and B is an abelian group, in such a 
way that composition of morphisms is bilinear [36, Section I.8]. Thus, for morphisms 
f0, f1 : A → B and g0, g1 : B → C in C, one has that

(g0 + g1) ◦ (f0 + f1) = g0 ◦ f0 + g0 ◦ f1 + g1 ◦ f0 + g1 ◦ f1.
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In a preadditive category, binary products and binary coproducts coincide, and are called 
biproducts. Furthermore, an object X is initial if and only if it is terminal if and only if 
1X is the zero element of the abelian group HomC (X,X), in which case X is called a zero 
object; see [36, Section VIII.2] and [35, Section IX.1]. An additive category is a preadditive 
category that has a zero object, denoted by 0, and such that every pair of objects A, B
has a biproduct, denoted by A ⊕B; see [36, Section VIII.2]. A functor F : C → D between 
additive categories is called additive if satisfies F (f0 + f1) = F (f0) + F (f1) whenever 
f0, f1 : A → B are morphisms in C. This is equivalent to the assertion that F preserves 
biproducts of pairs of objects of C; see [36, Section VIII.2, Proposition 3].

An additive subcategory B of an additive category A is a (not necessarily full) subcat-
egory of A that is also an additive category, and such that the inclusion functor A → B
is additive.

2.2. Quasi-abelian categories

A quasi-abelian category [9, Definition 4.1] (called almost abelian in [44]) is an additive 
category such that:

(1) every morphism has a kernel and a cokernel;
(2) the class of kernels is stable under push-out along arbitrary morphisms, and the class 

of cokernels is stable under pull-back along arbitrary morphisms;

see also [46].
The first half of the latter requirement means that if in a pull-back diagram

A
η→ B

↓ ↓
A′ η′

→ B′

the arrow η is a kernel, then the arrow η′ is also a kernel. The second half is the dual 
assertion obtained by reversing all the arrows, and thus exchanging pull-backs with 
push-outs and monics with epics.

In a quasi-abelian category, one defines the image im (f) of an arrow f : A → B

to be the subobject ker (coker (f)) of B, and the coimage coim (f) to be the quotient 
coker (ker (f)) of A [9, Definition 4.6]. Then f induces a unique arrow f̂ : coim (f) →
im (f) such that

im (f) ◦ f̂ ◦ coim (f) = f .

Such an arrow f̂ is both monic and epic [9, Proposition 4.8]. By definition, the arrow f
is strict if f̂ is an isomorphism [46, Definition 1.1.1]. One has that:

• an arrow is a kernel if and only if it is monic and strict;
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• an arrow is a cokernel if and only if it is epic and strict;
• an arrow f is strict if and only if it has a factorization f = me where m is a strict 

monomorphism and e is a strict epimorphism;
• the composition of strict epic arrows is strict [46, Proposition 1.1.7];
• the composition of strict monic arrows is strict.

Considering the expression of limits in terms of products and equalizers [3, Proposition 
5.21], we have that a quasi-abelian category is finitely complete, i.e. it has all finite limits. 
Since the opposite of a quasi-abelian category is also quasi-abelian, by duality a quasi-
abelian category also has all finite colimits.

2.3. The left heart of a quasi-abelian category

An abelian category is a quasi-abelian category M such that every monic arrow is 
a kernel, and every epic arrow is a cokernel or, equivalently, every arrow is strict [36, 
Section VIII.3]; see also [35, Section IX.2].

A sequence

0 → A
f→ B

g→ C → 0

in a quasi-abelian category is short-exact or a kernel-cokernel pair if f is a kernel of g
and g is a cokernel of f . A sequence

0 → A
f→ B

g→ C

is left short-exact if f is a kernel of g, while a sequence

A
f→ B

g→ C → 0

is right short-exact if g is a cokernel of f .
A functor F : A → B from a quasi-abelian category A to an abelian category B is:

• left exact if for every short-exact sequence

0 → A
f→ B

g→ C → 0,

the sequence

0 → F (A) F (f)→ F (B) F (g)→ F (C)

is left short-exact or, equivalently, F preserves the kernels of strict arrows;
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• strongly left exact if for every left short-exact sequence

0 → A
f→ B

g→ C

the sequence

0 → F (A) F (f)→ F (B) F (g)→ F (C)

is left short-exact or, equivalently, F preserves the kernels of arbitrary arrows;
• right exact if for every short-exact sequence

0 → A
f→ B

g→ C → 0,

the sequence

F (A) F (f)→ F (B) F (g)→ F (C) → 0

is right short-exact or, equivalently, F preserves the cokernel of strict arrows;
• strongly right exact if for every short-exact sequence

A
f→ B

g→ C → 0,

the sequence

F (A) F (f)→ F (B) F (g)→ F (C) → 0

is right short-exact or, equivalently, F preserves the cokernel of arbitrary arrows
• exact if it is both left and right exact;

see [44, Section 1] and [49, Section 1.5].

Lemma 2.1. Let A and B be quasi-abelian categories, and F : A → B be a functor. The 
following assertions are equivalent:

(1) F is finitely continuous;
(2) F is additive, left exact, and preserves monomorphisms;
(3) F is additive and strongly left exact.

If A is abelian, these are also equivalent to:

(4) F is additive and left exact.
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Proof. (1)⇒(2) If F preserves all finite limits, then in particular it preserves kernels and 
biproducts. Thus, it preserves monomorphisms, since an arrow f is monic if and only 
if the kernel of f is zero. Furthermore, considering that F preserves the kernel of strict 
epimorphisms, we have that F is left exact.

(2)⇒(3) Suppose that F is additive, left exact, and preserves monomorphisms. We 
claim that F preserves kernels of arbitrary morphisms. Suppose that f : A → B is a 
morphism in A and let e : E → A be a kernel of f . Consider the canonical decomposition 
f = k ◦ j as in [46, Proposition 1.1.14], where j : A → coim (f) is a cokernel and 
k : coim (f) → B is a monomorphism (which is not necessarily a kernel). Since F
preserves monomorphisms, we have that F (k) is a monomorphism.

Since k is monic, we have that e is a kernel of j. Since j is a cokernel and F is left 
exact, we have that F (e) is a kernel of F (j). Since F (k) is monic, F (e) is a kernel of 
F (k) ◦ F (j) = F (f). This concludes the proof that F preserves kernels of arbitrary 
morphisms.

(3)⇒(1) Since F is additive, it preserves biproducts and the zero object. Hence, by 
induction, it preserves finite products. Since F is strongly left exact, it preserves kernels. 
Hence, being additive, it also preserves equalizers. Considering the expression of finite 
limits in terms of finite products and equalizers, we have that F preserves all finite limits 
[3, Proposition 5.21].

Finally, if A is abelian, then every arrow in A is strict, and a left exact functor is also 
strongly exact. �

Corollary 2.2. Let A and B be quasi-abelian categories, and F : A → B be a functor. The 
following assertions are equivalent:

(1) F is exact and finitely continuous;
(2) F is additive, exact, and preserves monomorphisms;
(3) F is additive, right exact, and strongly left exact.

If A is abelian, these are also equivalent to:

(4) F is additive and exact.

If A is a abelian category, then an abelian subcategory of A is a (not necessarily 
full) subcategory B that is also an abelian category and such that the inclusion functor 
is additive and exact. Similarly, if A is a quasi-abelian category, then a quasi-abelian 
subcategory of A is a (not necessarily full) subcategory B that is also a quasi-abelian 
category, and such that the inclusion functor B → A is finitely continuous and finitely 
cocontinuous.

Let A be a quasi-abelian category. Then there exists an essentially unique (left) “com-
pletion” of A to an abelian category. This is constructed:



M. Lupini / Advances in Mathematics 453 (2024) 109865 9
• in [46, Section 1.2.4], building on [5], and more generally for additive regular categories
in [19]—see also [10, Chapter III]—where it is called the left heart (coeur) of (the 
derived category of) A and denoted by LH(A);

• in [44, Section 3], under the weaker assumption that A is left quasi-abelian, where it 
is called the left abelian cover of A and denoted by Ql(A);

• in [4], in the more general context of exact categories, where it is called the right 
abelian envelope of A and denoted by Ar(A);

• in [45, Section 3], in the more general context of left exact categories, where it is 
denoted by Q�(A) and called the left quotient category of A, as in this case Q�(A) is 
left abelian but not necessarily abelian.

Following [46], we will call such a category the left heart of A, and denote it by 
LH(A). We collect in the following proposition the main properties of this category and 
the inclusion functor A → LH(A).

Proposition 2.3. Let A be a quasi-abelian category, and let A ⊆ LH(A) be its left heart 
as in [46, Definition 1.2.18]. Denote by I : A → LH(A) the inclusion functor, and by 
U : LH(A) → A the functor given in [46, Definition 1.2.24 and Definition 1.2.26]. Then 
we have that:

• I is finitely continuous and exact [46, Corollary 1.2.28, Proposition 1.2.29];
• The essential image of I is closed under extensions, i.e. if

0 → A → B → C → 0

is a short exact sequence in LH(A) such that A and C are in A, then B is isomorphic 
to an object of A [46, Definition 1.2.18];

• The essential image of I is stable by subobject, i.e. if A → B is a monic arrow in 
LH(A) such that B is in A, then A is isomorphic to an object of A;

• Every object M of LH(A) has a presentation given by a short exact sequence 0 →
A0 → Â → M → 0 in LH(A), where the arrow A0 → Â is in A, such that M is 
isomorphic to an object of A if and only if A0 → Â is a strict monomorphism in A
[44, Section 3];

• There exist a canonical isomorphism i : U ◦ I → idA and a canonical epimorphism 
e : idLH(A) → I ◦ U that establish an adjunction U � I witnessing that A is reflective 
subcategory of LH(A) [46, Proposition 1.2.27];

• For every abelian category M, the functor I induces an equivalence of categories from 
the category of right exact functors LH(A) → M to the category of right exact func-
tors A → M, which restricts to an equivalence of categories from the category of 
finitely continuous exact functors LH(A) → M to the category of finitely continuous 
exact functors A → M [46, Proposition 1.2.34]. Thus, LH (−) is the left adjoint of 
the inclusion functor from the category of abelian categories and right exact func-



10 M. Lupini / Advances in Mathematics 453 (2024) 109865
tors (respectively, finitely continuous exact functors) to the category of quasi-abelian 
categories and right exact functors (respectively, finitely continuous exact functors);

• Let B be an abelian category, and let J : A → B be a fully faithful functor such that 
the essential image of J is closed under subobjects, and such that for every object B
of B there exists an epimorphism J (A) → B in B for some object A of A. Then J
extends to an equivalence of categories LH(A) → B [46, Proposition 1.2.36].

3. Abelian groups with a Polish cover

3.1. Borel-definable groups

We present here the notion of Borel-definable set and Borel-definable group as in 
[6,30,31]. We begin by recalling the notion of idealistic equivalence relation from [22]; see 
also [14, Definition 5.4.9] and [26]. We will consider as in [31] a slightly more generous 
notion. Recall that a σ-filter on a set C is a nonempty family F of nonempty subsets 
of C that is closed under countable intersections and such that A ⊆ B ⊆ C and A ∈ F
implies B ∈ F .

Definition 3.1. Suppose that X is a standard Borel space, and E is an equivalence relation 
on X. We say that E is idealistic if there exist a Borel function s : X → X and an 
assignment C 
→ FC mapping each E-class C to a σ-filter FC on C such that s (x)Ex

for every x ∈ X, and for every Borel subset A ⊆ X ×X,

As,F :=
{
x ∈ X : {x′ ∈ [x]E : (s (x) , x′) ∈ A} ∈ F[x]E

}
is a Borel subset of X.

The term idealistic is due to the fact that the notion can be equivalently defined in 
terms of σ-ideals, in view of the duality between σ-ideals and σ-filters. If X is a Polish 
space endowed with a continuous action of a Polish group G, then the corresponding 
orbit equivalence relation EX

G is idealistic [14, Proposition 5.4.10].
A Borel-definable set is a pair (X̂, E) where X̂ is a Polish space and E is a Borel and 

idealistic equivalence relation on X̂. We denote such a Borel-definable set by X = X̂/E, 
as we think of it as an explicit presentation of the set X as a quotient of the Polish 
space X̂ by the “well-behaved” equivalence relation E. We identify a Polish space X̂
with the Borel-definable set X = X̂/E where E is the identity relation on X̂. A subset 
Z of a Borel-definable set X = X̂/E is Borel if Ẑ := {x ∈ X̂ : [x]E ∈ Z} is a Borel 
subset of X̂, in which case Z is itself a Borel-definable set. Similarly, we say that Z is 
Σ1

1 or analytic if Ẑ is an analytic subset of X̂. If X = X̂/E and Y = Ŷ /F are Borel-
definable sets, then we define X × Y to be the Borel-definable set (X̂ × Ŷ )/ (E × F ), 
where (x, y) (E × F ) (x′, y′) ⇔ xEx′ and yFy′. (One can verify that E × F is Borel and 
idealistic whenever both E and F are Borel and idealistic.)
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Suppose that X = X̂/E and Y = Ŷ /F are Borel-definable sets, and f : X → Y is a 
function. A lift f̂ of f is a function f̂ : X̂ → Ŷ such that f ([x]E) = [f̂ (x)]F for every 
x ∈ X. In this case, we also say that f is induced by f̂ .

Definition 3.2. Suppose that X = X̂/E and Y = Ŷ /F are Borel-definable sets, and 
f : X → Y is a function. Then f is Borel-definable if it admits a Borel lift f̂ : X̂ → Ŷ .

By the version of the selection theorem [23, Theorem 18.6] presented in the proof of 
[26, Lemma 3.7], the function f : X → Y is Borel-definable if and only if its graph is a 
Borel subset of X × Y .

The category of Borel-definable sets has Borel-definable functions as morphisms. This 
category contains the category of standard Borel spaces and Borel functions as a full 
subcategory, and it satisfies natural generalizations of several good properties of the 
latter. We recall here the most salient ones; see [31, Proposition 1.10] and references 
therein.

Proposition 3.3 (Kechris–Macdonald [26]). Suppose that X and Y are Borel-definable 
sets. If f : X → Y is a Borel-definable injection, and A ⊆ X is Borel, then f (A) ⊆ Y

is Borel, and the inverse function f−1 : f (A) → X is Borel-definable.

Proposition 3.4 (Motto Ros [40]). Suppose that X and Y are Borel-definable sets. If there 
exist a Borel-definable injection X → Y and a Borel-definable injection Y → X, then 
there exists a Borel-definable bijection X ↔ Y .

If X = X̂/E and Y = Ŷ /F are Borel-definable sets, then the Borel-definable set 
X × Y as defined above is the product of X and Y in the category of Borel-definable 
sets.

More generally, one can consider sets that are presented as X = X̂/E where X̂ is 
a Polish space and E is a analytic equivalence relation on X̂ that is not necessarily 
Borel or idealistic. In this case, we say that X is a Σ1

1-definable set. The notions of 
Borel and analytic subset of a Σ1

1-definable set, and of Borel-definable function between 
Σ1

1-definable sets, can be formulated as in the case of Borel-definable sets. The category 
of Σ1

1-definable sets has Σ1
1-definable functions (which are the functions with analytic 

graph) as morphisms. The following result is established in [30, Corollary 1.14].

Lemma 3.5. Suppose that X is a Borel-definable set and Y is a Σ1
1-definable set. If there 

exists a Borel-definable bijection f : X → Y , then Y is Borel-definable.

A Borel-definable group is simply a group object in the category of Borel-definable 
sets in the sense of [36, Section III.6]. Explicitly, a Borel-definable group is a Borel-
definable set G that is also a group, and such that the group operation G × G → G

and the function G → G mapping each element to its inverse are Borel-definable. Notice 
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that every standard Borel group is, in particular, a Borel-definable group. Naturally, a 
Σ1

1-definable group is a group object in the category of Σ1
1-definable sets.

An important example of Σ1
1-definable group that is not a Borel-definable group is 

Rω/E1, where Rω is the product of countably many copies of the Polish group R, and 
E1 is the tail-equivalence relation on Rω, obtained by setting (xi)E1 (yi) ⇔ ∃n∀i ≥ n, 
xi = yi. Notice that, if R(ω) ⊆ Rω is the subgroup consisting of sequences that are 
eventually zero, then E1 is the coset equivalence relation associated with R(ω). Thus, 
Rω/E1 can be seen as the quotient group Rω/R(ω). It is proved in [25, Theorem 4.1]
that if X is a Borel-definable set, then there is no Borel-definable injection Rω/R(ω) → X.

3.2. Groups with a Polish cover

We now recall the notion of abelian group with a Polish cover introduced in [7].

Definition 3.6. An abelian group with a Polish cover is a Borel-definable abelian group 
given as a quotient Ĝ/N where Ĝ is an abelian Polish group and N ⊆ Ĝ is a Polishable 
subgroup. This means that N is a Borel subgroup of Ĝ such that there is a Polish group 
topology on N whose open sets are Borel in Ĝ or, equivalently, there exist a Polish group 
H and a continuous homomorphism ψ : H → Ĝ with image N . For x, y ∈ Ĝ, we write 
x ≡ y mod N if x − y ∈ N .

We term here abelian groups with a Polish cover what in [6] are called groups with an 
abelian Polish cover. We opt for this terminology for uniformity with the more general 
setting of modules—in which case the terminology of [6] is difficult to adapt—and to 
adhere to the spirit of the main results of this work, showing that under natural assump-
tions the left heart of categories of Polish spaces endowed with an algebraic structure of 
a certain kind has as objects formal quotients of those.

We regard an abelian Polish group G as an abelian group with a Polish cover Ĝ/N

where G = Ĝ and N = {0}. If G = Ĝ/N and H = Ĥ/M are abelian groups with a Polish 
cover, then we define G ⊕H to be the abelian group with a Polish cover (Ĝ⊕Ĥ)/(N⊕M). 
Similarly, if Gk = Ĝk/Nk is an abelian group with a Polish cover for k ∈ ω, then we 
define 

∏
k∈ω Gk to be the abelian group with a Polish cover Ĝ/N where Ĝ =

∏
k Ĝk and 

N =
∏

k Nk.
Recall that a Polish group is non-Archimedean if it has a basis of neighborhoods of the 

identity consisting of open subgroups; see [11, Proposition 2.1] for other characterizations. 
A Polish group is locally compact if it has a basis of neighborhoods of the identity 
consisting of compact subsets.

Definition 3.7. Suppose that G = Ĝ/N is an abelian group with a Polish cover. Then we 
say that G is:
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• an abelian group with a non-Archimedean Polish cover if Ĝ and N are non-
Archimedean Polish groups;

• an abelian group with a locally compact Polish cover if Ĝ and N are locally compact 
Polish groups.

As an abelian group with a Polish cover is, in particular, a Borel-definable group, 
the notion of Borel-definable homomorphism between abelian groups with a Polish cover 
is a particular instance of the notion of Borel-definable group homomorphism between 
Borel-definable groups.

Definition 3.8. Suppose that G = Ĝ/N and H = Ĥ/M are abelian groups with a Polish 
cover. A group homomorphism f : G → H is:

• Borel-definable if it has a Borel lift f̂ : Ĝ → Ĥ;
• Baire-definable if it has a Baire-measurable lift f̂ : Ĝ → Ĥ [23, Definition 8.37];
• continuously definable if it has a continuous lift f̂ : Ĝ → Ĥ;
• locally continuously definable if it has a Borel lift f̂ : Ĝ → Ĥ that is locally continuous, 

in other words continuous on a zero neighborhood in Ĝ;
• liftable if it has a lift f̂ : Ĝ → Ĥ that is a continuous group homomorphism.

If G is an abelian group with a locally compact Polish cover, then we say that f :
G → H is:

• Haar-definable if it has a Haar-measurable lift f̂ : Ĝ → Ĥ.

One can analogously define the notions from Definition 3.8 in the more general context 
of Σ1

1-definable groups.

Definition 3.9. Suppose that G = Ĝ/N and H = Ĥ/M are abelian groups with a Polish 
cover. Let f : Ĝ → Ĥ be lift of a group homomorphism G → H. We let δf : Ĝ× Ĝ → M

be the corresponding 2-cocycle, defined by δf (x, y) = f (y) − f (x + y) + f (x).

Remark 3.10. It follows from Proposition 3.3 that if a Borel-definable homomorphism 
G → H is bijective, then its inverse H → G is also a Borel-definable homomorphism.

In what follows, we consider groups with a Polish cover as objects of a category that 
has Borel-definable homomorphisms as morphisms.

Remark 3.11. It follows from [7, Proposition 4.6] that, when Ĝ is non-Archimedean, a 
group homomorphism ϕ : Ĝ/N → Ĥ/M between abelian groups with a Polish cover is 
Borel-definable if and only if it is continuously definable.
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Lemma 3.12. Let f : Ĝ/N → Ĥ/M be a group homomorphism between abelian groups 
with a Polish cover. Let V be a zero neighborhood in Ĝ and let f̂ : V → Ĥ be a continuous 
function such that f̂ (x)+M = f (x + N) for every x ∈ V . Then there exists a Borel lift 
for f whose restriction to V is equal to f̂ .

Proof. Let {an : n ∈ ω} be a countable dense subset of Ĝ with a0 = 0. For n ∈ ω, let 
bn ∈ Ĥ be such that f (an + N) = bn + M , where b0 = 0. By [23, Theorem 18.10] there 
exists a Borel function Ĝ → ω, x 
→ n (x) such that x ∈ V + an(x) for every x ∈ Ĝ

and n (x) = 0 for x ∈ V . We can thus extend f̂ to a Borel function on Ĝ by setting 
f̂ (x) := f̂

(
x− an(x)

)
+ bn(x) for x ∈ X̂. �

4. Subgroups of groups with a Polish cover

4.1. Subgroups with a Polish cover

We now introduce in the context of abelian groups with a Polish cover the notion of 
Borel subgroup and subgroup with a Polish cover.

Definition 4.1. Suppose that G = Ĝ/N is an abelian group with a Polish cover, and 
H ⊆ G is a subgroup. Define Ĥ = {x ∈ Ĝ : x + N ∈ H} ⊆ Ĝ. Then we say that:

• H is a Borel (respectively, analytic) subgroup of G if Ĥ is a Borel (respectively, 
analytic) subgroup of Ĝ;

• H is a subgroup with a Polish cover of G if Ĥ is a Polishable subgroup of Ĝ;
• H is a subgroup with a non-Archimedean Polish cover of G if Ĥ is a non-Archimedean 

Polishable subgroup of Ĝ.

If H = Ĥ/N is a subgroup with a Polish cover of an abelian group with a Polish cover 
G = Ĝ/N , where Ĥ is a Polishable subgroup of Ĝ, then we regard H as the abelian group 
with a Polish cover Ĥ/N , and G/H as the abelian group with a Polish cover Ĝ/Ĥ.

If G = Ĝ/N is group with a Polish cover and H is a subgroup with a Polish cover of 
G, then we let HG be the closed subgroup of G obtained as the closure of H in G with 
respect to the quotient topology induced by Ĝ. We say that H is dense in G if HG = G.

Lemma 4.2. Suppose that G is an abelian group with a Polish cover. Let (Gn)n∈ω be a 
sequence of subgroups with a Polish cover of G. Then G0+G1 and 

⋂
n∈ω Gn are subgroups 

with a Polish cover of G.

Proof. Write G = Ĝ/N . For every n ∈ ω, we have that Gn = Ĝn/N for some Polishable 
subgroup Ĝn of Ĝ. We have that

{x ∈ Ĝ : x + N ∈ G0 + G1} = Ĝ0 + Ĝ1 + N
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is the image of the Polish group Ĝ0 ⊕ Ĝ1 ⊕ N under the continuous homomorphism 
Ĝ0 ⊕ Ĝ1 ⊕N → Ĝ, (x, y, z) 
→ x + y + z.

Similarly, we have that

{x ∈ Ĝ : x + N ∈
⋂
n∈ω

Gn} =
⋂
n∈ω

Ĝn

is the image of the Polish group

Z :=
{

(xn)n∈ω ∈
∏
n∈ω

Ĝn : ∀n ∈ ω, xn = xn+1

}
⊆

∏
n∈ω

Ĝn

under the continuous homomorphism Z → Ĝ, (xn)n∈ω 
→ x0. �
Suppose that L is a Borel subgroup of an abelian group with a Polish cover G. Then 

one can consider the quotient G/L as a Σ1
1-definable group. The implication (1)⇒(3) in 

the following proposition can be seen as a reformulation of [48, Theorem 1.1].

Proposition 4.3. Suppose that L is a Borel subgroup of an abelian group with a Polish 
cover G. Consider the corresponding Σ1

1-definable group G/L. The following assertions 
are equivalent:

(1) there does not exist a Borel-definable injection Rω/R(ω) → G/L;
(2) G/L is a Borel-definable group;
(3) L is a subgroup with a Polish cover of G.

Proof. Write G = Ĝ/N and let L̂ = {x ∈ Ĝ : x + N ∈ L}. Since G/L = Ĝ/L̂, after 
replacing L with L̂ and G with Ĝ, we can assume that G is in fact a Polish group.

The implication (3)⇒(2) follows from the fact that a group with a Polish cover is, in 
particular, a Borel-definable group in view of [14, Proposition 5.4.10]. The implication 
(2)⇒(1) follows from [25, Theorem 4.1]. Finally, the implication (1)⇒(3) is the content 
of [48, Theorem 1.1]. �

We now show that images and preimages of subgroups with a Polish cover under 
Borel-definable homomorphisms are subgroups with a Polish cover.

Proposition 4.4. Suppose that G, H are abelian groups with a Polish cover, and f : G →
H is a Borel-definable group homomorphism.

(1) If H0 is a subgroup with a Polish cover of H, then f−1 (H0) is a subgroup with a 
Polish cover of G;

(2) If G0 is a subgroup with a Polish cover of G, then f (G0) is a subgroup with a Polish 
cover of H.
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Proof. (1) After replacing H with H/H0, we can assume that H0 = {0}, in which case

f−1 (H0) = ker (f) := {g ∈ G : f (g) = 0} .

We have that f induces a Borel-definable injective group homomorphism G/ker (f) → H. 
Notice that ker (f) is a Borel subgroup of G. Since H is a group with a Polish cover, 
we have that there does not exist a Borel-definable injection Rω/R(ω) → H by Propo-
sition 4.3. Thus, there does not exist a Borel-definable injection Rω/R(ω) → G/ker (f). 
Thus, ker (f) is a subgroup with a Polish cover of G by Proposition 4.3 again.

(2) After replacing G with G0 and f with its restriction to G0, we can assume that 
G = G0. By the first item, ker (f) is a subgroup with a Polish cover of G. Thus, after 
replacing G with G/ker (f), we can assume that f is injective. In this case, we have 
that f (G) is a Borel subgroup of the Borel-definable group H by Proposition 3.3. By 
Proposition 4.3, to conclude the proof it suffices to prove that H/f (G) is a Borel-
definable group.

Write G = Ĝ/N and H = Ĥ/M , where Ĝ, Ĥ are Polish groups and N ⊆ Ĝ and 
M ⊆ Ĥ are Polishable subgroups. Suppose that ϕ : Ĝ → Ĥ is a Borel lift of f . Define 
the Borel function δϕ : Ĝ × Ĝ → M as in Definition 3.9. We need to prove that the 
equivalence relation E on Ĥ defined by setting xEy ⇔ ∃ (g, h) ∈ Ĝ⊕M , ϕ (g)+h +x = y

is idealistic. The argument is similar to the one from [14, Proposition 5.4.10]. We adopt 
the notation of category quantifiers as in [23, Section 16]. For x ∈ Ĥ and A ⊆ [x]E , we 
set A ∈ F[x]E ⇔ ∀∗g ∈ Ĝ, ∀∗h ∈ M , ϕ (g) + h + x ∈ A. Observe that F[x] does not 
depend on the choice of the representative x for the equivalence class [x]E . Indeed, if 
x0Ex then there exists (g0, h0) ∈ Ĝ×M such that ϕ (g0)+h0 +x0 = x. If A ∈ F[x] then 
∀∗g ∈ Ĝ, ∀∗h ∈ M , ϕ (g) + h + x ∈ A. We have that

ϕ (g) + h + x = ϕ (g) + h + ϕ (g0) + h0 + x0

= ϕ (g + g0) + h + h0 + δϕ (g, g0) + x0.

For a fixed g̃ ∈ Ĝ, if ∀∗h ∈ M , ϕ (g̃) + h + x ∈ A then ∀∗h ∈ M , ϕ (g̃ + g0) + h + h0 +
δϕ (g̃, g0) + x0 ∈ A. Since h0 + δϕ (g̃, g0) ∈ M , this implies that ∀∗h ∈ M , ϕ (g̃ + g0) +
h + x0 ∈ A. Therefore, we have that ∀∗g ∈ Ĝ, ∀∗h ∈ M , ϕ (g + g0) + h + x0 ∈ A and 
hence ∀∗g ∈ Ĝ, ∀∗h ∈ M , ϕ (g) + h + x0 ∈ A. This shows that F[x]E is well-defined. It is 
easy to verify that F[x]E is a σ-filter on [x]E . It remains to prove that if A ⊆ Ĥ × Ĥ is 
Borel, then

AF :=
{
x ∈ Ĥ :

{
y ∈ Ĥ : (x, y) ∈ A

}
∈ F[x]E

}
is a Borel subset of Ĥ. The argument is the same as in the proof of [14, Theorem 3.3.3]. 
We have that x ∈ AF ⇔ ∀∗g ∈ Ĝ, ∀∗h ∈ M , (x, ϕ (g) + h + x) ∈ A. Define the Borel set

B :=
{

(g, h, x) ∈ Ĝ×M × Ĥ : (x, ϕ (g) + h + x) ∈ A
}

.
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Then we have that

x ∈ AF ⇔ ∀∗g ∈ Ĝ,∀∗h ∈ M, (g, h, x) ∈ B ⇔ ∀∗ (g, h) ∈ Ĝ×M, (g, h, x) ∈ B.

Since B is Borel, this shows that AF is Borel by [23, Theorem 16.1]. �
The following corollary can be seen as a generalization of the existence of Borel right 

inverses for surjective continuous group homomorphisms between Polish groups; see [23, 
Theorem 12.17].

Corollary 4.5. Suppose that G = Ĝ/N and H = Ĥ/M are abelian groups with a Polish 
cover. Let f : G → H be a surjective Borel-definable group homomorphism. Then there 
exists a Borel function ψ : Ĥ → Ĝ such that f (ψ (h) + N) = h + M for every h ∈ Ĥ.

Proof. We can write f as the composition

G
p→ G

ker (f)
f̄→ H

where p is the quotient map and f̄ is the Borel-definable group isomorphism induced by 
f . It thus suffices to prove that the conclusion holds for p and f̄ . In the case of p the 
conclusion is obvious. In the case of f̄ , it is a consequence of Proposition 3.3. �

Suppose that G = Ĝ/N and H = Ĥ/M are abelian groups with a Polish cover. Let 
ϕ : G → H be a group homomorphism. Define the graph Γ (ϕ) of ϕ to be the subgroup

{(x, y) ∈ G⊕H : ϕ (x) = y} ⊆ G⊕H.

By Proposition 4.4, if ϕ is Borel-definable, then Γ (ϕ) is a subgroup with a Polish cover 
of G ⊕H, being the kernel of the Borel-definable homomorphism G ⊕G → H, (x, y) 
→
ϕ (x)−y. When G and H are abelian groups with a non-Archimedean Polish cover, Γ (ϕ)
is also an abelian group with a non-Archimedean Polish cover by Theorem 6.18(1) below. 
The function πG : Γ (ϕ) → G, (x, y) 
→ x is a bijective liftable group homomorphism, 
and the function πH : Γ (ϕ) → H, (x, y) 
→ y is a liftable group homomorphism; see 
Definition 3.8. Furthermore, we have that ϕ = πH ◦ (πG)−1.

Theorem 4.6. Suppose that ϕ : G → H is a group homomorphism between abelian groups 
with a Polish cover. The following assertions are equivalent:

(1) ϕ is Borel-definable;
(2) the graph Γ (ϕ) is a subgroup with a Polish cover of G ⊕H;
(3) there exist an abelian group with a Polish cover L, a bijective liftable group homo-

morphism σ : L → G, and a liftable group homomorphism ψ : L → H such that 
ϕ = ψ ◦ σ−1.
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Proof. The implication (1)⇒(2) follows from Proposition 4.4 as observed above.
(2)⇒(3) In order to verify that (3) holds, it suffices to take L to be the graph Γ (ϕ)

of ϕ, σ : Γ (ϕ) → G to be the Borel-definable homomorphism defined by (x, y) 
→ x, and 
ψ : Γ (ϕ) → H to be the Borel-definable homomorphism defined by (x, y) 
→ y.

(3)⇒(1) This follows by observing that a liftable group homomorphism is, in particu-
lar, Borel-definable, and that the inverse of a bijective Borel-definable group homomor-
phism is Borel-definable by Remark 3.10. �
Proposition 4.7. Let G = Ĝ/N be an abelian group with a Polish cover, and let H =
Ĥ/EH be a Σ1

1-definable group. Suppose that ϕ : G → H is a group homomorphism. The 
following assertions are equivalent:

(1) ϕ is Borel-definable;
(2) the graph Γ (ϕ) is an analytic subgroup of G ⊕H;
(3) ϕ is Baire-definable.

If furthermore G is an abelian group with a locally compact Polish cover, then the 
above conditions are equivalent to:

(4) ϕ is Haar-definable.

Proof. Consider the lift

Γ̂ (ϕ) = {(x, y) ∈ Ĝ⊕ Ĥ : ϕ (x + N)EHy} ⊆ Ĝ⊕ Ĥ

of Γ (ϕ) ⊆ G ⊕H.
(1)⇒(2) By assumption, we have that ϕ has a Borel lift f : Ĝ → Ĥ. We have that 

(x, y) ∈ Γ̂ (ϕ) if and only if there exist z ∈ EH ⊆ Ĥ × Ĥ such that π0 (z) = f (x)
and π1 (z) = y, where π0, π1 are the canonical projections from Ĥ × Ĥ to Ĥ. Since 
by assumption EH is an analytic equivalence relation on Ĥ, it follows that Γ̂ (ϕ) is an 
analytic subset of Ĝ⊕Ĥ, and hence by definition Γ (ϕ) is an analytic subgroup of G ⊕H.

(2)⇒(3) By the Jankov–von Neumann Uniformization Theorem [23, Theorem 18.1]
applied to Γ̂ (ϕ) ⊆ Ĝ⊕ Ĥ, we have that there exists a σ(Σ1

1)-measurable lift f : Ĝ → Ĥ

for ϕ. Since analytic sets are Baire-measurable [23, Theorem 21.6], we have that f is 
Baire-measurable, and ϕ is Baire-definable.

(3)⇒(1) Suppose that ϕ is Baire-definable. Let f : Ĝ → Ĥ be a Baire-measurable lift 
of ϕ. Then there exists a dense Gδ subset C of G such that f |C is continuous. Consider 
the relation

P = {(x, y) ∈ Ĝ× Ĝ : y ∈ (x− C) ∩ C}.

Then by [23, Theorem 18.6]—see also [26, proof of Lemma 3.7]—there exists a Borel 
function σ : Ĝ → Ĝ such that σ (x) = x for x ∈ C and (x, σ (x)) ∈ P for x ∈ Ĝ \C. The 
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hypotheses of [23, Theorem 18.6] are satisfied by [23, Theorem 16.1], where one sets Ix
to be the σ-ideal of meager subsets of Ĝ for every x ∈ Ĝ. Then we have that defining

g (x) := f (σ (x)) + f (x− σ (x))

for x ∈ Ĝ yields a Borel lift for ϕ. This shows that ϕ is Borel-definable.
Suppose now that G is an abelian group with a locally compact Polish cover.
(4)⇒(1) Let f : Ĝ → Ĥ be a Haar-measurable lift of ϕ. Then there exists a Borel set 

C ⊆ Ĝ such that Ĝ \ C is null and f |C is Borel. Define

P = {(x, y) ∈ Ĝ× Ĝ : y ∈ (x− C) ∩ C}.

By [23, Corollary 18.7] there exists a Borel function σ : Ĝ → Ĝ such that (x, σ (x)) ∈ P

for every x ∈ Ĝ. Then we have that defining

h (x) := f (σ (x)) + f (x− σ (x))

for x ∈ Ĝ yields a Borel lift for ϕ. �
Corollary 4.8. Suppose that G is an abelian group with a Polish cover, and H is an 
abelian Σ1

1-definable group. If there exists a group isomorphism ϕ : G → H with analytic 
graph, then H is a Borel-definable group, and ϕ is a Borel-definable group isomorphism.

Proof. This follows immediately from Lemma 3.5 and Proposition 4.7. �
4.2. Complexity of subgroups

In this section, we consider the complexity of subgroups of groups with a Polish 
cover. We reformulate in this context some results from [13,18,34]. Recall that a Borel 
complexity class Γ is an assignment X 
→ Γ (X) from Polish spaces to classes of Borel 
sets such that for every continuous function f : X → Y between Polish spaces X, Y and 
for every A ∈ Γ (Y ), A ⊆ Y and f−1 (A) ∈ Γ (X). Given such a complexity class, its 
dual class Γ̌ is defined by setting Γ̌ (X) = {X \A : A ∈ Γ (X)} for every Polish space X. 
A complexity class Γ is not self-dual if it is different from Γ̌. We will be mostly concerned 
with the complexity classes Σ0

α, Σ0
α, D(Σ0

α), Δ0
α for 1 ≤ α < ω1 and their duals; see 

[23, Section 11.B]. Recall that D(Σ0
α) comprises those sets that can be written as a 

set-theoretic difference of Σ0
α sets or, equivalently, as intersection of a Σ0

α set and a Π0
α

set.

Definition 4.9. Suppose that H is a subgroup of an abelian group with a Polish cover 
G = Ĝ/N . Set Ĥ = {x ∈ Ĝ : x + N ∈ H}. Let Γ be a complexity class. We say that H
belongs to Γ(G) or that H is Γ in G if and only if Ĥ ∈ Γ(Ĝ). If Γ is not self-dual, then 
we say that Γ is the complexity class of H in G if and only if Ĥ ∈ Γ(Ĝ) and Ĥ /∈ Γ̌(Ĝ).
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Given a Borel-definable set X = X̂/E, we denote by =X the equivalence relation E. 
In particular, if G = Ĝ/N is a group with a Polish cover, and H = Ĥ/N is a subgroup 
with a Polish cover of G, then =G/H is the coset relation of Ĥ inside of Ĝ. Recall that 
an equivalence relation E on a Polish space X is potentially Γ if it is Borel-reducible to 
an equivalence relation F on a Polish space Y such that F ∈ Γ (Y × Y ).

As a consequence of [34, Theorem 1.1 and Theorem 1.2] we have the following results.

Proposition 4.10. The following is a complete list of possible Borel complexity classes 
of subgroups with a Polish cover of abelian groups with a Polish cover: Π0

1+λ, Σ0
1+λ+1, 

D(Π0
1+λ+n+1), and Π0

1+λ+n+2 for λ < ω1 either zero or a limit ordinal, and n < ω.

Proposition 4.11. The following is a complete list of possible Borel complexity classes of 
subgroups with a non-Archimedean Polish cover of abelian groups with a Polish cover: 
Π0

1+λ, Σ0
1+λ+1, D(Π0

1+λ+n+2), and Π0
1+λ+n+2 for λ < ω1 either zero or a limit ordinal, 

and n < ω.

The following can be seen as a consequence of [34, Lemma 3.2 and Theorem 3.3] and 
Proposition 4.11; see also [18, Section 5].

Proposition 4.12. Suppose that G is an abelian group with a Polish cover, and H is a 
subgroup with a Polish cover of G.

• Let Γ be one of the following complexity classes: Π0
α, Σ0

β, D(Π0
α), for 1 ≤ α, β < ω1

and β �= 2. Then H ∈ Γ (G) if and only if =G/H is potentially Γ.
• =G/H is potentially Σ0

2 if and only if H is D(Π0
2) in G.

• If H is a subgroup with a non-Archimedean Polish cover, then =G/H is potentially 
Σ0

2 if and only if H is Σ0
2 in G;

• If H is Ď(Π0
α) in G for some 1 ≤ α < ω1, then H ∈ Π0

α (G) or H ∈ Σ0
α (G).

As a consequence of Proposition 4.10, Proposition 4.12, Remark 3.10, and Theo-
rem 6.18(1) below, one has the following.

Proposition 4.13. Suppose that G, H are groups with a Polish cover, and f : G → H is a 
Borel-definable homomorphism. Let Γ be one of the following Borel complexity classes: 
Π0

α, Σ0
β, D(Π0

α), Ď(Π0
α), Δ0

α for 1 ≤ α, β < ω1 and β �= 2. Suppose that H0 is a 
subgroup with a Polish cover of H.

• If H0 is Γ in H, then the subgroup with a Polish cover f−1 (H0) of G is Γ in G. The 
converse holds if f is surjective.

• Suppose that G, H, H0 are abelian groups with a non-Archimedean Polish cover. If H0

is Σ0
2 in H, then f−1 (G) is Σ0

2 in G. The converse holds if f is surjective.
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Recall that E0 denotes the Σ0
2 equivalence relation on the space C := {0, 1}ω of 

infinite binary sequences obtained by setting (xi)E0 (yi) ⇔ ∃n ∈ ω∀i ≥ n, xi = yi, and 
E∞ denotes the orbit equivalence relation for the shift action of the free group F2 on 
2 generators on {0, 1}F2 . The Π0

3 equivalence relation Eω
0 on Cω is defined by setting 

(xi)Eω
0 (yi) ⇔ ∀i, xiE0yi. The Π0

3 equivalence relation =+ on Rω is defined by setting 
(xi) =+ (yi) if and only if (xi) and (yi) are enumerations of the same countable set of 
reals.

Proposition 4.14. Suppose that G = Ĝ/N is a group with a Polish cover, and that H is 
a subgroup of G with a non-Archimedean Polish cover. Then:

(1) =G/H is smooth if and only if H is Π0
1 in G;

(2) =G/H is Borel reducible to E0 if and only if =G/H is Borel reducible to E∞ if and 
only if H is Σ0

2 in G, and =G/H is Borel bireducible with E0 if and only if Σ0
2 is the 

complexity class of H in G;
(3) =G/H is Borel reducible to Eω

0 if and only if =G/H is Borel reducible to =+ if and 
only if H is Π0

3 in G, and =G/H is Borel bireducible with Eω
0 if and only if Π0

3 is 
the complexity class of H in G.

Proof. Without loss of generality we can assume that H = {0}.
(1) We have that {0} is Π0

1 in G if and only if N is a closed subgroup of Ĝ, which is 
equivalent to the assertion that =G is smooth; see [48, page 574].

(2) By [14, Theorem 12.5.7 and Theorem 7.3.8], {0} is Σ0
2 in G if and only if =G≤B

E∞, which holds if and only if =G≤B E0 by [11, Theorem 6.1]. Furthermore, by Item 
(1), Pettis’ Theorem [23, Theorem 9.9], and the Glimm–Effros dichotomy [17], we have 
that {0} is not Π0

2 if and only if {0} is not Π0
1 if and only if N is not a closed subgroup 

of Ĝ, if and only if E0 ≤B=G.
(3) By [11, Corollary 6.3] and Proposition 4.12 and we have that {0} is not Σ0

3 if and 
only if {0} is not Σ0

2 if and only if Eω
0 ≤B=G. By [1, Corollary 6.11], {0} is Π0

3 if and 
only if =G≤B Eω

0 , and by [14, Theorem 12.5.5], {0} is Π0
3 if and only if =G≤B=+. �

4.3. The Solecki subgroups

Every abelian group with a Polish cover admits a canonical sequence of subgroups 
indexed by countable ordinals. As these were originally described by Solecki in [47], we 
call them Solecki subgroups. They have also been considered in [13,48].

Suppose that G = Ĝ/N is an abelian group with a Polish cover. Then [47, Lemma 
2.3] implies that G has a smallest Π0

3 subgroup, which we denote by s1 (G) = sN1 (Ĝ)/N . 
One can explicitly describe sN1 (Ĝ) as the subgroup of Ĝ defined by

⋂ ⋃
z + V

G

V z∈N



22 M. Lupini / Advances in Mathematics 453 (2024) 109865
where V ranges among the open zero neighborhoods in N and z + V
Ĝ is the closure 

of z + V inside of Ĝ. It is proved in [47, Lemma 2.3] that s1(G) satisfies the following 
properties:

• s1 (G) is a subgroup with a Polish cover;
• {0} is dense in s1 (G);
• a basis of zero neighborhoods in sN1 (Ĝ) consists of sets of the form W

Ĝ∩sN1 (Ĝ) where 
W is an open zero neighborhood in N ;

• if A ⊆ Ĝ is Π0
3 and contains N , then A ∩ sN1 (Ĝ) is comeager in the Polish group 

topology of sN1 (Ĝ).

It follows that if H is a Π0
3 subgroup with a Polish cover of G, then s1 (G) ⊆ {0}H ⊆ H. 

We recall the following characterization of s1 (G) from [34, Lemma 4.2].

Lemma 4.15. Suppose that G = Ĝ/N is an abelian group with a Polish cover. Let H =
Ĥ/N be a subgroup with a Polish cover of G such that:

(1) {0} is dense in H;
(2) for every open neighborhood V of zero in N , V Ĝ ∩ Ĥ contains an open neighborhood 

of zero in Ĥ.

If A ⊆ Ĝ is Π0
3 and contains N , then A ∩ Ĥ is comeager in Ĥ. In particular, H ⊆

s1 (G). If H is furthermore Π0
3, then H = s1 (G).

The sequence of Solecki subgroups sα (G) for α < ω1 of the group with a Polish cover 
G is defined recursively by setting:

• s0 (G) = {0}G;
• sα+1 (G) = s1 (sα (G)) for α < ω1;
• sλ (G) =

⋂
β<λ sβ (G) for a limit ordinal λ < ω1.

We also let sNα (Ĝ) be the Polishable subgroup of Ĝ such that sα (G) = sNα (Ĝ)/N . One 
can prove by induction on α < ω1 that {0} is dense in sα (G) for every α < ω1, and if 
{0} is a subgroup with a non-Archimedean Polish cover of G, then sα (G) is a subgroup 
with a non-Archimedean Polish cover for every 1 ≤ α < ω1; see [34, Section 4]. It is 
proved in [47, Theorem 2.1] that there exists α < ω1 such that sα (G) = {0}. We call 
the least countable ordinal α such that sα (G) = {0} the Solecki rank of G.

The following is an immediate consequence of [34, Theorem 5.4].

Theorem 4.16. Suppose that G is an abelian group with a Polish cover, and α < ω1. 
Then sα (G) is the smallest Π0

1+α+1 subgroup of G.
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Proof. For α = 0 this is a consequence of the definition of sN0 (Ĝ) as the closure of N in 
Ĝ, while for α = 1 the claim is proved in [47, Lemma 2.3]. The proof of [13, Theorem 3.1]
shows that sNα (Ĝ) is Π0

1+α+1 in Ĝ. The minimality assertion is proved by induction on 
α. At the inductive step, one needs to use the following relation between the complexity 
classes for sNα (Ĝ) and those of Ĝ, which is obtained for β = 0 in the proof of [13, Theorem 
3.1] and can be proved in general by induction on β: a Σ0

β subset of sNα (Ĝ) can be written 

as the intersection with sNα (Ĝ) of a Σ0
1+α+β subset of Ĝ. Conversely, if A is a Σ0

1+α+β

subset of Ĝ and U is an open subset of N then, adopting the notation of the Vaught 
transform for the translation action N � Ĝ as in [14, Section 3.2], AΔU ∩sNα (Ĝ) is Σ0

1+β

in sNα (Ĝ). By taking complementaries, one also simultaneously proves by induction on β
the dual assertions concerning the complexity classes Π0

α. �
As a consequence of Proposition 4.13 and Theorem 4.16 one obtains the following. 

Recall that if F is a functor on a category C, then a subfunctor of F is a functor F ′ on 
C together with a natural transformation η : F ′ ⇒ F whose components are monic. A 
subfunctor of the identity is simply a subfunctor of the identity functor.

Theorem 4.17. Fix α < ω1. If f : G → H is a Borel-definable homomorphism between 
groups with a Polish cover, then f maps sα (G) to sα (H). Thus, G 
→ sα (G) ⊆ G is a
subfunctor of the identity on the category of abelian groups with a (non-Archimedean) 
Polish cover.

We also have the following consequence of [34, Theorem 6.1].

Theorem 4.18. Suppose that G = Ĝ/N is an abelian group with a Polish cover. Let 
α = λ + n be the Solecki rank of G, where λ < ω1 is either zero or a limit ordinal and 
n < ω.

(1) Suppose that n = 0. Then Π0
1+λ is the complexity class of {0} in G;

(2) Suppose that n ≥ 1. Then:

(a) if {0} ∈ Π0
3 (sλ+n−1 (G)) and {0} /∈ D(Π0

2) (sλ+n−1 (G)), then Π0
1+λ+n+1 is 

the complexity class of {0} in G;
(b) if n ≥ 2 and {0} ∈ D(Π0

2)(sλ+n−1 (G)), then D(Π0
1+λ+n) is the complexity 

class of {0} in G;
(c) if n = 1, {0} ∈ D(Π0

2) (sλ (G)), and {0} /∈ Σ0
2 (sλ (G)), then D(Π0

1+λ+1) is the 
complexity class of {0} in G;

(d) if n = 1 and {0} ∈ Σ0
2 (sλ (G)), then Σ0

1+λ+1 is the complexity class of {0} in 
G.

Furthermore, if {0} is a subgroup of G with a non-Archimedean Polish cover, then the 
case (2c) is excluded.
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4.4. Polish modules

In this section, we observe how all the results that we have obtained so far apply more 
generally in the context of Polish G-modules.

Suppose that G is a (multiplicatively denoted) Polish group, and R is a Polish ring. 
We say that A is a Polish G-module if A is an abelian Polish group endowed with a 
continuous action G � A by automorphism of A, denoted by (g, a) 
→ g · a [37, Section 
3]. We say that A is a Polish R-module if it is an abelian Polish group that is also an 
R-module, such that the scalar multiplication operation is continuous. We now recall 
some automatic continuity results for modules; see also [37, Proposition 11].

The following lemma guarantees that a separately continuous function is continuous 
on a large set; see [23, Theorem 8.51].

Lemma 4.19. Let X, Y, Z be Polish spaces and f : X × Y → Z be a function that is 
separately continuous. Then there exists a dense Gδ set C ⊆ X × Y such that, for all 
y ∈ Y , Cy = {x ∈ X : (x, y) ∈ C} is a dense Gδ in X, and f is continuous at every 
point of C.

As an application of the automatic continuity of Borel group homomorphisms between 
Polish groups [23, Theorem 9.10] and Lemma 4.19 one has the following.

Lemma 4.20. Suppose that G is a Polish group, and A is an abelian Polish group. If an 
action G � A by automorphisms of A is Borel separately in each variable when seen as 
a function G ×A → A, then it is continuous.

Proof. For g0 ∈ G, the map A → A, a 
→ g0 · a is a Borel automorphism of A, and hence 
continuous [23, Theorem 9.10]. For a0 ∈ A we have that the map εa0 : G → A, g 
→ g ·a0

is Borel. Thus there exists a dense Gδ subset D of G such that εa0 |D is continuous [23, 
Theorem 8.38]. We now prove that εa0 is continuous at an arbitrary g∞ ∈ G. Suppose 
that (gn)n∈N is a sequence converging to g∞. Consider h ∈ Dg−1

∞ ∩
⋂

n∈N Dg−1
n Thus, 

hgn ∈ D for every n ∈ N ∪ {∞}, and hgn → hg∞. Thus, (hgn · a0)n∈N converges to 
hg∞ · a0. Since the function a 
→ h−1 · a is a continuous automorphism of A, we have 
that (gn · a0)n∈N converges to g∞ · a0. This shows that εa0 is continuous at g∞.

Finally, by the above and Lemma 4.19 there exists a dense Gδ subset C of G × A

such that, for every a ∈ A, Ca is a dense Gδ subset of G and the function (g, a) 
→ g · a
is continuous at every point of C. Fix now (g0, a0) ∈ G × A. Let h0 ∈ G such that 
m : (g, a) 
→ g · a is continuous at (h0, a0). Then we can write the function m as 
(g, a) 
→

(
g0h

−1
0

)
·
(
h0g

−1
0 g · a

)
. This realizes m as a composition of a function that 

is continuous at (g0, a0) with a continuous function. Thus, m is continuous at (g0, a0). 
Since (g0, a0) is an arbitrary element of G ×A, we have that m is continuous. �
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Lemma 4.21. Suppose that R is a Polish ring, and A is an R-module and an abelian 
Polish group. If the scalar multiplication operation R × A → A, (λ, x) 
→ λ · x is Borel 
separately in each variable, then it is continuous.

Proof. As in the proof of Lemma 4.20, for every λ0 ∈ R, the group homomorphism 
A → A, x 
→ λx of A is Borel, and hence continuous. For the same reason, for every 
a0 ∈ A, the map R → A, λ 
→ λa0 is a Borel group homomorphism, and hence continuous. 
Thus, by Lemma 4.19 there exists a dense Gδ subset C of R×A such that for every a ∈ A, 
Ca is a dense Gδ subset of R and the function m : (λ, a) 
→ λ · a is continuous at every 
point of C. Fix (λ0, a0) ∈ R×A and pick μ0 ∈ A such that the function m is continuous 
at (μ0, a0). Then we can write m as the function (λ, a) 
→ (μ0 − λ0 + λ) ·a +(μ0 − λ0) ·a. 
This witnesses that m is continuous at (μ0, a0). Being (μ0, a0) an arbitrary element of 
R×A, we have that m is continuous. �

Suppose that R is a Polish group or a Polish ring. The notions of Polishable R-
submodule of a Polish module, R-module with a Polish cover, R-submodule with a 
Polish cover, and Borel-definable, continuously definable, and liftable R-homomorphism 
between R-modules with a Polish cover are defined as in the group case. It follows easily 
from Lemma 4.20 and Lemma 4.21 that all the results that we have obtained so far about 
groups with a Polish cover apply more generally to Polish R-modules. Furthermore, it is 
not difficult to see that if M is a R-module with a Polish cover, then its Solecki subgroups 
are in fact R-submodules with a Polish cover. For the sake of illustration, we present a 
proof of the latter statement.

Proposition 4.22. Suppose that R is a Polish ring or Polish group and X = X̂/N is an 
R-module with a Polish cover. Then, for every α < ω1, sα (X) is an R-submodule with 
a Polish cover of X.

Proof. For α = 0 this is immediate considering that s0 (X) = N
X̂
/N . We prove that 

the conclusion holds for 1 ≤ α < ω1 by induction. For α = 1, suppose that a ∈ R and 
x ∈ sN1 (X̂). We claim that ax ∈ sN1 (X̂). If V is a zero neighborhood in N , since N is 
a Polish R-module, there exists a zero neighborhood W in N such that aW ⊆ V . Since 

x ∈ sN1 (X̂), there exists z ∈ N such that x + z ∈ W
X̂ . Therefore,

ax + az ∈ aW
X̂ ⊆ aW

X̂ ⊆ V
X̂ .

As this holds for every zero neighborhood V in N , ax ∈ sN1 (X̂). This shows that sN1 (X̂)
is an R-submodule of X̂. As it is also a Polishable subgroup of X̂, it follows that sN1 (X̂)
is in fact a Polishable R-submodule of X̂ by Lemma 4.21 or Lemma 4.20, depending on 
whether R is a Polish ring or Polish group.
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If the conclusion holds for α, then it follows from the identity sNα+1(X̂) = sN1 (sNα (X̂))
that it holds for α + 1. If λ is a limit ordinal and the conclusion holds for β < λ, then 
the identity

sNλ (X̂) =
⋂
β<λ

sNβ (X̂)

implies that the conclusion holds for λ. �
5. Better lifts

The main goal of this paper is to provide explicit descriptions as categories of struc-
tures “with a Polish cover” of the left heart of categories of algebraic structures endowed 
with a Polish topology. This goal requires us to identify which maps between such “for-
mal quotients” define morphisms in the left heart, and to obtain for such morphisms as 
precise a characterization as possible. We have already seen in Proposition 4.7 and Re-
mark 3.11 the “bootstrap” phenomenon that the morphisms in the left heart of abelian 
Polish groups—the group homomorphisms that are Σ1

1-definable—are in fact automat-
ically Borel-definable, even continuously-definable in the non-Archimedean case, and 
Haar-definable in the locally compact case. We will obtain in Corollary 6.19 and Corol-
lary 6.20 other improved lifting results for locally compact Polish groups and Lie groups, 
respectively. The proofs of these results will hinge on the results of this section, which 
show that in some cases one can obtain lifts that are also “approximately additive” in 
the sense that we are about to define.

5.1. Approximately additive lifts

We begin by considering the existence of continuous lifts with additional properties 
for continuously definable group homomorphisms between groups with a Polish cover.

Definition 5.1. Suppose that G is an abelian Polish group and H = Ĥ/M is a group with a 
Polish cover. A Borel lift f : G → Ĥ for a group homomorphism G → H is approximately 
additive if f (0) = 0 and the function δf : G ×G → M , (x, y) 
→ f (y)− f (x + y) + f (x)
is continuous at (0, 0).

A similar proof as [7, Lemma 4.9] gives the following.

Lemma 5.2. Suppose that G is an abelian Polish group, H = Ĥ/M is an abelian group 
with a Polish cover, and f : G → Ĥ is a Borel lift of a group homomorphism G → H

that is continuous on a zero neighborhood G0 of G. Let M1 be a zero neighborhood in 

M such that M1 = M
Ĥ

1 ∩ M , where M
Ĥ

1 is the closure of M1 in Ĥ. Then there exist 
x0, y0 ∈ G0, and a zero neighborhood G1 in G contained in G0 such that:
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• for x, y ∈ G1,

f (x + x0) + f (y + y0) − f (x + y + x0 + y0) ∈ M1;

• if g : G → Ĥ is defined by

g (z) := f (x0 + y0 + z) − f (x0 + y0) ,

then, for every x, y ∈ G1,

δg (x, y) ∈ M1 + M1 + M1 + M1.

Proof. Since M1 is non-meager in M , there exists m ∈ M such that

A := {(x, y) ∈ G0 ×G0 : δf (x, y) ∈ m + M1}

is non-meager in G0 × G0. After replacing f with z 
→ f (z) − m, we can assume that 
m = 0. Since f : G0 → Ĥ is continuous and M1 = M

Ĥ

1 ∩M , we have that A ⊆ G0 ×G0
is closed. Thus, A is somewhere dense, and there exists a zero neighborhood G1 in G0
and x0, y0 ∈ G0 such that (x0, y0) + (G1 ×G1) ⊆ A. Thus, for x, y ∈ G1 we have that

f (x + x0) + f (y + y0) − f (x + y + x0 + y0) ∈ M1. (1)

Define thus g : G → Ĥ by

g (z) := f (x0 + y0 + z) − f (x0 + y0) .

Then we have that, for x, y ∈ G1,

δg (x, y) = g (x + y) − g (x) − g (y)

= f (x0 + y0 + x + y) − f (x0 + y0 + x) − f (x0 + y0 + y) + f (x0 + y0) .

By (1), we have

f (x0 + y0 + x + y)−f (x0 + y0 + x)−f (x0 + y0 + y)+f (x0 + y0) ∈ M1+M1+M1+M1

This concludes the proof. �
One can infer from Lemma 5.2, as in the proof of [7, Theorem 4.5], the following 

lemma.

Proposition 5.3. Suppose that G is an abelian Polish group, H = Ĥ/M is an abelian 
group with a Polish cover, and ϕ : G → H is a locally continuously definable group 
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homomorphism. Suppose that M has a basis of zero neighborhoods that are closed in 
the subspace topology inherited from H. Then ϕ has an approximately additive locally 
continuous Borel lift.

Proof. By assumption, we have that M has a basis (Mk)k∈ω of zero neighborhoods 

such that M Ĥ

k ∩ M = Mk for every k ∈ ω. Let (Ĥk) be a basis of zero neighborhoods 
in Ĥ such that Ĥ0 = Ĥ. Without loss of generality, we can assume that M0 = M

and Mk ⊆ Ĥk for k ∈ ω. Since ϕ is locally continuously definable, it has a Borel lift 
f : G → Ĥ that is continuous on a zero neighborhood U in G. Let also dG be a compatible 
complete invariant metric on G such that {z ∈ G0 : dG (z, 0) ≤ 2} ⊆ U . Let G0 be the 
zero neighborhood {z ∈ G0 : dG (z, 0) ≤ 1/4} in G, and set f0 := f .

Applying Lemma 5.2, one can define by recursion on k ∈ ω:

• a zero neighborhood Gk+1 of G contained in 
{
x ∈ Gk : dG (x, 0) ≤ 2−(k+2)};

• elements xk, yk ∈ Gk;
• a Borel function fk : G → Ĥ,

such that, for every k ∈ ω:

(1) for every z ∈ G,

fk+1 (z) = fk (xk + yk + z) − fk (xk + yk) ;

(2) for every x, y ∈ Gk,

fk (x + y + xk + yk) ≡ fk (x + xk) + fk (y + yk) mod Mk+1;

(3) for every x, y ∈ Gk+1,

δfk+1 (x, y) ∈ Mk+1.

Indeed, suppose that k ≥ 0, and Gi+1, fi+1, and xi, yi ∈ Gi have been defined for 
i < k. We apply Lemma 5.2 to obtain elements xk, yk ∈ Gk and a zero neighborhood 
Gk+1 in G contained in 

{
x ∈ Gk : dG (x, 0) ≤ 2−(k+2)} such that, setting

fk+1 (z) := fk (xk + yk + z) − fk (xk + yk)

for z ∈ G, we have that

fk (x + y + xk + yk) ≡ fk (x + xk) + fk (y + yk) mod Mk+1

and
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δfk+1 (x, y) ∈ Mk+1.

For k ∈ ω, set

zk := (x0 + y0) + · · · + (xk + yk) .

We prove by induction on k ∈ ω that, for every z ∈ G,

fk+1 (z) = f (zk + z) − f (zk) .

For k = 0 this holds by definition. Suppose that it holds for k. Then we have that, by 
definition and the inductive hypothesis,

fk+2 (z) = fk+1 (xk+1 + yk+1 + z) − fk+1 (xk+1 + yk+1)

= (f (zk + xk+1 + yk+1 + z) − f (zk)) − (f (zk + xk+1 + yk+1) − f (zk))

= f (zk+1 + z) − f (zk+1) .

Notice that

dG (xi + yi, 0) ≤ 2−(i+1)

for every i < ω, and hence the sequence (zk)k∈ω converges to some z∞ ∈ G such that 
dG (z∞, 0) ≤ 1.

Set W := {z ∈ G : dG (z, 0) ≤ 1}. Notice that, for every i ∈ ω and z ∈ W , zi + z ∈ U

and z∞ + z ∈ U . Define, for z ∈ W ,

g (z) := f (z + z∞) − f (z∞) = limi→∞ (f (z + zi) − f (zi)) = limi→∞fi (z) .

Since the family of functions (fi)i∈ω is uniformly equicontinuous on W , we have that the 
function g : W → Ĥ is continuous. Furthermore, g satisfies g (x)+M = ϕ (x) for x ∈ W

and, for every k ∈ ω and x, y ∈ Gk,

δg (x, y) ∈ Mk.

Finally, one can extend g to a Borel lift g : G → Ĥ for ϕ using Lemma 3.12. �
We record here an analogous result, under the assumptions that the Polish groups 

involved are Lie groups. Recall that the abelian Lie groups are precisely the Polish groups 
of the form Td ⊕Rk ⊕D where d and k are nonnegative integers and D is countable.

Remark 5.4. A similar proof as Proposition 5.3 gives the following result: suppose that 
G is an abelian real Lie group, H = Ĥ/M is an abelian group with a Polish cover where 
Ĥ and M are Lie groups, and ϕ : G → H is a group homomorphism that has a Borel lift 
G → Ĥ that is analytic on an open zero neighborhood in G. Then ϕ has an approximately 
additive Borel lift that is analytic on an open zero neighborhood in G.
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5.2. Approximately R-linear lifts

A non-Archimedean Polish ring is a Polish ring that has a basis of (open) zero neigh-
borhoods consisting of subrings. Let R be a non-Archimedean Polish ring. A subset A of 
R is bounded if for every zero neighborhood U in R there exists a zero neighborhood V
of R such that V ·A ⊆ U [61]. We say that R is locally bounded if it has a bounded zero 
neighborhood. A Polish R-module X is non-Archimedean if for every zero neighborhood 
U of X there exists an open subring O of R and an open O-submodule V of X contained 
in U .

Definition 5.5. Suppose that R is a non-Archimedean Polish ring and that X = X̂/N

and Y = Ŷ /M are R-modules with a non-Archimedean Polish cover. An approximately
R-linear continuous lift of an R-homomorphism ϕ : X → Y is an approximately additive 
continuous lift f : X̂ → Ŷ such that for every zero neighborhood U of Ŷ there exists an 
open subring O of R and an open O-submodule W of X̂ such that f (λx) ≡ λf (x) mod U

for every λ ∈ O and x ∈ W .

Lemma 5.6. Suppose that R is a non-Archimedean Polish ring, X is non-Archimedean 
Polish R-module, and Y = Ŷ /M is an R-module with a non-Archimedean Polish cover. 
Let g : X → Ŷ be a continuous lift for an R-homomorphism X → Y . Let M1 be an open 
subgroup of M that is closed in the subspace topology inherited from Ŷ . Suppose that X1
is an open subgroup of X such that, for x, y ∈ X1,

g (x + y) ≡ g (x) + g (y) mod M1.

Then there exist an open subring O of R and an open O-submodule X ′
1 ⊆ X such that 

for every x ∈ X ′
1 and λ ∈ O,

g (λx) ≡ λg (x) mod M1.

Furthermore, for every bounded open subring S of R there exists an open S-submodule 
X ′′

1 ⊆ X1 such that for every x ∈ X ′′
1 and λ ∈ S,

g (λx) ≡ λg (x) mod M1.

Proof. Consider the Borel function

∇g : R×X → M , (λ, x) 
→ g (λx) − λg (x)

Since M1 is closed in the subspace topology on M inherited from Y , we have that there 
exists x0 ∈ X0, λ0 ∈ R, an open subring O of R, an open subgroup X ′

1 in X and m ∈ M

such that
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g ((λ + λ0) (x + x0)) ≡ (λ + λ0) g (x + x0) + m mod M1

for every λ ∈ O and x ∈ X ′
1. In particular for λ = 0 and x = 0 we obtain

g (λ0x0) ≡ λ0g (x0) + m mod M1.

Thus, in particular for x = 0 and λ ∈ O we obtain

g (λx0) + λ0g (x0) + m ≡ g (λx0) + g (λ0x0)

≡ g ((λ + λ0)x0)

≡ (λ + λ0) g (x0) + m

≡ λg (x0) + λ0g (x0) + m mod M1.

Thus, we have that

g (λx0) ≡ λg (x0) mod M1

for every λ ∈ O.
For λ = 0 and x ∈ X ′

1 we obtain

g (λ0x) + λ0g (x0) + m ≡ g (λ0x) + g (λ0x0)

≡ g (λ0 (x + x0))

≡ λ0g (x + x0) + m

≡ λ0g (x) + λ0g (x0) + m mod M1.

Thus we have that

g (λ0x) ≡ λ0g (x) mod M1

for x ∈ X ′
1.

Finally for λ ∈ O and x ∈ X ′
1 we have that

g (λx) + λ0g (x) + λg (x0) + λ0g (x0) + m

≡ g (λx) + g (λ0x) + g (λx0) + g (λ0x0)

≡ g (λx + λ0x + λx0 + λ0x0)

≡ λg (x) + λ0g (x) + λg (x0) + λ0g (x0) + m mod M1.

Thus, we have that for every λ ∈ O and x ∈ X ′
1,

g (λx) ≡ λg (x) mod M1.
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If S is a bounded open subring of R then there exists an open zero neighborhood V
of R such that V · S ⊆ O. Thus, for every λ ∈ S and v ∈ V we have that

g (λvx) ≡ λvg (x) mod M1

and in particular

g (vx) ≡ vg (x) mod M1

Define now X ′′
1 = V ·X ′

1. Then we have that X ′′
1 is an open S-submodule of X contained 

in X1. Furthermore, for λ ∈ S and x ∈ X ′′
1 we have that x = vy for some y ∈ X ′

1 and 
v ∈ V and hence

g (λx) = g (λvy) ≡ λvg (y) ≡ λg (vy) = λg (x) mod M1.

This concludes the proof. �
Proposition 5.7. Let R be a non-Archimedean Polish ring. Suppose that ϕ : X → Y is 
a Borel-definable R-homomorphism between R-modules with a non-Archimedean Polish 
cover. Suppose that Y = Ŷ /M where M has a basis of zero neighborhoods that are 
closed in the subspace topology inherited from Ŷ . Then ϕ has an approximately R-linear 
continuous lift.

Proof. This follows immediately from Lemma 5.6 and Proposition 5.3. �
6. Left hearts of categories of Polish modules

In this section, we provide explicit descriptions of the heart of categories of Polish 
modules.

6.1. The left heart of the category of Polish modules

Fix a Polish group or Polish ring R. We let AR be the category whose objects are the 
Polish R-modules and whose morphisms are the continuous R-homomorphisms. Recall 
that a category is countably complete if it has all countable limits. A quasi-abelian cate-
gory is countably complete if and only if it has countable products. A functor between 
countably complete categories is countably continuous if it commutes with countable 
limits.

Proposition 6.1. Let A be a quasi-abelian category. If A is countably complete, then 
LH (A) is countably complete, and the inclusion functor I : A → LH (A) is countably 
continuous.
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Suppose that M is a countably complete abelian category. Let F : A → M be a finitely 
continuous exact functor, and let F̂ : LH (A) → M be the (unique up to isomorphism) 
finitely continuous exact functor such that F̂ ◦ I is isomorphic to F . If F is countably 
continuous, then F̂ is countably continuous.

Lemma 6.2. AR is a countably complete quasi-abelian category.

Proof. It is clear that AR is an additive category. If ϕ : X → Y is a continuous R-
homomorphism, then its kernel in AR is ker (ϕ) = {x ∈ X : ϕ (x) = 0}, and its cokernel 
in AR is the quotient of Y by the closure of the image of ϕ. Thus, the kernels in AR are 
the continuous injective R-homomorphisms with closed image, and the cokernels in AR

are the continuous surjective R-homomorphisms. It remains to prove that the class of 
kernels is stable under push-out along arbitrary morphisms, and the class of cokernels is 
stable under pull-back along arbitrary morphisms.

Suppose that ϕi : X → Yi are continuous R-homomorphisms for i ∈ {0, 1}. Let 
pi : Yi → Z for i ∈ {0, 1} be their pushout. Thus we have that Z is the quotient of 
Y0 ⊕ Y1 by the closure M of the R-submodule {(−ϕ0 (x) , ϕ1 (x)) : x ∈ X}. The map 
p0 : Y0 → Z is defined by y 
→ (y, 0) + M , and the map p1 : Y1 → Z is defined by 
y 
→ (0, y) + M . Suppose that ϕ0 is a kernel, namely it is injective and it has closed 
range. We need to prove that p1 is also a kernel.

Suppose that y ∈ Y1 is such that p1 (y) = 0. Thus, we have that (0, y) ∈ M . Hence, 
there exists a sequence (xn) in X such that ϕ0 (xn) → 0 and ϕ1 (xn) → y. Since ϕ0 is 
injective with closed range, it is a homeomorphism onto its image. Therefore, we have 
that xn → 0 and hence y = limnϕ1(xn) = 0. This shows that p1 is injective.

Suppose now that (yn) is a sequence in Y such that (p1 (yn)) converges in Z to 
(z0, z1)+M . Thus we can find a sequence (xn) in X such that (ϕ0 (xn) , p1 (yn) − ϕ1 (xn))
converges in Y0 ⊕ Y1 to (z0, z1). Since ϕ0 is a kernel, this implies that (xn) converges 
in X to some x ∈ X such that ϕ0 (x) = z0. Thus, we have that (p1 (yn)) converges to 
z1 + ϕ1 (x) and hence

(z0, z1) + M = (z0 − ϕ0 (x) , z1 + ϕ1 (x)) + M = limn ((0, p1 (yn)) + M) .

This shows that p1 has closed range, concluding the proof that p1 is a kernel.
Suppose now that ϕi : Yi → Z for i ∈ {0, 1} are continuous R-homomorphisms. Let 

ηi : X → Yi for i ∈ {0, 1} be their pullback. Then we have that

X = {(y0, y1) ∈ Y0 ⊕ Y1 : ϕ0 (y0) = ϕ1 (y1)} .

The map η0 : X → Y0 is given by (y0, y1) 
→ y0, and the map η1 : X → Y1 is given by 
(y0, y1) 
→ y1. Suppose that ϕ1 is a cokernel, i.e. surjective. We need to show that η0 is 
also a cokernel. Suppose that y0 ∈ Y0. Consider ϕ0 (y0) ∈ Z. Since ϕ1 is surjective, there 
exists y1 ∈ Y1 such that ϕ1 (y1) = ϕ0 (y0). Thus we have that x := (y0, y1) ∈ X is such 
that η0 (x) = y0. This concludes the proof that η0 is a cokernel.
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Finally, the fact that AR is countably complete follows from the fact that it has 
countable products. �

We let MR be the category whose objects are the R-modules with a Polish cover, 
and whose morphisms are the Borel-definable R-homomorphisms. We regard AR as a 
full subcategory of MR, by identifying a Polish R-module X with the R-module with a 
Polish cover X/N where N is the trivial submodule of X.

Theorem 6.3. The category MR is abelian. The inclusion functor AR → MR is exact and 
countably continuous, and it extends to an equivalence of categories LH(AR) → MR.

Proof. Suppose that ϕ : X → Y is a Borel-definable R-homomorphism between R-
modules with a Polish cover. Then by Proposition 4.4 and the results of Subsection 4.4, 
we have that

• ker (ϕ) := {x ∈ X : ϕ (x) = 0} is an R-submodule with a Polish cover of X, and
• ϕ (X) is an R-submodule with a Polish cover of Y .

It is easy to see that ker (ϕ) → X is the kernel of ϕ and Y → Y/ϕ (X) is the cokernel 
of ϕ. This easily implies that every monic arrow is a kernel and every epic arrow is a 
cokernel, and hence MR is an abelian category.

It follows from the characterization of the left heart provided by the last item in 
Proposition 2.3 that the inclusion J : AR → MR extends to an equivalence of categories 
LH (AR) → MR. It is also easy to see that MR has countable products, and that 
J preserves countable products. Since J is finitely continuous and preserves countable 
products, it is also countably continuous. �
6.2. Left hearts of subcategories of the category of Polish modules

Recall that a subcategory C of a category D is strictly full if its collection of objects is 
closed under isomorphism in D, and for objects x, y in C, HomC (x, y) = HomD (x, y). Let 
B be a strictly full quasi-abelian subcategory of the category AR of Polish R-modules. 
We notice that this implies that, if X, Y are objects of B, and f : X → Y is a continuous 
R-homomorphism, then f is a morphism in B, ker (f) is an object of B. This follows 
from the assumption that B is a quasi-abelian subcategory of AR, which in particular 
means that B has kernels and the inclusion B → AR preserves kernels (as a particular 
instance of limits). Furthermore, f (X) endowed with the Polish R-module topology 
induced via f by the Polish R-module topology on X is an object of B (being isomorphic 
to coker(ker (f))).

Definition 6.4. An R-module with a B-cover is an R-module X explicitly presented as a 
quotient X̂/N where X̂ and N are objects of B, N is an R-submodule of X̂, and the 
inclusion N → X̂ is continuous.
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If X = X̂/N is an R-module with a B-cover, then an R-submodule with a B-cover of 
X is an R-submodule Y = Ŷ /N where Ŷ is an R-submodule of X̂, Ŷ is an object of B, 
and the inclusion Ŷ → X̂ is continuous.

Definition 6.5. An R-homomorphism ϕ : X → Y between R-modules with a B-cover is:

• B-definable if its graph Γ (ϕ) is an R-submodule with a B-cover of X ⊕ Y ;
• liftable if has a lift to a continuous R-homomorphism X̂ → Ŷ , where X = X̂/N and 

Y = Ŷ /M .

Remark 6.6. If ϕ : X → Y is a B-definable bijective R-homomorphism, then ϕ−1 is 
B-definable, since we have that (x, y) ∈ Γ (ϕ) ⇔ (y, x) ∈ Γ 

(
ϕ−1).

Remark 6.7. By Theorem 4.6, an R-homomorphism is AR-definable if and only if it is 
Borel-definable.

Lemma 6.8. A liftable R-homomorphism is B-definable.

Proof. Suppose that ϕ : X̂/N → Ŷ /M , where X = X̂/N and Y = Ŷ /M , is induced by 
a continuous R-homomorphism f : X̂ → Ŷ . Then we have that

W := {(x, y, z) ∈ X̂ ⊕ Ŷ ⊕M : f (x) = y + z}

is an object of B being the kernel of the morphism

X̂ ⊕ Ŷ ⊕M → Ŷ , (x, y, z) 
→ f (x) − y − z

in B. Thus, we have that

{(x, y) ∈ X̂ ⊕ Ŷ : f (x) ≡ y modM}

is a Polishable R-submodule of X̂ ⊕ Ŷ that belongs to B, being the image of W under 
the continuous R-homomorphism

W → X̂ ⊕ Ŷ , (x, y, z) 
→ (x, y) . �
Lemma 6.9. Suppose that ϕ : X → Y and ψ : Y → Z are B-definable R-homomorphisms. 
Then ψ ◦ ϕ : X → Z is B-definable.

Proof. Suppose that ϕ, ψ are B-definable. By assumption, we have that Γ (ϕ) ⊆ X ⊕ Y

and Γ (ψ) ⊆ Y ⊕ Z are R-submodules with a Polish cover. Then we have that

W := {(x, y0, y1, z) : (x, y0) ∈ Γ (ϕ) , (y1, z) ∈ Γ (ψ) , y0 = y1}
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is an R-submodule with a B-cover of Γ (ϕ) ⊕ Γ (ψ), being the kernel of the liftable R-
homomorphism

Γ (ϕ) ⊕ Γ (ψ) → Y , (x, y0, y1, z) 
→ y0 − y1.

It follows that Γ (ψ ◦ ϕ) is an R-submodule with a B-cover of X ⊕Z, being the image of 
W under the liftable R-homomorphism

W → X ⊕ Z, (x, y, y, z) 
→ (x, z) . �
Lemma 6.10. Suppose that ϕ : X → Y is a B-definable R-homomorphism. Then ker (ϕ) ⊆
X and ϕ (X) ⊆ Y are R-submodules with a B-cover.

Proof. We have that

W := {(x, y) ∈ Γ (ϕ) : y = 0}

is an R-submodule with a B-cover of Γ (ϕ), and hence Ker(ϕ) ⊆ X is an R-submodule 
with a B-cover, being the image of the liftable R-module homomorphism W → X, 
(x, y) 
→ x.

Similarly, we have that ϕ (X) is the image of the liftable R-module homomorphism 
Γ (ϕ) → Y , (x, y) 
→ y. �
Lemma 6.11. If ϕ : X → Y is an R-homomorphism between R-modules with a B-cover, 
the following are equivalent:

(1) ϕ is B-definable;
(2) there exist an R-module with a B-cover Z and liftable R-homomorphisms ψ : Z → Y

and σ : Z → X such that σ is a bijection and ϕ = ϕ′ ◦ σ−1.

Proof. Suppose that ϕ : X → Y is an R-module homomorphism between R-modules 
with a B-cover. Suppose that ϕ is B-definable. Then we can set Z = Γ (ϕ), σ : Z → X, 
(x, y) 
→ x, and ψ : Z → Y , (x, y) 
→ y. This shows that (1) implies (2). Suppose now 
that ϕ satisfies (2). Then we have that ψ and σ are B-definable, being liftable. Hence 
ϕ = ψ ◦ σ−1 is B-definable, and (1) holds. �
Corollary 6.12. If ϕ : X → Y is a B-definable R-homomorphism between R-modules with 
a B-cover, then it is Borel-definable.

Proof. By Lemma 6.11, adopting the notation as in (2) from its statement, we have that 
ϕ = ψ ◦ σ−1. Since ψ and σ are liftable, we have that ψ and (by Remark 3.10) σ−1 are 
Borel-definable. Hence, ϕ is Borel-definable. �



M. Lupini / Advances in Mathematics 453 (2024) 109865 37
Lemma 6.13. If ϕ0, ϕ1 : X → Y are B-definable R-homomorphisms, then ϕ0 + ϕ1 is 
B-definable.

Proof. Suppose that ϕ0, ϕ1 : X → Y are B-definable R-homomorphism. Then there exist 
objects X ′, X ′′ of B and continuous R-homomorphisms ϕ′

0 : X ′ → Y , ϕ′
1 : X ′′ → Y , σ :

X ′ → X, and τ : X ′′ → X such that σ, τ are bijective, ϕ0 = ϕ′
0 ◦σ−1, and ϕ1 = ϕ′

1 ◦τ−1. 
We can thus consider the continuous R-homomorphism ψ : X ′ ⊕ X ′′ → Y , (x, y) 
→
ϕ′

0 (x) + ϕ′
1 (y), and the continuous bijective R-homomorphism λ : X ′ ⊕X ′′ → X ⊕X, 

(x, y) 
→ (σ (x) , τ (y)). Then we have that ϕ0 +ϕ1 = ψ ◦λ−1 ◦Δ where Δ : X → X⊕X, 
x 
→ (x, x). This shows that ϕ0 + ϕ1 is B-definable. �

Define MB to be the (not necessarily full) subcategory of MR whose objects are the 
R-modules with a B-cover and whose morphisms are the B-definable R-homomorphisms.

Theorem 6.14. Let B be a strictly full quasi-abelian subcategory of the category AR of 
Polish R-modules and continuous R-module homomorphisms. Let MB be the category of 
R-modules with a B-cover and B-definable R-homomorphisms. Then we have that:

(1) MB is an abelian category;
(2) the inclusion B → MB extends to an equivalence of category LH(B) → MB;
(3) if B is countably complete and the inclusion B → AR is countably continuous, then 

MB is countably complete and the inclusions B → MB → MR are countably con-
tinuous.

Proof. (1) We begin with showing that MB is an additive subcategory of MR. It is 
clear that the zero object for MR is also the zero object for MB. By Lemma 6.13 and 
Corollary 6.12, the set of B-definable R-homomorphisms X → Y is a subgroup of the set 
of Borel-definable R-homomorphisms. It remains to prove that, for objects X, Y in MB, 
their biproduct X ⊕ Y in MR is also their coproduct in MB. Since B is a quasi-abelian 
subcategory of AR, we have that X ⊕ Y is an R-module with a B-cover. Since every 
liftable R-homomorphism is B-definable, we have that the canonical maps X → X ⊕ Y

and Y → X ⊕ Y are B-definable. It remains to prove that X ⊕ Y satisfies the universal 
property of the coproduct. Suppose that ϕ : Z → X and ψ : Z → Y are B-definable 
R-homomorphisms. Let ϕ ⊕ ψ : Z → X ⊕ Y be the corresponding Borel-definable R-
homomorphism. We need to prove that ϕ ⊕ψ is B-definable. We have that ϕ = ϕ′ ◦ σ−1

and ψ = ψ′ ◦τ−1 for some R-modules with a B-cover Z ′, Z ′′ and liftable homomorphisms 
σ : Z ′ → Z, ϕ′ : Z ′ → X, τ : Z ′′ → Z, ψ′ : Z ′′ → Y such that σ, τ are bijective. Thus we 
have that

ϕ⊕ ψ = (ϕ′ ⊕ ψ′) ◦ (σ ⊕ τ)−1

is B-definable since ϕ′ ⊕ψ′ and σ⊕ τ are liftable and σ⊕ τ is bijective. This shows that 
MB is an additive subcategory of MR.
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We now prove that MB is an abelian category, which is furthermore an abelian sub-
category of MR. Suppose that ϕ : X → Y is a B-definable R-homomorphism. We have 
that ker (ϕ) is an R-module with a B-cover. Let ι : ker (ϕ) → X be the inclusion map. 
We now show that ker (ϕ) is the kernel of ϕ in MB. Suppose that ψ : Z → X is a 
B-definable R-homomorphism such that ϕ ◦ ψ = 0. We can write ψ = ψ′ ◦ σ−1 where 
σ : Z ′ → Z and ψ′ : Z ′ → X are liftable R-homomorphism such that σ is bijective and 
Z ′ is an R-module with a B-cover. Since ϕ ◦ ψ = 0 we have that ϕ (Z) ⊆ ker (ϕ) and 
hence ψ′ (W ) ⊆ ker (ϕ). Thus, we can write ψ′ = ι ◦ ψ′′ for a liftable R-homomorphism 
ψ′′ : W → ker (ϕ). Hence, we have that ψ′′ ◦ σ−1 : Z → ker (ϕ) is a B-definable R-
homomorphism such that ι ◦

(
ψ′′ ◦ σ−1) = ψ. This concludes the proof that ker (ϕ) is 

the kernel of ϕ in MB.
Suppose that ϕ : X → Y is a B-definable R-homomorphism. We show that Y/ϕ (X) is 

the cokernel of ϕ in MB. We can write ϕ = ϕ′ ◦σ−1 for some liftable R-homomorphisms 
ϕ′ : X ′ → Y and σ : X ′ → X where σ is bijective and X ′ is an R-module with a 
B-cover. Thus, we have that ϕ (X) = ϕ′ (X ′) ⊆ Y is a R-submodule with a B-cover 
since ϕ′ is liftable and B is closed under taking quotients by closed R-submodules. 
Hence, Y/ϕ (X) is an R-module with a B-cover. Suppose now that ψ : Y → Z is 
a B-definable R-homomorphism such that ψ ◦ ϕ = 0. We can write ψ = ψ′ ◦ τ−1, 
where ψ′ : Y ′ → Z and τ : Y ′ → Y are liftable R-homomorphisms, τ is bijective, 
and Y ′ is an R-module with a B-cover. Then we have that 

(
τ−1 ◦ ϕ

)
(X) ⊆ Y ′ is an 

R-submodule with a B-cover of Y ′. Furthermore 0 = ψ ◦ ϕ = ψ′ ◦
(
τ−1 ◦ ϕ

)
and hence (

τ−1 ◦ ϕ
)
(X) ⊆ ker (ψ′). Since ψ′ is liftable, it induces a liftable R-homomorphism 

ψ̄′ : Y ′/(τ−1 ◦ ϕ) (X) → Z. Similarly, we have that τ
((
τ−1 ◦ σ

)
(X)

)
= σ (X) since 

τ : Y ′ → Y is a bijective R-linear homomorphism. Hence, being liftable, it induces a 
liftable bijective R-linear homomorphism τ̄ : Y ′/ 

(
τ−1 ◦ ϕ

)
(X) → Y/ϕ (X). Thus, we 

have that ψ̄′ ◦ τ̄−1 : Y/ϕ (X) → Z is a B-definable R-homomorphism such that, let-
ting πY : Y → Y/ϕ (X) and πY ′ : Y ′ → Y ′/ 

(
τ−1 ◦ ϕ

)
(X) be the canonical quotient 

mappings,

ψ̄′ ◦ τ̄−1 ◦ πY = ψ̄′ ◦ πY ′ ◦ τ−1 = ψ′ ◦ τ−1 = ψ.

This concludes the proof that Y/ϕ (X) is the cokernel of ϕ in MB.
(2) This follows immediately from (1) and the characterization of the left heart of a 

quasi-abelian category from the last item in Proposition 2.3.
(3) Suppose that (Xn)n∈ω is a sequence of R-modules with a B-cover. It suffices to 

prove that their product Xω :=
∏

n∈ω Xn in MR is also their product in MB. We have 
that Xω is an R-module with a B-cover, since B is countably complete and the inclusion 
B → AR is countably continuous. Furthermore the projection maps πi : Xω → Xi for 
i ∈ ω are liftable, and hence B-definable. Suppose now that Z is an R-module with a 
B-cover, and ϕi : Xi → Z are B-definable R-homomorphisms for i ∈ ω. Then we have 
that there exist R-modules with a B-cover X ′

i, liftable R-homomorphisms σi : X ′
i → Xi

and ϕ′
i : X ′

i → Z such that σi is bijective and ϕi = ϕ′
i◦σ−1

i . Define then X ′
ω :=

∏
i∈ω X ′

ω. 
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Then we have that the sequences (σi) and (ϕ′
i) induce liftable R-homomorphisms σ :

X ′
ω → Xω and ϕ′ : X ′

ω → X. Setting ϕ := ϕ′ ◦ σ−1 : Xω → Y we obtain a B-definable 
R-homomorphism such that ϕ ◦ πi = ϕi for every i ∈ ω. This shows that Xω is the 
product of (Xn) in MB, concluding the proof. �
6.3. Examples

In this section we apply Theorem 6.14 to describe the left heart of a number of 
important categories of Polish R-modules as a full subcategory of the category of R-
modules with a Polish cover.

Definition 6.15. Suppose that B is a strictly full quasi-abelian subcategory of AR. We 
say that B is a thick subcategory of AR [27, Definition 8.3.21(iv)] if it is closed under 
extensions, i.e., for every short exact sequence

0 → A → B → C → 0

of Polish R-modules, we have that if A and C are in B, then B is in B as well.

Proposition 6.16. Suppose that B is a thick subcategory of AR. An R-homomorphism 
between R-modules with a B-cover is B-definable if and only if it is Borel-definable.

Proof. Suppose that ϕ : X̂/N → Ŷ /M is Borel-definable, where X̂/N and Ŷ /M are 
R-modules with a B-cover. Then we have a short exact sequence

0 → {0} ⊕M → Γ̂ (ϕ) → X̂ → 0

where Γ̂ (ϕ) is the lift to X̂ ⊕ Ŷ of the graph of ϕ. We have that Γ̂ (ϕ) is Polish by 
Theorem 4.6. Since B is a thick subcategory of AR, this implies that Γ̂ (ϕ) is in B, and 
hence ϕ is B-definable. �

The same argument as in the previous proposition shows the following.

Proposition 6.17. Suppose that B is a thick subcategory of AR. Let ϕ : X̂/N → Ŷ /M

be a Borel-definable R-homomorphism between R-modules with a Polish cover, where X̂, 
N , and M are in B. Then Ŷ is in B.

Proof. Adopting the notation of Proposition 6.16, we have that Γ̂ (ϕ) is in B, being an 
extension of objects of B. Considering the short exact sequence

0 → N ⊕M → Γ̂ (ϕ) → Y → 0

shows that Y is in B as well. �
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As an application of Proposition 6.16, we obtain as a particular instance of Theo-
rem 6.14 a description of the left heart of a number of categories of Polish modules. We 
refer to [42] for the theory of Fréchet and Banach spaces over a non-Archimedean valued 
field. Recall that a Polish abelian group G:

• is compactly generated if it has a compact generating set;
• is a topological torsion group if for every x ∈ G, limn→∞n!x = 0—see [2, Chapter 3];
• a topological p-group, for some prime p, if for every x ∈ G, limn→∞pnx = 0—see [2, 

Chapter 2].

We let the dimension of a locally compact Polish space to be its covering dimension. 
Recall also the notion of locally compact abelian Polish group that has finite ranks
according to [21, Definition 2.6]. It is proved in [21] that a locally compact Polish group 
A can be written uniquely as an extension FZA → A → AZ where AZ is a countable 
torsion-free discrete group, and FZ is in turn an extension AS1 → FZA → AA where AS1

is compact connected and AA is the direct sum of a topological torsion group At and Rn

for some n ≥ 0. One then says that A has finite ranks if AS1 is finite-dimensional, AZ

has finite rank, and for every prime number p, the p-component of At is isomorphic to 
a finite direct sum of groups isomorphic to Z/pnZ for some n ∈ N, Zp, Qp, or Qp/Zp.

Theorem 6.18. Let R be a Polish ring. Let B one of the following full subcategories of 
AR:

(1) non-Archimedean Polish R-modules;
(2) locally compact Polish R-modules;
(3) finite-dimensional locally compact Polish R-modules;
(4) if R is a field, locally bounded Polish vector spaces over R;
(5) if R is a separable non-Archimedean valued field, separable Fréchet spaces over R;
(6) if R is a separable non-Archimedean valued field, separable Banach spaces over R.

For R = Z, let B one of the following subcategories of the category AZ of Polish 
abelian groups:

(7) abelian real Lie groups;
(8) totally disconnected locally compact Polish abelian groups;
(9) compactly generated Polish abelian groups;

(10) locally compact Polish topological torsion abelian groups;
(11) locally compact Polish topological abelian p-groups, for a given prime number p;
(12) locally compact Polish abelian groups that have finite ranks.

Then B is a thick subcategory of AR, and the inclusion B → AR extends to a fully 
faithful functor LH (B) → LH (AR) = MR. Thus, the left heart of B is equivalent 
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to the category that has R-modules with a B-cover as objects and Borel-definable R-
homomorphisms as morphisms.

Proof. We show that each of these categories is a thick subcategory of AR, and apply 
Proposition 6.16 and Theorem 6.14.

(1) Let

0 → A → X → C → 0

be an extension of Polish R-modules, where A, C are non-Archimedean. We identify 
A with a closed submodule of X. By [7, Proposition 4.6], there exists a continuous 
function φ : C → X that is right inverse for the quotient map π : X → C; see Re-
mark 3.11. Define κ (x, y) = δφ (x, y) = φ (x + y)−φ (x)−φ (y). By Proposition 5.7
one can choose φ such that for every open zero neighborhood U of A there exist an 
open subring O of R and an open O-submodule V of C such that κ (x, y) ∈ U and 
φ (λx) − λφ (x) ∈ U for x, y ∈ V and λ ∈ O.

Consider the abelian Polish group A ⊕κC that is equal to A ×C as a Polish space, 
with group operation defined by (a, c) + (a′, c′) = (a + a′ + κ (c, c′) , c + c′). Then 
the function X → A ⊕κ C, x 
→ (x− φπ (x) , π (x)) is a Borel group isomorphism 
with inverse A ⊕κ C → X, (a, c) 
→ a + φ (c), and hence it is a homeomorphism. 
This shows that φ (C) is a closed subset of X, and the sets of the form UA+φ (UC), 
where UA is a zero neighborhood in A and UC is a zero neighborhood in C, form a 
basis of zero neighborhoods for X. Let UX be a zero neighborhood in X. Consider 
an open subring O of R and open O-submodules UA of A and UC of C such 
that UA + φ (UC) ⊆ UX and for every x, y ∈ V and λ ∈ P , κ (x, y) ∈ UA and 
φ (λx) − λφ (x) ∈ UA. Then we have that UA + φ (UC) is an open O-submodule of 
X contained in U . This proves that X is non-Archimedean.

(2) It is the content of [20, Theorem 5.22, Theorem 5.25] that the category of locally 
compact Polish groups is thick.

(3) If X is a Polish R-module and Y is a closed R-submodule, then we have that

dim (X) = dim (Y ) + dim (X/Y ) ;

see [41]. Thus, we have that X is finite-dimensional if and only if Y and X/Y are 
finite-dimensional.

(4) Let R be a field, and

0 → M → X → Y → 0

be an extension of Polish R-vector spaces, where M and Y are locally bounded. 
Since the quotient map π : X → Y is open, M is closed in X, and M, Y are 
locally bounded, we have that there exists an open zero neighborhood A in X such 
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that A ∩ M and π (A) are bounded in M and Y , respectively. Fix a decreasing 
neighborhood basis (Wi) for 0 in R. Fix i0 ∈ N and an open zero neighborhood 
B ⊆ A in X such that B +Wi0B ⊆ A. We claim that B is bounded in X. Suppose 
that this is not the case. Then there exist a zero neighborhood V0 in X, a vanishing 
sequence (λi) in R, and a sequence (bi) in X such that λi ∈ Wi, bi ∈ B, and 
λibi /∈ V0 for i ∈ N.

Fix a zero neighborhood V0 in X. Fix i1 ≥ i0 and a zero neighborhood V1 in X
such that V1 + (Wi1V1 ∪ V1) ⊆ V0. Fix i ≥ i1. Since π (A) is bounded in Y , there 
exists αi ≥ i such that λαi

π (bαi
) ∈ Wiπ (V1) and λ−1

i λαi
∈ Wi1 . Thus there exist 

vi ∈ V1 such that λαi
bαi

− λivi ∈ M . For every i ≥ i1, we can write

λαi
bαi

− λivi = λi

(
λ−1
i λαi

bαi
− vi

)
where

λ−1
i λαi

bαi
− vi ∈ (Wi1B + B) ∩M ⊆ A ∩M .

Since A ∩M is bounded in M , there exists i2 ≥ i1 such that

λ−1
i2

λαi2
bαi2

− vi2 = λi2(λ−1
i2

λαi2
bαi2

− vi2) ∈ V1

and hence

λαi2
bαi2

= (λαi2
bαi2

− λi2vi2) + λi2vi2 ∈ V1 + W0V1 ⊆ V0.

This contradicts the fact that λαi2
bαi2

does not belong to V0.
(5) This is a particular instance of (1), since for a separable non-Archimedean valued 

field R, the separable Fréchet spaces over R are precisely the non-Archimedean 
Polish vector spaces over R—see [42, Definition 3.5.1, Theorem 3.5.2].

(6) This follows from (10) and (11), since for a separable non-Archimedean valued field 
R, the separable Banach spaces over R are precisely the locally bounded separable 
Fréchet spaces over R; see [42, Definition 2.1.1, Theorem 3.6.2].

(7) Suppose that G is a locally compact Polish group, and H ⊆ G is a closed subgroup. 
If G is a Lie group, then H is a Lie group by the Closed Subgroup Theorem for 
Lie groups [29, Theorem 20.12]. If H is normal in G, then G/H is a Lie group by 
[29, Theo7]. If G is abelian and both H and G/H are Lie groups, then G is a Lie 
group by [50]; see also [15,28]. Notice also that a continuous group homomorphism 
between real Lie groups is real analytic; see [51, Theorem 2.11.2].

This assertion also follows from [39, Theorem 2.6(1)], after noticing that a locally 
compact abelian Polish group is a Lie group if and only if it has no small subgroups, 
which means that it has a zero neighborhood that does not contain any nontrivial 
subgroups—see [39].
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(8) This follows from (1) and (2), since a locally compact Polish group is totally dis-
connected if and only if it is non-Archimedean.

(9) Compactly generated abelian Polish groups form a thick subcategory of AZ by [39, 
Theorem 2.6(2)].

(10) Locally compact abelian Polish topological torsion groups form a thick subcategory 
of AZ by [2, 3.17].

(11) That locally compact abelian Polish topological p-groups form a thick subcategory 
of AZ follows easily from (10) after observing that a topological torsion locally 
compact abelian Polish group G is a topological p-group if and only if it is equal 
to its Zp-component in the sense of [2, Definition 4.12]; see [2, Remark 3.9(a) and 
Example 4.13(a)].

(12) Locally compact Polish abelian groups that have finite ranks form a thick subcat-
egory of AZ by [21, Proposition 2.9]. �

A Borel function f : X → Y between locally compact Polish spaces is called locally 
bounded if, for every compact subset C of X, f (C) has compact closure in Y .

Corollary 6.19. Suppose that ϕ : X → Y is a R-homomorphism between R-modules with 
a Polish cover X = X̂/N and Y = Ŷ /M , where X̂ and M are locally compact. Then the 
following assertions are equivalent:

(1) ϕ is Borel-definable;
(2) ϕ has a locally bounded Borel lift X̂ → Ŷ .

If furthermore X̂ is finite-dimensional, then these conditions are equivalent to:

(3) ϕ has an approximately additive locally continuous Borel lift.

Proof. Suppose that (1) holds. By Theorem 6.18, we can write ϕ = ψ ◦ σ−1 where 
Z = Ẑ/L is an R-module with a Polish cover, ψ : Z → Y and σ : Z → X are liftable 
R-homomorphisms such that Ẑ is an extension of X̂ by M (and, in particular, a locally 
compact Polish R-module) and σ lifts to a surjective continuous R-homomorphism σ̂ :
Ẑ → X̂. By the main theorem in [24], we have that σ̂ has a Borel locally bounded right 
inverse g : X̂ → Ẑ. (Notice that [24] adopts the terminology of [16, Section 51] where the 
“Baire σ-algebra” on a topological space is the σ-algebra generated by the compact Gδ

sets. This coincides with the Borel σ-algebra in the case of locally compact Polish spaces. 
Thus, a “Baire function” between locally compact Polish spaces in the sense of [24] is 
just a Borel function.) Thus, if ψ̂ : Ẑ → Ŷ is a continuous R-homomorphism that lifts ψ, 
then we have that ψ̂ ◦ g is a locally bounded Borel lift for ϕ. If furthermore X̂ is finite-
dimensional, then by [38, Theorem 8], we have that there exist a zero neighborhood 
V of X̂ and a continuous function g : V → Ẑ that is a right inverse for σ̂|σ̂−1(V ) :
σ̂−1 (V ) → V . Thus, if ψ̂ : Ẑ → Ŷ is a continuous R-homomorphism that lifts ψ, then 
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we have that ϕ̂ := ψ̂ ◦ g is a continuous local lift for ϕ. We can extend ϕ̂ to a Borel lift 
on X̂ by Lemma 3.12. Since M is locally compact, we have that M has a basis of zero 
neighborhoods that are compact, and in particular closed in Ŷ . Therefore we have that 
ϕ has an approximately additive Borel lift that is continuous in a zero neighborhood of 
X̂ by Proposition 5.3. �
Corollary 6.20. Suppose that ϕ : G → H is a group homomorphism between abelian 
groups with a real Lie cover G = Ĝ/N and H = Ĥ/M . Then the following assertions 
are equivalent:

(1) ϕ is Borel-definable;
(2) ϕ has an approximately additive Borel lift that is analytic on an open zero neighbor-

hood in Ĝ.

Proof. The proof is the same as the proof of Corollary 6.19 together with the fact that a 
continuous group homomorphism between real Lie groups is real analytic [51, Theorem 
2.11.2], and that if π : X → Y is a surjective continuous homomorphism between real 
Lie groups, then there exists a zero neighborhood V of X and an analytic right inverse 
g : V → X for π|π−1(V ) : π−1 (V ) → V [51, Theorem 2.9.5]; see also Remark 5.4. �
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