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Optimizing Random Forest Based Inference on
RISC-V MCUs at the Extreme Edge

Enrico Tabanelli, Giuseppe Tagliavini, Member, IEEE, and Luca Benini, Fellow, IEEE

Abstract—Random Forests (RFs) use a collection of Decision
Trees (DTs) to perform classification or regression. RFs are
adopted in a wide variety of Machine Learning (ML) applica-
tions, and they are finding increasing use also in scenarios at the
extreme edge of the IoT (TinyML) where memory constraints
are particularly tight. This paper addresses the optimization
of the computational and storage costs for running DTs on
the microcontroller units (MCUs) typically deployed in TinyML
scenarios. We introduce three alternative DT kernels optimized
for memory- and compute-limited MCUs, providing insight into
the key memory-latency trade-offs on an open-source RISC-
V platform. We identify key bottlenecks and demonstrate that
SW optimizations enable up to significant memory footprint and
latency decrease. Experimental results show that the optimized
kernels achieve up to 4.5 µs latency, 4.8× speedup and 45%
storage reduction against the widely-adopted Naive DT design.
We carry out a detailed performance and energy cost analysis of
various optimized DT variants: the best approach requires just
8 instructions and 0.155 pJ per decision.

Index Terms—Random Forest, Decision Tree, Machine Learn-
ing, RISC-V, Edge-Computing

I. INTRODUCTION

Random Forests (RFs) are a family of learning methods
widely adopted among a broad range of Machine Learning
(ML) applications, such as Ranking Items [1], [2] and Click-
Through Prediction [3], [4]. By aggregating many tree-like
models acting as simple but weak learners, called Decision
Trees (DTs), the algorithm builds a stronger learner capa-
ble of overcoming the overfitting-related issues that affect
single learner approaches. Tree-based models are also being
advocated among other ML approaches [5], [6] for applica-
tions demanding higher explainability and interpretability than
”black-blocks” ML algorithms [7]. Furthermore, the capacity
to achieve good results with small training datasets [8] even
with high-dimensional feature spaces [9] favors the adoption
of RFs in applications where training data may be limited and
feature selection unfeasible.
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During the last years, the Internet-of-Things (IoT) ecosys-
tem has experienced continuous growth, reaching 30 Billions
of connected endpoints in 2020 and projected towards 74
Billions by 2025 [10]. Driven by this trend, the amount
of sensor data generated at the network edge has increased
dramatically [11]. So far, the limited end-nodes memory
budget and computing power favored the solution of offloading
data to the cloud for large-scale analytics, where resources
are flexible and virtually unbounded. However, this cloud-
centric paradigm poses several scalability issues [12], such
as communication latency, energy efficiency, bandwidth, and
privacy, which are severe for many IoT services. The paradigm
shift toward near-sensor processing on resource-constrained
devices is referred to as tinyML [13]–[15]. This approach
opens up new challenges for the execution of complex tasks on
edge devices. The main benefits of TinyML platforms include
energy efficiency, data privacy protection, reduced bandwidth
costs, and low-latency response [16].

In this contest, RFs have already been demonstrated as a
viable solution in latency- (e.g., Health Monitoring Wearable
Devices [17]) and privacy-sensitive IoT applications (e.g.,
Non-Intrusive Load Monitoring [18]). Monitoring systems ex-
tract bio-signals with sampling frequencies up to 10 kHz [19],
thus enabling condition prevention on MCU-based devices
leads to a latency requirement of about 100 µs. Non-Intrusive
Load Monitoring (NILM) requires performing inference in a
few µs since it leverages high-frequency features up to 1 MHz
to distinguish switched-mode power supplies devices [20].
Recent works achieved an RF inference time of 49.9 ms with a
20 Inf/s throughput on the Raspberry Pi 3B [21]. The authors
in [22] reached 120 µs and 8.3 kInf/s on the ARM Cortex-
M4 architecture. Unfolding DTs structure into a sequence of
nested if-then-else statements is a widely-adopted technique
to target RF execution on MCU-class devices with embedded
FLASH [23]. However, FLASH-less System-on-Chips (SoCs)
integrate limited-size instruction caches (I$) which would
become the bottleneck for execution time in case of massive
code size filled with conditional branches. Alternative RF
optimization approaches targeting TinyML platforms have
been proposed, but at the cost of algorithm modifications
and accuracy drops [24]. Thus, optimizing RFs to achieve
fast inference without accuracy loss is a challenging task for
traditional Von Neumann architectures [25]. Making a DT pre-
diction requires traversing a tree structure via root-to-leaf paths
and performing a comparison at each level to select the branch
to take. This pattern demands non-uniform memory access to
the DT model and input vector since comparison results are
unpredictable and disclosed only at runtime. The inability to
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hide the access latency due to such unpredictability makes the
RF algorithm memory-bound. By adopting high-end platforms
to speed up the comparison-based workload, the state-of-the-
art (SoA) focused on achieving low-latency inference at the
cost of introducing significant constraints [26]. While FPGA-
based accelerators provide low flexibility by hard-coding RF
hyper-parameters into hardware blocks, GPU-based engines
leverage algorithmic improvements not supported by largely-
adopted ML frameworks. Furthermore, such approaches to
RF demand HW resources unavailable on commercial battery-
operated IoT devices.

The extra computational and memory resources required
to aggregate DTs result with the majority voting block are
almost negligible compared to the DTs runtime and memory
requirements. Thus, we focus on improving DT execution,
leading to the largest benefits in terms of memory and compute
time for RF. This paper introduces a collection of optimized
DT kernels designed to reduce the computational and memory
costs required to execute RF models on MCUs. MCUs are
general-purpose and offer higher programmability and faster
prototyping times, making application design and on-the-fly
upgrades far cheaper than HW-specialized engines. MCUs are
the natural execution platform for TinyML applications since
they operate in a power envelope of a few milliWatts meeting
the limited budgets of battery-operated systems. Reduced
Instruction Set Computer (RISC) CPUs embody the ideal ar-
chitecture for edge applications by providing highly-optimized
fixed-length instructions that allow capping the pipeline com-
plexity of the cores. In addition, industry-standard MCUs
widely deployed in embedded applications such as MSP4301,
STM32F42, and TriCore3, integrate DSP-like operations. We
perform an experimental assessment of our proposed kernels
on PULPissimo [27], a RISC-V MCU supporting a wide set
of ML- and DSP-centric instructions. The SoC delivers up
to 2400 MOPS (187 MHz, 0.52 V) at the energy efficiency
of 433 MOPS/W within a worst-case power envelope of
32.1 mW.

The main contributions of this paper are:

• We introduce the design of three alternative DT kernels
(DT-Arr, DT-Loop, and DT-Rec) optimized to execute on
memory- and compute-constrained MCUs. We leverage
dedicated node structure in each kernel which determines
the model memory footprint and the computing time
necessary to traverse the DT. To this purpose, we evaluate
time and space complexity, decomposing the last one
into code and data contributions. The set of kernels has
been developed in a high-level machine-independent C
description to enable deploying the functions on alterna-
tive architectural targets and is currently available online4.

• We optimized the DT kernels to maximize the perfor-
mance on a RISC-V MCU using the baseline RV32IMFC

1https://www.ti.com/microcontrollers-mcus-processors/microcontrollers/
msp430-microcontrollers/overview.html

2https://www.st.com/en/microcontrollers-microprocessors/
stm32-32-bit-arm-cortex-mcus.html

3https://www.infineon.com/cms/en/product/microcontroller/
32-bit-tricore-microcontroller/

4https://github.com/EEESlab/RF-on-RISCV

Instruction Set Architecture (ISA). We leveraged the
dedicated XpulpV2 extension supported by the MCU to
further improve the Cycles per Instruction (CPI). The
optimized kernels mainly benefit from hardware loop,
post-incrementing load/store, immediate branching, and
MAC instructions.

• We present a per-kernel fine-grained analysis breaking
down storage and compute costs to reveal runtime bottle-
necks on a RISC-V MCU. By leveraging the exploration
results, we pinpoint a set of SW optimizations and data
structure improvements to lower memory and runtime
requirements. The proposed optimizations are typically
hardware-agnostic; in some cases, we also propose opti-
mizations requiring the support of platform-specific HW
features. Avoiding memory alignment in DT-Rec data
structures leads to 26% storage reduction compared to
the unaligned kernel version, thus requiring only 43 kB
to store the model. We reach a 21% latency decrease
regarding the DT-Arr kernel baseline by exploiting offset
addressing and reducing memory accesses, resulting in
2.04 kCycles per inference.

• We compare the alternative DT kernels proposed in this
work against the largely-adopted Naive DT design, show-
ing significant memory-latency trade-offs. With respect
to such representation, we decrease the model memory
footprint by 13.6% deploying the DT-Loop kernel while
up to 45.4% with the DT-Rec approach that requires only
45.77 kB. Instead, the DT-Arr design can be optimized
reaching a 4.8× speedup with 1.8 kCycles. Along with
that, we report energy and throughput measurements
showing our approaches require down to 15.6 pJ per
inference while enabling 223 kilo inferences per second
(kInf/s).

• We provide insight into the kernel potential to fit
resource-constrained MCUs, focusing on the architec-
tural factors that affect execution time. We also illus-
trate the computational and storage resource costs de-
manded by the alternative designs extrapolating kernel-
dependant metrics, such as memory accesses per decision
(Mem/Dec), number of nodes (N), and Bytes per node
(Bytes/Node), along with platform-specific instructions
per decision (Instr/Dec) and pJ per decision (pJ/Dec).
Thus, we highlight the 8 Instr/Dec and 0.155 pJ/Dec
reached by the DT-Rec approach design.

The rest of this paper is organized as follows. In Section II,
we present related works and discuss the latest approaches
on RF acceleration. Section III describes the alternative DT
kernels design introduced. Experimental results of our per-
kernel fine-grained analysis and comparison against the Naive
DT design are reported in Section IV. Section V concludes
this article.

II. RELATED WORK

Targeting RF execution on MCUs, Sudharsan et al. [23]
presented an SRAM-optimized strategy that does not allocate
tree models in SRAM, exploiting instead FLASH memory
which is generally more abundant in MCUs with embedded
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FLASH. The proposed method hard-codes DT decision nodes
into the C program (located in the FLASH memory) without
allocating external variables and thus relies only on a large
code. This approach effectively corresponds to the DT kernel
that we use as a comparison baseline. Sudharsan key insight
enables MCUs with embedded FLASH to exploit its density
for storing a large executable while saving on the scarcer
SRAM space. However, we focus on MCUs without embedded
FLASH. In his setting, the massive code size intuitively leads
to high pressure on the I$ and a related high miss rate, causing
significant central processing unit (CPU) stalls and inefficient
execution. Daghero et al. [24] proposed an adaptive inference
strategy to improve RF efficiency by terminating the inference
as soon as high-enough classification confidence is reached.
This early-stopping mechanism introduces a trade-off between
efficiency and precision. In contrast, our work focuses on op-
timizing efficiency without compromising inference accuracy.
Thus, Daghero’s technique is complementary and possibly
synergistic to ours.

HW/SW co-design techniques have also been investigated
to accelerate tree-based algorithms inference. These strategies
usually differ in the HW target used to reduce DT traver-
sal time and SW-algorithmic modifications introduced to fit
the HW design better. High-performance FPGAs enable the
rapid design of HW-specialized accelerators targeting domain-
specific workloads while drastically reducing algorithm bottle-
necks. For that purpose, FPGAs have been a widely adopted
solution in literature [28], [29] to improve RF latency, thus
allowing to meet the timing requirements of real-time tasks.
Zhao et al. [30] proposed a flexible FPGA-based RF acceler-
ator that encodes DTs structure information into instructions
from a newly designed reduced ISA. Although achieving a
156 Msample/s throughput, the accelerator strength lies in
deploying a novel RF representation yet not supported by
commonly deployed ML frameworks. By introducing a 32-
bit format to reduce nodes representation memory footprint,
Alcolea et al. [31] presented a DT accelerator that minimizes
data transfers with external memory. The FPGA-based accel-
erator achieves a 2× speedup and 72× energy improvement
w.r.t. to an Intel I5-8400 CPU while decreasing the execution
time by 30× and the energy consumption by 23× compared
to an ARM Cortex-A9 core. Unfortunately, such approaches
require a large amount of computing resources to hard-wire
the computations of the overall RF structure into HW. As a
result, the FPGA-based accelerator fits only a specific model
demanding a reconfiguration phase with high latency costs
whenever updating the algorithm.

The recent need for deploying large RFs in large-scale
scenarios within small-time budgets has favored the exploita-
tion of aggressive parallel strategies on GPGPUs. In [32],
the authors investigate several multi/many-core parallelization
strategies to speed up the DT traversal time by comparing an
Intel Xeon CPU against an NVIDIA GTX GPU. The proposed
GPU-based parallelization approach achieves the maximum
performance with up to 100.8× speedup w.r.t. a sequential
execution of the algorithm. Van Essen et al. [33] presented a
comparative study of alternative HW targets for accelerating
Compact Random Forest (CRF), an algorithmic RF variation

that trains fixed height DTs. The results showed that GPGPUs
have hard resource bounds that are highly sensitive to the
classifier and sample size, thus leading to a performance
degrading with larger classifiers. Furthermore, Nakahara et
al. [34] remarked that GPU architectures do not represent the
optimal target for RF acceleration due to the higher cost of
all-to-all communications.

In the last years, In-Memory Computing (IMC) accelerators
have been gaining momentum by leveraging Non-Volatile
Memory (NVM) crossbar arrays to accelerate workloads di-
rectly. The capability to operate at low power while achieving
high throughputs has favored IMC technology adoption to
accelerate RF inference among several recent works [35],
[36]. Kang et al. [37] introduced an energy-efficient and high-
throughput RF multi-class inference accelerator demonstrating
a 6.8× lower Energy-Delay Product (EDP) w.r.t. 8-bit digital
implementation. Unfortunately, the IMC accelerator requires
an optimal voltage tuning on the number of DTs to avoid
accuracy drops, thus impeding on-the-fly model updating.
Furthermore, the proposed approach lacks the support from
ML frameworks to produce the algorithmic modifications
needed to fit the IMC design. In [38], the authors introduced a
DT-based IMC accelerator utilizing an analog memristor-based
Content Addressable Memory (CAM). While achieving an
impressive performance of 333 Million decisions per second
(MDec/s) throughput and 1.28 nJ per decision (nJ/Dec) energy
consumption, the CAM-based accelerator suffers from IMC-
related drawbacks such as computational inaccuracy due to
conductance noise.

HW/SW co-design techniques reviewed above provide sig-
nificant throughput and latency performance but fail to meet
the limited TinyML budgets. For this purpose, adopting SW-
optimized DT kernels targeting general-purpose RISC-based
platforms becomes crucial to enabling low-latency RF infer-
ence at the edge. We focus on this approach; more specifically,
we aim to minimize latency and storage boundary for RF
execution on low-cost MCUs.

III. DT KERNELS DESIGN

This section introduces the DT kernels designed to ac-
celerate RF execution on memory- and compute-constrained
MCUs. A binary DT doubles the number of nodes at each
level leading to 2(H+1)−1 nodes with H representing the tree
depth. Each kernel features a specific node structure layout
that determines the associated memory footprint and a set
of optimizations aimed at reducing the DT traversal time.
We estimate time complexity by considering data loading,
comparison, and conditional branching as elementary oper-
ations while determining the space complexity by breaking
down code and data contributions. The complexities of the
introduced kernels have been summarized in Table I. Lastly,
we take as a comparison baseline a Naive DT kernel, which
represents a widely adopted solution in literature for embedded
applications [18], [39]–[41] and leverages the support of
several code-generation libraries and frameworks [42]–[45].
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TABLE I: Kernels code, data, and time complexity.
H: Tree depth, L: Traversed branches.

Code
Complexity

Data
Complexity

Time
Complexity

Naive O(4× 2H+1) O(2H+1) O(4L)

DT-Loop O(1) O(4× 2H+1) O(13L)

DT-Rec O(1) O(6× 2H) O(9L)

DT-Arr O(1) O(4× 2H+1) O(15L)

A. Naive DT Kernel

The Naive approach consists of fully unfolding the DT
structure into a sequence of nested if-then-else statements until
reaching leaf nodes. Inside each decision node i, the algorithm
accesses a feature fi of the input vector Xin and compares
it with the corresponding threshold ti, choosing the left or
right branch accordingly. Since the feature fi and threshold
ti are already known at compile-time from the training pro-
cess, this design leverages their constant values to unroll the
overall tree structure. As observed from Listing 1, the kernel
features O(4L) time complexity with L denoting the branches
traversed at inference time and 4 the basic operations required
per decision node. By assuming storing threshold values in
memory, the Naive method presents O(2H+1) data space com-
plexity since thresholds count matches the tree nodes. Due
to fully unrolling the DT structure, the basic operations per
decision along with the nodes count bound the program dimen-
sion determining the overall operations required and leading
to O(4×2H+1) code space complexity. The lack of additional
parameters external to the kernel and its straightforward algo-
rithmic structure made the Naive DT method a widely adopted
solution.

Listing 1: Naive DT Kernel

1 i f (Xin [ 1 1 ] <= 3 3 2 . 0 ) / * [ f0 = 1 1 , t0 = 3 3 2 . 0 ] * /
2 {
3 i f (Xin [ 1 7 ] <= 1 9 8 . 0 ) / * [ f1 = 1 7 , t1 = 1 9 8 . 0 ] * /
4 {
5 c l a s s e s [ 1 ] + + ; / * L e a f C l a s s = 1 * /
6 }
7 e l s e
8 {
9 i f (Xin [ 1 3 ] <= 7 8 . 0 1 ) / * [ f3 = 1 3 , t3 = 7 8 . 0 1 ] * /

10 { . . .

B. DT-Loop Kernel

By representing the tree node as a recursive data structure
and defining the DT layout as a collection of nodes, this
algorithmic variant allows traversing trees from root to leaf
through a while-loop statement. As shown in Listing 3, the data
structure encloses the mandatory node attributes to represent
a tree, that are feature, threshold, and children. The children
properties present two variables sharing the same space ad-
dress representing the pointer to the child node (rightchild,
leftchild) and the leaf class (rightclass, leftclass). In Listing 2, we
reported the main body of the routine executed to decide the

branch to take whenever entering a new node. The kernel starts
accessing the root node from the top of the tree and enters
the while-loop control flow statement. After evaluating the
input feature and threshold comparison, we update the node
with leftchild or rightchild depending on the selected branch.
To discriminate leaf from decision nodes and determine the
input class, we tag leaf node thresholds with a dedicated
out-of-range value δ and check this value in the while-loop
condition before traversing the subsequent nodes. When the
runtime reaches a leaf node, we interchangeably access the
leftclass or rightclass, which stores the input class at this tree-
level. By requiring a 4 word-sized fields to represent the
decision node, the DT-Loop kernel delivers O(4×2H+1) data
space complexity and features O(1) code complexity due to
its simple structure. For what concerns the prediction time, the
design demands loading 6 values while executing 4 arithmetic
operations, 2 comparisons, and a conditional branch for branch
evaluation, thus leading to a O(13L) complexity.

Listing 2: DT-Loop Kernel

1 node = node root ;
2 whi le ( node−> t h r e s h o l d != δ )
3 {
4 cmp = Xin [ node−> f e a t u r e ] <=
5 node−> t h r e s h o l d ;
6 node = ( cmp * node−> l e f t child ) +
7 ( ! cmp * node−> r i g h t child ) ;
8 }
9 c l a s s = node−> r i g h t class ;

C. DT-Rec Kernel

An H-level tree features 2(H+1)−1 nodes divided between
2H − 1 decision nodes and 2H leaf nodes, implying a sig-
nificant memory allocation reserved for leaf nodes. For that
purpose, the DT-Rec kernel embeds leaf nodes into parent
decision nodes, thus requiring to store in memory only 2H−1
nodes against the original 2(H+1)−1. Such optimization allows
roughly a 50% nodes decrease but demands extending the node
data structure by two additional fields as shown in Listing 4.
The integration of leftclass and rightclass leaf attributes induces a
50% memory increase for a single node, but the overall model
space requirement drops by 25%.

Listing 3: DT-Loop Struct

1 s t r u c t Node{
2 u i n t n t f e a t u r e ;
3 f l o a t t h r e s h o l d ;
4 union {
5 Node * l e f t child ;
6 u i n t n t l e f t class
7 } ;
8 union {
9 Node * r i g h t child ;

10 u i n t n t r i g h t class
11 } ;
12 }

Listing 4: DT-Rec Struct

1 s t r u c t Node{
2 u i n t n t f e a t u r e ;
3 f l o a t t h r e s h o l d ;
4 Node * l e f t child ;
5 Node * r i g h t child ;
6 u i n t n t l e f t class ;
7 u i n t n t r i g h t class ;
8 }

In Listing 5, we reported the DT-Rec kernel routine consist-
ing of a recursive function calling itself whenever accessing
new decision nodes. Invoking the function with Xin and root
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node as actual parameters, the routine starts evaluating the
feature-threshold comparison and selects which branch to take
depending on the result. Until reaching leaf nodes tagged by
a specific value δ stored in leftchild and rightchild, the kernel
infers recursive calls using as parameters Xin and the selected
child. By requiring to store in memory only 2H − 1 nodes
represented by 6 word-sized fields, the kernel design demands
O(6×2H) data space complexity while featuring a negligible
program size. Instead, the kernel routine loads 5 values and
executes 2 comparisons and 2 conditional branches at each
node, leading to a time complexity of O(9L).

Listing 5: DT-Rec Kernel

1 f u n c t i o n DT2Rec (Xin , Node ){
2 i f (Xin [ Node−> f e a t u r e ] <= Node−> t h r e s h o l d ){
3 i f ( Node−> l e f t child != δ ){
4 re turn Dt2Rec (Xin , Node−> l e f t child ) ;
5 } e l s e {
6 re turn Node−> l e f t class ;
7 }
8 } e l s e {
9 i f ( Node−> r i g h t child != δ ){

10 re turn Dt2Rec (Xin , Node−> r i g h t child ) ;
11 } e l s e {
12 re turn Node−> r i g h t class ;
13 }
14 }
15 }

D. DT-Arr Kernel

Due to memory alignment in structure-based tree repre-
sentations, the previous approaches prevent saving storage
resources by adopting a fine-grain tuning at the byte level.
For that purpose, the DT-Arr kernel adopts an array-based tree
representation consisting of storing node attributes into three
arrays, as reported in Listing 6. While features and thresholds
represent tree nodes elements, the child array contains left
and right child nodes as consecutive elements resulting in
double the size. While threshold values always require the
single-precision floating-point format, features and child arrays
represent a non-negative integer domain potentially restricting
the representation range to 1 Byte.

Listing 6: DT-Arr Arrays

1 u i n t n t f e a t u r e s [ Nodes tree ] = { 24 , 16 , . . . , 0 , 0 } ;
2 f l o a t t h r e s h o l d [ Nodes tree ] = { 3 . 6 3 , 7 . 1 , . . . , −2 } ;
3 u i n t n t c h i l d [ Nodes tree×2] = { 4 , 224 , . . . , 2 } ;

As shown in Listing 7, the DT-Arr kernel starts reading the
root node index and feature while deploying the threshold to
distinguish leaf from decision nodes in the while-loop condi-
tion. The instructions in the loop body read the input feature
and compare it against the threshold value while updating
the node with child depending on the selected branch. After
reading the new feature based on the fresh node index, the
kernel checks if a leaf node is reached and eventually retrieves
the input class. While the DT-Arr routine features a minimal
code dimension, the array-based tree representation enables
O(4 × 2H+1) data complexity. Instead, evaluating a decision
node requires executing 6 loads, 6 arithmetic operations, 2

comparisons, and a conditional branch for a total of a O(15L)
prediction time complexity.

Listing 7: DT-Arr Kernel

1 node = 0 ;
2 f e a t u r e = f e a t u r e s [ 0 ] ;
3 whi le ( t h r e s h o l d [ node ] != δ )
4 {
5 cmp = (Xin [ f e a t u r e ] <= t h r e s h o l d [ node ] ) ;
6 node = cmp * c h i l d [2* node ] +
7 ! cmp * c h i l d [2* node + 1 ] ;
8 f e a t u r e = f e a t u r e [ node ] ;
9 }

10 c l a s s = c h i l d [2* node ] ;

IV. EXPERIMENTS

In this section, we perform an experimental assessment of
the DT kernels described in Section III. Section IV-A intro-
duces the experimental setup along with the ML framework
deployed to train the RF models. Section IV-B presents a fine-
grained analysis of each kernel to determine limits and benefits
at the memory and latency level; this analysis includes a break-
down of platform-dependent compute non-idealities and stor-
age usage. Section IV-C provides an in-depth comparison be-
tween the alternative DT kernels, pointing out the performance
and memory improvements compared to the Naive baseline.

A. Setup

The experiments have been conducted on PULPissimo [27],
an open-source System-on-Chip (SoC) integrating a 32-bit
RISCV-based processor tailored for near-sensor computing ap-
plications. The RISCY core features a 4-stage in-order single-
issue pipeline supporting the extended RV32IMFCXpulpV2
ISA, which delivers highly energy-efficient custom ML-
and DSP-centric instructions. In particular, our optimized
kernels mainly benefit from hardware loop (p.setup), post-
incrementing load/store (p.lw/p.sw), immediate branching
(p.bnei), and MAC (p.mac) instructions. The support for hard-
ware loops includes dedicated hardware blocks to reduce the
control code overhead, removing the instructions to update the
counter register and related branch stalls. Post-incrementing
memory accesses perform the automatic update of address
registers by a constant offset, reducing the overhead of pointer
arithmetic. While MAC operations perform multiplication and
addition in a single clock cycle, immediate operand in branch-
ing instructions removes the additional compare operation.
To reduce energy and area consumption, PULPissimo does
not include data caches but features a 520 kB L2 multi-bank
memory and a ROM storing the boot code. In our setup, the
RI5CY core fetches instructions from a 4 kB I$ providing
optimal performances and energy efficiency.

Algorithms and tests are implemented in C language and
compiled using the open-source PULP GCC toolchain sup-
porting the RV32IMFCXpulpV2 ISA. The high-level machine-
independent description enables deploying the functions on
alternative architectural targets without any ISA constraint.
After optimizing the DT kernels to maximize the performance
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on the baseline RV32IMFC ISA, we leveraged the platform-
specific XpulpV2 extension to reduce the CPI. We then fine-
tuned the DTs design to optimize the performance on PULPis-
simo by leveraging hardware-agnostic optimizations and a set
of platform-specific features. To evaluate the performance, we
emulated the PULPissimo platform with a hardware emulator
running on a Xilinx UltraScale+ VCU118 FPGA setting the
clock frequency to 400 MHz. The HW design also includes
a set of Special-Purpose Registers (SPRs) to keep track of
hardware-related events at the core level mandatory for en-
abling fine-grained performance analysis. In our experiment,
we report events related to pipeline non-idealities in memory
accesses, primarily load stalls (LD STALL), misaligned loads
(MIS-LD), and instruction cache misses (I$ MISS). While
TKN-BR refers to control hazards due to taken branches,
ALU counts the number of arithmetic and bitwise instructions
executed by the core. The FPGA emulator is cycle-accurate but
cannot provide a power estimation representative of an ASIC
solution. For this reason, the power figures used to evaluate
the energy consumption of the algorithms are derived from
post place-&-route models in 22 nm FDX technology.

TABLE II: Dataset Properties

Dimension Classes Samples

Vehicle 18 4 1000

MFeat 216 10 2000

To characterize the performance, we have targeted two
standard datasets representing general IoT applications, whose
properties are summarized in Table II. In Section IV-B, we
leverage the Vehicle dataset that was designed to classify car
brands based on a set of scale-independent features extracted
using classical moment- and heuristic-based measures. By
featuring about 1000 instances and 18 features, the dataset
supports recognizing four vehicle classes and represents a
potential real-world IoT scenario. We also targeted the MFeat
database in Section IV-C, a medium-sized dataset consisting of
features extracted from hand-written digits (’0’-’9’). The 2K
samples present digit profile correlations and morphological
attributes leading to a 216-dimensional features space and
ten supported classes. Training has been performed using
the Scikit-Learn ML framework, also relying on its front-
end to support the code generation of model parameters and
structures. RF models feature the alternative DT designs but
share a standard software module used for majority voting,
which combines all the predictions and retrieves the output
class. We configured the RF model to be populated by 16
DTs, which are enough to fit the on-chip memory of the
RISCV-based platform. However, the L2 memory size poses
no strict limitation on the model dimension since the plat-
form can be easily extended with an external memory level
(L3). By placing data into the off-chip memory, a double-
buffering mechanism becomes mandatory to overlap L2-L3
DMA transfers with kernel processing optimally. This can
be implemented as a wrapper around the algorithms, and we
verified that it does not impact our performance measurements.
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Fig. 1: Naive Kernel Resources

B. Kernels Analysis

In Figure 1, we reported the computing time and memory
footprint required by the Naive DT kernel when running on
PULPissimo. By unrolling the overall tree structure, the DT
Naive approach demands about 7.5 kCycles largely bounded
by I$ MISS (69%). The massive code size accounts for 81%
of the total memory footprint (62.5 kB), leading to a high
pressure onto the I$ and a related high miss rate. This ef-
fect causes a degradation of the CPI to 7.16. As shown in
Listing 10, traversing a node involves evaluating a RISC-V
assembly routine accounting for 5 Instr/Dec. Furthermore, this
approach requires 3 read operations per decision to load the
floating-point immediate and input feature into registers.

Listing 8: DT-Rec+US

1 0x4 c : p . l w a4 , 4 ( a1 ! )
2 0x50 : l b u a5 , 0 ( a4 )
3 0x54 : lw a3 ,4 ( a4 )
4 0x56 : s l l i a5 , a5 , 0 x 2
5 0x58 : p . l w a5 , a5 ( a0 )
6 0x5 c : f l e . s a5 , a5 , a3
7 0x60 : beqz a5 , 0 x 7 a
8 0x62 : lw a5 ,8 ( a4 )
9 0x64 : beqz a5 , 0 x c0

Listing 9: DT-Rec+PS

1 0x4 c : p . l w a4 , 4 ( a1 ! )
2 0x50 : l b u a5 , 0 ( a4 )
3 0x54 : lw a3 ,1 ( a4 )
4 0x56 : s l l i a5 , a5 , 0 x 2
5 0x58 : p . l w a5 , a5 ( a0 )
6 0x5 c : f l e . s a5 , a5 , a3
7 0x60 : beqz a5 , 0 x 7 a
8 0x62 : lw a5 ,5 ( a4 )
9 0x64 : beqz a5 , 0 x c0

Listing 10: Naive

1 0x80 : l u i a3 , 0 x 1 c001
2 0x84 : lw t4 , 3 6 ( a0 )
3 0x88 : lw a3 , −12( a3 )
4 0x8 c : f l e . s a3 , t4 , a3
5 0x90 : beqz a3 , 0 x de

By deploying a struct-based approach, the DT2Loop kernel
executes in 2.58 kCycles, as reported in Figure 2. Due to
the prevailing ALU instructions (43%) over the computing
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Fig. 2: DT-Loop Kernel Resources
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time and pipeline factors, the DT-Loop method increases CPU
usage by delivering a 1.3 CPI. However, the GCC toolchain
handles the struct-based tree representation by adding a proper
padding to align unpacked structure members to 4 Bytes ad-
dress boundary. Consequently, storing a DT-Loop node re-
quires 16 Bytes regardless of the effective variable range lead-
ing to 71.3 KB memory footprint largely owed to data (76%).
To trade computing time for memory saving, we evaluate an
optimized kernel version with packed fields; this solution avoids
the adoption of padding to enforce memory alignment without
increasing the memory size. Such an approach leads to an
overall model storage requirement of 61.3 kB due to an 18%
data memory reduction while leaving constant the code size.
In this regard, no memory alignment in structure members
involves performing 440 additional MIS-LD, resulting in a
slow-down to 2.89 kCycles. The SW optimization introduced
is platform-specific since only architectures supporting mis-
aligned memory accesses can leverage it. Lastly, we show
in Listings 11 and 12 that both kernel versions require 13
Instr/Dec, but the unpacked version presents unaligned offsets
in 3 memory read operations.

Listing 11: DT-Loop+US

1 0x66 : l b u a5 , 0 ( a4 )
2 0x6 a : lw a7 ,8 ( a4 )
3 0x6 e : s l l i a5 , a5 , 0 x 2
4 0x70 : p . l w a5 , a5 ( a0 )
5 0x74 : lw a6 ,12 ( a4 )
6 0x78 : f l e . s a5 , a5 , a3
7 0x7 c : a n d i a5 , a5 , 2 5 5
8 0x80 : x o r i a3 , a5 , 1
9 0x84 : mul a4 , a5 , a7

10 0x88 : p.mac a4 , a3 , a6
11 0x8 c : lw a3 ,4 ( a4 )
12 0x8 e : f e q . s a5 , a3 , t 1
13 0x92 : beqz a5 ,0x66

Listing 12: DT-Loop+PS

1 0x66 : l b u a5 , 0 ( a4 )
2 0x6 a : lw a7 ,5 ( a4 )
3 0x6 e : s l l i a5 , a5 , 0 x 2
4 0x70 : p . l w a5 , a5 ( a0 )
5 0x74 : lw a6 ,9 ( a4 )
6 0x78 : f l e . s a5 , a5 , a3
7 0x7 c : a n d i a5 , a5 , 2 5 5
8 0x80 : x o r i a3 , a5 , 1
9 0x84 : mul a4 , a5 , a7

10 0x88 : p.mac a4 , a3 , a6
11 0x8 c : lw a3 ,1 ( a4 )
12 0x8 e : f e q . s a5 , a3 , t 1
13 0x92 : beqz a5 ,0x66

As depicted in Figure 3, the unpacked struct-based DT-Rec
kernel reduces memory usage to 57.9 kB due to merging leaf
nodes into parent decision nodes while taking 2.03 kCycles
per inference. The high usage of conditional statements sig-
nificantly impacts control hazards (TKN-BR), equal to 22%;
together with increased LD STALL (15%), this effect con-
tributes to a suboptimal 1.44 CPI. The recursive design would
also imply a high stack usage by adding new stack frames for
each function call, requiring O(H) space complexity. How-
ever, since we do not perform any computations on the re-
turned value, the kernel represents a tail-recursive routine with
no more need to preserve the stack frame for that call. The
GCC toolchain supports a tail-call optimization pass enabling
the removal of the recursion memory overhead and forcing the
reuse of the same stack frame, decreasing the space complexity
to O(1). This improvement is unrelated to the adopted archi-
tecture but depends on the support provided by the specific
toolchain deployed to compile the source code. To further re-
duce the algorithm memory footprint to 42.99 kB, we support
a packed struct version that decreases data storage by 36.7%.
Due to the lacking of memory alignment, the core performs
48.2% extra MIS-LD to access structure fields, inducing a
latency increase to 2.32 kCycles. Such slow-down can be ob-
served comparing Listing 8 and 9, where we reported the
assembly routine of both versions executed when traversing
a node. The kernels evaluate the same 9 Instr/Dec, including

5 memory access operations, of which 2 features unaligned
offsets in the packed struct-based version.
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Fig. 3: DT-Rec Kernel Resources

Adopting an array-based tree representation permits storing
node attributes in separate data structures, leveraging the effec-
tive variable range to save memory space without increasing
MIS-LD. Figure 4 shows the computing time and memory
footprint breakdown of three DT-Arr kernel versions devel-
oped trading storage demands for inference acceleration. The
baseline design fully reaches an optimal memory reduction
requiring 41.25 kB to store the overall RF model where data
storage accounts for only 59%. Running an inference on such
kernel demands 2.57 kCycles mainly consisting of ALU oper-
ations (50%), delivering a high CPU utilization featured by a
nearly optimal CPI of 1.19. To reduce the number of instruc-
tions per decision node and improve the runtime, we apply
two platform-agnostic optimizations on the DT-Arr kernel. As
shown in Listing 13, the Baseline version involves executing
14 Instr/Dec containing 5 memory accesses but also shifting
operations to extend array indexes to offset addresses. Since
array indexes are already known at compile-time, we can pre-
compute off-line offset addresses by multiplying indexes with
data type byte-width. The Shift-Less kernel version saves a
shifting operation lowering to 13 Instr/Dec by directly expli-
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Fig. 4: DT-Arr Kernel Resources
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cating the base + offset addressing mode, as presented in
Listing 14. This code optimization diminishes the computing
time to 2.45 kCycles due to a 10.8% decrease of ALU instruc-
tions but at the expense of a 16% memory increment resulting
from the need to use longer data types for extended indexes.
This design still relies on reading both child nodes, demanding
5 memory read operations per decision and featuring a high
count of LD STALL covering 6% of the runtime. For that
purpose, the Stall-Free version aims at decreasing stalls by
reading both child nodes with a single memory access and
retrieving the effective child through the comparison result.
Listing 15 shows the reduction to 11 Instr/Dec achieved due
to removing 1 memory access and adopting the new procedure
to pick up the child node. The runtime optimization allows
reaching a near-zero LD STALL execution with substantial
decreases in ALU operations (11.9%) and MIS-LD (17.4%),
leading to a 2.04 kCycles inference time featured by a near-
ideal 1.16 CPI. In addition, such performance improvement
comes at the expense of no increase in memory footprint.

Listing 13: DT-Arr
Baseline

1 0x30 : s l l i a6 , a6 , 0 x 2
2 0x32 : s l l i a5 , a5 , 0 x 2
3 0x34 : p . l w t1 , a6 ( t 6 )
4 0x38 : p . l w a5 , a5 ( a0 )
5 0x3 c : add a6 , a6 , a7
6 0x3 e : f l e . s a5 , a5 , t 1
7 0x42 : l h u t4 , 0 ( a6 )
8 0x46 : l h u t3 , 2 ( a6 )
9 0x4 a : a n d i a5 , a5 , 2 5 5

10 0x4 e : x o r i t1 , a5 , 1
11 0x52 : mul a6 , t4 , a5
12 0x56 : p.mac a6 , t3 , t 1
13 0x5 a : p . l b a5 , a6 ( t 5 )
14 0x5 e : p . b n e i a5 , −8 ,30

Listing 14: DT-Arr
Shift-Less

1 0x3 c : p . l w a6 , a7 ( t 6 )
2 0x40 : p . l w a5 , a5 ( a0 )
3 0x44 : add a7 , a7 , t 1
4 0x46 : f l e . s a5 , a5 , a6
5 0x4 a : l h u t4 , 0 ( a7 )
6 0x4 e : l h u t3 , 2 ( a7 )
7 0x52 : a n d i a5 , a5 , 2 5 5
8 0x56 : x o r i a6 , a5 , 1
9 0x5 a : mul a7 , t4 , a5

10 0x5 e : p.mac a7 , t3 , a6
11 0x62 : s r l i a6 , a7 , 0 x 2
12 0x66 : p . l b a5 , a6 ( t 5 )
13 0x6 a : p . b n e i a5 , −8 ,3 c

Listing 15: DT-Arr
Stall-Free

1 0x34 : p . l w a7 , a6 ( t 4 )
2 0x38 : p . l w a5 , a5 ( a0 )
3 0x3 c : p . l w a6 , a6 ( t 1 )
4 0x40 : f l t . s a5 , a7 , a5
5 0x44 : s l l i a5 , a5 , 0 x 4
6 0x46 : s r l a6 , a6 , a5
7 0x4 a : s r l i a5 , a6 , 0 x 2
8 0x4 e : and a5 , a5 , t 5
9 0x52 : p . l b a5 , a5 ( t 3 )

10 0x56 : and a6 , a6 , t 6
11 0x5 a : p . b n e i a5 , −8 ,34

C. Kernels Comparison

In this section, we propose a comparison between the alter-
native DT kernel designs. Moreover, we pinpoint the optimal
kernel solution to enable inference at the edge when targeting
memory-constrained MCUs executing latency-sensitive appli-
cations.
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Fig. 5: Kernels Mem-Cycles Trade-off Comparison.
Abbreviations: Unpacked Struct (US), Packed Struct (PS),

Baseline (Base), Stall-Free (S-F), Pareto-Optimal
(Pareto-Opt).

Figure 5 represents the compute and storage resources re-
quired to execute the alternative DT designs on Pulpissimo. At

the upper-right chart corner, the Naive method represents the
most resource-demanding design with 83.8 kB memory usage
and 8.6 kCycles per inference, as reported in Table IV. More-
over, the kernel offers the lowest CPU performance by deliv-
ering a very poor 6.03 CPI that reveals the massive code size
exceeding MCUs I$ limited capability as the bounding factor.
Adopting the newly introduced DT kernels moves to less-
demanding inference constraints, enabling efficient execution
on even highly resource-constrained edge devices. We high-
lighted in red the Pareto-Optimal solutions that allow reaching
speedups ranging from 4.03× to 4.82× while achieving be-
tween 26.52% and 45.39% memory footprint reduction. By
taking about 1.8 kCycles per inference, the unpacked struct-
based DT-Rec and stall-free DT-Arr kernels lead to about
a 4.8× speedup compared to the Naive execution. Due to
the runtime optimizations to minimize pipeline non-idealities,
the stall-free DT-Arr method also delivers the highest core
utilization featuring a 1.17 CPI. Although such designs do
not provide the most memory-efficient DT representation, they
deliver a storage utilization decrease between 26% and 31%
of the baseline. To push the memory occupation improvement
even further, the adoption of a packed struct-based approach on
top of the DT-Rec kernel becomes mandatory. The improved
tree representation decreases the storage demand by about
45.39% regarding the Naive memory usage, requiring only
45.8 kB. Due to the reduced Instr/Dec previously shown, the
kernel still reaches high execution performance demanding
2.07 kCycles per inference, which results in a 4.19× speedup.

Our optimized DT kernels reach ultra-low-latency RF infer-
ence on PULPissimo by taking in between 4.49 and 6.45 µs
instead of the 21 µs required by the Naive version. Such run-
time improvements lead to almost a 223 kInf/s throughput with
the unpacked struct DT-Rec approach, while 46 Inf/s bounds
the peak processing rate of the Naive method. Concerning the
energy performance, the optimally designed kernels reduce the
energy usage dramatically, down to 15.62 pJ to execute the RF
model on the RISCV-based processor.

To finalize our study on the alternative DT designs, we sum-
marise in Table III the major outcomes of each kernel reporting
the demanded resources in the shape of trends. While the ↑
symbol represents a workload highly fittable into resource-
constrained MCUs, the ↓ symbol highlights a tendency highly
likely to make unfeasible the adoption of the model on-the-
edge with different scenarios.

TABLE III: Kernel Resources Demand Trend

Memory Compute

Naı̈ve ↓↓ ↓↓
DT-Loop + US ↓↓ ↑↑
DT-Loop + PS ↓ ↑
DT-Rec + US ↑ ↑↑↑
DT-Rec + PS ↑↑ ↑↑
DT-Arr Base ↑↑ ↑↑
DT-Arr Stall-Free ↑ ↑↑↑

Table V reports the compute and memory resource costs
extrapolated from the previous experiments for each kernel.
While Mem/Dec, N, and Bytes/Node costs are kernel-related,
Instr/Dec and Energy/Dec are algorithmic- and platform-
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TABLE IV: DT Kernels Statistics and Measurements Comparison

Kernel Cycles Instr CPI SpeedUp Mem (kB) Mem Red. (%) Latency (µs) Throughput (kInf/s) Energy (pJ)

Naive 8.64k 1.43k 6.03 - 83.81 - 21.61 46.27 75.20
DT-Loop + US 2.23k 1.74k 1.28 3.88× 82.70 1.32 5.567 179.6 19.38
DT-Loop + PS 2.58k 1.74k 1.48 3.35× 72.45 13.56 6.447 155.1 22.44
DT-Rec + US 1.80k 1.21k 1.48 4.82× 61.58 26.52 4.487 222.8 15.62
DT-Rec + PS 2.07k 1.21k 1.70 4.19× 45.77 45.39 5.162 193.7 17.97
DT-Arr base 2.15k 1.77k 1.21 4.03× 50.86 39.32 5.375 186.5 18.71
DT-Arr S-F 1.83k 1.56k 1.17 4.73× 57.93 30.88 4.575 218.6 15.92

dependent since the ISA support might change the instruction
count and the energy performance. Although presenting the
lowest Instr/Dec and Mem/Dec count, the Naive kernel high
pressure onto the I$ results in an expensive 0.745 pJ/Dec.
By adding a few instructions and memory read operations,
SW optimizations decrease the architectural factors reaching
about 0.15 pJ/Dec with the adoption of DT-Rec and DT-
Arr designs. Regarding the memory-related metrics, the Naive
approach requires storing five 32-bit instructions and a single-
precision floating-point threshold per decision node, totaling
24 Bytes/Node. Moving towards DT-Loop and DT-Arr designs
reduces the node memory to 16 Bytes/Node and beyond
depending on the node attributes range. Instead, the DT-Rec
approach decreases the overall stored nodes to 2H − 1 against
the 2H+1 − 1 demanded by the other designs.

The final goal of this analysis is to select proper DT kernels
to optimally fit resource-scarce devices resources depending
on the application constraints. Latency-sensitive IoT tasks
will target inference acceleration to meet the timing require-
ments, preferring faster kernels such as Stall-Free DT-ARR
and DT-Rec standard versions. Instead, applications running
on storage-limited end-nodes will favour memory-efficient
kernels such as standard DT-Arr and DT-Rec, with particu-
lar attention to the packed struct option. Such optimization
enables a large memory reduction at the expense of a severe
MIS-LD increment, which negatively affects the computing
time.

TABLE V: Kernels Compute and Memory Resource Costs.
Abbreviations: DT-Loop (DT-L), DT-Rec (DT-R), DT-Arr

(DT-A).

Instr⁄Dec Mem⁄Dec pJ⁄Dec Nodes Byte⁄Node

Naı̈ve 5 3 0.745 2H+1−1 24
DT-L+US 13 5 0.192 2H+1−1 16
DT-L+PS 13 5 0.222 2H+1−1 ≤16
DT-R+US 8 5 0.155 2H−1 24
DT-R+PS 8 5 0.178 2H−1 ≤24
DT-A Base 14 5 0.185 2H+1−1 ≤16
DT-A S-F 11 4 0.158 2H+1−1 ≤16

V. CONCLUSION

The paper studies the design of DT kernels to optimize the
deployment of RF inference on highly memory-constrained
MCUs executing latency-sensitive applications. After introduc-
ing the new designs and their complexity along with the widely

adopted Naive method, we evaluated the performance on a
RISC-V platform. This fine-grained analysis determines limits
and benefits at the memory- and latency-level while also break-
ing down platform-dependent non-idealities and storage usage.
By adopting runtime optimizations to reduce pipeline factors
and memory-efficient node representations to decrease storage
usage, we improve resources requirement revealing significant
memory-latency trade-offs. Furthermore, we propose an over-
all DT kernel comparison demonstrating that deploying our
designs can reach a 4.82x speedup and 83.12% memory re-
duction with respect to the widely-used Naive method. Lastly,
we summarize the major outcomes of our work supported by
time and memory costs to determine the optimal kernel fitting
the application constraints.

Future work will include exploring extreme quantization
techniques pushing even towards sub-byte representations to
decrease RF memory usage further. Furthermore, we will in-
vestigate the adoption of dedicated RISCV ISA extensions to
improve inference on MCUs without relying on a full-fledged
accelerator.

REFERENCES

[1] O. Chapelle and Y. Chang, “Yahoo! learning to rank challenge overview,”
in Proceedings of the 2010 International Conference on Yahoo! Learning
to Rank Challenge - Volume 14, YLRC’10, p. 1–24, JMLR.org, 2010.

[2] D. Sorokina and E. Cantu-Paz, “Amazon search: The joy of ranking
products,” in Proceedings of the 39th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SIGIR
’16, (New York, NY, USA), p. 459–460, Association for Computing
Machinery, 2016.

[3] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Her-
brich, S. Bowers, and J. Q. n. Candela, “Practical lessons from predicting
clicks on ads at facebook,” in Proceedings of the Eighth International
Workshop on Data Mining for Online Advertising, ADKDD’14, (New
York, NY, USA), p. 1–9, Association for Computing Machinery, 2014.

[4] I. Segalovich, “Machine learning in search quality at yandex,” Invited
Talk, SIGIR, vol. 125, 2010.

[5] A. Adadi and M. Berrada, “Peeking inside the black-box: a survey on
explainable artificial intelligence (xai),” IEEE access, vol. 6, pp. 52138–
52160, 2018.

[6] D. Gunning and D. Aha, “Darpa’s explainable artificial intelligence (xai)
program,” AI Magazine, vol. 40, no. 2, pp. 44–58, 2019.

[7] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin,
B. Nair, R. Katz, J. Himmelfarb, N. Bansal, and S.-I. Lee, “From
local explanations to global understanding with explainable ai for trees,”
Nature machine intelligence, vol. 2, no. 1, pp. 56–67, 2020.

[8] Z.-H. Zhou and J. Feng, “Deep forest: Towards an alternative to deep
neural networks,” in Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI-17, pp. 3553–3559, 2017.

[9] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–
32, 2001.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, OCTOBER 2022 10

[10] B. Gupta, “Analysis of iot concept applications: Smart home per-
spective,” in Future Access Enablers for Ubiquitous and Intelligent
Infrastructures: 5th EAI International Conference, FABULOUS 2021,
Virtual Event, May 6–7, 2021, Proceedings, vol. 382, p. 167, Springer
Nature, 2021.

[11] Cisco, “Global Cloud Index: Forecast and Methodology, 2016–2021,”
2016.

[12] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to
offload? the bandwidth and energy costs of mobile cloud computing,”
in 2013 Proceedings IEEE INFOCOM, pp. 1285–1293, 2013.

[13] R. Sanchez-Iborra and A. F. Skarmeta, “TinyML-Enabled Frugal Smart
Objects: Challenges and Opportunities,” IEEE Circuits and Systems
Magazine, vol. 20, no. 3, pp. 4–18, 2020.

[14] C. R. Banbury, V. J. Reddi, M. Lam, W. Fu, A. Fazel, J. Holleman,
X. Huang, R. Hurtado, D. Kanter, A. Lokhmotov, et al., “Bench-
marking TinyML systems: Challenges and direction,” arXiv preprint
arXiv:2003.04821, 2020.

[15] TinyML foundation, “TinyML reasearch community.”
[16] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A

survey on the edge computing for the Internet of Things,” IEEE access,
vol. 6, pp. 6900–6919, 2017.

[17] T. M. Ingolfsson, A. Cossettini, X. Wang, E. Tabanelli, G. Tagliavini,
P. Ryvlin, and L. Benini, “Towards long-term non-invasive monitoring
for epilepsy via wearable eeg devices,” arXiv preprint arXiv:2106.08008,
2021.

[18] E. Tabanelli, D. Brunelli, A. Acquaviva, and L. Benini, “Trimming
feature extraction and inference for mcu-based edge nilm: a systematic
approach,” IEEE Transactions on Industrial Informatics, vol. 18, no. 2,
pp. 943–952, 2021.

[19] V. C. Pezoulas, T. P. Exarchos, and D. I. Fotiadis, “Chapter 2 - types and
sources of medical and other related data,” in Medical Data Sharing,
Harmonization and Analytics, pp. 19–65, Academic Press, 2020.

[20] T. Bernard, M. Verbunt, G. vom Bögel, and T. Wellmann, “Non-intrusive
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